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Zusammenfassung / Abstract

We review, and extend, one of the classic dynamic models of conflict in economics by Richardson

(1919) and Boulding (1962). Restrictions on parameters are relaxed to account for alliances and for

peace-keeping, yielding new dynamic patterns of conflict. In addition, we explore an incrementalist

version of the model as well as a stochastic one and show how this affects its theoretical stability

properties. Using Monte Carlo techniques as well as time series analyses based on GDELT data (for

the Ethiopian-Eritreian war, 1998-2000), we also assess the empirical usefulness of the model. It turns

out that the simulations fail to converge in a large number of cases, and that one important prediction

of the model is not borne out by the data. We therefore conclude that the Boulding-Richardson equa-

tions are of limited use for modelling (de-)escalation in dynamic conflict.
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1. Introduction

1. Introduction

The formal, quantitative analysis of dynamic conflict in economics began a century ago,
when Frederick Lanchester (1916) developed his linear and square laws of attrition. Such
models consist of systems of ordinary or partial differential equations, whose dynamic
behaviour and stability properties are analysed by solving the systems analytically or
by phase diagramme techniques. While optimising agents may be embedded in larger
attrition models (Washburn and Kress, 2009, ch. 5), this class of model typically does
not contain explicit optimisation. Relevant models include the Lotka-Volterra-Goodwin
equations of predator-prey conflict (Goodwin, 1967), the Intriligator and Brito (1986)
model and the (Richardson, 1919) equations, which were extended in monographs pub-
lished posthumously (Richardson, 1960a,b) as well as in Boulding (1962).1

The absence of explicit optimisation led to a shift of interest away from the first gen-
eration of models and towards dynamic games and, in particular, differential games
(Isaacs, 1954). As far as static patterns of conflict are concerned, game theory provided
a convincing taxonomy (Rapoport et al., 1976),2 and dynamic game theory yielded deep
insight into such features of conflict dynamics as the initiative, signals, and reputation.
However, a general taxonomy of conflict dynamics proved elusive, and differential game
theory hit a conceptual wall when dealing with the non-linearities that are pervasive in
conflict theory (Beckmann and Reimer, 2014). These problems as well as improvements
in the raw computing power available to scholars led to increased reliance on simula-
tion methods (Fontana, 2006). And for simulation purposes, both the aforementioned
theoretical limits and the insights of behavioural economics recommend some version of
boundedly rational optimising. It is in this context that first-generation models may
return as more than just a subject for the historian of economic thought.

In the present paper, we propose to re-visit the Richardson equations, discussing possible
extensions as well as conducting simulation runs and estimating the model empirically.
We intend to provide a full critique of this model, demonstrating its potential to describe
intersting dynamic patterns of conflict as well as a severe empirical weakness.

1Lewis Fry Richardson is little known in economics, and without the work of his fellow Quaker Bould-
ing his work may not have resounded in our field at all. He is, however, well remembered for his
contributions to other disciplines. On this, see Hunt (1995). In mathematics, Richardson’s equations
are a popular simple model of conflict, which amongst other things is used in the classroom to ex-
plain phase diagramming, see https://www.youtube.com/watch?v=e3FfmXtkppM. The recent conflict
economics text by Anderton and Carter (2009) also has a section on the Richardson model.

2Cf. the recent book by Robinson and Goforth (2005).
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2. Richardson’s theory and extensions

The first part of this paper (section 2) is theoretical in nature. We begin with the
standard two-party case (subsection 2.1). Our focus in this section is on different ways
to model the interaction term between force (or escalation) levels and to show how this
choice affects the (theoretical) stability properties of the model. While the majority
of work in conflict economics is couched in terms of two-player models,3 note that the
three-plus-case differs from the two-party one in a very important way, namely that
one of the parties can act as an attenuator, trying to dampen the conflict between the
remaining agents (Goldstein and Pevehouse, 1999). Richardson (1960a) already tackled
3-party and n-party cases, but constrained all parameters to be positive, which curtails
the additional possibilities in a three-way interaction. Sub-section 2.4 addresses this
omission, dealing with alliances and conflict attenuation in particular. We also consider
Boulding (1962)’s psychological interpretation of the Richardson equations, arguing that
the existing model (irrespective of the number of dimensions) does not fit this story well.
An extended version is developed for this purpose.

