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Parametric panel data logit models with individual time-invariant ef-

fects can be estimated by either the conditional or the unconditional

�xed e�ects maximum likelihood estimator. The conditional �xed e�ects

logit estimator is consistent under the usual assumptions but it has the

drawback that it does not deliver estimates of the �xed e�ects or partial

e�ects. It is also computationally costly if the number of observations

per individual T is large. The unconditional �xed e�ects logit estimator

can be implemented as a standard logit estimator with a dummy variable

for each observational unit. It is biased for small T due to the incidental

parameters problem, but bias corrections have been suggested. Another

drawback of this approach is that the computational costs can be pro-

hibitive with a large number of individuals N . This paper revisits an ap-

proach suggested by Chamberlain (1980) and Greene (2004) that makes

use of the sparseness of the Hessian matrix to relieve the computational

burden imposed by brute-force dummy variable regression. We show

that in the context of logit models, the approach is equivalent to an intu-

itive pseudo-demeaning algorithm. We combine the pseudo-demeaning

algorithm with a bias-correction proposed by Hahn and Newey (2004)

to deal with the incidental parameter bias. Extensive Monte-Carlo sim-

ulations show that the bias-corrected parameter estimator has similar

properties as the conditional logit estimator. Its computational burden

is much lower, especially with relatively large T , and we can directly

estimate partial e�ects. We o�er this algorithm as an implementation in

the R-package bife.
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1. Introduction

The �xed e�ects logit model is a popular speci�cation for panel data analyses of

binary variables. It allows for unobserved time-invariant individual heterogeneity

like the variation in tastes with an arbitrary distribution. While the technical im-

plementation of the �xed e�ects estimator is rather simple in the linear case, the

within transformation based on individual demeaning does not carry over to nonlin-

ear models like the logit model.

A possible approach for nonlinear models is maximum likelihood estimation with

a dummy variable for each cross-sectional unit. To stress the di�erence to the con-

ditional logit estimator, we call this the unconditional logit (UCL) estimator. It

can become computationally challenging when the number of �xed e�ects N is large

since it requires the computation and inversion of a large Hessian. Apart from the

computational challenge, the parameters of usual �xed e�ects models with a small

number of observations per �xed e�ect T su�er from the incidental parameters prob-

lem, �rst noted by Neyman and Scott (1948). The estimators are inconsistent as N

increases and T is held constant. Even increasing T does not necessary solve the

incidental parameter bias because �xed e�ects estimators are asymptotically biased

even if T grows at the same rate as N (Hahn and Newey 2004).

If the incidental parameter bias is of concern, often the conditional logit estimator

(CL) is proposed as an alternative. It has been derived by Andersen (1970) and

later generalized by Chamberlain (1980) as a solution to the incidental parameters

problem. However, the CL estimator has the drawback that it does not deliver es-

timates of the �xed e�ects. Also partial or marginal e�ects cannot be easily and

consistently estimated. The CL estimator is computationally very costly if the num-

ber of observations per individual T is large. Even if using a more e�cient recursion

method proposed by Gail, Lubin and Rubinstein (1981), the computational burden

increases roughly quadratically with the number of individual observations T .

For these reasons, the UCL estimator is still of interest in many relevant cases.

We discuss and tackle its remaining problems: the computational burden with large

N panels and the bias with small T panels. The Hessian for the �xed e�ects has

a speci�c sparse structure which can be exploited using tools for the partitioned

inverse to dramatically decrease the computational costs, see Hall (1978), Prentice

and Gloeckler (1978), Chamberlain (1980) and Greene (2004). We show that for

�xed e�ects logit models, we can rewrite the problem in an intuitive way using

an iterative pseudo-demeaning algorithm. Importantly, the computational burden

increases only linearly with the number of individual observations T .

This paper combines this pseudo-demeaning algorithm with a bias-correction to

deal with the incidental parameters problem for small T and call the resulting es-
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timator bias-corrected logit (BCL) estimator. There is a branch of literature that

deals with bias-corrections to reduce the incidental parameter bias of structural pa-

rameters and/or partial e�ects in non-linear �xed-e�ects models, see for example

Hahn and Newey (2004), Arellano and Hahn (2006), Fernández-Val (2009), Hospido

(2012), and Dhaene and Jochmans (2015). We implement the approach of Hahn and

Newey (2004) because is allows the correction of both the parameter estimates and

the partial e�ects, is computationally less demanding than for example jack-knife

approaches and performs well.

The resulting parameter estimator has desirable properties comparable to the

CL estimator and directly deliver estimates of the �xed e�ects and the individual

and average partial e�ects. As we show in theory and simulations, it can also be

computationally more e�cient than the common estimators by orders of magnitude

for larger panel dimensions N and/or T .

In an extensive simulation study we examine the UCL, BCL and CL estimators

with respect to the bias of structural parameters, average partial e�ects and esti-

mated standard errors, rejection frequencies and their computational complexity.

We can con�rm the �ndings of Greene (2004) of large biases in the UCL estima-

tor for small T , but can also show that the BCL estimator improves these biases

substantially.

Our Monte-Carlo experiments suggest that the BCL estimator has similar desir-

able properties as the CL estimator in terms of the distribution of the parameter

estimates. Additionally, the BCL estimator improves the rejection frequencies and

reduces the variance of the estimator. Besides, we �nd, that for small T average

partial e�ects computed from the BCL estimates are less biased compared to the

ones computed from UCL estimates. We con�rm that the computational burden of

the UCL and BCL estimators increase linearly with T , whereas the burden of CL

increases quadratically which makes a dramatic di�erence for large T .

In order to make our pseudo-demeaning algorithm accessible for applied work,

we o�er it in the R-package bife.1 This implementation allows for fast estimation

of structural parameters and average partial e�ects of �xed e�ects logit and probit

models with pseudo-demeaning and bias-corrected pseudo-demeaning.

The paper is organized as follows. Section 2 presents a short recap of the �xed

e�ects logit models along with the UCL and CL estimators. Section 3 introduces the

pseudo-demeaning approach and the full algorithm with bias-correction. It follows

a discussion of how average partial e�ects can be computed for the UCL, BCL and

CL estimator in Section 4. In Section 5, the design and results of a series of Monte

Carlo simulations are presented before Section 6 concludes.

1 See https://cran.r-project.org/web/packages/bife/.

https://cran.r-project.org/web/packages/bife/
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2. The �xed e�ects logit model

For the sake of notational simplicity, assume we have a balanced panel of i =

1, . . . , N∗ individuals for t = 1, . . . , T time periods. The same type of model applies

to situations where we include �xed e�ects for N∗ groups of size T each. Suppose

we observe the discrete dependent variable yit. It usually is a binary choice vari-

able, such that yit = 1 if an event occurs (case) and yit = 0 if it does not occur

(control). De�ne N =
∑N∗

i=1 1[0 <
∑T

t=1 yit < T ] as the number of cross-sectional

units for which yit varies over time. The N∗ −N individuals without varying yit do

not contribute to the identi�cation or estimation of the �xed e�ects logit model and

can be dropped from the analysis without a�ecting the estimator of the structural

parameters.

The �xed e�ects logit model is de�ned by the logistic probability of yit

f(yit|xit,β, αi) = pyitit (1− pit)1−yit (2.1)

with

pit = Pr(yit = 1|xit, αi,β) =
1

1 + e−αi−xitβ

yit = 1[αi + xitβ + εit > 0]

where β is the (M × 1) parameter vector of the M regressors xit and εit is the

logistically distributed error term, i = 1, . . . , N and t = 1, . . . , T . The parameter αi

is called a �xed e�ect if E(εit|xi, αi) = 0, xi = xi1, . . . ,xiT and arbitrary correlations

between the �xed e�ects and the regressors are allowed.

We restrict ourselves to the parametric estimation techniques of the conditional

and the unconditional �xed e�ects logit estimator. The following two subsections

depict the advantages and drawbacks of both estimators before we combine the best

properties of both to a straightforward estimation procedure in section 3.

