
Stauffer, Reto; Messner, Jakob W.; Mayr, Georg J.; Umlauf, Nikolaus; Zeileis, Achim

Working Paper

Spatio-temporal precipitation climatology over complex
terrain using a censored additive regression model

Working Papers in Economics and Statistics, No. 2016-07

Provided in Cooperation with:
Institute of Public Finance, University of Innsbruck

Suggested Citation: Stauffer, Reto; Messner, Jakob W.; Mayr, Georg J.; Umlauf, Nikolaus; Zeileis,
Achim (2016) : Spatio-temporal precipitation climatology over complex terrain using a censored
additive regression model, Working Papers in Economics and Statistics, No. 2016-07, University of
Innsbruck, Research Platform Empirical and Experimental Economics (eeecon), Innsbruck

This Version is available at:
https://hdl.handle.net/10419/146124

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/146124
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Spatio-temporal precipitation

climatology over complex terrain

using a censored additive

regression model

Reto Stauffer, Jakob W. Messner, Georg J. Mayr,

Nikolaus Umlauf, Achim Zeileis

Working Papers in Economics and Statistics

2016-07

University of Innsbruck

http://eeecon.uibk.ac.at/



University of Innsbruck

Working Papers in Economics and Statistics

The series is jointly edited and published by

- Department of Banking and Finance

- Department of Economics

- Department of Public Finance

- Department of Statistics

Contact address of the editor:

Research platform “Empirical and Experimental Economics”

University of Innsbruck

Universitaetsstrasse 15

A-6020 Innsbruck

Austria

Tel: + 43 512 507 7171

Fax: + 43 512 507 2970

E-mail: eeecon@uibk.ac.at

The most recent version of all working papers can be downloaded at

http://eeecon.uibk.ac.at/wopec/

For a list of recent papers see the backpages of this paper.



Spatio-Temporal Precipitation Climatology over

Complex Terrain Using a Censored Additive

Regression Model

Reto Stau↵er

Universität Innsbruck
Georg J. Mayr

Universität Innsbruck
Jakob W. Messner

Universität Innsbruck

Nikolaus Umlauf

Universität Innsbruck
Achim Zeileis

Universität Innsbruck

Abstract

Flexible spatio-temporal models are widely used to create reliable and accurate esti-
mates for precipitation climatologies. Most models are based on square root transformed
monthly or annual means, where a normal distribution seems to be appropriate. This as-
sumption becomes invalid on a daily time scale as the observations involve large fractions
of zero-observations and are limited to non-negative values.

We develop a novel spatio-temporal model to estimate the full climatological distri-
bution of precipitation on a daily time scale over complex terrain using a left-censored
normal distribution. The results demonstrate that the new method is able to account
for the non-normal distribution and the large fraction of zero-observations. The new
climatology provides the full climatological distribution on a very high spatial and tem-
poral resolution, and is competitive with, or even outperforms existing methods, even for
arbitrary locations.

Keywords: climatology, precipitation, complex terrain, GAMLSS, censoring, daily resolution.

1. Introduction

Accurate knowledge about the climatology of precipitation is important for a wide scope of
applications, such as agriculture, risk assessments, strategical project planning, water resource
management, or tourism. For locations equipped with a precipitation measurement instru-
ment, this task is straightforward. However, in most areas the observational network is too
sparse to capture all local e↵ects, and stations are mostly located at lower elevations due to
environmental conditions and maintenance purposes.

To gain information about the amount or occurrence of precipitation for locations without
measurements, information from an irregularly spaced observation network has to be brought
to a finer (regular) region-wide grid, known as interpolation. First methods for precipitation
have been published early in the last century when Thiessen (1911) pointed out that sim-
ple interpolation schemes, such as nearest neighbour, or arithmetic areal means, should not
be used. Precipitation is driven by many other factors, e.g., distance to mountain ranges,
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geographical position, and others (Basist, Bell, and Meentemeyer 1994). Thiessen (1911)
invented an areal weighted-mean scheme which includes terrain-based properties. Although
this was only a first “simple” extension, today’s statistical methods still follow a similar idea.