In the second half of this paper (section 3), we move from theory to simulation studies and
empirical analysis. We first return to the two-party setting and illustrate the applicability
of the Richardson model using GDELT data on the Ethiopian-Eritreian war of 1998-2000
(sub-section 3.1). We then explore our own extension of the three-party model using
computer simulation and Monte Carlo methods, studying the frequency with which
convergence occurs (sub-section 3.2). Both empirical and simulation analyses do not
bode well for the Richardson family of models, a finding that we comment on in the
conclusion (section 4).

2. Richardson’s theory and extensions

Richardson (1919) conceived of his equations as a model of an arms race (see also An-
derton and Carter, 2009, pp. 199-202). In Boulding (1962)’s version, the equations
describe the joint dynamics of the aggressiveness (or escalation level) of two parties to
a conflict. We will use both stories interchangeably at first, but return to the difference
between the two in sub-section 2.7.

3Two-party interactions are prevalent among the models presented in Hirshleifer (2001) as well as in
the volumes edited by Sandler and Hartley, eds (1995, 2007) or Garfinkel and Skaperdas, eds (2012).
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2. Richardson’s theory and extensions

2.1. Richardson equations in two dimensions

Denote by a (b) a measure of party A’s (B’s) armament, or aggressiveness towards the
other, and assume that without interaction, this reverts over time to a base level â (b̂).
This base level is, however, not the long-term equilibrium because of the interaction ef-
fect: each party’s aggressiveness increases exponentially as a function of the competitor’s
escalation measure. Together with the assumption a, b > 0, this gives the Richardson
equations

ȧ = ka(â − a) + rab (1)

ḃ = kb(b̂ − b) + rba (2)

where the strictly positive parameters ki and ri represent the parties’ speed of adjustment
to the base level and sensitivity to aggression, respectively.

We can explicitly solve this system of linear ODEs for the time paths a(t), b(t) of ag-
gressiveness. For example, in the symmetric case where ra = rb = r and ka = kb = k

(assuming r Ó= k), we find

a(t) =
k(âk + b̂r)

k2 − r2
+ e−kt(c1 cosh(tr) + c2 sinh(tr)) (3)

where c1 and c2 are constants. If we additionally assume that a(0) = b(0) = 0, we
have

a(t) =
e2rt − e(k+r)t

r−k
k

e(k+r)t
â (4)

and likewise for b.

However, the general properties of this model are better studied using phase diagramme
techniques. Letting ȧ = 0 and ḃ = 0, we obtain the “nullclines” where the vector field is
vertical and horizontal, respectively (written as functions of a for easier plotting)

b =
ka

ra

(a − â) (5)
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2. Richardson’s theory and extensions

b = b̂ +
rb

kb

a (6)

Note that both graphs are upward sloping lines in (a, b)-space and that the equation for
ȧ = 0 has a negative intercept on the b axis, while the other cuts the ordinate at b̂ > 0.
This already implies that there are just two possible configurations (see figure 1). If
ka

ra
> rb

kb
, the two lines intersect in the positive orthant (left-hand panel in figure 1) and

there exists a stable stationary equilibrium at

(a∗, b∗) =

(

kb(âka + b̂rb)

kakb − rarb

,
ka(b̂kb + ârb)

kakb − rarb

)

(7)

Otherwise, there is no such intersection and aggressiveness explodes in the positive
orthant (right-hand panel in figure 1). Observe that a symmetry assumption, i.e. ra = rb

and ka = kb, would generate a borderline case where the graphs of (5) and (6) are parallel.
The consequences are much the same as in case 2 above, with an explosion of aggression
in the first orthant.

Figure 1: The two possible scenarios in the B-R model

Formally, note that the Jacobian for the system (1) and (2) is

J =

(

−ka ra

rb −kb

)

5



2. Richardson’s theory and extensions

with the two eigenvalues λ1,2 = −1
2(ka + kb ±

√

(ka − kb)2 + 4rarb). As the term under
the square root must be positive given our assumptions, both eigenvalues are real. The
obvious condition for both eigenvalues to be negative is

ka + kb >
√

(ka − kb)2 + 4rarb

Square both sides of this inequality and rearrange to find kakb > rarb, which is equivalent
to the graphical restriction on slopes given earlier as a condition for stability. If this
inequality does not hold, we will have two real eigenvalues with differing signs, i.e.
saddlepoint stability (however, the equilibrium will be in the negative orthant).