2.1. The conditional logit estimator

The idea of the conditional logit estimator is to condition the �xed e�ects out of

the objective function such that the inconsistency of the �xed e�ects in case of a

unconditional maximum likelihood estimation does not contaminate the estimates

of the structural parameters β. Thus, the CL estimator is consistent as N →∞ and

T is held �x. Secondly, the CL estimator facilitates the computational burden, if N

is large because it abstains from the estimation of possible thousands of �xed e�ects.

However, this computational advantage in N can become also a drawback; the CL

estimator does not deliver estimates of the �xed e�ects, although these become
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important if the researcher is for instance interested in partial e�ects. Additionally,

the CL estimator cannot retain its computational advantage in large N if T is large.

In fact, the CL estimator becomes computationally costly if T is large even if one

uses a clever recursion algorithm proposed by Gail et al. (1981).

Computational issues

Next, we demonstrate the computational complexity of the brute-force and recursive

algorithm of the CL estimator. We consider the general case of unbalanced panel

data. Suppose we observe individual i for Ti periods of which t1i are cases (yit = 1)

and t0i are controls (yit = 0) such that Ti = t0i + t1i.

The objective function of the conditional logit estimator is derived by conditioning

the density of yit on the su�cient statistic ti1 =
∑Ti

t=1 yit. Thereby, the �xed e�ects

αi are eliminated from the log-likelihood (Chamberlain 1980):

max
β

Lc(β) =
N∑
i=1

ln
exp

(∑Ti
t=1 xityitβ

)
∑

d∈Bi
exp

(∑Ti
t=1 xitdtβ

) (2.2)

with

Bi = {d = (d1, ..., dT )|dt = 0 or 1 and
T∑
t=1

dt =

Ti∑
t=1

yit}

Bi de�nes the alternative set for individual i that consists of ci possible selections of

1, . . . , t1i case status from 1, . . . , Ti subjects:

ci =

(
Ti
t1i

)
=

Ti!

t1i!(Ti − t1i)!
(2.3)

To keep things simple let us consider the contribution Li of group i to the conditional

likelihood:

exp(Li) =

∏t1i
k=1 exp(xkβ)∑ci

h=1

∏t1i
kh=1 exp(xhkhβ)

(2.4)

The index k denotes the observed data and the index kh the h-th possible assignment.

A direct evaluation of the denominator in (2.4) requires the summation of ci

terms and becomes prohibitive if Ti increases (Gail et al. 1981). For instance, the

computation of the denominator for a single individual with Ti = 100 and ti1 = 5

requires
(

100
5

)
≈ 7.53 · 106 evaluations and for an individual with Ti = 100 and

ti1 = 50 even
(

100
50

)
≈ 1.01 · 1029 evaluations.

However, the calculation of the conditional likelihood (2.2) can be accelerated by

the implementation of a recursive calculation proposed by Gail et al. (1981) without

loosing the exactness of the brute force approach in (2.2). Therefore, consider again
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the denominator in (2.4)

fi(t1i, Ti) =

ci∑
h=1

t1i∏
kh=1

exp(xhkhβ) =

ci∑
h=1

t1i∏
kh=1

Ukh (2.5)

The recursion is de�ned by

fi(t1i, Ti) = fi(t1i, Ti − 1) + UTifi(t1i − 1, Ti − 1) (2.6)

with fi(0, Ti) = 1 for Ti ≥ 0 and fi(t1i, Ti) = 0 for t1i > Ti.

The recursion reduces the number of arithmetic operations per individual from

(Ti!/(Ti − t1i)!(t1i − 1)!)− 1 to 2t1i(Ti − t1i + 1) operations (Gail et al. 1981).

Finally, the conditional log-likelihood in (2.2) can be rewritten to

L =
N∑
i=1

Li =
N∑
i=1

(
Ti∑
t=1

yitxitβ − ln fi(t1i, Ti)

)
(2.7)

The maximization of the conditional log-likelihood (2.7) has in general no explicit

solution. It is solved iteratively with gradient based maximization techniques. Let

Hc de�ne the Hessian and gc the gradient vector. Each entry of Hc and gc requires

O(
∑N

i=1 t1i(Ti − t1i)) operations2 (Reid and Tibshirani 2014). The computation of

the Hessian is the most demanding part since it requires the computation of M2

entries. Altogether, the computational complexity of the recursive algorithm requires

O(M2
∑N

i=1 t1i(Ti − t1i))) if N � T � M .3 This already suggests an upper bound

of the computational complexity if t1i/Ti = 0.5 ∀i. The computation complexity is

linear in N and roughly quadratic in Ti since t1i itself is a linear function of Ti.

2.2. Unconditional logit estimation via dummy variables

The UCL estimator is only T -consistent, but it has the advantage over the CL

estimator, that it produces estimates of the �xed e�ects which are necessary to

compute partial e�ects. Additionally, we demonstrate that unlike the CL estima-

tor, the computational burden of the UCL estimator is linear in T if we use the

pseudo-demeaning proposed in section 3. Since the incidental parameter problem

vanishes as T increases, the UCL estimator might be preferable to the CL estimator

in applications with large T .

2 There are O(t1i(Ti − t1i)) operations for each of the N individuals.
3 The inversion of the (M × M) Hessian costs O(M3). O(M2

∑N
i=1 t1i(Ti − t1i))) > O(M3)

assuming N � T �M .
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Computational issues

The unconditional logit estimator maximizes the log-likehood function

max
α,β

L(β,α) =
N∑
i=1

T∑
t=1

ln f(yit|xit,β, αi) (2.8)

=
N∑
i=1

T∑
t=1

yit ln(pit) + (1− yit) ln(1− pit)

with α = (α1, . . . , αN)′. The maximization problem (2.8) of the UCL estimator has

in general no explicit solution. Thus, it is solved iteratively with gradient based

maximization techniques.

The brute-force approach to estimate a non-linear �xed e�ects model with uncon-

ditional maximum likelihood is to put a dummy for each �xed e�ect. This delivers

a (NT × (N +M)) regressor matrix Z = (D,X), where D denotes the (NT × N)

dummy variable matrix and X the (NT ×M) matrix of the remaining regressors.4

Following a similar notation as Greene (2004), we de�ne the gradient and Hessian

of the log-likelihood given in (2.8) and use Newton Raphson for its maximization.

The ((N +M)× 1) gradient:

g =

(
gα

gβ

)
(2.9)

with

gβ =
∂L

∂β
=

N∑
i=1

T∑
t=1

xit(yit − pit)

gαi
=
∂L

∂αi
=

T∑
t=1

(yit − pit)

The (N +M)× (N +M) Hessian:

H =



Hββ hβα1 hβα2 · · · hβαN

hα1β hα1α1 0 · · · 0

hα2β 0 hα2α2 · · · 0
...

...
...

. . .
...

hαNβ 0 0 · · · hαNαN


=

(
Hββ Hβα

Hαβ Hαα

)
(2.10)

4 Please note, that some software routines, such as glm in R, include N∗ dummies instead of N

and computation becomes even more costly. Remember, N =
∑N∗

i=1 1[0 <
∑T

t=1 yit < T ] where
N∗ denotes the total number of individuals in the dataset.
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with

Hββ =
N∑
i=1

T∑
t=1

∂2 lnL

∂β∂β′
= (−1)

N∑
i=1

T∑
t=1

x′itxitpit(1− pit)

hβαi
=

T∑
t=1

∂2 lnL

∂β∂αi
= (−1)

T∑
t=1

xitpit(1− pit)

hαiαi
=

T∑
t=1

∂2 lnL

∂2αi
= (−1)

T∑
t=1

pit(1− pit)

Further, de�ne the ((N+M)×1) parameter vector θ = (α,β)′. The naive approach

uses Newton's method with the gradient and Hessian de�ned in (2.9) and (2.10). The

k-th iteration step is

θk − θk−1 = −H−1
k−1gk−1 (2.11)

The Hessian is a ((N +M)× (N +M)) matrix. If the number of �xed e�ects N is

large, its computation and inversion becomes computationally costly. It can be easily

seen, that the dummy variable approach in (2.11) would require a computational

complexity of O(N3T 2) for a balanced panel. To see this, we reformulate (2.11) as

an iteratively re-weighted least squares (IRWLS) problem. Therefore, we de�ne the

