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Abstract
Recursive partitioning techniques are established and frequently applied for exploring

unknown structures in complex and possibly high-dimensional data sets. The methods can
be used to detect interactions and nonlinear structures in a data-driven way by recursively
splitting the predictor space to form homogeneous groups of observations. However, while
the resulting trees are easy to interpret, they are also known to be potentially unstable.
Altering the data slightly can change either the variables and/or the cutpoints selected for
splitting. Moreover, the methods do not provide measures of confidence for the selected
splits and therefore users cannot assess the uncertainty of a given fitted tree. We present
a toolkit of descriptive measures and graphical illustrations based on resampling, that
can be used to assess the stability of the variable and cutpoint selection in recursive
partitioning. The summary measures and graphics available in the toolkit are illustrated
using a real world data set and implemented in the R package stablelearner.

Keywords: stability, recursive partitioning, variable selection, cutpoint selection, decision
trees.

1. Introduction

Recursive partitioning approaches, such as classification and regression trees (CART, Breiman,
Friedman, Olshen, and Stone 1984), conditional inference trees (Hothorn, Hornik, and Zeileis
2006) or model-based recursive partitioning (Zeileis, Hothorn, and Hornik 2008), have become
established and frequently-applied methods for exploring unknown structures in complex and
possibly high-dimensional data sets (Strobl, Malley, and Tutz 2009). The methods are able
to detect high-degree interactions and nonlinear structures in a data-driven way. Therefore,
these methods have been frequently applied in many scientific disciplines, as well as in many
industries for predictive modeling purposes (Kuhn and Johnson 2013).
Nowadays, more complex and more flexible methods exist for predictive learning, that often
achieve a better prediction accuracy (e.g., random forests, boosting, support vector machines,
neural networks). Recursive partitioning, however, is still a popular method in situations
where the aim is to infer and interpret the structure of the underlying process that has
generated the data. For this purpose, recursive partitioning is often favoured over other
methods, since the results can be illustrated in the form of decision trees, which are relatively
easy to interpret. Therefore tree-based methods are widely used as exploratory modeling
techniques in many fields, such as social and behavioral sciences (see e.g., Kopf, Augustin,
and Strobl 2013).
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Recursive partitioning algorithms recursively split the predictor space X œ Rp to form ho-
mogenous groups of observations. The various algorithms, that have been proposed in the
literature, mainly di�er with respect to the criteria for selecting the split variable, choosing
the cutpoint and stopping the recursion (see Hothorn et al. 2006). CART, for example, selects
the variable and the cutpoint that best unmixes the classes in case of a classification problem,
or that most reduces the squared error loss in case of a regression problem. Conditional infer-
ence trees, on the other hand, perform splitting and stopping based on a statistical inference
procedure.
Despite their popularity, a major drawback of recursive partitioning methods is their insta-
bility. By studying the predictive loss of di�erent regularization techniques, Breiman (1996)
identified recursive partitioning (among others) as unstable. Instability is revealed when small
random changes in the data lead to a di�erent set of splits in the model resulting from re-
cursive partitioning (Kuhn and Johnson 2013). Moreover, recursive partitioning methods do
not provide measures of confidence for the results. Therefore, users cannot assess the degree
of certainty for selected variables and cutpoints. Hence, the question remains to what extend
one can rely on the splits in a single tree to draw conclusions.
In this paper we first discuss instability of results from recursive partitioning using a practical
example. In the second part, we present a computational procedure and a number of graphical
tools that support users for assessing the stability of the variable and the cutpoint selection.
Code for applying the proposed methods is made available in the form of a software package
for the free R system for statistical computing (R Core Team 2016).