The endless escalation of conflict in this case (2) may appear implausible because infinite
aggression levels are an unwieldy concept. However, in interpreting the model, one can
assume that there exists a threshold level of escalation beyond which the conflict in
question changes its nature (i.e., an open outbreak of military hostilities). One can
also add an additional constraint to the model – for instance, a and b could represent
the share of two competing news media (total broadcast time or pages in a magazine)
devoted to a particular conflict, or a particular scandal. The latter modification would
give rise to a stable corner solution.

We now propose two variants of the two-agent Richardson model, which we explore in
turn:

1. a version which incorporates the idea that it may be escalation rather than the
stock of aggressiveness which determines the interaction effect,

2. a model which replaces the deterministic interaction effect with a probabilistic
version, taking account of Clausewitzian friction and other sources of uncertainty.

2.2. An incrementalist Richardson model

In our first variation, we recognise that it can be the change in enemy aggression levels,
i.e. the escalation of conflict, which drives conflict dynamics. We retain the assumption
that aggression levels will return to base values â, b̂ over time, but replace the stock levels
of aggression with their time derivatives ȧ, ḃ. This leads to the following model:

ȧ = ka(â − a) + raḃ (8)

6



2. Richardson’s theory and extensions

ḃ = kb(b̂ − b) + rbȧ (9)

As was the case for the baseline model, we can solve this system of differential equations
explicitly, obtaining complete time paths for the two variables of interest, given the
parameters and starting values a(0), b(0). Using the symmetric example from section
above, we find

a(t) =

(

1 − e
k(1+r)t)

r2
−1

)

a(0) (10)

with an analogous solution for b. Again, however, we find it more instructive to take a
conventional approach using phase diagrammes to illustrate system behaviour over time
for more general parameter values.

Substituting ḃ into the first equation of the model and rearranging, we can express the
change in a and in b as a function of the state variables

ȧ =
ka(â − a) + rakb(b̂ − b)

1 − rarb

(11)

ḃ =
kb(b̂ − b) + rbka(â − a)

1 − rarb

(12)

Proceeding as before, we obtain the following equations for the nullclines:

b =
âka + b̂kbra − kaa

kbra

(13)

b =
b̂kb + âkarb − karba

kbra

(14)

Solving this simple system yields the stationary point at a∗ = â ∧ b∗ = b̂. This implies
that contrary to the standard B-R model, the stationary point always lies in the positive
orthant.

For a graphical analysis, observe that the slope of the graph for ȧ = 0 is steeper than the
other iff rb < 1. Also note that the denominator in both equations of motion (11) and

7



2. Richardson’s theory and extensions

(12) becomes negative for rarb > 1. All in all, this leaves us with four possible dynamic
configurations shown in figure 2 below. Case 1 exhibits a stable stationary state, whereas
case 2 is characterised by instability. However, case 2 differs from the unstable case in
the original model in that a corner solution at the origin is also a possibility. Cases 3
and 4 – where rb > 1 – have saddlepoint stable equilibria.

Figure 2: The four scenarios in the incrementalist Richardson model

Start from equations (11) and (12) to find the Jacobian

J =

(

− ka

1−rarb
− rakb

1−rarb

− rbka

1−rarb
− kb

1−rarb

)
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2. Richardson’s theory and extensions

and the two eigenvalues λ1,2 =
ka+kb±

√
(ka−kb)2+4kakbrarb

2rarb−2 . While we can rule out complex
eigenvalues again, the fact that the sign of the denominator reverses at rarb = 1 now
gives rise to a total of four possible configurations, as shown in figure 2 above.

In the original Richardson model, it was the relative size of adaptation k and reaction
coefficients r that determined the dynamic pattern of conflict. Now, it is the absolute
value of the reaction coefficients alone that proves crucial. It is sufficient for convergence
to a stable equilibrium at the “normal” aggro level â, b̂ that both parties do not respond
“in kind” to an enemy escalation, but with an r < 1. This feature of the model appears
more plausible than the results we obtained for the original formulation. In addition,
the incrementalist model allows for a “pacifist” party (with low r) to compensate for the
existence of an aggressive opponent in a very plausible manner.