(NT × (N +M)) regressor matrix Z = (D,X), where D denotes the (NT × N)

dummy variable matrix. The k-th IRWLS-iteration step in (2.11) can be rewritten

into

θk − θk−1 = −H−1
k−1gk−1 = (Z′WZ)−1Z′(y − p) (2.12)

where W serves as a (NT×NT ) weighting matrix. W is a diagonal-matrix diag(wit)

with weights wit = pit(1− pit).
The most demanding part is the computation of the ((N +M)× (N +M)) Hes-

sian. Especially, the multiplication of the ((N + M) × NT ) matrix Z′ with the

(NT ×NT ) matrix W is computationally extensive. It is well know, that the multi-

plication of a general (R×S) matrix with a general (S×S) matrix requires O(RS2)

time. Hence, the multiplication Z′W costs O((N+M)N2T 2) what is asymptotically

approximately O(N3T 2), assuming N � T �M .5

5 Even a more elegant implementation that abstracts from the usage of the matrix W would
require O(N3T ) time. This implementation uses a transformed matrix Zw instead, where each
element of Z has been multiplied with its corresponding weight wit, such that Z′WZ = Zw

′Z.
It is well known that matrix multiplication Zw

′Z costs O((N +M)2NT ) ≈ O(N3T ), matrix
multiplication Z′Y costs O((N +M)NT ) ≈ O(N2T ), matrix inversion (Zw

′Z)−1 costs O((N +
M)3) ≈ O(N3) and �nally the product of the Hessian and the gradient costs O((N +M)2) ≈
O(N2), assuming N � T �M . Further, O(N3T ) > O(N2T ) > O(N2) for T > 1. The symbol
≈ means "asymptotically approximately".
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3. Computationally e�cient unconditional logit

estimation

Greene (2004) and Chamberlain (1980), among others, propose an algorithm which

avoids the inversion of the large Hessian in (2.11). Their method utilizes the parti-

tioned inverse approach and exploits the sparsity of the Hessian. A detailed descrip-

tion of that algorithm can be found in the Appendix A.1.

We propose a di�erent approach to reduce the dimensionality of the maximization

problem in (2.8) that produces the identical parameter estimates as the dummy

variable and partitioned inverse approaches. The basic idea is to reformulate the

maximization problem as an iteratively reweighted least squares problem and to

eliminate the �xed e�ects from the resulting estimation equation similar to linear

�xed e�ects models.

The reformulation of a regression-like problem even allows to apply the well-

known Frisch-Waugh-Lovell theorem for demeaning (see (Frisch and Waugh 1933),

(Lovell 1963)). The �nal estimation formulas for the parameters are closely related

to (Chamberlain 1980) who derived them with the partitioned inverse. However, in

contrast to Greene (2004) and Chamberlain (1980), our �nal estimation equations di-

rectly translates into an intuitive pseudo-demeaning. The same methodology applies

also to other non-linear models like probit and poisson models.

3.1. Pseudo-Demeaning

We use the naive dummy variable approach in section (2.2) as a starting point for

further computational simpli�cations. Consider again the k-th IRWLS-iteration step

as in (2.12)

θk − θk−1 = (Z′WZ)−1Z′(y − p)

= (Z′
√

W
′√

WZ)−1Z′
√

W
′√

W
−1

(y − p) (3.1)

Remember that W is a diagonal-matrix with weights wit = pit(1− pit) on the main

diagonal. So (3.1) is equivalent to a regression of the dependent variable yit−pit√
(pit(1−pit))

on the independent variables
√

(pit(1− pit))zit. Reformulated as a regression model

for individual i, (3.1) becomes

ỹit = w̃it(α
k
i − αk−1

i ) + x̃it(β
k − βk−1) (3.2)
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with

ỹit =
yit − pit√
pit(1− pit)

w̃it =
√
wit =

√
pit(1− pit)

x̃it = w̃itxit =
√
pit(1− pit)xit

The following results are derived in detail in Appendix A.4. The update of the

�xed e�ects (αki − αk−1
i ) can be removed from the estimation equation by inserting

the following expression into (3.2)

(αki − αk−1
i ) =

T∑
t=1

w̃itỹit

T∑
t=1

w̃2
it

−

T∑
t=1

w̃itx̃it

T∑
t=1

w̃2
it

(βk − βk−1) (3.3)

We get the pseudo-demeaned estimation equation

ỹit − w̃it

T∑
t=1

w̃itỹit

T∑
t=1

w̃2
it︸ ︷︷ ︸

ȳit

=

x̃it − w̃it

T∑
t=1

w̃itx̃it

T∑
t=1

w̃2
it


︸ ︷︷ ︸

x̄it

(βk − βk−1) (3.4)

and �nally, the formula for the β updates becomes

(βk − βk−1) =

(
N∑
i=1

T∑
t=1

x̄′itx̄it

)−1( N∑
i=1

T∑
t=1

x̄′itȳit

)
(3.5)

Lets denote the converged βk in (3.5) and αki in (3.3) with β̂ and α̂i.

The formula (3.5) with pseudo-demeaning directly translates in an intuitive ap-

proach that reminds of demeaning in a linear regression model. In fact, the pseudo-

demeaning (3.5) is equivalent to a regression of a weighted demeaned dependent

variable ȳ on weighted demeaned regressors x̄.

Computational complexity

In contrast to the CL estimator, the computational complexity of the pseudo-

demeaning is linear in Ti and N . It can be expressed by O(NT ) if the panel is

balanced Ti = T ∀i and O(
∑n

i=1 Ti) if it is unbalanced, neglecting the number of

structural parametersM . This can be easily derived from the computationally most

intensive operation which is the computation of β in the formula (3.5).
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Consider the balanced panel case and de�ne X̄ as the regressor matrix in 3.5

and ȳ as the dependent variable vector in (3.5). The computation of X̄ and ȳ re-

quires asymptotically approximate O(NT ) time, the matrix multiplication X̄′X̄ costs

asymptotically approximate O(M2NT ), matrix multiplication X̄′Ȳ costs asymptoti-

cally approximate O(MNT ), matrix inversion (X̄′X̄)−1 costs asymptotically approx-

imate O(M3) and �nally the product of the Hessian and the gradient costs asymp-

totically approximate O(M2), assuming N � T � M . O(M2NT ) > O(MNT ) >

O(M3) if N � T �M . Altogether, the computation time of the pseudo-demeaning

is linear in T and N .

3.2. The complete algorithm

The algorithm presented above can be concisely summarized in the following pseudo

code:

1. Get starting values for βk and αki , i = 1, ..., N, k = 0,6

2. For k = 1, ..., kmax:

3. Given βk−1 and αk−1
i compute pk−1

it as in formula (2.1),

4. Given pk−1
it compute (βk−βk−1) with the pseudo-demeaning formula (3.5),

5. Given (βk − βk−1) and pk−1
it compute (αki − αk−1

i ) with formula (3.3),

6. If ||θk − θk−1|| < ε, stop.

If T is small, the UCL estimator su�ers from the incidental parameters bias.

Appendix A.2 discusses the algorithm of Hahn and Newey (2004) for correction of

the parameter estimates. The combination with a bias-correction makes the pseudo-

demeaning approach attractive even in situations where N is large and T is small

especially if the CL estimator is no alternative since partial e�ects are of interest.

To include the Hahn and Newey (2004) bias correction in the pseudo code, let β̂

and α̂i denote the converged (but biased) estimates of the Newton-Raphson algo-

rithm described in steps 1 to 6 and add the following two steps:

7. Given β̂ and α̂i compute the bias-corrected coefficient β̃ with formula

(A.12),

8. Given β̃ compute α̃i using the Newton-Raphson algorithm (holding β̃ fixed)

as described in (A.14).

This is the algorithm implemented in the R-package bife.

The computational complexity of the bias-correction is asymptotically approx-

imate equivalent to the one of the pseudo-demeaning. Hence, the bias-corrected

6 Choose βk=0 = αk=0
i = 0 or use the starting values of the model estimated as a linear probability

model combined with the linear �xed e�ects estimator.
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estimator costs O(NT ) if the panel is balanced Ti = T ∀i and O(
∑n

i=1 Ti) if it is

unbalanced, neglecting the number of structural parameters M .