Over the last decades, several di↵erent approaches have been developed, which can be clus-
tered into three main groups. The first one consists of exact interpolation schemes, including
inverse distance weighting, and various forms of kriging (e.g., Biau, Zorita, von Storch, and
Wackernagel 1999; Goovaerts 2000). Another class are regional regression models, where for
every location a (simple) regression model is adjusted from only a subset of neighbouring
stations. Examples are PRISM (Precipitation-elevation Regressions on Independent Slopes
Model; Daly, Neilson, and Phillips 1994; Daly, Taylor, and Gibson 1997; Daly, Gibson, Tay-
lor, Johnson, and Pasteris 2002; Daly, Halbleib, Smith, Gibson, Doggett, Taylor, Curtis, and
Pasteris 2008), and Daymet (Thornton, Running, and White 1997).

A third class of interpolation methods are smooth spline regression models, on which this
article will focus. A common form of smooth models are generalised additive models (GAM’s;
Guisan, Edwards Jr., and Hastie 2002), where a response quantity is described by a set
of possibly non-linear functions of covariates. Feasible functions include cyclic splines to
represent annual cycles, two-dimensional splines on longitude and latitude to describe spatial
distribution, altitudinal e↵ects, and many others. Spline models have been used for long-
term climatologies for di↵erent quantities, such as for annual or monthly mean temperatures
or precipitation sums (e.g, Boer, de Beurs, and Hartkamp 2001; Jarvis and Stuart 2001;
Vicente Serrano, Sánchez, Cuadrat et al. 2003; Guan, Hsu, Wey, and Tsao 2009).

Most articles have been focussing on monthly or even annual mean precipitation sums only,
using a power transformation to remove skewness (Box and Cox 1964). In the literature, cubic
(Stidd 1973) or square root (Hutchinson 1998b) transformations have often been suggested.
The optimal power parameter may vary for di↵erent climatic zones or temporal aggregation
levels. For demonstration purposes Figure 1a1 shows monthly precipitation sums, whereas
Figure 1a2 shows the same data on a square root scale. The power transformation is able to
remove most of the skewness from the observed distribution.

For a wide range of applications a finer temporal resolution is needed and - beside the mean
precipitation amount - additional properties of the climatological distribution are of great
interest, such as the probability of precipitation, or specific quantiles. This can be achived by
either creating one specific model for each of the quantities of interest, or by modelling the
full climatological distribution in one single model. An accurate estimate of the full climato-
logical distribution requires a suitable response distribution. For daily precipitation sums, the
observed and square root transformed observed distribution is shown in Figure 1b1 & 1b2.
Three main properties can be identified:

(i) the distribution is highly positively skewed,

(ii) the distribution is limited to non-negative values,

(iii) a large fraction of all observations is exactly zero (dry days)

While the power transformation is still able to remove most of the skewness, the remaining
properties stay unchanged and have to be accounted separately. As precipitation is physically
limited to � 0 it can be seen as left-censored (Messner, Mayr, Wilks, and Zeileis 2014).
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Figure 1: Density plot of precipitation sums. Top row: monthly precipitation sums from
117 stations. Bottom row: daily precipitation sums of one sample station. Right column:
power-transformed observations (

p
mm day

�1) with a normal distribution fitted to it (black,
dashed). Additinally a left-censored normal distribution is fitted to the power-transformed
daily observations (bottom right; red, solid). Please note: y-axes in the bottom row are both
cut.

In this article, we present a novel spatio-temporal additive model with a left-censored normal
response, to estimate a full-distributional climatology of precipitation over complex terrain
on a daily temporal resolution. We are using a generalised additive model for location, scale,
and shape (GAMLSS; Rigby and Stasinopoulos 2005) to create reliable estimates of the full
spatio-temporal climatological distribution on a daily time scale. This allows to model the
expectation, as well as the climatological variance simultaneously. To remove the (i) skewness
a power transformation will be applied. To account for the two remaining properties, a left-
censored normal distribution will be assumed which handles both, the (ii) lower limit at 0,
and (iii) the large fraction of zero observations in the data set. The new approach allows
full scalability (size of the area of interest, but also spatial- and temporal resolution) and can
therefore be easily implemented and applied to new data sets.

