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1Center for Methods
2Institute of Economics

Leuphana Universität Lüneburg
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Abstract

This paper proposes a new panel cointegration rank test which allows for a lin-
ear time trend with breaks and cross-sectional dependence. The new correlation-
augmented inverse normal (CAIN) test is based on a novel modification of the inverse
normal method and combines the p-values of individual likelihood-ratio trace statis-
tics. A Monte Carlo study demonstrates its robustness to cross-sectional dependence
and its superior size and power properties compared to other meta-analytic tests used
in practice. The test is applied to investigate the exchange rate pass-through into
import prices across different industries in seven Eurozone countries.
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1 Introduction

Panel unit root and cointegration tests have been developed since the early 2000s
with the aim to increase the power of single-unit tests. The so-called “first generation”
tests rely on the assumption of independence between the panel units. In macroeconomic
panel data, however, cross-sectional dependence arises naturally due to common shocks
or spillover effects. If not accounted for, it may bias the outcome of the tests by inflating
the type-I error rate above the nominal significance level. Another issue often observed in
longer time series is that of structural breaks; it may also invalidate the test results if left
unattended.

Focusing on cointegration rank testing, we address both issues simultaneously by ex-
tending the cointegration rank test of Trenkler et al. (2007) (henceforth the TSL test)
to panel data with cross-sectional dependence. Under the assumptions of the test struc-
tural breaks are allowed in the deterministic parts of the data generating process (DGP),
i.e. level and trend slope, but not in the cointegrating vector. This is in line with its
interpretation as a long-run equilibrium relationship between the variables in the system.
Furthermore, this framework allows for structural breaks both under the null and the
alternative hypothesis, as the breaks do not affect the stochastic properties of the DGP.
Our preference for the TSL test over another likelihood-based alternative, the cointegra-
tion rank test of Johansen et al. (2000) (henceforth JMN test), is motivated by its superior
finite-sample properties demonstrated by Trenkler et al. (2007) and our own simulations.

Panel cointegration testing in the presence of structural breaks and cross-sectional de-
pendence has only recently gained attention from researchers, leading to the development
of the so called “third-generation tests”. Westerlund and Edgerton (2008), for example,
propose a simple panel test for no cointegration allowing for a level shift and a break in
the cointegrating relation, but not for a break in the deterministic trend. They assume
that the cross-sectional dependence is driven by stationary unobserved common factors,
which might be seen as restrictive in practice. Banerjee and Carrion-i Silvestre (2015)
relax these restrictions in their no-cointegration test and propose test with level shifts,
level shifts and break in the cointegrating relation, or level and trend shifts. However, in
the latter case they allow only for homogeneous number of breaks and break dates across
the panel units. They point out that “the difficulty [in allowing for heterogeneous break
dates] essentially lies in the dependence of the critical values of the tests on the location
of the break dates when trend breaks are present”. While the same holds true for the TSL
test, our approach to combining information from individual cross-sections into a panel
test accommodates heterogeneous number of breaks and break dates across units.

We extend the TSL test to the panel setting resorting to a new p-value combination
method which allows the p-values to be correlated. p-value combination approaches offer
much more flexibility than traditional pooling of individual test statistics, as they allow
the specification of the deterministic terms, the lag order, the number and the location of
the breaks, and even the time span of the data to vary over cross-sections.

Recent research on panel unit root and cointegration testing has benefited significantly
from the “reinvention” of already existing methods for combining possibly dependent p-
values. One example is a modification of the Bonferroni procedure proposed by Simes
(1986) and employed by Hanck (2013) in his panel unit root test. In a Monte Carlo
study he demonstrates its robustness to cross-sectional dependence induced by common
factors. This avenue is further explored in the direction of cointegration rank testing in
dependent panels by Arsova and Örsal (2016a), who also show empirically that a sufficient
condition for the validity of Simes’ procedure is not violated in a common-factor-driven
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panel framework.1

In the present work we adopt a new, augmented version of yet another p-value com-
bination method initially proposed by Stouffer et al. (1949) — the inverse normal test.
The novelty of our approach lies in that we explicitly model the degree of cross-sectional
correlation between the probits of the individual statistics and use it as a variance-inflation
factor in the panel test statistic. In this regard the proposed test is similar to the modified
inverse normal method of Hartung (1999), which also uses an estimate of the cross-sectional
correlation of the probits, however in combination with a somewhat arbitrary correction
factor κ.2 Our estimator for the unobserved correlation of the probits is modelled as a
function of a quantity easily measurable in practice, namely the average absolute cross-
sectional correlation of the residuals of the individual VAR models. In a Monte Carlo
study we demonstrate that our correlation-augmented inverse normal (CAIN) method for
combining p-values of individual TSL tests has good size and power properties in finite
samples. Its performance is preferable to that of Hartung’s method over the whole range
of possible values for the cross-sectional correlation. The test can be used to determine the
cointegrating rank of the observed time series even when the cross-sectional dependence
is driven by unobserved common factors, without decomposing the data into idiosyncratic
and common components and testing these separately.