3.3. Standard errors

For applied work, the full covariance matrix of all parameters including the �xed

e�ects will be of minor interest. If N is large, this computation becomes prohibitive.

Instead of computing the standard errors of the parameters as the inverse of the full

Hessian in (2.10), we can calculate the standard errors of the structural parameters β

can be easily obtained as the square-root of the diagonal of the concentrated inverse

Hessian

V (β) =

(
N∑
i=1

T∑
t=1

x̄′itx̄it

)−1

(3.6)

If this is of interest, the standard error of the �xed e�ect αi can be obtained as

the square root of the variance given by

V (αi) =
1

T∑
t=1

w̃2
it

+

T∑
t=1

w̃itx̃it

T∑
t=1

w̃2
it

V (β)


T∑
t=1

w̃itx̃it

T∑
t=1

w̃2
it


′

(3.7)

4. Average Partial E�ects

Average partial e�ects are often of major interest for applied work, since the estimates

of the structural parameters obtained with (3.5) are not directly interpretable.7 In

this section we demonstrate how to obtain estimated average partial e�ects for UCL,

BCL and CL estimator. For the CL estimator the computation of average partial

e�ects is not straightforward. We discuss a widely used but inconsistent approach

and propose a di�erent strategy to obtain average partial e�ects for the CL estimator.

When computing average partial e�ects we distinguish between continuous and

discrete regressors. Let G(·) denote the logistic cdf and g(·) denote the logistic pdf.
For the continuous case we de�ne the individual partial e�ect at time t of the k-th

regressor on the conditional probability that yit = 1

mk(xit,β, αi) =
∂Pr(yit = 1|xit,β, αi)

∂xitk

=
∂G(αi + xitβ)

∂xitk

= g(αi + xitβ)βk

7 Sometimes partial e�ects are also referred to as marginal e�ects.
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Averaging all individual partial e�ects delivers the average partial e�ect of the k-th

continuous regressor xk

APEk =
1

T

1

N

N∑
i=1

T∑
t=1

mk(xit,β, αi) (4.1)

For the discrete case we de�ne the individual partial e�ect at time t of the j-th

regressor as a one-unit increase in the regressor on the conditional probability that

yit = 1

m̃j(xit,β, αi) = Pr(yit = 1|xitj = 1,xit{−j},β, αi)− Pr(yit = 1|xitj = 0,xit{−j},β, αi)

= G(αi + xitβ|xitj = 1)−G(αi + xitβ|xitj = 0)

The average partial e�ect of the j-th discrete regressor xj is de�ned as

APEj =
1

T

1

N

N∑
i=1

T∑
t=1

m̃j(xit,β, αi) (4.2)

To get estimated average partial e�ects the parameters β and αi in formula (4.1)

and (4.2) are replaced by their estimates β̂ and α̂i. This is straightforward with the

UCL and BCL estimators since they directly deliver estimates for all parameters.

The CL estimator delivers no estimates of the �xed e�ects and provides no guid-

ance towards the computation of average partial e�ects. Thus, we discuss two ap-

proaches to obtain estimated average partial e�ects for the CL estimator. De�ne β̂c

as the estimates of the structural parameters obtained with the CL estimator.

The �rst approach is most widely used. It simply replaces the structural parame-

ters in (4.1) and (4.2) with β̂c and sets the �xed e�ects with zero (α̂i = 0 ∀i). This
method is for example implemented in Stata's post-estimation routines for clogit

and xtlogit.

We propose a di�erent approach to compute average partial e�ects for the CL

estimator. It re-calculates the �xed e�ects with the �rst-order condition of the UCL

estimator. To be more precise, in order to recover estimates of �xed e�ects the

algorithm proposed in section A.3 can be applied. Therefore, replace the linear

predictor with Xβ̂c.

Our simulations show that this second approach performs well whereas the simpler

approach to replace the α parameters with zeros can lead to substantial biases.
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5. A Simulation Study

We analyse the behavior of the unconditional logit estimator (UCL), the bias-

corrected unconditional logit estimator (BCL) and the conditional logit estimator

(CL) in a simulation study. The focus of our analysis are the biases of the estimators,

the biases of the average partial e�ects (APE) and the computation time.

To justify large values of T , we abstract from the classical econometricians view

of panel data. Instead of observing N individuals for T time periods, assume, that

T can be also considered as group size and N as number of groups. For example,

�xed e�ects logit models can be also useful if i represents ZIP code areas and t is an

index of individuals.8

5.1. The setup

The simulation setup follows Greene (2004).9 We examine the data generating pro-

cess

yit = 1[wit + vit > 0], (5.1)

where vit = log[uit/(1− uit)], uit ∼ U(0, 1).

with the index function

wit = αi + βxit + δdit, (5.2)

where

β = δ = 1,

xit ∼ N(0, 12),

dit = 1[xit + hit > 0], hit ∼ N(0, 12)

αi =
√
T x̄i + ai, ai ∼ N(0, 12).

Throughout our experiments, we consider several model speci�cations with di�er-

ent group sizes T and number of groups N∗. To be more speci�c, we vary the number

of groups (N∗ = 100, 1000) and the group sizes (T = 4, 8, 10, 12, 16, 20, 50, 100, 200),

such that we get 18 model speci�cations. Each of these speci�cations is �tted 1, 000

times, at which for each �t αi, xit dit and yit vary.

8 In the vignette of the R-package bife we estimated a �xed e�ects logit model to analyse
the labor force participation of 662, 775 married women in N = 51 states, where the small-
est state consists of Tmin = 855 women and the largest of Tmax = 74, 752 women. This
application demonstrates the advantage of pseudo-demeaning over the brute-force dummy vari-
able approach and over conditional logit estimation, see https://cran.r-project.org/web/

packages/bife/vignettes/bife_introduction.html .
9 We also did robustness-checks on di�erent parameter values, number of iterations and another
simulation setup, that was inspired by Coupé (2005).

https://cran.r-project.org/web/packages/bife/vignettes/bife_introduction.html
https://cran.r-project.org/web/packages/bife/vignettes/bife_introduction.html
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5.2. Biases

The number of groups N∗ turns out not to have any relevant e�ect on our �ndings in

terms of the bias in the estimates and average partial e�ects. However, as expected

standard errors become tighter as N∗ increases.

Table 1 list the means of the empirical sampling distributions of the three esti-

mators for group size N∗ = 100 (table B.1 and B.3 respectively for N = 1, 000).

Irrespective of the number of groups N∗, we observe that the bias of the UCL es-

timator and the BCL estimator vanishes as T grows. Additionally, the bias of the

BCL estimator is substantially lower compared to UCL and converges more quickly

to the true parameter value.

Figure 1 depicts the convergence of the three estimators for N∗ = 100 (left) and

N∗ = 1, 000 (right) and con�rms that the BCL estimator converges quickly to the

unbiased CL estimator. For N∗ = 100, the bias-correction is able to reduce the

absolute bias of the UCL estimator β (δ) from 53.1% to 12.9% (from 49.3% to 7.1%)

for T = 4 and from 19.9% to 2.9% (from 19.7% to 3.3% ) for T = 8.

As Figure 2 and 5 shows, not only the mean estimates but the whole distribution

of the structural parameters converges to the distribution of the CL estimator as

T increases, irrespective of N∗. Already for T = 16 and almost for T = 12 the

two-sided Kolmogorov-Smirno� of test can't be rejected at any usual signi�cance

level for the structural parameter β when N∗ = 100 (table 2). For N∗ = 1, 000 this

convergence process lasts longer, maybe because standard errors shrink faster than

the bias.