This article is organized as follows: Section 2 introduces the concept of censoring, and the
GAMLSS framework needed to estimate the high-resolution precipitation climatologies on a
daily time scale. In Section 3 the area of interest and used the data set is described, followed
by the climatological estimates in Section 4. While Section 4.1 shows model results, model
verification and comparison will be presented in Section 4.2.
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2. Methodology

2.1. Left-Censored Normal Distribution

A crucial point is the (conditional) response distribution of the model. For monthly or annual
precipitation sums, a normal distribution on transformed observations using the square root
works well (e.g., Hutchinson 1998a) as shown in Figure 1a2. The transformation is able
to remove the skewness. Due to the temporal aggregation, the majority of all observations
lie above zero, leading to a pseudounbounded data set (Sansom and Tait 2004), where the
assumption of a normally distributed response seems appropriate. For di↵erent data sets or
climatic zones, the aggregation period required to create pseudounbounded data may vary.

In contrast to the observed monthly sums, the observed distribution of daily precipitation
observations is shown in Figure 1b1 for one random station. Again, a square root transfor-
mation was applied to remove the positive skewness, shown in Figure 1b2. A strong peak
can be seen at 0 caused by the large fraction zero observations (days without precipitation).
Therefore, a left-censored normal distribution will be used in this article as a suitable response
distribution. The concept of censoring is that a certain quantity cannot be observed below
or above a certain threshold ⌧ , or outside a certain range ⌧1–⌧2. Precipitation is physically
limited to 0 mm and can therefore be seen as left-censored at ⌧ = 0, as shown by Messner
et al. (2014), see Figure 1b1 & 1b2. In addition to the observed daily precipitation sums, Fig-
ure 1b2 shows two fitted distributions. The dashed line shows a normal distribution based on
the arithmetic mean and standard deviation, resulting in an apparently inappropriate fit. The
solid line shows the fitted left-censored normal distribution. Comparing the estimated (44%)
and observed (43%) probability of precipitation, as well as the estimated (2.3 mm day

�1) and
observed (2.2 mm day

�1) expectation shows that the left-censored normal distribution is able
to account for the large fraction of zero observations and to accurately adjust the distribution
of the non-censored part. A left-censored normal distribution censored at 0 can be specified
as follows:

y = max(0, y⇤), y

⇤ ⇠ N
�
µ,�

�
(1)

y

⇤ denotes the unobservable latent response following a normal distribution, given the location
and scale parameters µ and �. The observable response y is simply the maximum of the latent
response and the censoring point. From here on this distribution will be denoted as N0. The
density (�

cens
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cens
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While both quantities are set to 0 below the censoring point, both follow the density �

and distribution function � of a non-censored normal distribution, respectively, above the
censoring point (x

i

> 0). On the censoring point (x
i

= 0) the distribution function is again
equivalent to the normal distribution, while the density represents the probability that an
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observation will lie exactly on 0. Therefore, the probability ⇡ to exceed 0 can be written as:

⇡(y > 0) = 1� �(0|µ,�) (4)

A last property of interest is the expectation of N0. As the estimates will be fitted on
a power-transformed scale y with y = z

1/p, this transformation has to be included to get
the expectation on the original scale (mm day

�1). The expectation function of a power-
transformed N0 can be expressed as (see Appendix A):

E

⇥
z

⇤
=

1Z

0

z · �(z
1
p |µ,�) · z

( 1p�1)

p

dz (5)

Where z is already on the original scale, µ and � are the estimated parameters of N0 on
the power-transformed scale, and p denotes the power parameter that specifies the power-
transofrmation.

2.2. Generalised Additive Model for Location, Shape, and Scale (GAMLSS)

Generalised additive models for location, scale, and shape (Rigby and Stasinopoulos 2005)
are an extension to generalised additive models (GAM’s; Guisan et al. 2002) which allow
to model all parameters of a certain response distribution separately. In case of a censored
normal distribution two parameters have to be specified: latent location (mean), and latent
scale (standard deviation). For a left-censored normal distribution censored at ⌧ = 0 a
GAMLSS model can be expressed as follows:

y ⇠ N0(µ,�)

µ = s(x)

log(�) = t(x)

(6)

The observable response y is assumed to follow a left-censored normal distribution N0 cen-
sored at 0, with location µ and scale �, where the log-link ensures positive values during
optimization. Both distributional parameters can be expressed by a set of unknown, possibly
non-linear functions s(. . . ) and t(. . . ), also known as linear predictors given the explanatory
variables x including the covariates, such as altitude, longitude, latitude, and others.