2.3. Probabilistic interaction

Finally, let us briefly consider how to incorporate randomness – and Clausewitzian “fric-
tion” – into the simple framework. As a large conflict unfolds, there will be several small
interactions during which either side can either escalate, de-escalate, or ignore the other
side’s aggression. Let a’s probability p of escalation depend on b’s aggro level according
to a probability function p(b) with p′ > 0 and vice versa. For a large number of such
interactions per unit of time, the equations of motion can then be amended by just
plugging in the probability functions for rab and rba, respectively. We then obtain the
following system of equations

ȧ = ka(â − a) + sap(b) − sa(1 − p(b)) (15)

ḃ = kb(b̂ − b) + sbp(a) − sb(1 − p(a)) (16)

where the si represent party i‘s “step size” of (de-)escalation, assumed to be a constant
for simplicity.

We require a specific probability function for plotting or explicit solutions, although
basic phase diagrammes such as the ones in figures 1 and 2 could by derived with just
some assumptions regarding the curvature of p. Borrowing from the literature on conflict
success functions,4 we employ a logistic function

4The classic treatment is the book by Hirshleifer (2001).

9



2. Richardson’s theory and extensions

p(a) =
1

1 + eκ(â−a)
(17)

where â denotes the reference level of aggression by A (i.e., the level where escalation
and de-escalation are just as likely), and the parameter κ determines the steepness of
the probability function.

One important difference from the variants discussed previously is that the isoclines for
ȧ, ḃ = 0 are now non-linear. Also, the fact that the limits of the logistic function are zero
for a, b → −∞ and one for a, b → +∞ together with the structure of the system imply
that there exists a stable intersection in the positive orthant. Figure 3 below illustrates
this for the symmetric case.5

Figure 3: A stable stationary point in the probabilistic model

5We assume a symmetric solution with the following parameter values: ka = kb = 1
5
, ra = rb = 1

2
, â =

b̂ = 10. The plot was produced using Mathematica.
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2. Richardson’s theory and extensions

2.4. More than two parties

Consider the Richardson equations when there are three parties to the conflict (Richard-
son, 1960a), whose respective state variables are a, b and c:

ȧt = ka(â − at) + rabbt + racct (18a)

ḃt = kb(b̂ − bt) + rbaat + rbcct (18b)

ċt = kc(ĉ − ct) + rcaat + rcbbt (18c)

The first term on the right-hand sides of the above equations reflects a tendency for the
state to return to an exogenous “normal” level, with the parameter ki > 0 incorporating
the speed at which this happens to actor i. The parameter rij denotes party i’s reaction
coefficient to party j’s state. As is usual, we will drop time indices throughout the
following discussion whenever we can do so without ambiguity.

In Richardson (1919)’s original account, the state variables represent the levels of arma-
ment of state actors involved in an arms race. The reaction coefficients rij are all positive
as higher levels of armament on the part of other governments induce additional military
procurement, ceteris paribus.

The computation of a stationary point for the above system is straightforward and leads
to simple but clumsy expression, which we will not display here. The Jacobian for the
system is

J =







−ka rab rac

rba −kb rbc

rca rcb −kc







with the characteristic equation

λ3 + (ka + kb + kc)λ
2 + (kakb + kakc + kbkc − rabrba − racrca − rbcrcb)λ + γ = 0

where

γ = kakbkc − kcrabrba − kbracrca − karbcrcb − racrbarcb

11



2. Richardson’s theory and extensions

(a) A stable node (b) Instability in the positive orthant

Figure 4: Richardson’s original dynamic configurations in the 3-agent case

It is a tedious exercise to solve this for the eigenvalues of J . The equation has three
solutions, one of which is real and two of which are complex. The signs of the real
parts can be both positive and negative depending on the parameters of the system, in
particular on the relative sizes of the k’s and r’s. The two diagrammes in figure 4 on
page 12 depict the dynamic behaviour of the system under the assumption that all rij ’s
and ki’s are the same. As in the two-dimensional case, we find a stable node when k > r

and an unstable node otherwise:6

Our first extension of this original Richardson model is based on the idea of admitting
negative parameters rij . This leads to two interesting configurations detailed below.
But note that these extensions are only possible if there are three or more parties to the
conflict – the concentration on the two-agent case hitherto obscured this.

2.5. Attenuating agents

Let agent c be an “attenuator”, which we define as a player whose activities reduce the
armament / escalation level of both other parties to the conflict. An example (hopefully)

6In the first example, we assume that r = 1
20

∧ k = 1
10
, in the second example, we have r = 1

10
∧ k = 1

20
.
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2. Richardson’s theory and extensions

(a) A center (b) Stable node with asymmetric patterns

Figure 5: Additional dynamic patterns in the presence of attenuating agents

would be NATO engaged in a peace keeping mission (Goldstein and Pevehouse, 1999).
The state variable c can now be interpreted as an involvement level, which depends
positively on the level of armament / aggression by the other parties, i.e. rca, rcb > 0.
However, ric < 0 for all i ∈ (a, b).