2. Instability of trees

It is well known that recursive partitioning methods tend to generate unstable results (Breiman
1996; Kuhn and Johnson 2013; Strobl et al. 2009; Turney 1995). Small changes in the training
data can a�ect the selection of the split variable and the choice of the cutpoint at any stage
in the recursive procedure, such that the resulting tree can take a very di�erent form. To
illustrate this circumstance, we have used recursive partitioning to predict the survival of the
passengers during the sinking of the RMS Titanic in 1912 by several passenger characteristics.
A complete passenger list is available online on http://www.encyclopedia-titanica.org/

(accessed on 2016-04-05). According to the list, 1317 passengers (excluding crew members)
were aboard from which 500 survived the sinking. The passenger information, that was
used for training the tree, was gender, age, fare, class (1st, 2nd or 3rd), place of embark-
ment (B = Belfast, C = Cherbourg, Q = Queenstown, S = Southampton), number of sib-
lings/spouses aboard (abbreviated as sibsp) and number of parents/children aboard (abbre-
viated as parch). The last two features were obtained from an overlapping data set available
on http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets. The tree was generated us-
ing the function ctree from the partykit package (Hothorn and Zeileis 2015) that performs
recursive partitioning in a conditional inference framework in R and is illustrated in the form
of a tree in the upper panel of Figure 1. In the following, we will refer to this result as the
original tree, since the partitioning was performed on the original passenger data (as opposed
to random samples drawn from the original data set employed subsequently).
Based on a bootstrap sample taken from the original passenger data, we generated a second
tree, which is illustrated in the lower panel of Figure 1. The structures of the trees look quite

http://www.encyclopedia-titanica.org/
http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
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(a) Tree based on the original data set:
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(b) Tree based on a bootstrap sample drawn from the original data set:
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Figure 1: Tree representation of results from recursive partitioning for the RMS Titanic
passenger data.



4 A Toolkit for Stability Assessment of Tree-Based Learners
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Figure 2: Examples of di�erent tree structures, but equivalent partitions and interpretations.

di�erent at first sight, which suggests a large instability of the tree. However, when looking
closer one can identify variables that were selected in both trees and split at the same or a
similar cutpoint. The numerical variable age was split at 4 and 54 in the original tree and at
the values 4 and 36 in the boostrap tree. The numerical variable fare was split twice in the
original tree at 15.02 and 23.05 and at 23.05 in the bootstrap tree. The categorical variable
class was split twice between second and third class and once between first and second class
in both trees. The categorical variable gender was split twice on the second level in the
original tree and once on the first level in the bootstrap tree. Thus, many splits appeared in
both trees, only the order and the cutpoints for numerical variables were slightly di�erent.
As Turney (1995) elaborates in his work, two trees that are structurally di�erent can be
logically equivalent. This means that two trees can lead to very similar or even the same
interpretation although their structures (in particular the order of the splits) look very dif-
ferent. To illustrate this principle, we consider two hypothetic trees for a simple classification
problem with two classes and a two-dimensional predictor space. Note however, that the
statement also holds for any type of response variable and also for predictor spaces with more
dimensions. Figure 2 shows two trees (upper row) and representations of the corresponding
partitioning of the feature space (bottom row). In the illustration the predicted class in each
terminal node is indicated by the colors red and green. According to the figures in panel (a)
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and (b), the tree structures di�er by the split variable in their root node, their path structure
and the sequence of split variables in the paths between the root node and the leafs. Yet,
though the two trees are structurally di�erent, the predictions are equivalent for any point
in the predictor space. By mentally merging the two partitioning representations, it becomes
evident that the two trees have identical splits, that only appear in a di�erent order in the
tree representation.
To assess whether a tree is stable or not, it is therefore principally important to investigate
the stability of the splits, rather than the stability of the entire tree structure. From a single
tree representation it is not possible to identify which splits are stable. It is possible, however
from an ensemble of trees, e.g., generated by resampling from the original data. From the
ensemble, the stability of the splits can be assessed by investigating the variable selection
frequency and the cutpoint variability.