The linear predictors can include di↵erent additive e↵ects, such as linear e↵ects, non-linear
e↵ects, cyclic e↵ects, two-dimensional surfaces, and many others. Common forms of splines
are e.g., thin plate splines, or B-splines (Wood 2006, Chap. 4.1, Fahrmeir, Kneib, Lang,
and Marx 2013). An additional penalization allows to control the wiggliness of a spline e↵ect
leading to smooth splines, which can be defined one- or multi-dimensional to allow for complex
smooth e↵ects.

For applications where only the mean is of interest, the scale parameter in Equation 6 could be
specified as a constant, leading to a homoscedastic GAM model where the variance is constant
among all observations. Models of this type have been used frequently for the application
of precipitation climatologies, such as in Hutchinson (1998a,b); Price, McKenney, Nalder,
Hutchinson, and Kesteven (2000); Boer et al. (2001); Hong, Nix, Hutchinson, and Booth
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(2005). However, as we would like to estimate the full daily climatological distribution, the
linear predictor for log(�) in Equation 6 has to be specified as well.

For the specific application of a spatio-temporal precipitation climatology, the e↵ects s(x)
and t(x) have to capture a possible altitudinal e↵ect, the seasonality, as well as the spatial
pattern. Therefore, the following e↵ects have been specified for the location parameter:

µ = s(x) = � + s1(alt) + s2(yday) + s3(lon, lat) + s4(yday, lon, lat), (7)

where � denotes the global intercept, s1(alt) represents a smooth altitudinal e↵ect, s2(yday) a
cyclic seasonal e↵ect based on the day of the year, s3(lon, lat) a two-dimensional spatial e↵ect
given the geographical coordinates longitude and latitude, and s4(yday, lon, lat) represents a
three-dimensional spline to account for spatial variabilities of the seasonal pattern across the
region of interest. All smooth terms use thin-plate splines, except for the seasonal e↵ects
which use cyclic cubic splines.

Analogously to the linear predictor for the location (Equation 7), the linear predictor for the
log-scale is expressed as follows:

log(�) = t(z) = � + t1(alt) + t2(yday) + t3(lon, lat) + t4(yday, lon, lat) (8)

The two linear predictors include the same e↵ects, as we expect the climatological variance
for precipitation to also show a seasonal and spatial dependency, as well as an altitudinal
e↵ect (Equation 7 & 8). This seems appropriate for the specific task of this article, but is no
general requirement for GAMLSS models.

2.3. Model Setup

The spatio-temporal precipitation climatology presented in this article is specified as in Equa-
tions 6–8. To estimate such non-parametric smooth models, including the assumption of a
censored normal response, suitable software is required. We are using a novel R package
bamlss (Umlauf, Zeileis, Klein, and Adler 2016b), which o↵ers a flexible Bayesian framework
for additive models for location, scale, and shape (and beyond), and the capability to handle
(very) large data sets. Other frequently used software implementations to estimate smooth
models are e.g., ANUSPLIN (Hutchinson 2014), or the R packages mgcv (Wood 2006), and
gamlss (Rigby and Stasinopoulos 2005).

To compare the performance of the novel spatio-temporal climatology similar models have
been estimated for each station separately using the same technique with modified linear
predictors. As these climatological estimates are stationwise, only the intercepts and seasonal
e↵ects from Equation 7 & 8 have to be included (s2(yday),t2(yday)).

To remove the skewness of the observed distribution, cubic (Stidd 1973) or square root
(Hutchinson 1998b) transformations have been used in the literature. However, the power
parameters used were choosen empirically and might di↵er on di↵erent data sets. Therefore,
we were using our stationwise models to find the most suitable power parameter for this ap-
plication. For each station a GAMLSS model has been fitted, optimizing the linear predictors
plus a constant power parameter simultaneously. It turned out (not shown) that the opti-
mal power parameter does not show an obvious spatial or altitudinal dependency, and varies
between 1.3 and 2.0 (=square root) with median around 1.6 among all stations in the data
set. Within this range, the model performance is not very sensitive to the selected power
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Figure 2: Topography around Tyrol, Austria. Shading indicates altitude of the topography
in meters, the outline shows the border of the state of Tyrol consisting of North and East
Tyrol. The black dots show the stations locations from the data set.

parameter. We therefore set the power parameter to p = 1.6 for all models and stations in
this article.

The estimates for all GAMLSS models (stationwise and spatio-temporal ; Section 4) are based
on the new R package bamlss. The optimization is based on Markov-Chain Monte Carlo
(MCMC) sampling in combination with an iterative weighted least squares backfitting algo-
rithm (Umlauf, Klein, and Zeileis 2016a). Code and data used in this article can be down-
loaded from the bamlss project page (http://bayesr.r-forge.r-project.org/).