Admitting negative values for some parameters opens up several new possibilities. For
example, the following vector plot shows the case where ki =

1
20∀i and |rij | = 1

10 , but
c’s influence on the other two players is attenuating. This leads to the emergence of a
center with cyclical trajectories and periodic motion of the armament levels, which has
not so far been described in the literature on Richardson-type models. See the left panel
in figure 5 on page 13.

Stable nodes also can display more complex dynamic behaviour than in the two-party
case. For example, in the special case where ka = kb = kc and rca = rcb = 0.2 while
rab = 0.3, rba = 0.1 as well as rac = rbc = −0.2, the numerical eigenvalues (up to three
digits’ precision) are λ1 = −0.688, λ2 = −0.406+ 0.276i and λ3 = −0.406− 0.276i. The
resulting asymmetric trajectories are illustrated in the vector plot in sub-figure 5b on
page 13.
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2. Richardson’s theory and extensions

Figure 6: An unstable vortex in the presence of alliances

2.6. Alliances

In an alliance, higher armament by one of the parties will lead – all other things being
equal – to a reduction of effort by the other due to the familiar incentive to free-ride
on the contribution of others (Peinhardt and Sandler, n.d.; Sandler, 2004). That is, if a
and b are allies in an otherwise standard conflict with c, we would expect rab, rba < 0,
while all other coefficients remain positive.

Numerical experimentation using our standard example (where the ki = 0.05 and |rij | =
0.1) reveals that the system may now behave as an unstable vortex, with three imaginary
eigenvalues, two of which have negative real parts. Figure 6 on page 14 below shows this
particular example.

2.7. A psychological interpretation of the Richardson equations

Boulding (1962) offered a psychological story to tell with the Richardson equations. In
his version, the state variables measure the hostility of one party towards the other – in
video game parlance, their “aggro levels”. There is a tendency for the hostility level to
regress to a base value â, b̂, and one party will escalate when their adversary’s hostility

14



2. Richardson’s theory and extensions

towards them increases. This appears to be a natural interpretation of the equations in
the two-agent case. But consider the system (18) in matrix form (we assume â = b̂ = ĉ

for simplicity):







ȧ

ḃ

ċ






=







−ka rab rac

rba −kb rbc

rca rcb −kc













a

b

c






(19)

This equation shows that the Richardson equations force an agent’s hostility towards
the other two to be the same. There is also a nonnegativity restriction on the state
variables which makes perfect sense when modelling arms races – where negative force
levels are an impossibility –, but seems unsatisfactory in international relations, where
there may exist sympathy, and where enmity can transmogrify into friendship (at least
if you subscribe to idealism).

We now propose an extension of the model that removes these drawbacks. In doing so,
we combine three ideas developed in the preceding sections:

1. Agents’ attitudes towards other agents may differ, and they may be negative
(friendship).

2. The nonnegativity restriction is dropped on all parameters except the one reflect-
ing the rate of reversion to the “natural” aggressiveness level. This allows for
attenuating agents as well as for alliances (see sub-sections 2.5 and 2.6).

3. The interaction effect is taken to depend on the escalation of aggression experienced
by an agent rather than its level (see sub-section 2.2).

The state of the system is now represented by a two-dimensional matrix S of size n × n

rather than a vector, where n denotes both the number and the set of agents. Each
element sij of S measures agent i’s hostility towards j. The case where i = j is considered
as a general level of hostility of agent i which is not directed towards another agent in
particular (and treated differently). We impose no a priori restrictions on sij as we want
to permit empathy as well as hostility (where a negative s refers to the former in line
with Goldstein (1992) scoring). It follows that the matrix of changes will also be of
dimension n × n. The second building block of the model is a n × n × n matrix A of
parameters capturing the responsiveness to others’ aggression levels. Each element aijk

of A represents the change in agent i‘s attitude towards agent j as a result of agent k’s
hostility level. Accepting that we are limiting ourselves to exponential processes (linear
changes in time), this framework is the most general one.