3. Measuring variable selection and cutpoint stability

In the following we will outline what steps are necessary from a conceptual point of view to
assess the stability of variable and cutpoint selection in trees. Subsequently, these steps will
be illustrated for a binary classification tree modeling survival vs. non-survival on the RMS
Titanic.
The first step to assess stability is to draw several samples from the original data. The sec-
ond step is to compute the descriptive measures and graphics provided in our toolkit over
all samples. The options implemented in the package for generating samples in the first step
are bootstrap sampling (sampling with replacement), subsampling (sampling without replace-
ment), k-fold sample splitting (partitioning the original data into k equally sized samples),
leave-k-out jackknife sampling, or further user-defined strategies. Since each option has its
specific peculiarities, they will likely generate di�erent results. For the further illustration we
will focus on bootstrap sampling, which is most widely used and was chosen as the default
option in the function stabletree() in the package stablelearner (currently available from
https://R-Forge.R-project.org/projects/stablelearner/):

R> library("stablelearner")

R> data("titanic", package = "stablelearner")

R> m <- ctree(survived ~ gender + age + fare +

+ ordered(class) + embarked + sibsp + parch,

+ data = subset(titanic, class %in% c("1st", "2nd", "3rd")))

R> s <- stabletree(m, B = 500)

The function stabletree() requires a tree-based model object that either inherits from class
party (like, e.g., the result of ctree() or glmtree()) or can be coerced to it (like, e.g.,
the results of rpart() or J48()). Additionally, parallelization can easily be utilized with a
convenience option for multicore computation based on parallel (for platforms that support
this).
In the remaining part of this section, descriptive measures and graphical illustrations are
introduced for investigating the stability of the splits, specifically for the variable and the
cutpoint selection. First, the measures will be briefly discussed and then illustrated for the
Titanic example.

https://R-Forge.R-project.org/projects/stablelearner/
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3.1. Variable selection analysis

The aim of the variable selection analysis is to investigate whether variables that are selected
for splitting in the original tree are also consistently selected for splitting in the resampled
data sets. Furthermore, it can be compared how often (on average) a variable is selected
within the original tree and the repetitions, respectively.
The first descriptive measure is simply the relative frequency of selecting variable xj for
splitting, computed over all repetitions in the procedure. Let b = 1, . . . , B denote the index
for the repetitions and j = 1, . . . , p the index of the variables considered for partitioning.
Further, let S = {sbj} be a binary matrix, where sbj = 1 if variable xj was selected for
splitting in repetition b and 0 otherwise. Then, the relative variable selection frequency is
computed by 100 · 1

B

qB
b=1 sbj and is expected to be large (i.e., close to 100%) for those

variables selected in the original tree, if the result is stable. The variable selection frequency
can be illustrated graphically using a barplot() method that generates the barplot depicted
in the left panel of Figure 3. The variables (depicted on the x-axis) are sorted in decreasing
order with respect to their variable selection frequencies. The bars of variables selected in the
original tree are colored in dark gray and the corresponding labels are underlined. Thus, from
the plot we can infer that the variables gender, class, age, fare and sibsp were selected
for splitting in the original tree. The height of the bars corresponds to the variable selection
frequency depicted on the y-axis. The first two bars reach the upper limit of 100%, which
means that the variables gender and class were selected for splitting in each repetition. The
variable age, represented by the third bar, was selected slightly less than 100% (but still very
often) over the repetitions. The variables fare and sibsp, represented by the fourth and the
fifth bar, were selected in the original tree, but not as frequently over all repetitions. This
indicates that the splits in those variables in the original tree must be considered less reliable
compared to the splits of the variable gender, class and age. The last two bars represent
the variables embarked and parch, which were not selected in the original tree. They were
selected for splitting in less than 50% of the repetitions. This indicates that although those
variables seem to carry some information that is useful for predicting survival, they are not
predominant. From a content perspective one may assume for this example that, over the
repetitions, the variables embarked and parch occasionally acted as a proxy for the other
variables in the data set.
The summary() method prints the corresponding table with the variable selection frequency
(termed freq) in the first column for each variable. The second column (headed by an
asterisk) indicates whether the variable was selected for splitting in the original tree:

freq * mean *

gender 1.000 1 1.640 2

ordered(class) 1.000 1 2.614 3

age 0.992 1 2.292 2

fare 0.920 1 1.718 2

sibsp 0.786 1 1.124 1

embarked 0.556 0 0.680 0

parch 0.376 0 0.454 0

(* = original tree)