3. Area of Interest and Data

This article focuses on the state of Tyrol, Austria, located in Central Europe. Tyrol lies in
the Eastern Alps and consists of two separated parts – North Tyrol located north of the main
Alpine ridge, and East Tyrol located south of the main Alpine ridge, as shown in Figure 2.
Both parts are related to the temperate climatic zone with a prevailing alpine character. The
topography reaches from 465 m amsl up to 3798 m amsl including the majority of the highest
mountains in Austria. This complexity is one of the main di�culties from a climatological
perspective, as climatological properties can strongly vary within just a few kilometres due
to topographically induced e↵ects.

Compared to other regions, Tyrol has a relatively dense precipitation observation network.
The used observation data set is provided by the local hydrographical service and includes
117 stations. Station locations are highlighted in Figure 2. Each station is equipped with a
manual rain gauge to measure liquid water or liquid water equivalent accumulated over the
last 24 h, observed at 6 UTC. The data undergo a strict quality check and correction by
the maintainer. Observations are available from September 1971 through the end of 2012.
78 out of 117 stations include at least 40 years of data, 14 start within the 19800s, 9 within

http://bayesr.r-forge.r-project.org/


8 Spatio-Temporal Precipitation Climatology over Complex Terrain

Figure 3: Mean monthly precipitation in millimetres, based on the data set. Each bar indicates
one month (January–December, left to right). Bar height and luminance contain the same
information.

the 19900s and 3 post-millennial. The total data availability is around 88% leading to a total
number of roughly 1.6 million unique daily observations. The data set is freely available for
non-commercial use, and can be downloaded from the bamlss project page (BMLFUW 2016;
http://bayesr.r-forge.r-project.org/).

Figure 3 shows the mean monthly precipitation sums for all stations. The largest amounts of
precipitation with around 1100–2100 mm per year are observed for the north-west and north-
east stations, and a second slightly weaker maximum with more than 1000 mm per year for
the south-east stations. This is due to the proximity to the foreland of the Alps (Bavaria,
Germany to the north, northern Italy to the south) and dynamically driven processes. In-
coming air masses get lifted when they encounter the first obstacles, leading to orographic
precipitation, and a loss of moisture at the foot of the Alps (Houze 2012). On the north
side, this e↵ect is mainly caused by fronts advected from north-westerly directions, leading
to higher mean precipitation amounts over the whole year. In the south-east, the highest
precipitation amounts are related to mesoscale cyclones forming over the Mediterranean sea
(e.g., Raulin 1879; Frei and Schär 1998). All stations show a local maximum in summer
(June–August), which is mainly caused by local thermal convection, which leads to increased
amounts of precipitation and thunderstorms. The convective enhancement is strongest in the
pre-alpine regions north-west, and north-east of Tyrol (Wapler 2013).

http://bayesr.r-forge.r-project.org/
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Figure 4: Centred altitudinal e↵ects s1(yday) on the location µ (left), and t1(yday) on the
log(�) (right). Values on the power-transformed scale. Inner ticks on the ordinate indicate
the altitudes of all stations in the data set. The shading shows the confidence intervals of the
estimate, the width is closely related to the large amount of training data.

4. Results

First, the estimated e↵ects of the new censored spatio-temporal precipitation climatology will
be shown in Section 4.1, followed by a model comparison and validation.

4.1. Results of the New Daily-Based Spatio-Temporal Model

As described in Section 2.3 a spatio-temporal GAMLSS with a left-censored normal response is
used to create the long-term precipitation climatologies (Equation 6) with the linear predictors
for location and log-scale as specified in Equation 7 & 8. The individual e↵ects of the two
linear predictors are shown in Figures 4–7. All figures, except the last, show centred e↵ects
on the power transformed scale.