The remainder of the paper is organized as follows. The next section briefly reviews
the test of Trenkler et al. (2007), while its extension to panel data by a modification of
the normal inverse method is given in Section 3. Section 4 presents the response surface
approach to modelling the cross-sectional correlation between the probits of the individ-
ual test statistics. Section 5 discusses the results of a Monte Carlo study comparing the
CAIN-TSL test with other meta-analytic tests for DGPs with various degrees of hetero-
geneous cross-sectional dependence. Section 6 illustrates the use of the CAIN-TSL test
by investigating the exchange rate pass-through (ERPT) in the Euro-area and the last
section concludes. Supplementary material is provided in the Appendix.

2 The TSL test for the cointegrating rank

Our aim is to develop a panel test for the cointegrating rank which allows for structural
breaks in the deterministic parts of the DGP. A natural first step is to take an existing
single-unit test and to extend it to the panel setting. Two well-known alternatives are the
likelihood-based test of Johansen et al. (2000) and its GLS detrended counterpart proposed
by Trenkler et al. (2007). Both tests allow for up to two breaks in the level and/or trend
slope, whereas the break dates are assumed to be known.3 The problem of estimating the
cointegrating rank of a VAR process with level shifts whose dates are unknown has been
addressed by Lütkepohl et al. (2004) and Saikkonen et al. (2006); unfortunately no such
test has been developed yet for the case of breaks in the trend slope. Therefore, another
strategy for the break dates determination has to be adopted if trend breaks need to be
considered.

1Sarkar (1998) shows that for the Simes’ procedure to hold for p-values of dependent statistics, their
multivariate distribution has to be multivariate totally positive (MTP2). We refer to the latter article for
a definition of this property.

2Hartung’s approach has been used to account for cross-sectional dependence in panel unit root tests
by Demetrescu et al. (2006) and Costantini and Lupi (2013).

3Theoretically more than two breaks could be specified, however response surface regressions approxi-
mating the limiting distributions of the test statistics are available for a maximum of two breaks for both
tests. Including more than two breaks may also be seen as problematic in time series of a limited time
span.
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The first question that arises in practice is whether breaks in the trend have occurred, or
allowing only for level shifts might be enough.4 It can be answered by the newly proposed
tests of Kejriwal and Perron (2010) and Sobreira and Nunes (2015), which are applicable
to both I(0) and I(1) processes. The authors propose also sequential testing procedures
to find out the number of trend breaks. Next, the break dates and the presence of unit
roots have to be determined. This can be done simultaneously by using, for example, the
univariate unit root tests of Lee and Strazicich (2003) or Lee et al. (2012), or by their
panel extensions by Im et al. (2010) and Payne et al. (2015). All these tests allow for
up to two breaks in the trend of the series and determine the break locations as a by-
product. Alternatively, the test of Carrion-i Silvestre et al. (2009) can be used. Then the
cointegration analysis may proceed by employing a suitable cointegration rank test. Our
preference lies with the TSL test for the reasons outlined next.

Trenkler et al. (2007) find that the JMN test with a single trend break displays excessive
size distortions in systems of larger dimensions while their test is correctly sized. Our own
Monte Carlo simulations confirm these findings also when two breaks in the trend slope
are present; the results are briefly summarized in Table 1. The JMN test is severely
oversized for small T , with the size distortions persisting even for T = 500. The TSL test,
in contrast, has approximately correct size at the 5% level for all values of T . Trenkler
et al. (2007) further write that in the case of larger systems the power curves are very
flat, making it “difficult to draw proper conclusions regarding the cointegrating rank”.
This fact, along with its preferable finite-sample properties, is our main motivation for
extending the TSL test to the panel setting. Next we briefly describe its assumptions and
the computation of the test statistic.

Table 1: Empirical size at 5% nominal level of the JMN
and TSL tests with two structural breaks, H0 : r = 0

Test T = 50 T = 100 T = 200 T = 500

JMN0.25,0.5 0.545 0.209 0.116 0.070
JMN0.25,0.75 0.531 0.206 0.111 0.075
TSL0.25,0.5 0.047 0.046 0.042 0.044
TSL0.25,0.75 0.052 0.051 0.043 0.045

Subscripts denote break locations at relative sample lengths.
Simulations based on a 3-variate VAR(2) process as in Wagner and
Hlouskova (2010) with 5000 replications.