The third column in the table (termed mean) contains the values of another descriptive mea-
sure and denotes the average count splitting in variable xj per tree. Let C = {cbj} be an
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Figure 3: Graphical variable selection analysis.

integer matrix, where cbj equals the number of times xj was used for splitting in the tree for
repetition b. Note that this number can be greater than one, because the same variable may
be used for splitting in di�erent parts of the tree. The average variable split count is com-
puted by 1

B

qB
b=1 cbj and is expected to be close to the count of splitting in variable xj in the

original tree. The last column in the table (also headed by an asterisk) indicates how many
times the variable was selected for splitting in the original tree. For example, the variable
gender, was used on average 1.64 times over all repetitions and twice in the original tree.
It is possible, that the variable gender was often split on a higher level (and thus less often
used for splitting) in the repetitions, as compared to the original tree. The reverse may be
assumed for the variable age, which was on average more often used for splitting over the
repetitions than it was used for splitting in the original tree. Similar interpretations follow
from the information for the other variables.
Furthermore, we can investigate the combinations of variables selected in the various trees
over the repetitions. This can be illustrated using the function image(). The resulting plot,
that is illustrated in the right panel of Figure 3, is a graphical illustration of the binary matrix
S that contains the variable selections over the repetitions. A fine grid of rectangles is drawn
for each element in S, which are colored dark gray if sbj = 1 and light gray if sbj = 0. Again,
the variables (illustrated in the x direction) are sorted in decreasing order with respect to
the variable selection frequencies. The repetitions (illustrated in the y direction) are ordered
such that similar combinations of selected variables are grouped together. The combination
of variables used for splitting in the original tree is marked on the right side of the plot using
a thin solid red line. The area representing the combination is additionally enclosed by two
dashed red lines. Notice that this is also the most frequent combination of variables selected
over all repetitions. Repetitions that included additional variables beyond the combination
in the original tree are illustrated below the marked area. Hence, we can deduce from the
illustration that the variables embarked and parch were sometimes additionally used for
splitting. In the replications above the marked area some splitting variables from the original
tree were substituted with other variables.
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3.2. Cutpoint analysis

The variable selection analysis showed that there are some variables which are consistently
used for splitting, indicating that those variables are more relevant in predicting survival
than others. However, even when the same variables are selected, the splits may still vary
with respect to the cutpoints chosen for splitting. Therefore a further important step in
assessing the stability of the splits is the analysis of the cutpoints, which provides more
detailed information about the variability of the splits.

We suggest di�erent graphical illustrations for analyzing the variability of the cutpoints for
numerical, unordered categorical and ordered categorical variables. Using the function plot()

these illustrations can be generated for all variables specified in the model. According to the
type of variable the correct illustration is chosen automatically. As before, the variables are
sorted by decreasing variable selection frequency and variable names are underlined if the
variable was selected for splitting in the original tree. Figure 4 illustrates these plots for the
variables in the Titanic passenger data set.

To analyze the cutpoints for ordered categorical variables, we suggest to use a barplot that
shows the frequency of all possible cutpoints. Those are sorted on the x-axis by their natural
order that arises from the ordering of the categories of the variables. Examples are given for
the variables class, sibsp and parch in Figure 4. Additionally, the cutpoints chosen in the
original tree are marked using a vertical dashed red line. The number above each line indicates
at which level the split occured in the original tree. For example, the cutpoint between the
first and the second class is selected more than 500 times (the number of repetitions in this
example). This means that for some repetitions the split appeared several times in di�erent
positions in the same tree (for example in parallel branches). However, the passengers were
split even more often between the second and the third class. The illustration indicates that
the observations were consistently split by their class a�liation over the repetitions to predict
survival of the passengers. The cutpoint in the variable sibsp, on the other hand, was less
stable. Although the variable was quite frequently selected for splitting, the variable was
often split between lower categories over the repetitions as compared to the original tree. The
variable parch, which was not used in the original tree, was split only few times between the
lower categories and can thus be considered as not very relevant.