15



3. Empirical suitability

The n2 equations of motion in this system are the following:

ṡij = aiji (ŝi − sii) +
n

∑

k Ó=i

aijkṡki ∀ i, j ∈ n (20)

Equation (20) – with aiji > 0 – reflects the standard property of the Richardson model
that there exists a “natural” level of aggression ŝi for each country i to which it would
revert in the absence of any interaction between countries. It also captures these inter-
actions, stipulating that country i’s hostility (or empathy) towards country j changes
as a result of the change in the hostility other countries exhibit towards i, where there
is a k-specific linear effect. The appendix (section 4) contains an implementation of the
model in the Wolfram Language7 that will be used for our Monte Carlo study of the
model’s properties in section 3.2.

3. Empirical suitability

We now proceed to check the empirical applicability of the Richardson model, beginning
with an empirical illustration of the two-agent case. In the final sub-section, we turn
to Monte Carlo simulations of a three-agent version of the new model we proposed as a
consequence of our theoretical discussion.

3.1. A case study for the two-agent case

In order to provide an empirical illustration for the suitability (or otherwise) of the
Richardson model for two parties, two obvious prerequisites need to be met: first, one
has to find a well-documented conflict in history with just two parties to it, and second,
the state variables of the model need to be identified in the appertaining dataset.8

Regarding the first issue, we focus on the war between Ethiopia and Eritreia (hostilities
lasted from May 1998 to May 2000,9 but our dataset includes the three years preceding
the outbreak of hostilities and following the ceasefire), arguing that this is indeed a
conflict in which external players and mediators did not play a decisive role.

7See wolfram.
8We recognise in passing that Richardson (1960b) also played a pioneering role in the systematic
collection of data about conflicts.

9See https://en.wikipedia.org/wiki/EritreanEthiopian_War.
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3. Empirical suitability
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Figure 7: Goldstein (1992) scores and “Goldstein levels” for the Ethiopian-Eritreian con-
flict, 1995-2002
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3. Empirical suitability

As to the second, we follow a large strand of the literature using the GDELT10 database
of coded discrete event data (Goldstein and Pevehouse, 1999). Our measure of (de-
)escalation or the change of aggressiveness is the Goldstein score (Goldstein, 1992),
which assigns each conflictary (and cooperative) action an integer in the interval [−10; 10]
indicating the flow impact on relations between the involved parties. The state variables,
therefore, are just the sum of the (undiscounted) Goldstein scores accumulated over the
course of the conflict. One unfortunate consequence of this is that we need to fix the
starting values for the state variables a(0), b(0) at some arbitrary level – zero in the
following illustration. This being said, figure 7 above plots the four time series – our
measures for ȧ, ḃ, a, b – over time.11

On inspection of figure 7, we observe that the accumulated Goldstein scores remained
constant in the years preceding the war and abated in the aftermath of the ceasefire,
we also observe a (not unexpected) steep increase during hostilities. The change of
aggressiveness during the war is dominated by three extreme peaks corresponding to
major campaigns12 and also influenced by the onset of the rain season, which impeded the
movement of motorised troops. It is clear that such peaks of escalation are incompatible
with the Richardson model. This bolsters Richardson’s original arms race story relative
to Boulding’s psychological version, which might be applied to wartime aggression as
well. It is also compatible with the hypothesis that open hostilities arising whenever
the stock of aggression exceeds an exogenous threshold level in an unstable Richardson
model.

Evidence of an additional difference between the shooting war and the period of time
preceding it can be found by looking at the correlograms of the Goldstein score time
series separately for the war and the three years leading up to it (figure 8). Not only
does there seem to be more autocorrelation during the war, but significant lags appear
clustered over the first week. This is suggestive of the effect of military planning leading
to continuous activity. During the crisis before the war, on the other hand, significant
lags were not concentrated in the same manner, and the correlation coefficients do not
shrink over time as they do during the war.

Having observed differences between the wartime and pre-/post-war times series and

10The GDELT Project – Global Database of Events, Language and Tone – http://gdeltproject.org/.
11The two flow variables are called “golderi” – the sum of the Goldstein indices assigned to Eritreia’s

actions towards Ethiopia on a given day – and “goldeth”, while we refer to the stock variables as
“cumeri” and “cumeth”.