Let the observed data Yit = (Y1,it, . . . , Ym,it)
′ for cross-sectional unit i (i = 1, . . . , N)

be generated by a stochastic VAR(si) process Xit added to a deterministic process. The
latter consists of a constant, linear time trend and structural breaks in both the level and
the trend slope at known individual-specific time(s) τi:

Yit = µ0i + µ1it+ δ0idit + δ1ibit +Xit, t = 1, . . . , T. (1)

Here µji and δji (j = 0, 1) are unknown (m × 1) parameter vectors, while dit and bit are
dummy variables defined by dit = bit = 0 for t < τi, and dit = 1 and bit = t − τi + 1 for
t ≥ τi. The break dates are assumed to occur at individual-specific fixed fractions of the
sample size: τi = [Tλi] with 0 < λi < λi < λi, where λi and λi are specified real numbers

4The power loss from using a trend-breaks test when only level shifts are present can be substantial,
see e.g. Trenkler et al. (2007). This issue, however, would be less of a concern in the panel setting, where
the power increases as the number of cross-sections grows (see Table 3).
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and [·] denotes the integer part of the argument. In other words, the breaks are assumed
not to occur in the very beginning or in the very end of the sample, while λi and λi are
allowed to be arbitrarily close to 0 and 1, respectively. The stochastic processes Xit are
assumed to be at most I(1) and cointegrated with cointegrating rank at most r:

Xit = A1iXi,t−1 + . . . AsiiXi,t−si + εit, t = 1, . . . , Ti. (2)

It is assumed that the (m×1) vector εit ∼ iid(0,Ωi), where Ωi is a positive definite matrix
for each i. Further it is assumed that εit have finite moments of order (4 + ν) for some
ν > 0, ∀i.

Denoting the pairwise cross-sectional correlations of the elements of εit by ρil,jk := corr(εit,l, εjt,k)
for i, j = 1, . . . , N and l, k = 1, . . . ,m, we make the following assumptions.

Assumption 1 The average absolute pairwise cross-sectional correlation between the
innovations to the same variable converges to some fixed value ρε ≥ 0 as N →∞:

lim
N→∞

1

mN(N − 1)

N∑
i 6=j

m∑
l=1

|ρil,jl| = ρε . (3)

Assumption 2 The average absolute pairwise cross-sectional correlation between the
innovations to different variables converges to zero:

lim
N→∞

1

mN(N − 1)

N∑
i 6=j

m∑
l 6=k
|ρil,jk| = 0. (4)

We note that Assumption 1 is not strictly necessary, but rather eases the interpretation
of the estimated average absolute correlation coefficient ρ̂ε. Albeit seemingly restrictive,
Assumption 2 is rather a technical one, necessary for the computation of a suitable esti-
mator of ρε. It is motivated by the fact that strong correlations are less likely to occur
between the innovations to different variables across units compared to those between the
same variables. Furthermore, our Monte Carlo simulations demonstrate that the proposed
panel test is robust to a certain degree of deviation from this assumption, hence it should
not hinder the applicability of the test in practice. Both assumptions hold when, for
example, a spatial type of dependence is assumed, or when the dependence is driven by
variable-specific common factors.

The computation of the individual TSL test statistics proceeds by estimating the de-
terministic terms by reduced rank regression taking into account the structural breaks,
and then computing a likelihood-ratio (LR) trace statistic from the trend-adjusted obser-
vations. For details on the procedure we refer to Trenkler et al. (2007).

3 The correlation-augmented inverse normal test

Let pi denote the p-values of the individual TSL statistics for units i = 1, . . . , N . Let
ti denote the corresponding probits, i.e. ti = Φ−1(pi), where Φ(·) denotes the cumulative
distribution function of the standard normal distribution. Assuming independence of the
individual test statistics (and hence of their p-values and the corresponding probits ti),
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the inverse normal test has a standard N(0, 1) limiting distribution:

t =

∑N
i=1 Φ−1(pi)√

N
=

∑N
i=1 ti√
N

⇒ N(0, 1). (5)

The inverse normal method was first introduced to the panel unit root testing literature
by Choi (2001), who demonstrates by simulations that under cross-sectional independence
it outperforms other p-value combination alternatives, in particular Fisher’s inverse Chi-
square method employed for panel unit root testing by Maddala and Wu (1999). As a
further advantage of the inverse normal test Choi (2001) points out its applicability to
panels with both finite and infinite cross-sectional dimension N .