Figure 4 shows the altitudinal e↵ects for location (left), and log-scale (right). As expected, the
amount of precipitation and the variance increase with increasing altitude (Ekhart 1948; Frei
and Schär 1998). The global cyclic seasonal e↵ects for location (left) and log-scale (right) are
shown in Figure 5. The seasonal e↵ect shows the overall dry winter conditions from December–
February (compare Figure 3) with a low variability. Overall, June–August are the months
with most precipitation, with increasing variability during mid to late summer. This is related
to the convective season, which has its peak between July and September. During this time
period, location already decreases, while the scale nearly reaches its overall maximum. Or
in other words: in autumn, the overall amount of precipitation strongly decreases (relatively
dry), but the variability reaches its local annual maximum. October is the overall driest
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Figure 5: Centred cyclic seasonal e↵ects s2(yday) on location µ (left), and t2(yday) on the
log(�) (right). Values on the power-transformed scale. The shading shows the conficence
intervals of the estimate, the width is closely related to the large amount of training data.
The e↵ect controls the global seasonal e↵ect for all stations.

month, but still shows high variability compared to the first half of the year.

The spatial e↵ects are shown in Figure 6. As for the seasonal cycle, location and log-scale
show di↵erent patterns. While location increases from south to north, the log-scale e↵ect
reaches its maximum towards the pre-alpine plains with Bavaria, Germany to the north, and
Italy to the south. The increase in location is related to fronts reaching Tyrol predominantly
from north and north-westerly directions. The increase in the variability is mainly caused by
higher convective activity (Wapler 2013), and the orographic precipitation produced when air
masses approaching from plains encounter the first higher obstacles.

Seasonal patterns di↵er for di↵erent regions. The three dimensional thin-plate splines s4,t4
in Equation 7 & 8 allow for a spatial variation of the cyclic seasonal pattern across the area
of interest. This e↵ect can be seen in Figure 7, which shows the estimated climatological
expectation in mm day

�1 for all 117 stations in the data set. The results show that the new
climatology is able to capture the di↵erent seasonal characteristics between the sub-regions
north and south of the main alpine ridge.

As the new climatology returns estimates for the full distribution, one could also look at
other properties such as quantiles or the probability of precipitation. Figure 8 shows the
climatological distribution and the corresponding climatological estimates for two sample
stations of the data set. Station A is located north of the main alpine ridge and close to the
pre-alpine foreland. Station B lies south of the main alpine ridge. A few distinct features can
be identified. Station A receives precipitation more frequently and observes larger amounts
of precipitation. Furthermore, the di↵erent seasonalities can be seen. While station A shows
a clear summer-signal with a strong increase during May–June and a corresponding decrease
in autumn, station B shows a smoother transition over the whole year, with an overall lower
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Figure 6: Centred spatial e↵ect s2(lon, lat) on the location µ (left), and t3(lon, lat) on the
log(�) (right). Values on the power-transformed scale. Positive values orange, negative values
blue and additionally dotted. The e↵ect controls the mean underlying climatological spatial
distribution of precipitation.
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Figure 8: Distribution of daily observed precipitation sums for two sample stations. The
long-term daily distribution is shown in grey including 42 years of observations: 10-90% and
25-75% inner-quantile ranges (shaded), and mean (solid, grey). In addition, the climatological
estimate from the spatio-temporal model is shown. Expectation (Equation 5) as solid, and
quantiles as black lines of di↵erent styles. Mean annual precipitation sums/frequency of
observed precipitation for both stations: station A “Namlos” (top) 1577 mm year�1/48%,
station B “Iselsberg-Penzelberg” (bottom) 954 mm year�1/36%.

amplitude. The censored daily spatio-temporal climatology captures the main features of
amplitude, seasonality, and the overall distribution.

Figure 9 shows the spatio-temporal climatology for two sample days, January 1 (top), and the
June 1 (bottom). The climatological expectation (left column) shows the overall drier winter
conditions and the distinct altitudinal dependence with up to ⇠ 7 mm day

�1 on January 1,
and up to ⇠ 10 mm day

�1 on June 1. The right column shows the probability of precipitation
in percent. On January 1 the highest probability of observing precipitation is towards the
foreland to the north, while the inner-alpine regions close to the main Alpine ridge show
relatively low probabilities. On June 1 the overall probability of precipitation increases, with
probabilities above ⇠ 55% for all mountainous areas.

4.2. Model Comparison and Validation
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Figure 9: Climatological expectation (left; mm day
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explicitly shown for three locations: St. Anton (1284 m amsl), Innsbruck (574 m amsl), and
Lienz (673 m amsl). Prediction based on the SRTM digital elevation model (CGIAR-CSI
2016).
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The novel spatio-temporal precipitation climatology will be validated considering di↵erent
aspects. Of special interest is the performance for full out-of-sample events to show the
predictive performance for future (temporally out-of-sample) events at arbitrary locations
within the area of interest (spatially out of sample). Three di↵erent models are estimated
and are compared in this section. All models are trained on observations through the end of
2009, including up to 39 years of data (see Section 3), evaluated on the remaining three years
between 2010 and 2012, from here on referred to as training and test data set.