Table 1: Mean estimates of β and δ

β δ

UCL BCL CL UCL BCL CL

T = 4 1.5307 0.8706 1.0359 1.4928 0.9289 1.0193
T = 8 1.1985 1.0287 1.0023 1.1971 1.0330 1.0112
T = 10 1.1588 1.0271 1.0074 1.1493 1.0225 1.0085
T = 12 1.1272 1.0194 1.0054 1.1101 1.0067 0.9977
T = 16 1.0934 1.0131 1.0054 1.0842 1.0072 1.0029
T = 20 1.0708 1.0067 1.0022 1.0618 1.0009 0.9986
T = 50 1.0268 1.0016 1.0010 1.0253 1.0016 1.0014
T = 100 1.0123 0.9998 0.9997 1.0132 1.0015 1.0014
T = 200 1.0064 1.0002 1.0002 1.0041 0.9983 0.9983

Note: 1,000 replications; N∗ = 100; UCL denotes the unconditional logit estimator; BCL denotes

the bias-corrected estimator of Hahn and Newey (2004) based on Bartlett equalities; CL denotes

the conditional logit estimator.
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Figure 1: Convergence
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Figure 2: Density
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Table 2: Kolmogorov-Smirnov test

UCL vs. BCL UCL vs. CL BCL vs. CL

β T = 4 0.0000 0.0000 0.0000
T = 8 0.0000 0.0000 0.0015
T = 10 0.0000 0.0000 0.0053
T = 12 0.0000 0.0000 0.0484
T = 16 0.0000 0.0000 0.4324
T = 20 0.0000 0.0000 0.6476
T = 50 0.0000 0.0000 1.0000
T = 100 0.0000 0.0000 1.0000
T = 200 0.0000 0.0000 1.0000

δ T = 4 0.0000 0.0000 0.0001
T = 8 0.0000 0.0000 0.1338
T = 10 0.0000 0.0000 0.3410
T = 12 0.0000 0.0000 0.6852
T = 16 0.0000 0.0000 0.9937
T = 20 0.0000 0.0000 1.0000
T = 50 0.0000 0.0000 1.0000
T = 100 0.0028 0.0033 1.0000
T = 200 0.0171 0.0171 1.0000

Note: 1,000 replications; N∗ = 100; reported p-values of two-sided Kolmogorov-Smirnov test; UCL

denotes the unconditional logit estimator; BCL denotes the bias-corrected estimator of Hahn and

Newey (2004) based on Bartlett equalities; CL denotes the conditional logit estimator.
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Following Greene (2004) and Hahn and Newey (2004), we examine how the incon-

sistency of the �xed e�ects a�ects the estimated standard errors of the structural

parameters. Therefore, we report the average of the 1, 000 estimated standard errors

(SE) and the ratio between SE and the sample standard deviation (SD). The idea

is that the empirical standard deviation SD should deliver a more reliable measure

compared to the contaminated SE. In fact, it turns out, that the SE of the UCL esti-

mator is considerably distorted for T = 4 to 16 for N∗ = 100 and even up to T = 20

for N∗ = 1, 000. In contrast to that, the distortions in the estimated standard errors

of BCL and CL are negligible for T ≥ 8.

Similarly, we consider how the incidental parameter problem carries over to rejec-

tion frequencies. If we do not control for the distortion in the estimated standard

errors we reject a signi�cant bias of the structural parameters mostly too rarely.

Table 4 and B.4 report how often the null-hypothesis of no signi�cant bias in the

structural parameters is rejected, presuming a nominal value of p = 0.05. The results

emphasize two things. First, the UCL estimator of the bias in structural parame-

ters, rejects the null too often. Secondly, the BCL estimator takes the rejection

frequencies much closer to the nominal value.

According to the tables B.3 and B.4, the number of groups N∗ has no e�ect on

the mean estimates but on the standard-errors and thus on rejection frequencies.
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Table 3: SE and SE/SD

SE SE/SD

UCL BCL CL UCL BCL CL

β T = 4 0.3044 0.2341 0.2437 0.7723 1.0272 0.9734
T = 8 0.1604 0.1493 0.1445 0.8954 0.9958 0.9992
T = 10 0.1368 0.1294 0.1260 0.9367 1.0133 1.0160
T = 12 0.1207 0.1153 0.1128 0.9256 0.9886 0.9925
T = 16 0.1003 0.0969 0.0955 0.9390 0.9874 0.9863
T = 20 0.0876 0.0852 0.0843 0.9923 1.0343 1.0330
T = 50 0.0523 0.0518 0.0516 0.9812 0.9984 0.9961
T = 100 0.0363 0.0361 0.0360 0.9720 0.9804 0.9793
T = 200 0.0254 0.0253 0.0253 0.9915 0.9953 0.9949

δ T = 4 0.4725 0.4131 0.3877 0.8023 1.2004 0.9862
T = 8 0.2598 0.2511 0.2379 0.9222 1.0376 1.0089
T = 10 0.2224 0.2168 0.2078 0.9253 1.0166 0.9911
T = 12 0.1976 0.1936 0.1870 0.9389 1.0154 0.9930
T = 16 0.1657 0.1632 0.1591 0.9574 1.0158 0.9972
T = 20 0.1455 0.1437 0.1409 1.0088 1.0582 1.0416
T = 50 0.0880 0.0876 0.0869 0.9802 0.9990 0.9923
T = 100 0.0614 0.0612 0.0610 0.9698 0.9788 0.9757
T = 200 0.0431 0.0430 0.0430 0.9764 0.9807 0.9793

Note: 1,000 replications; N∗ = 100; SE denotes the average standard error of the estimator; SE/SD

denotes the ratio of the average standard error and the standard deviation of the estimator; UCL

denotes the unconditional logit estimator; BCL denotes the bias-corrected estimator of Hahn and

Newey (2004) based on Bartlett equalities; CL denotes the conditional logit estimator.
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Table 4: Rejection frequencies

SE SD

UCL BCL CL UCL BCL CL

β T = 4 0.380 0.076 0.043 0.245 0.073 0.056
T = 8 0.232 0.047 0.043 0.186 0.058 0.051
T = 10 0.210 0.050 0.046 0.193 0.057 0.055
T = 12 0.202 0.057 0.046 0.168 0.062 0.054
T = 16 0.163 0.047 0.046 0.146 0.049 0.049
T = 20 0.120 0.044 0.042 0.129 0.054 0.052
T = 50 0.080 0.056 0.057 0.078 0.052 0.052
T = 100 0.073 0.060 0.060 0.066 0.057 0.056
T = 200 0.063 0.050 0.049 0.064 0.050 0.050

δ T = 4 0.209 0.018 0.041 0.128 0.043 0.045
T = 8 0.127 0.045 0.050 0.099 0.054 0.054
T = 10 0.111 0.043 0.062 0.090 0.054 0.057
T = 12 0.098 0.039 0.050 0.081 0.044 0.045
T = 16 0.088 0.041 0.043 0.076 0.047 0.049
T = 20 0.065 0.029 0.031 0.075 0.038 0.037
T = 50 0.072 0.051 0.052 0.066 0.050 0.050
T = 100 0.064 0.058 0.058 0.057 0.054 0.054
T = 200 0.059 0.053 0.054 0.053 0.049 0.049

Note: 1,000 replications; N∗ = 100; Rejection frequencies of two-sided t-test H0 : µ = 1 with the

nominal value p = 0.05 based on the standard errors SE and based on the standard deviation SD ;

UCL denotes the unconditional logit estimator; BCL denotes the bias-corrected estimator of Hahn

and Newey (2004) based on Bartlett equalities; CL denotes the conditional logit estimator.

Table 5 reports the average relative bias of estimated average partial e�ects to

the truth for N∗ = 100, table B.5 respectively for N∗ = 1, 000. The bias of the

unconditional logit estimator passes over to the APEs. We computed the estimated

average partial e�ects on the four di�erent ways described in section 4.

Table 5 and B.5 con�rm that using bias-corrected coe�cients β̂ and δ̂ and adjusted

�xed e�ects α̃i leads to a substantial improvement of the APEs. For example, when

N∗ = 100 and T = 4 the APE of β̂ is on average 31.9% biased upwards without

bias-correction and only 5.8% with bias-correction. However, when T increases, the

bias in the APEs of the UCL estimator decreases. For T = 20, there is no advantage

anymore to compute APEs with BCL instead of UCL.