Assuming multivariate normal distribution of the probits, Hartung (1999) proposes a
modification of the weighted inverse normal method to accommodate dependence between
the original test statistics. The real-valued weights of the individual probits are denoted
by λi and are such that

∑N
i=1 λi 6= 0. In practice it is often assumed that λi = 1,∀i. The

dependence is captured by a single correlation coefficient ρt, which can be interpreted as
a “mean correlation approximating the case of possibly different correlations between the
transformed statistics” (Hartung, 1999). The variance of the denominator in (5) is then
augmented with an estimator of the correlation between the individual probits ρ̂*

t :

t
(
ρ̂*

t , κ
)

=

∑N
i=1 λiti√∑N

i=1 λ
2
i +

[(∑N
i=1 λi

)2
−
∑N

i=1 λ
2
i

] [
ρ̂*

t +κ ·
√

2

(N + 1)
(1− ρ̂*

t )

] . (6)

The estimator ρ̂*
t is computed as

ρ̂*
t = max{− 1

N − 1
, ρ̂t}, where (7)

ρ̂t = 1− 1

N − 1

N∑
i=1

(
ti −

1

N

N∑
i=1

ti

)2

. (8)

The correction term κ
√

2
(N+1)(1 − ρ̂*

t ), which simply scales the standard deviation of

ρ̂t by a factor κ, aims to avoid a systematic underestimation of the denominator in eq.
(6). For the κ parameter Hartung suggests two alternative values: κ1 = 0.2 and κ2 =

0.1 ·
(

1 + 1
N−1 − ρ̂

*
t

)
, where κ2 is suitable mainly for smaller ρ̂*

t . However, he provides no

guidance as to where the threshold between “small” and “large” ρ̂*
t should be.

Demetrescu et al. (2006) are the first to employ Hartung’s modified inverse normal
method to develop a panel unit root test allowing for cross-sectional dependence by gen-
eralizing Hartung’s approach in two directions. First, they prove that the correlation
between the individual test statistics needs not be constant for the limiting N(0, 1) distri-
bution to hold. Second, they show that a necessary and sufficient condition for the limiting
normality of the panel test statistic is the multivariate distribution of the individual test
statistics to have a Gaussian copula. This theoretical result is, however, difficult to verify
in practice; hence the authors proceed to demonstrate by simulation the applicability of
Hartung’s method to dependent individual ADF unit root tests. They employ the version
of the test with κ2 = 0.2 and unit weights λi = 1,∀i, and find that for medium and strong
cross-sectional correlation it generally observes the nominal significance level at 5% and
10%. For weak correlation the test is rather undersized and therefore not recommended
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for use with more than 5 cross-sectional units.
Following the approach of Demetrescu et al. (2006), Costantini and Lupi (2013) use

Hartung’s modification with the value κ1 = 0.2 in their simple panel-CADF test for unit
roots. In order to mitigate the size distortions for weak cross-sectional dependence, they
propose a type of “switching algorithm” between the regular and the modified inverse nor-
mal test ((5) and (6), respectively) based on the outcome of the CD test for cross-sectional
correlation of Pesaran (2015). When the CD test rejects the null of weak correlation, (6)
is used, otherwise Choi’s test (5) is utilized. We argue that this strategy is sub-optimal be-
cause of two reasons. Firstly, the implicit null hypothesis and the finite-sample properties
of the CD test depend on the relative expansion rates of T and N . It tends to over-reject
if T is large relative to N and the exponent of cross-sectional dependence α ∈ (1/4, 1/2],
a situation which in our view might well occur in macroeconometric panels.5 Hence Har-
tung’s modification might get preferred over Choi’s test too often, leading to a loss of
power. Secondly, the CD statistic accounts for the average correlation coefficient so that
in its calculation large correlations of the opposite sign will cancel out. We argue that
even negative correlations between the innovations to the DGPs lead to positive corre-
lation between the individual test statistics. As our Monte Carlo study demonstrates, a
better way to quantify the degree of cross-sectional dependence is to look at the mean
absolute residual correlation.

We therefore propose a new, improved version of the inverse normal test for combina-
tion of correlated individual TSL test statistics for cointegration with structural breaks.
It does not require neither switching between Choi’s test and its Hartung’s modification,
nor arbitrary choice between different variance-inflating correction factors. This new test,
which we name CAIN-TSL test, is based on a novel estimate ρ̃t of the correlation between
the probits. The panel test statistic for the composite null hypothesis

H0 : ri = r, ∀i = 1, . . . , N (9)

against the alternative

H1 : ri > r for at least one i (10)

is given by

t(ρ̃) =

∑N
i=1 ti√

N + (N2 −N) · ρ̃t

∼
H0

N(0, 1). (11)

The CAIN-TSL test can be applied for testing H0 : ri = r, ∀i at each step r = 0, . . . ,m−1
of the sequential rank testing procedure. We estimate ρ̃t as a function of the dimension
of the system m, the hypothesized cointegrating rank r and the estimated mean absolute
correlation ρε between the innovations of the individual DGPs. This function results from
a response surface regression of the values of ρ̃t, estimated by simulation, on m, r and ρε;
the procedure is described in detail in the next section.