Monthly mean model. As a robust and simple baseline reference model, long-term monthly
means of the measurements are computed for each station separately. Similarly, the proba-
bility of precipitation is the long-term mean frequency of observations > 0 for a given station
and month. Months with missing data are excluded.

Stationwise GAMLSS. To validate the goodness of fit of the spatial e↵ects of the spatio-
temporal model, stationwise GAMLSS climatologies with a left-censored normal distribution
have been estimated. One model is estimated for each of the 117 stations using Equations 6–
8 with modified linear predictors. As these models are stationwise, only the intercepts and
seasonal e↵ects have to be included.

Spatio-temporal GAMLSS. To score the predictive skill of the novel spatio-temporal
climatology, a 10-fold cross validation was performed. For each cross-fold, a random subset
including 10% of all stations is removed. The spatio-temporal model is estimated on the
remaining stations using the specifications of Equations 6–8. For the left-out 10% of the
stations the predictions are made on the remaining test data set. This leads to spatially
out-of-sample predictions.

Measure of performance. As a measure of performance, mean absolute errors, root mean
square errors, and Brier scores (Brier 1950) will be shown. While the first two are used for the
amount of precipitation, the Brier scores show the performance on the estimated probability of
precipitation. Mean absolute errors are based on the median of the climatological distribution
(max(0, y)p; Equation 1), while the root mean square errors are based on the expectation
(Equation 5). The Brier scores depend on the probability that precipitation will be observed
(Equation 4), with 0 as Brier score for a perfect model. To compare the di↵erent models,
error-di↵erences are shown in Figure 10. Each box-whisker is based on 117 values, each of
which the mean error di↵erence of a specific station. The error-di↵erences are shown between
each pair of methods, where the di↵erence is defined as “method A - method B” threading
“method B” as the reference. For example: Figure 10a shows the di↵erences in mean absolute
error (MAE), where the first pair shows “monthly mean model (monmean) vs. stationwise
GAMLSS (station)”. On the test data set the “monthly mean model” performs slightly better
than the “stationwise GAMLSS”, while both are more or less identical (in median) evaluated
on the training data set. Subfigure 10b & 10c show the same validation for the root mean
squared error, and Brier score respectively. The novel spatio-temporal left-censored GAMLSS
model shows comparable results in all measures, or is even slightly better in terms of Brier
scores.
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Figure 10: Di↵erences in mean absolute error (MAE), root mean squared errors (RMSE),
and Brier scores for all model pairs: monthly mean model (monmean), stationwise GAMLSS
(station), and spatio-temporal GAMLSS (spatial). Each box-whisker consists of 117 station-
wise values, each of which is the mean error for one specific station. Box-whiskers show the
results on the test data set (0.25/0.5/0.75 quantiles plus additional 1.5 inner-quantile range),
the red asteriks indicates the median of the same analysis on the training data set. Posi-
tive values indicate that “method A” performes better than “method B” for each “A vs. B”.
Absolute values lie around 3.35 (MAE), 7.25 (RMSE), and 0.24 (Brier score).
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Figure 11: Pit histogram of the spatio-temporal GAMLSS model evaluated on the training
data set. Width of the bins: 2.5%.

To check the suitability of the full distributional fit, a PIT histogram (Raftery, Gneiting,
Balabdaoui, and Polakowski 2005) is shown in Figure 11 based on the training data set of
the spatio-temporal model including all stations. The PIT histogram indicates that the left-
censored normal distribution seems suitable for the application of precipitation. However, the
deviation from the horizontal line indicates that there is still some room for improvement.