12The Eritrean attack on Badme in May 1998 including the subsequent air war, Ethiopia’s offensive of
February 1999, and the final Ethiopian attack in May 2000 that severed Eritreian lines of commu-
nication and paved the way for the ceasefire.
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Figure 8: Correlograms for our time series of Goldstein scores
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3. Empirical suitability

Table 1: Summary of time series analyses

Type of analysis Time series 1995-1998 1998-2000 2000-2003

Stationarity

goldeth yes∗∗∗ yes∗∗∗ yes∗∗∗

golderi yes∗∗∗ yes∗∗∗ yes∗∗∗

cumeth no no no
cumeri no no no

Cointegration
golderi, goldeth yes∗∗∗ yes∗∗∗ yes∗∗∗

cumeri, cumeth no no yes∗∗∗

Granger causality

golderi ⇒ goldeth yes∗∗∗ yes∗∗∗ yes∗∗∗

goldeth ⇒ golderi yes∗∗∗ yes∗∗∗ yes∗∗∗

cumeth ⇒ golderi yes∗∗∗ yes∗∗∗ yes∗∗∗

cumeri ⇒ goldeth yes∗∗∗ yes∗∗∗ yes∗∗∗

cumeth ⇒ goldeth no no no
cumeri ⇒ golderi no no no

recognised that the B-R model appears comparatively less attractive as a framework
for modelling the former, we now proceed to a formal time series analysis of our data
set. Table 1 on page 20 summarises the results. An augmented Dickey-Fuller test using
21 lags as suggested by the Schwert criterion allows us to reject the null of a unit root
for our time series of Goldstein scores (analysing the pre-war, wartime and post-war
periods separately). Unsurprisingly, this is not the case for the state variable, i.e. the
accumulated scores (see table 1). We use a Johansen test for cointegration – again with
21 lags – and find that the time series for the Goldstein scores are clearly cointegrated
at all conventional levels of significance, while no significant evidence of cointegration
can be found for the accumulated scores with the interesting exception of the post-war
period.

The most interesting (non-)results can be found in the last two lines of table 1: a
conflict party’s accumulated Goldstein scores do not Granger cause their daily escalation.
Regardless of which variant of Richardson model from section 2 one chooses, however,
such causality is a clear implication. We thus conclude that the data on the conflict at
hand are not consistent with Richardson’s approach.
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4. Conclusion

3.2. Monte Carlo simulation of the three-agent case

We now turn to our extended version of the Richardson model presented in sub-section
2.7. This model is very hard to solve analytically, particularly so because its Jacobian is
three-dimensional. We therefore resort to numerical experimentation, using the Wolfram
Language13 script shown in appendix 4.

The procedure basically allows the user to input a number of trials and iterations. For
each trial, the parameter matrix A and the vector of natural aggression levels âi are
filled using a pseudo-random number generator. The user can specify the boundaries for
this number generation, and the software ensures that all aiii are non-negative according
to the idea behind equation (20). S always starts filled with zeroes, but is then updated
according to equation (20) for the specified number of iterations. We consider the system
to pseudo-converge if the sum of all elements in Ṡ is lower than some hard-coded value,
in our case one tenth of a thousand.

The overall simulation results are interesting. Figure 9 displays selected results for
a typical Monte Carlo run with 100 trials using the hard coded parameters from the
appendix, plotting the general hostility levels sii over time. Pseudo-convergence occurs
in a minority of cases – 13 % in the example run that figure 9 draws upon –, but it
is by no means negligible. The number of repetitions mainly seems to be sufficient
for the distincion between unstable and stable scenarios, with the possible exception of
situations like the ones in panels (9c) and (9e).

Consistent with our argument about additional dynamic patterns arising in an incre-
mentalist version of the Richardson equations (sub-section 2.2 above), we find several
typical patterns of conflict dynamics. Oscillations are a frequent occurence in both stable
and unstable simulation trials, but instability is often characterised by monotonic “ex-
plosions” like the ones in panels (9b) and (9d) rather than increasing amplitude as in
(9f).

4. Conclusion

The present paper revisits the Richardson equations from both an analytical and an
empirical perspective. In so doing, our objective was to see whether this old staple can

13For information regarding this computer language, refer to https://www.wolfram.com/language/.
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Figure 9: Typical results for converging and non-converging simulation trials
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4. Conclusion

be brought back from the world of teaching (where it serves as an example for solving
systems of differential equations) into modern research on conflict dynamics.

In the analytical part, we find that the dynamic properties of the model can be improved
upon by letting a party’s level of aggression depend on the change in the other party’s
aggro level (“escalation”) rather than on the stock variable. We also note that the
probabilistic nature of conflict, which has figured prominently in the military literature
since von Clausewitz (1873) made friction a core element of his theory, and which is also
reflected by the modern vision of “hybrid” warfare, can be integrated into the Richardson
model.