5We refer to Pesaran (2015) for a definition of the exponent of cross-sectional dependence.

6



4 Response surface regressions for the correlation of the
individual probits

Common shocks to the innovations of the DGPs for the individual units, or generally
cross-sectional correlation of the innovations leads to correlation between the individual
TSL test statistics. This correlation transfers also to the p-values and their probits, and
therefore has to be taken into account in the construction of the inverse normal test
statistic in order to achieve a correctly sized test.

We argue that ρt can be inferred from its origin ρε, which, in turn, can be consistently
estimated in practice as N and T grow. It is, however, difficult to derive analytically
how correlation between the innovations translates into correlation between the LR statis-
tics, as the latter are complex non-linear functions of the observed data. We therefore
resort to simulation methods to estimate this link. In our large-scale simulation study we
estimate the average correlation of the probits ρ̃t for different values of the absolute cross-
sectional correlation between the innovations ρε, controlling for the system dimension m,
the hypothesized cointegrating rank r, and the time and cross-sectional dimensions T and
N , respectively. We then estimate the relationship ρt = ρt(ρε,m, r) by response surface
regression.

Estimation of the average absolute cross-sectional correlation between the pro-
cess innovations The cornerstone of our proposed solution ρt = ρt(ρε,m, r) is an es-
timator ρ̂ε of the cross-sectional correlation of the process innovations. In this regard we
follow Pesaran (2015) and estimate ρ̂ε from the residuals of the individual VAR(si) models
under the null hypothesis H0 : r = 0. Our estimation methodology, however, differs from
his one in two aspects. First, as we are dealing with a panel of multivariate systems,
the average cross-sectional correlation coefficient needs to be redefined for this richer data
structure. We assume that strong cross-correlations are more likely to appear between
the shocks to the same variables than between those to different variables. Hence averag-
ing has to be performed only across the pairwise correlations between the same-variable
residuals in order to avoid underestimation of ρε and subsequently of ρt. Such underes-
timation would lead to an oversized panel test. That is, for ρ̂il,jl denoting the estimated
correlation between the residuals for variable l in units i and j, ρ̂ε is to be estimated from
the average of |ρ̂il,jl| over l = 1, . . . ,m and i 6= j where i, j = 1, . . . , N . Second, we take
the absolute value of the estimated correlations ρ̂il,jl. In simple averaging positive and
negative correlations will cancel out, thus leading to underestimation of the true degree
of cross-sectional correlation.

Therefore, the estimated absolute residual correlations |ρ̂il,jl| are averaged over l and
i 6= j, resulting in ρ̂ε:

ρ̂ε =
2

mN(N − 1)

N∑
i=2

N∑
j=i+1

m∑
l=1

|ρ̂il,jl|. (12)

Estimating ρ̂ε only under H0 : ri = 0,∀i in the beginning of the sequential testing
procedure for r = 0, . . . ,m − 1 requires further justification. Ideally, the correlation
between the probits would be inferred from the correlation between the residuals under
each null hypothesis and then used in the correlation-augmented inverse normal panel test.
In order to keep the procedure feasible for practical work, however, we decide to do this
inference only once by determining ρ̂ε only under the null of no cointegration, similarly
to the lag orders si of the VAR processes. We note that the estimation error in ρ̂ε is
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negligible under the true H0 : ri = 0, ∀i,m, while ρ̂ε gets only slightly underestimated
for higher true cointegrating ranks (see Table 9 in the Appendix). The resulting slight
underestimation of ρ̃t, however, would be negligible in practice for moderate ρε; for higher
ρε it could even be beneficial, given that the TSL test is severely undersized when testing
for higher ranks under the null.

Simulations design We estimate the relationship between ρε and ρt in a large-scale
simulation study. The data are generated according to (1) with the stochastic processes
Xit following an m-variate VAR(1) Toda processes (see e.g. Toda (1995)) for m = 2, 3, 4, 5:

Xit =

(
Id 0(d×r)

0(r×d) Ψr

)
Xi,t−1 + εit, (13)

where Id denotes the identity matrix of dimension d = m−r, 0(d×r) is a zero matrix of the
corresponding dimension and r is the cointegrating rank of the process. Ψr is a diagonal
matrix of dimension (r × r) with diagonal elements ψi ∼ i.i.d. U(0, 1), i = 1, . . . , r which
govern the dynamics of the stationary elements of the process for r > 0; the uniform (0, 1)
distribution of ψi provides for generality. As the individual LR trace statistics of the TSL
test are invariant to the values of the deterministic terms µ0i, µ1i, δ0i and δ1i for given
VAR order si and break date(s) τi (Trenkler et al., 2007, p. 340), we have set µji = δji = 0,
j = 0, 1.