To analyze the partition for unordered categorical variables (avoiding ambiguities by using the
term “partition” rather than “cutpoint” here), we suggest to use image plots, as illustrated
for the variables gender and embarked in Figure 4. When using binary splits, observations
with the same categories are partitioned into the left or the right daughter node. Thus, the
categories are assigned to the left or to the right branch of the split, respectively. For visu-
alizing the partitions over the repetitions, categories that are directed to the same daughter
node are illustrated by the same color. For the variable gender, there is only one possible
split between the two categories Female and Male. The plot illustrates, however, that this
split occurs many times (more than 500) over all repetitions, which underscores the relevance
of the split. The combination of categories that represent a partition as it occurred in the
original tree, is marked on the right side of the plot using a thin solid red line. The area
representing the partition is additionally enclosed by two dashed lines (this is a little hard to
see here, because the binary variable gender only o�ers one possible partition). Furthermore,
the number(s) on the right side of the marking also represent(s) the level(s) of the corre-
sponding split(s) in the structure of the original tree. The two numbers on the right side of
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Figure 4: Graphical cutpoint analysis.

the illustration for the variable gender in Figure 4 indicate that gender was split twice on
the second level in the original tree.
The plot becomes more detailed for variables with more than two categories such as the
variable embarked. This variable, however, was not used for splitting in the original tree.
Nevertheless it was used relatively often for splitting over all repetitions. In this illustration
the additional color light gray is used when a category was no more represented by the
observations left for partitioning in the particular node. The partitions over all repetitions
are ordered such that equal partitions are grouped together. The most frequent partitions are
[C, Q] versus [S] and [C] versus [B, Q, S]. Since passengers from the di�erent classes tended
to embark in di�erent cities (e.g., most third class passengers embarked in Southampton),
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Figure 5: Cutpoint analysis for artificial regression problems.

the variable embarked may in some repetitions (but not in the original tree) have been used
as a proxy for the variable class in parts of the tree.
To analyze the cutpoints for numerical variables, we suggest to use a histogram, as illustrated
for the variables age and fare. According to the distribution illustrated for the variable
age, the cutpoints selected over the repetitions spread over the complete range of possible
cutpoints. Although some cutpoints were selected more frequently than others, there were
no unique cutpoints that were selected over most repetitions. The selected cutpoints of the
variable fare are illustrated on a logarithmic scale in Figure 4, as it makes the picture easier
to read. Again, the cutpoints selected over the repetitions spread over the complete range of
possible cutpoints. However, the cutpoints selected in the original tree match two of three
distinct peaks in the histogram and can be considered slightly more stable as compared to
the cutpoints within the variable age.
From a conceptual point of view, the cutpoint pattern reflects the underlying functional
shape. Due to the recursive nature of trees, smooth functions need to be approximated by
several splits while piecewise constant step functions can be described straightforwardly by
individual splits (see also Strobl et al. 2009). This is illustrated in Figure 5. The upper left
panel illustrates a linear relationship. To approximate this functional form, a tree algorithm
will split the variable several times at di�erent cutpoints. Altering the data would thus very
likely lead to a di�erent cutpoint. For a piecewise constant function like the one illustrated
in the upper right panel of Figure 5, on the other hand, the functional form is captured by a
single split, that is relatively easy to detect and will not change much if the data are altered.
Therefore a split in this variable will be more stable. Note, however, that other factors, such
as noise, can adversely a�ect the unique identification of cutpoints.
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To further demonstrate how the cutpoint stability plots can reflect the underlying functional
form, we have simulated 500 observations from the model y = f(x) + Á for each of the two
functions displayed in the top row of Figure 5. The variable x was sampled from a uniform
distribution œ [0, 1] and Á was sampled from a standard normal distribution. In the bottom
row of Figure 5 the stability of the cutpoints for the variable x is illustrated for the two
artificial examples. As expected, the identification of a stable cutpoint failed for the example
with the linear relationship (see lower-left panel). The selected cutpoints are distributed
over almost the entire predictor space [0, 1]. This was expected, since there was no clear
cutpoint defined in the true model and many di�erent cutpoints were used to approximate
the functions. In the example with the piecewise constant relationship, however, the cutpoint
at 0.5 was correctly recovered over most repetitions (see lower-right panel). For the Titanic
example illustrated in Figure 4 this means that the cutpoints selected in the original tree for
the variable age are rather unstable and should not be overinterpreted because the underlying
functions seems to be smooth rather than piecewise constant. The cutpoints selected for the
variable fare are slightly more stable.
To sum up, the stability analysis of the binary classification tree fitted for the Titanic data
revealed that many splits in the original tree illustrated in Figure 1 were rather stable, but
some parts were quite variable. First, the splits of the variables gender and class can be
considered as important and stable. Second, the splits of the variable age are ambiguous,
although the variable is definitely relevant for predicting survival of the passengers. Further-
more, the splits of the variable fare are fairly stable, but the variable was a few times not
selected for splitting over the repetitions. Thus, if the data were altered slightly, the variable
might also had been omitted for splitting in the original tree. And finally, the split of the
variable sibsp is least stable and should not be overinterpreted.