We �nd, that using the CL1 approach, where we set all �xed e�ects to zero, leads

to a substantial bias of the APEs, for example a 14.8% bias on average for β and

T = 4. This bias also remains as we increase T . Thus, we advice against using

this common approach. The second approach CL2, where we recovered the �xed
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e�ects with the �rst-order condition of the unconditional logit estimator, suggests a

substantial improvement of the bias in the APEs compared to CL1.

The APEs computed with bias-corrected coe�cients lead to less biased results

compared to the APEs computed without bias-correction until T = 20 is reached

both for N∗ = 100 as well for N∗ = 1, 000. However, we additionally notice, that if

T is too small the APEs computed both with BCL and with CL2 can fail to produce

approximately unbiased results. For instance, for T = 4 the relative bias of the APE

obtained with BCL is roughly 5.8% for the discrete regressor.

To sum up, the bias-correction is able to reduce the bias in structural parameters

and average partial e�ects as well to reduce the distortions in the standard errors

if T is not too small. However, the BCL estimator becomes appealing in situations

where T is medium sized and it becomes redundant if T is large. Further, we

conclude, that although the CL estimator delivers approximately unbiased estimates

of the structural parameters if T is small (Tables 1 and B.1) this advantage does

not transfer to produce approximately unbiased APEs. When T is medium sized or

large, the approach to compute average partial e�ects for the CL estimator based

on the f.o.c. of the UCL estimator performs approximately equally compared to

computing the APEs with the BCL estimates. However, as we will see in the next

subsection, the CL estimator has a clear speed disadvantage compared to UCL and

BCL.

Table 5: Average Partial E�ects

β δ

UCL BCL CL1 CL2 UCL BCL CL1 CL2

T = 4 1.3185 0.9421 1.1480 1.0649 1.3206 0.9958 1.1604 1.0457
T = 8 1.0886 0.9981 1.1694 0.9820 1.0975 0.9994 1.2149 0.9861
T = 10 1.0611 0.9909 1.1841 0.9789 1.0593 0.9833 1.2231 0.9757
T = 12 1.0451 0.9873 1.1939 0.9787 1.0339 0.9714 1.2222 0.9668
T = 16 1.0246 0.9819 1.2013 0.9770 1.0194 0.9732 1.2403 0.9714
T = 20 1.0150 0.9809 1.2055 0.9781 1.0087 0.9723 1.2451 0.9715
T = 50 1.0012 0.9886 1.2064 0.9883 1.0010 0.9876 1.2557 0.9876
T = 100 0.9995 0.9938 1.2013 0.9937 1.0011 0.9950 1.2542 0.9950
T = 200 1.0006 0.9983 1.1968 0.9983 0.9986 0.9960 1.2462 0.9960

Note: 1,000 replications; N∗ = 1000; UCL denotes the unconditional logit estimator; BCL denotes

the bias-corrected estimator of Hahn and Newey (2004) based on Bartlett equalities; CL1 denotes

the conditional logit estimator with α̂i = 0 ∀i = 1, ..., N ; CL2 denotes the conditional logit

estimator with α̃i ∀i = 1, ..., N computed with the f.o.c. of UCL.
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5.3. Computational costs

We test the theoretical computational complexity with real measured computation

times. We compare the bias-corrected UCL algorithm described in subsection 3.2

with the recursive CL algorithm described in subsection 2.1. All calculations are done

in R. We used the implementation of the CL estimator in the R-package survival

and our own implementation of the UCL and BCL in the R-package bife.

Figure 3 con�rms that the computation time of both algorithms increases linearly

in N∗. Besides, the �gure already indicates that the computation time of CL in-

creases drastically as T changes from T = 10 to T = 100. Figure 4 illustrates how

computation time of CL and BCL evolve over T . It veri�es the theoretical �ndings

of a roughly quadratic computational cost of the CL algorithm and the linear one

of the UCL algorithm. Since the bias-correction becomes redundant when T is suf-

�ciently large, we further examine how much time the correction costs. Both �gures

depict that computing the unconditional estimator with bias-correction is not a big

issue compared to the uncorrected unconditional estimator.
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Figure 3: Computation Time

0.0

0.2

0.4

0.6

0 1000 2000 3000 4000 5000

N∗

ti
m
e

T = 10

0

5

10

15

20

0 1000 2000 3000 4000 5000

N∗

ti
m
e

T = 100

Note: Computation time in seconds. Blue line conditional logit algorithm approximated with

linear regression, red line bias-corrected unconditional logit algorithm approximated with linear

regression, green line unconditional logit algorithm approximated with linear regression.



25

Figure 4: Computation Time
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6. Conclusions

Fixed e�ects logit models for panel data allow for individual e�ects with an arbitrary

distribution and a free correlation with the regressors. The two most widely used

estimators su�er from substantial drawbacks.

The conditional logit (CL) estimator is consistent in terms of model parameters

under standard assumptions but does not o�er estimates of individual e�ects. Stan-

dard estimates of partial e�ects assuming zero �xed e�ects can be severely biased.

Its computational costs increases quadratically with the number of observations per

�xed e�ect T and can quickly become prohibitive for long panel data sets or models

in which the structure is used for example to include �xed e�ects for states, counties,

or other sub-groups of the sample.

The most straightforward approach to implement the unconditional logit (UCL)

estimator is to add a set of dummy variables to a standard logit model to capture

the �xed e�ects. This estimator su�ers from the incidental parameters bias, but bias

corrections have been suggested in the literature. Numerical maximization of the

likelihood function quickly becomes infeasible with a large number of �xed e�ects

N . The literature proposes strategies to use the sparse structure of the Hessian to

reduce the computational burden of the UCL estimator.

This paper proposes a similar strategy for a computationally e�cient way to obtain

the UCL estimator. It uses an iterative pseudo-demeaning approach to optimize the

likelihood with respect to the model parameters and jointly estimates all individual

�xed e�ects. Combined with a correction for the incidental parameter bias, this

BCL estimator provides an attractive alternative for many relevant applications.

We compare the alternative estimators and their computational burden and present

a series of Monte-Carlo simulations. We �nd that the uncorrected UCL estimator

indeed su�ers from substantial biases if T is small. This incidental parameter prob-

lem carries over to values like average partial e�ects, standard errors and signi�cance

tests.

In terms of parameter estimation, the bias corrected BCL estimator has very

similar properties as the CL estimator for longer panels and is clearly dominated

only for very short panels (T = 4). When it comes to average partial e�ects (APE),

the most common strategy for CL estimation to set the �xed e�ects to zero introduces

severe biases and the BCL with estimated �xed e�ects performs much better. We

also discuss how to obtain estimates for the �xed e�ects after CL estimation based

on our BCL alogorithm. The APEs obtained in this way perform similarly as our

BCL estimates.

In summary, our bias-corrected unconditional logit estimator is especially at-

tractive for empirical applications in which the time dimension is reasonably large



27

(T > 4), the computational burden is an issue because of large samples, and partial

e�ects are of interest. To allow the readers to use the algorithm in a straightforward

and convenient way, we provide an implementation in an R package called bife.
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Appendix

A. Methodological part

A.1. Partitioned Inverse

Greene (2004), among others, proposed an algorithm which avoids the inversion of

the large Hessian in (2.11). He uses the partitioned inverse formula for the inversion

of the Hessian. Additionally, he exploits the sparse structure of the Hessian, i.e.

that Hαα in (2.10) is a diagonal matrix.