For the estimation of the individual LR trace statistics for each i = 1, . . . , N the
number of breaks is randomly chosen between 1 and 2 with 50% chance each, and the
break locations are chosen at relative sample length(s) λi ∼ i.i.d. U(0.15, 0.85). In the
case of two breaks the minimal distance between them is set to 0.2T . These values are in
line with what is usually assumed in the literature on cointegration with structural breaks
– the breaks are not allowed to be too close to the beginning or to the end of the sample,
neither are they allowed to be too close to each other.

The innovations εit are drawn from a multivariate normal distribution with variance-
covariance matrix Σ, where Σ = R ⊗ Ω is generated as in Wagner and Hlouskova (2010)
with

R =


1 ρε · · · ρε

ρε 1 · · · . . .
...

. . .
. . . ρε

ρε · · · ρε 1


(N×N)

, (14)

and Ω(m×m) being a random correlation matrix generated independently for each replica-
tion as described in Costantini and Lupi (2013, p. 283).

For each value of m, testing H0 : ri = r0 for r0 = 0, . . . ,m − 1 is considered in a
separate experiment.

We let ρε vary over a grid of 24 equally spaced values in the range [0.04, 0.96], in order
to be able to adequately fit an interpolating curve to the estimated average values ρ̃*

t of
ρt over ρ̂ε.

Each simulation experiment is repeated 100000 times for three combinations of the
panel dimensions T and N : (T,N) ∈ {(500, 5), (500, 10), (1000, 5)}. For each combination
(T,N) an average ρ̃*

t is computed by means of Fisher’s Z-transformation from the (N ×
N) correlation matrix of the probits based on the (100000 × N) matrix of independent
observations on (t1, . . . , tN ). For given ρε and T , the estimated ρ̃*

t is practically invariant
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to the number of cross-sections, which is not surprising, as it is logical to expect that it
would depend on the degree of dependence between the processes of any two cross-sections,
but not on the number of units. Preliminary simulations corroborate this conjecture – see
the right panel of Figure 1 in the Appendix. For robustness the estimated ρ̃*

t ’s for all three
combinations of (T,N) are subsequently modelled in the response surface regressions for
ρ̃*

t = ˆ̃ρt(ρε,m, r).
In practice, by the Law of Large Numbers increasing N would lead to more precise

estimation of ρ̂ε and subsequently also of ρ̃*
t . Because of the large number of replications in

the current simulation exercise, considering a wider range of values for N is not necessary
and we concentrate only on values which are typical for macroeconometric studies. With
regard to the choice of values for the parameter T , we motivate it by the fact that the
estimated ρ̃*

t converges to ρt from below as T → ∞ (see the left panel of Figure 1), with
the differences between T = 500 and T = 1000 being virtually negligible for all practical
purposes. Indeed, for small T the estimated ρ̃*

t might be lower than its asymptotic large-
T value and could thus potentially get overestimated. We argue, however, that the use
of the large-T ρ̃*

t even for small T ’s in the panel setting would have beneficial rather
than detrimental effects. It is well known that individual likelihood-based cointegration
tests tend to be oversized for H0 : r = 0 when T is small, and these size distortions can
get magnified in the panel setting as the cross-sectional dimension increases (see, e.g.,
Demetrescu and Hanck (2012) and Arsova and Örsal (2016b)). Using the asymptotic ρ̃*

t

might help mitigate this issue, as slight overestimation of the cross-sectional correlation
of the probits might inflate the variance of the panel statistic thus offsetting the inherent
size distortions of the individual tests.

Response surface regressions We now turn our attention to modelling the estimator
ˆ̃ρt of ρ̃*

t . To obtain the response surface, we regress ρ̃*
t on polynomials of the system

dimension m, the cointegrating rank under the null hypothesis r, and the mean absolute
correlation between the innovations ρε. No constant is included in the regression and all
regressors are multiples of ρε, so that all estimates ˆ̃ρt of ρ̃*

t are equal to 0 when ρε = 0.
The goodness of fit measure of the estimated regression is R2 = 0.9993, which renders

the approximation very good for practical purposes. The estimated coefficients are given
in Table 2. They can be used to compute the estimate ˆ̃ρt of the unknown correlation of
the probits given m, r and the estimated ρ̂ε for any system dimension m ≤ 5. Then the
CAIN-TSL test statistic is computed as in (11) with ˆ̃ρt in the place of the unknown ρt.
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Table 2: Response surface coeffi-
cients for correlation between the
probits of the individual TSL LR
trace statistics

Term Estimated coefficient

ρε
2 0.6319575√
m · ρε2 −0.5193669√
m · ρε4 0.2721753

r
m · ρε

2 0.1821374
r
m · ρε

4 −0.0856903
(r · ρε)2 0.0041125
r · ρε2 0.0766267
r · ρε4 −0.1008678√
m− r · ρε2 0.1874919
1

m−r · ρε
2 0.1410229

1
m−r · ρε

4 −0.2029126

(m− r)2 · ρε2 0.0052557
(m− r)4 · ρε4 −0.0000327

5 Monte Carlo study

5.1 Simulation study design

The finite sample properties of the CAIN-TSL are examined by simulations in an
empirically relevant case using a three-variate VAR(2) DGP as in the study of Wagner
and Hlouskova (2010).