4. Discussion

In this paper we have presented a toolkit of descriptive measures and graphical illustrations
that can be used to investigate the stability of the variable and cutpoint selection in models
resulting from recursive partitioning. It was demonstrated how the tools are used and illus-
trated how intuitive they are by a real world data set. In particular, the toolkit was used
to investigate the stability of a binary classification tree modelling survival vs. non-survival
on the RMS Titanic. The analysis revealed that many aspects of the fitted tree were rather
stable, but some parts were quite variable. Notice that the toolkit is not limited to classifica-
tion trees, but can also be used to investigate the stability of regression trees or model-based
trees. It was further illustrated that clear cutpoints from piecewise constant functions in
the underlying data generating process, can be identified using the proposed graphics for the
cutpoint analysis. The functions are implemented in the R package called stablelearner which
is currently available from https://R-Forge.R-project.org/projects/stablelearner/.
To acknowledge some limitations associated with the tools it should be mentioned, that they
produce less meaningful results for very large trees with many splits. If the structure of the
underlying data generating process is complex, the sample size or the number of predictors is
large, it can become tedious to interpret a tree. Assessing the variable selection and cutpoint
stability of such trees is computationally very intensive and the result might be unclear.
However, the complexity of a tree can be reduced by modifying the settings (i.e., the pruning
rule or the stopping criteria) of the recursive partitioning algorithm. Furthermore one should

https://R-Forge.R-project.org/projects/stablelearner/
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always be aware that any resampling scheme can only mimic what would happen if a new
sample could be drawn from the population. And finally, the proposed tools do not assess
the predictive stability of trees, which is another important aspect for their interpretation, as
we briefly saw in Section 2. To comprehensively assess the stability of the interpretation of
a fitted tree, the prediction has to be taken into account. This aspect will be addressed in
future research.
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Abstract
Recursive partitioning techniques are established and frequently applied for explo-
ring unknown structures in complex and possibly high-dimensional data sets. The
methods can be used to detect interactions and nonlinear structures in a data-driven
way by recursively splitting the predictor space to form homogeneous groups of ob-
servations. However, while the resulting trees are easy to interpret, they are also
known to be potentially unstable. Altering the data slightly can change either the
variables and/or the cutpoints selected for splitting. Moreover, the methods do not
provide measures of confidence for the selected splits and therefore users cannot
assess the uncertainty of a given fitted tree. We present a toolkit of descriptive mea-
sures and graphical illustrations based on resampling, that can be used to assess
the stability of the variable and cutpoint selection in recursive partitioning. The
summary measures and graphics available in the toolkit are illustrated using a real
world data set and implemented in the R package stablelearner.
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