To sum up: the predictive skill of the novel spatio-temporal censored GAMLSS model is
competitive to stationwise estimates, even for spatially out-of-sample events. This shows that
the high-resolution spatio-temporal estimates generated using the method presented in this
article is able to accurately reproduce the full climatological distribution of precipitation over
complex terrain.
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5. Conclusion and Discussion

A new method for estimating a spatio-temporal precipitation climatology with a full-distributional
response, and a daily temporal resolution is presented in this article. The climatology is repre-
sented by a generalised additive model for location, scale, and shape, using the new R package
bamlss (Umlauf et al. 2016b) for a Bayesian optimization of the regression coe�cients. The
estimated e↵ects are shown in Section 4.1, and return interpretable and highly significant
climatological features. An advantage of a full-distributional model is that a variety of prop-
erties can be derived from the estimate. In addition to the expectation, the probability of
precipitation was verified in Section 4.2. The novel climatology with a daily temporal resolu-
tion shows a good overall performance for the amount of precipitation on the daily scale, as
well as for the probability of precipitation. The results demonstrate that the concept of cen-
soring is suitable to account for the high number of zero observations. The verification shows
that the new method is competitive with, or even slightly outperforms stationwise estimates,
even for arbitrary locations as summarized in Figure 10.

A PIT histogram to check the full-distributional skill is shown in Figure 11. The PIT his-
togram shows that the model is overall well calibrated, but there is room for improvements.
Further adjustments of all tuning parameters (location, scale, but also the power parame-
ter) might have a positive e↵ect on the results. Beside optimizing the parameters of the
left-censored normal distribution, a di↵erent response distribution might bring additional
benefits. Such distributions could be e.g., a left-censored logistic distribution (Messner et al.
2014), or a gamma distribution. Rust, Vrac, Sultan, and Lengaigne (2013) have shown that
a gamma distribution works well for precipitation on the original scale without the need to
apply a power-transformation, which might distort the data. On the other hand, the gamma
distribution is not defined at 0. While Scheuerer and Hamill (2015) use a censored, shifted
gamma distribution, Rust et al. (2013) use a two-part approach where the probability of pre-
cipitation is modelled independently from the amount of precipitation. This allows to use the
gamma distribution, but has the necessity to specify and estimate two di↵erent models. An
advantage of the new approach presented in this article is that only one single model has to
be specified to obtain probabilities, quantiles, and quantities.

A direct comparison against more complex existing methods would be needed to explicitly
highlight advantages and drawbacks of our method, but needs some extensions to our current
model. Adding additional covariates beside the day of the year, longitude, latitude, and alti-
tude could further improve the model results as shown in previous publications. Conceivable
covariates could be e.g., steepness and facing of the slopes, or the distance to the closest
open water source. Furthermore, the new model allows to add daily covariates, such as mean
wind direction, covariates explaining the regional weather situation, and many others. Some
covariates have been tested but have not brought the expected results yet. Due to relatively
high computational costs, estimating the full model including a “random” set of covariates
will be unsatisfying. One idea would be an automated iterative variable selection approach,
such as boosting or ridge-regression. Furthermore, applying the method to other censored
variables would be worthwhile, such as wind speed, sunshine duration, or relative humidity.
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Appendix A

Derivation of the expectation function for a power transformed left-censored normal distribu-
tion as in Equation 5.

Assume a left-censored normal distribution with a censoring point at 0 without a power
transformation. The distribution function F (x), and the density function f(x) are defined as
follows:

F (x), f(x) =
@F (x)

@x

, (9)

and therefore the expectation of the distribution becomes:

E

⇥
x

⇤
=

1Z

x=0

x · f(x)dx (10)

For a left-censored normal power-transformed distribution, the distribution function G(z) and
density function g(z) can be written in the same way, where x from Equation 9 is simply z

1/p:

g(z) =
@G(z)

@z

=
@F (z1/p)

@z

, (11)

and therefore:
@F (z1/p)

@z

= f(z1/p) · z
( 1p�1)

p

, (12)

leading to Equation 5 as shown in the article.
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Abstract
Flexible spatio-temporal models are widely used to create reliable and accurate esti-
mates for precipitation climatologies. Most models are based on square root transfor-
med monthly or annual means, where a normal distribution seems to be appropriate.
This assumption becomes invalid on a daily time scale as the observations involve
large fractions of zero-observations and are limited to non-negative values. We deve-
lop a novel spatio-temporal model to estimate the full climatological distribution of
precipitation on a daily time scale over complex terrain using a left-censored normal
distribution. The results demonstrate that the new method is able to account for
the non-normal distribution and the large fraction of zero-observations. The new
climatology provides the full climatological distribution on a very high spatial and
temporal resolution, and is competitive with, or even outperforms existing methods,
even for arbitrary locations.
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