The general form the DGP is:

Yit = µ0i + µ1it+ δ0idit + δ1ibit +Xit, (15)

Xit =

 ai11 0 0
0 ai12 0
0 0 ai13

Xi,t−1 +

 ai21 0 0
0 ai22 0
0 0 ai23

Xi,t−2 + uit, (16)

uit = γ′ift + εit, (17)

εit ∼ i.i.d.N(0,Ωi). (18)

The cointegrating properties of the process are determined by the roots qi1j , q
i
2j of

the autoregressive polynomial, which are linked to the coefficients of the autoregressive
matrices by ai1j = 1

qi1j
+ 1

qi2j
and ai2j = − 1

qi1jq
i
2j
, j = 1, 2, 3.

Following Wagner and Hlouskova (2010), for a system with cointegrating rank zero we
set qi1j = 1 and qi2j ∼ U(1.8, 3), j = 1, 2, 3. Power is investigated in a setting when all roots
are sufficiently away from unity (case A) and also in a near-unit root setting (case B). For
cointegrating rank one in case A we let qi11 ∼ U(1.3, 1.7) or, in case B, qi11 ∼ U(1, 1.3),
while qi21 ∼ U(1.5, 2.5), qi1j = 1 and qi2j ∼ U(1.8, 3) for j = 2, 3 in both cases. Finally, for

cointegrating rank two we again let qi11 ∼ U(1.3, 1.7) for case A or qi11 ∼ U(1, 1.3) for case
B. The remaining roots for both cases are qi12, q

i
2j ∼ U(1.5, 2.5) for j = 1, 2, while qi13 = 1

and qi23 ∼ U(1.8, 3). All roots are drawn separately for each unit.
We let a 3-dimensional vector of variable-specific common factors ft ∼ i.i.d.N(0, I3)

drive the cross-sectional dependence through heterogeneous loadings. The factor loadings
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γi are simulated as diagonal (k×m) matrices with (a) i.i.d. U (−0.4, 0.4), (b) i.i.d. U (0, 1)
or (c) i.i.d. U (−1, 3) entries, drawn separately for each unit. The robustness of the CAIN-
TSL test against violations of Assumption 2 is investigated by letting γi be an unrestricted
matrix with i.i.d. U (0, 1) or i.i.d. U (−1, 3) elements. This corresponds to all factors af-
fecting all variables simultaneously.

Throughout we set µji = δji = 0, j = 0, 1, as in Trenkler et al. (2007). We again allow
for a random number of breaks (1 or 2, with 50% chance each) and the break locations
are chosen at relative fraction(s) of the sample size λi ∼ i.i.d. U(0.15, 0.85). In the case
of two breaks the minimal distance between them is set to 0.2T . The processes Xit are
initialised with 0 and the first 50 observations are discarded to mitigate the effect of initial
values. The individual-specific random correlation matrices Ωi of the idiosyncratic errors
εit are simulated, as before, as described in Costantini and Lupi (2013).

We consider all combinations of T ∈ {100, 200} and N ∈ {5, 15, 25}. The lag order
is assumed to be known and is set to its true value. The simulations are carried out in
GAUSS and the number of replications is 5000. Nominal significance level α = 0.05 applies
in all cases.

The performance of the CAIN-TSL test is compared to that of the standard inverse
normal test of Choi without correction for the cross-sectional dependence, both variants
of Hartung’s modified inverse normal test with κ1 and κ2, respectively, and the multiple
testing procedure of Simes (1986). For the latter test the individual p-values of the test
statistics are ordered in ascending order as p(1) ≤ . . . ≤ p(N), and the joint null hypothesis

H0 : ri = r, ∀i, is rejected at significance level α if p(i) ≤ iα
N for any i = 1, . . . , N.

5.2 Simulation results

The size and power results under H0 : ri = 0,∀i when the true rank is zero and one,
respectively, are presented in Table 3.