We discuss extensions of the Richardson equations for three-agent scenarios. Relaxing
the non-negativity constraint on parameters allows for additional intersting conflict dy-
namics in the Richardson model. However, we find that a psychological interpretation
requires a systematic revision of the Richardson model and an increase in its dimen-
sionality. Using Monte Carlo simulations, we suggest that the likelihood of convergence
in this extended framework is rather slim, casting doubt on the appropriateness of the
extended Richardson model.

In the empirical section, our main findings are negative as well. This conclusion could
arise in at least two ways: first, the Goldstein scores from databases like GDELT may
be an inappropriate measure of aggressiveness levels and escalation, and second, the
Richardson model may not fit the situation at hand. Given the successful empirical
work using Goldstein scores (Goldstein and Pevehouse, 1999, e.g.,), we tend to favour
the latter explanation.

Recall that Richardson (1919, 1960a,b) explicitly developed his equation to model arms
races. It was Boulding (1962) who added a psychological interpretation, modelling how
one party’s aggression level depends on the perceived aggression by the other party, and
vice versa. Our empirical results cast doubt on this particular application of the B-R
equations. In particular, we raised two objections:

1. The model does not fit the pattern of escalation and de-escalation in a shooting
war. One problem is that the grouping of actions into (military) operations and
the concomitant constraints – in our example: the Monsoon – is not captured.

2. Any “regression to the mean” of the state variable would imply a causal link
between this state and later (de-)escalation, which we fail to find in our time series
of daily sums of Goldstein scores.

This criticism need not impinge on using the Richardson model as it was originally
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A. Program listing

designed, or for applications that closely resemble arms races. The treatment of scandals
by the media may serve as an example.

A. Program listing

params = Array[a, {3, 3, 3}]

states = Array[x, {3, 3}]

changes = Array[y, {3, 3}]

naturals = Array[n, 3]

maxparam = 1

minparam = -1

maxturns = 100

attempts = 100

att = 1;

results1 = {};

results12 = {};

results13 = {};

results2 = {};

results3 = {};

nats = {};

pars = {};

stabruns = 0;

While[att <= attempts,

(*Initialisierung des Runs*)

For[i = 1, i < 4, i++,

{n[i] = RandomReal[{-500, 500}],

For[j = 1, j < 4, j++,

{x[i, j] = RandomReal[{-500, 500}],

y[i, j] = 0,

For[k = 1, k < 4, k++,

If[i == k,

a[i, j, k] = RandomReal[{0, maxparam}],

a[i, j, k] = RandomReal[{minparam, maxparam}]

]

]

}
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A. Program listing

]

}

];

AppendTo[pars, params];

AppendTo[nats, {n[1], n[2], n[3]}];

(*Beginn des Runs*)

(*Print["Parameter: ",params];

Print["Naturals: ",naturals];*)

turn = 1;

successes = 0;

(*Beginn der Timesteps*)

While[turn <= maxturns,

{sums = 0;

For[i = 1, i < 4, i++,

{For[j = 1, j < 4, j++,

{tempvar = 0,

For[k = 1, k < 4, k++,

If[i == k,

tempvar = tempvar + a[i, j, k]*(n[i] - x[k, i]),

tempvar = tempvar + a[i, j, k]*y[k, i]

]

],

y[i, j] = tempvar, x[i, j] = x[i, j] + y[i, j]

}

]

}

];

AppendTo[results1, Part[Part[states, 1], 1]];

AppendTo[results2, Part[Part[states, 2], 2]];

AppendTo[results3, Part[Part[states, 3], 3]];

AppendTo[results12, Part[Part[states, 1], 2]];

AppendTo[results13, Part[Part[states, 1], 3]];

(*Stabilitätsprüfung*)

For[i = 1, i < 4, i++,

For[j = 1, j < 4, j++,

sums = sums + Abs[y[i, j]]

]];
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(*Stabilitätskriterium*)

If[sums < 0.0001, {successes++;

Print["Pseudo-Stabilität in Run ", att, " zum Zeitpunkt ",

turn]}]

};

turn++];

(*Print["Run: ", att , ", Stabile Turns: ", successes];*)

(*If[

successes>0,{stabruns++;Print["Pseudo-Stabilität in Run ", att,

" zum Zeitpunkt ", turn]}];*)

att++];

stabruns

(*ListPlot[results1];

ListPlot[results2];

ListPlot[results3];*)
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