The partitioned inverse formula of a general matrix with sub-matrices A11, A12,

A21 and A22 is given by Greene (2012):(
A11 A12

A21 A22

)−1

=

(
A−1

11 (I + A12F2A21A
−1
11 ) −A−1

11 A12F2

−F2A12A
−1
11 F2

)
(A.1)

with

F2 =
(
A22 −A21A

−1
11 A12

)−1

Greene partitions the inverse Hessian:

H−1 =

(
Hββ Hβα

Hαβ Hαα

)−1

=

(
Hββ Hβα

Hαβ Hαα

)
(A.2)

The updates for β can be rewritten

(βk − βk−1) = −
[
Hββgβ + Hβαgα

]
(A.3)

As a next step the partitioned inverse formula is applied to Hββ and Hβα:

Hββ =
(
Hββ −HβαH

−1
ααHαβ

)−1
(A.4)

Hβα = HββHβαH
−1
αα (A.5)

Note, since Hαα is a diagonal matrix, the formula of Hββ can be further simpli�ed

Hββ =

[
Hββ −

N∑
i=1

1

hαiαi

hβαi
h′βαi

]−1

(A.6)
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Finally, we can plug our results in the update formula (A.3) for β

(βk − βk−1) = −
[
Hββgβ + Hβαgα

]
(A.7)

= −
[
Hββgβ + HββHβαH

−1
ααgα

]
= −Hββ

[
gβ −HβαH

−1
ααgα

]
= −

[
Hββ −

N∑
i=1

1

hαiαi

hβαi
h′βαi

]−1(
gβ −

N∑
i=1

gαi

hαiαi

hβαi

)

Thus, the problem of the (N +M ×N +M) matrix is removed. The formula (A.7)

only requires the computation of a (M ×M) matrix and the N -fold summation of

(M × 1) vectors. The updates for (αk − αk−1) are obtained in the same manner.

We start with the partitioned matrices

(αk −αk−1) = −
[
Hααgα + Hαβgβ

]
(A.8)

and apply the partitioned inverse formula (A.1) to Hαα and Hαβ:

(αk −αk−1) = −H−1
α

(
gα + Hαβ(βk − βk−1)

)
(A.9)

By using the diagonal characteristic of Hαα we end with the update formula for the

i-th �xed e�ects:

(αki − αk−1
i ) = − 1

hαiαi

(
gαi

+ h′βαi
(βk − βk−1)

)
(A.10)

A.2. Bias correction

Hahn and Newey (2004) derived a bias formula obtained from an asymptotic expan-

sion as T grows. This formula is used to estimate the bias and �nally to correct

the estimator. In order to describe the bias-correction we need to introduce some

notation:

lit = ln f(yit,xit|β, αi), gβit(β, αi) =
∂lit
∂β

, gαit(β, αi) =
∂lit
∂αi

Other partial derivatives are denoted with extra subscripts in the following fashion

hββit(β, αi) =
∂lit
∂ββ′

=
∂gβit
∂β

ĝαit(β) = gαit(β, α̂i), ĥααit(β) = hααit(β, α̂i)

ĝβit(β) = gβit(β, α̂i), ĥβαit(β) = hβαit(β, α̂i)
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The bias correction can be expressed by

B̄(β) = H̄(β)−1b̄(β), (A.11)

with

H̄(β) =
−1

NT

N∑
i=1

T∑
t=1

Ûit(β)Ûit(β)′

b̄(β) =
−1

2N

N∑
i=1

T∑
t=1

Ûit(β)V̂2it(β)/(
T∑
t=1

ĝαit(β)2)

Ûit(β) = ĝβit(β)− ĝαit(β)
T∑
t=1

ĝβit(β)ĝαit(β)/
T∑
t=1

ĝαit(β)2

V̂2it = ĝαit(β)2 + ĥααit(β)

The bias corrected coe�cient of β is computed by the formula

β̃ = β̂ − 1

T
B̄(β̂) (A.12)

The bias-corrected estimator β̃ decreases the incidental parameter bias enough if T

grows faster than N1/3. But this reduction is not enough for small T . The β̂ is

heavily biased and a�ects β̃. In order to decrease the bias for small T one could use

β̃ to get a new bias correction B̄:

β̃(2) = β̂ − 1

T
B̄(β̃)

Hahn and Newey (2004) propose to repeat this procedure until convergence. How-

ever, we did not �nd any improvements using the iterative procedure in our simu-

lations but rather an increase of the bias compared to the one-step correction. The

same �nding has been noted by Juodis (2015) for the panel probit model.

A.3. Fast computation of α̃

After the estimated structural parameters β̂ are bias-corrected, the estimated �xed

e�ects α̂ have to be adjusted. Therefore, the bias-corrected estimates β̃ are used

as a linear predictor Xβ̃ in the IRWLS procedure (3.1) such that we get the new

IRWLS procedure with the k − th step

ᾰk = (D′WD)−1D′D(Dᾰk−1 −Xβ̃ + W−1(y − p))

= (D′WD)−1D′W(γ −Xβ̃) (A.13)
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with γ = Dᾰk−1 + W−1(y − p).

Thus, ᾰk is a solution to the regression
√

W(γ −X ˆ̃
β) =

√
WDᾰk.

The implementation of (A.13) with the dummy matrix and weighting matrix is

not e�cient if N is large. A closer look at (A.13) suggests to compute each ᾰk
i

sequentially with the formula

ᾰki =

∑T
t=1wit(γit − µit)∑T

t=1wit
(A.14)

with γit = ᾰk−1
i + yit−pit

wit
and µit = xitβ̃.

The IRWLS procedure based on (A.14) is repeated until convergence. Lets denote

the converged ᾰk with α̃.

A.4. Technical note on pseudo-demeaning

The update formula of the �xed e�ects (3.3)

(αki − αk−1
i ) =

T∑
t=1

w̃itỹit

T∑
t=1

w̃2
it

−

T∑
t=1

w̃itx̃it

T∑
t=1

w̃2
it

(βk − βk−1)

can be derived by rewriting (3.2) in matrix notation

ỹ = W̃(αk −αk−1) + X̃(βk − βk−1) (A.15)

with W̃ =
√

WINT×N .

Using this trick, we can directly apply the well-known Frisch-Waugh-Lovell Theorem,

Frisch and Waugh (1933), Lovell (1963):

1. βk − βk−1 = (X̃′QX̃)−1X̃′Qỹ with Q = I − W̃(W̃′W̃)−1W̃′

2. αk − αk−1 = (W̃′W̃)−1W̃′(ỹ − X̃β)

Since Q is idempotent and symmetric, (1.) can be rewritten in

βk − βk−1 = (X̃′Q′QX̃)−1X̃′Q′Qỹ

that is a regression of the weighted demeaned dependent variable ȳ := Qỹ on the

weighted demeaned regressors X̄ := QX̃.

A more detailed derivation is given in the following. It is based on a similar approach

as for the linear �xed e�ects model described in (Batalgi 2013) where the estimation
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equation is directly manipulated with projections. In order to eliminate the �xed

e�ects out of (A.15), we de�ne the projection P, such that P = P2, P = P′ and

Q = I − P; i.e. P and Q are idempotent and symmetric. It follows, rank(Q) =

trace(Q) = N(T − 1), rank(P) = trace(P) = N , PQ = 0.

The projection P is an endomorphism

Pỹ = PW̃(αk −αk−1) + Px̃(βk − βk−1)

= W̃(αk −αk−1) + Px̃(βk − βk−1)

with P = W̃(W̃′W̃)−1W̃′.

The matrix Q wipes out the weighted individual e�ects:

Qỹ = QW̃(αk −αk−1) + Qx̃(βk − βk−1)

= (I−P)W̃(αk −αk−1) + Qx̃(βk − βk−1)

= (IW̃(αk −αk−1)−PW̃(αk −αk−1)) + Qx̃(βk − βk−1)

= (W̃(αk −αk−1)− W̃(αk −αk−1)) + Qx̃(βk − βk−1)

= Qx̃(βk − βk−1)

since PW̃ = W̃ and P + Q = I.

Finally, we can solve for (αk − αk−1) by using the projection P̃, such that P̃W̃ =

IN×N .

P̃ỹ = P̃W̃(αk −αk−1) + P̃x̃(βk − βk−1)

= (W̃′W̃)−1W̃′W̃(αk −αk−1) + P̃x̃(βk − βk−1)

= (αk −αk−1) + P̃x̃(βk − βk−1)

with P̃ = (W̃′W̃)−1W̃′, i.e. P = W̃P̃ and Q = I− W̃P̃.

The projection matrix P̃ is a (N × NT ) block-diagonal matrix P̃ = (IN ⊗ ¯̃Wi)
′

with the N individual speci�c blocks ¯̃Wi, where
¯̃Wi := W̃i/

∑T
t=1 W̃2

it is a vector of

dimension T . Further, rank(P̃) = N .
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B. Tables

Table B.1: Mean estimates of β and δ

β δ

UCL BCL CL UCL BCL CL

T = 4 1.4743 0.9149 1.0039 1.4562 0.9477 1.0006
T = 8 1.1948 1.0281 1.0003 1.1841 1.0227 1.0014
T = 10 1.1506 1.0216 1.0014 1.1384 1.0130 0.9994
T = 12 1.1212 1.0148 1.0004 1.1165 1.0127 1.0039
T = 16 1.0866 1.0073 0.9995 1.0812 1.0044 1.0004
T = 20 1.0692 1.0056 1.0010 1.0604 0.9996 0.9973
T = 50 1.0254 1.0003 0.9997 1.0249 1.0012 1.0010
T = 100 1.0125 1.0000 0.9999 1.0109 0.9992 0.9992
T = 200 1.0058 0.9996 0.9996 1.0057 0.9999 0.9999

Note: 1,000 replications; N∗ = 1, 000; UCL denotes the unconditional logit estimator; BCL denotes

the bias-corrected estimator of Hahn and Newey (2004) based on Bartlett equalities; CL denotes

the conditional logit estimator.
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Figure 5: Density
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Note: 1,000 replications; N∗ = 1, 000; blue refers to the unconditional logit estimator; green refers

to the bias-corrected estimator of Hahn and Newey (2004) based on Bartlett equalities; red refers

the conditional logit estimator.
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Table B.2: Kolmogorov-Smirnov test

UCL vs. BCL UCL vs. CL BCL vs. CL

β T = 4 0.0000 0.0000 0.0000
T = 8 0.0000 0.0000 0.0000
T = 10 0.0000 0.0000 0.0000
T = 12 0.0000 0.0000 0.0000
T = 16 0.0000 0.0000 0.0000
T = 20 0.0000 0.0000 0.0024
T = 50 0.0000 0.0000 0.8280
T = 100 0.0000 0.0000 1.0000
T = 200 0.0000 0.0000 1.0000

δ T = 4 0.0000 0.0000 0.0000
T = 8 0.0000 0.0000 0.0000
T = 10 0.0000 0.0000 0.0000
T = 12 0.0000 0.0000 0.0097
T = 16 0.0000 0.0000 0.2877
T = 20 0.0000 0.0000 0.5361
T = 50 0.0000 0.0000 1.0000
T = 100 0.0000 0.0000 1.0000
T = 200 0.0000 0.0000 1.0000

Note: 1,000 replications; N∗ = 1, 000; reported p-values of two-sided Kolmogorov-Smirnov test;

UCL denotes the unconditional logit estimator; BCL denotes the bias-corrected estimator of Hahn

and Newey (2004) based on Bartlett equalities; CL denotes the conditional logit estimator.
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Table B.3: SE and SE/SD

SE SE/SD

UCL BCL CL UCL BCL CL

β T = 4 0.0927 0.0742 0.0745 0.8121 1.1760 1.0194
T = 8 0.0504 0.0470 0.0454 0.9062 1.0006 1.0057
T = 10 0.0429 0.0406 0.0395 0.9348 1.0084 1.0169
T = 12 0.0379 0.0363 0.0355 0.9295 0.9938 0.9967
T = 16 0.0316 0.0305 0.0301 0.9581 1.0075 1.0075
T = 20 0.0276 0.0269 0.0266 0.9532 0.9927 0.9907
T = 50 0.0165 0.0164 0.0163 1.0088 1.0261 1.0236
T = 100 0.0115 0.0114 0.0114 0.9786 0.9868 0.9857
T = 200 0.0080 0.0080 0.0080 1.0068 1.0109 1.0106

δ T = 4 0.1450 0.1301 0.1195 0.8476 1.2114 1.0350
T = 8 0.0814 0.0789 0.0747 0.8859 0.9935 0.9670
T = 10 0.0699 0.0682 0.0654 0.9487 1.0401 1.0157
T = 12 0.0622 0.0610 0.0589 0.9699 1.0488 1.0256
T = 16 0.0522 0.0515 0.0502 0.9848 1.0441 1.0252
T = 20 0.0459 0.0453 0.0444 0.9446 0.9915 0.9753
T = 50 0.0278 0.0277 0.0275 0.9857 1.0046 0.9979
T = 100 0.0194 0.0193 0.0193 0.9895 0.9989 0.9957
T = 200 0.0136 0.0136 0.0136 1.0058 1.0103 1.0089

Note: 1,000 replications; N∗ = 1, 000; SE denotes the average standard error of the estimator;

SE/SD denotes the ratio of the average standard error and the standard deviation of the estimator;

UCL denotes the unconditional logit estimator; BCL denotes the bias-corrected estimator of Hahn

and Newey (2004) based on Bartlett equalities; CL denotes the conditional logit estimator.
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Table B.4: Rejection frequencies

SE SD

UCL BCL CL UCL BCL CL

β T = 4 0.999 0.192 0.040 0.992 0.287 0.051
T = 8 0.967 0.088 0.051 0.947 0.095 0.053
T = 10 0.945 0.080 0.047 0.911 0.084 0.048
T = 12 0.878 0.074 0.047 0.842 0.074 0.051
T = 16 0.774 0.059 0.055 0.752 0.062 0.057
T = 20 0.709 0.062 0.059 0.670 0.062 0.058
T = 50 0.323 0.040 0.042 0.327 0.047 0.047
T = 100 0.201 0.051 0.052 0.193 0.046 0.047
T = 200 0.107 0.045 0.045 0.110 0.049 0.050

δ T = 4 0.842 0.032 0.038 0.748 0.079 0.047
T = 8 0.612 0.069 0.063 0.518 0.065 0.058
T = 10 0.511 0.046 0.051 0.459 0.051 0.053
T = 12 0.476 0.038 0.044 0.453 0.052 0.047
T = 16 0.341 0.040 0.040 0.334 0.043 0.044
T = 20 0.272 0.053 0.058 0.240 0.047 0.049
T = 50 0.147 0.041 0.044 0.146 0.043 0.042
T = 100 0.090 0.056 0.057 0.088 0.055 0.055
T = 200 0.067 0.048 0.048 0.070 0.055 0.055

Note: 1,000 replications; N∗ = 1, 000; Rejection frequencies of two-sided t-test H0 : µ = 1 with the

nominal value p = 0.05 based on the standard errors SE and based on the standard deviation SD ;

UCL denotes the unconditional logit estimator; BCL denotes the bias-corrected estimator of Hahn

and Newey (2004) based on Bartlett equalities; CL denotes the conditional logit estimator.
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Table B.5: Average Partial E�ects

β δ

UCL BCL CL1 CL2 UCL BCL CL1 CL2

T = 4 1.3093 0.9872 1.1408 1.0534 1.3184 1.0068 1.1662 1.0388
T = 8 1.0919 1.0020 1.1727 0.9847 1.0873 0.9896 1.2081 0.9770
T = 10 1.0607 0.9914 1.1839 0.9788 1.0525 0.9766 1.2180 0.9692
T = 12 1.0412 0.9842 1.1893 0.9751 1.0395 0.9767 1.2329 0.9724
T = 16 1.0222 0.9799 1.1977 0.9749 1.0186 0.9724 1.2406 0.9707
T = 20 1.0147 0.9811 1.2043 0.9782 1.0072 0.9711 1.2432 0.9703
T = 50 1.0010 0.9886 1.2059 0.9883 1.0012 0.9880 1.2566 0.9881
T = 100 1.0002 0.9947 1.2012 0.9947 0.9989 0.9930 1.2507 0.9930
T = 200 0.9997 0.9976 1.1950 0.9975 0.9997 0.9973 1.2468 0.9973

Note: 1,000 replications; N∗ = 1, 000; UCL denotes the unconditional logit estimator; BCL denotes

the bias-corrected estimator of Hahn and Newey (2004) based on Bartlett equalities; CL1 denotes

the conditional logit estimator with α̂i = 0 ∀i = 1, ..., N ; CL2 denotes the conditional logit

estimator with α̂i ∀i = 1, ..., N computed with the f.o.c. of UCL.
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