When the factor loading matrix γi is diagonal with entries U(−0.4, 0.4), the cross-
sectional dependence is very weak. We note that due to the factor loadings being centered
around zero, the mean (over all replications) estimated cross-sectional correlation between
the residuals of the individual VAR models in first differences is zero, while the estimated
mean absolute cross-sectional correlation is ¯̂ρε = 0.089 for T = 100 and ¯̂ρε = 0.068 for
T = 200. The mean (again over all simulations) estimated correlation between the probits
for the CAIN-TSL test is ˆ̃ρt = 0.001. In this case all variants of the inverse normal test,
including CAIN-TSL, become undersized as N grows. This results from the individual
TSL tests begin slightly undersized; the size distortions get magnified in the panel setting
as N increases. Hartung’s test with κ1 has the most severe size distortion, inline with the
findings of Demetrescu et al. (2006) that it is not suitable for more than N = 5 units when
the cross-sectional correlation is low. Simes’ test gets slightly oversized with increasing
N , and the size of CAIN-TSL is comparable with that of Choi’s test and Hartung’s test
with κ2. In terms of power, the CAIN-TSL test performs best together with Choi’s in
both case A and case B, as it correctly captures the low cross-sectional correlation of the
probits.

Diagonal factor loading matrix with U(0, 1) entries generates moderate cross-sectional
correlation between the innovations – the mean estimated absolute cross-sectional corre-
lation of the innovations is ¯̂ρε = 0.186 for T = 100 and ¯̂ρε = 0.180 for T = 200. As
the estimated average correlations between the probits are already around ˆ̃ρt = 0.007 and
ˆ̃ρt = 0.005, respectively, Choi’s test has size close to the nominal one, along with the
CAIN-TSL test. Both Hartung’s tests again become undersized as N grows. Consider-
ing power, Choi’s test performs best because the nominator of the panel test statistic is
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inflated by the unattended cross-sectional dependence. The CAIN-TSL test has slightly
lower power than Choi’s for T = 100 in case B, but in case A and for T = 200 in case B
it performs equally well.

Relatively strong cross-sectional correlation is introduced by a diagonal factor loading
matrix with U(−1, 3) entries. The mean estimated absolute cross-sectional correlation of
the innovations ¯̂ρε is already 0.413 for both T = 100 and T = 200, with estimated average
correlation between the probits varying between 0.020 and 0.046. In this case Choi’s test
and Hartung’s test with κ2 become oversized for large N , while the size of Hartung’s test
with κ1 and of CAIN-TSL fluctuates around the desired 5% level. In terms of power, in
both cases A and B the CAIN-TSL outperforms Hartung’s tests and the test of Simes’,
being second only compared to the oversized standard inverse normal. We note that due
to the high correlation between the cross-sections, the power increase over N for all tests
is less significant compared to the case of low cross-sectional correlation.

Lastly, with unrestricted factor loadings we investigate the performance of the tests
when all variables are assumed to be correlated to the same extent, on average, over the
cross-sections. When γi ∼ U(0, 1), the mean estimated absolute correlation between the
innovations over all replications is 0.355. Choi’s test becomes oversized for high N , while
both Hartung’s κ1 and the CAIN-TSL tests tend to become undersized. The CAIN-TSL
test performs best in terms of power without becoming oversized for both cases A and
B. When γi ∼ U(−1, 3), the mean estimated absolute correlation between the innovations
over all replications is already 0.44. The CAIN-TSL test tends to become oversized as
N grows with the empirical size reaching 10% for T = 200 and N = 25 at the 5% level,
while Hartung’s κ1 test observes the nominal size. As these experimental settings violate
Assumption 2 for the CAIN-TSL test, we conclude that it is robust to such violations
when the estimated mean absolute cross-sectional correlation between the innovations ρ̂ε
is low to moderate, or when the number of cross-sections is small. For higher estimated
ρ̂ε or when N > 10 we’d rather recommend to use Hartung’s modification with κ1 = 0.2.

Size and power under H0 : ri = 1, ∀i for cases A and B are presented in Tables 4 and 5,
respectively. The undersized individual TSL test leads to all five panel tests being severely
undersized. As a result, the power in case A with T = 100 is significantly lower when
compared to the corresponding power in Table 3; for T = 200 all tests perform well despite
being undersized. In the presence of near-unit roots (case B, see Table 5), however, the
power against hypothesized rank one when the true cointegrating rank is two is almost
non-existent for short T . It nevertheless increases significantly over N when T = 200. For
all correlation settings in case A Choi’s test exhibits the highest power, closely followed
by the CAIN-TSL test. The same holds for case B when the cross-sectional correlation
is low to moderate (e.g. the factor loadings γi are diagonal matrices with U(−0.4, 0.4)
or U(0, 1) entries). When the cross-sectional correlation is larger (e.g. diagonal factor
loading matrices with U(−1, 3) entries or unrestricted matrices with U(0, 1) entries), the
CAIN-TSL test has already slightly lower power than Hartung’s tests. This is because it
precisely corrects for the high cross-sectional correlation between the probits, which turns
out to be unnecessary given the severely undersized results of the individual TSL tests. In
these cases Choi’s test is again the most powerful test (without becoming oversized under
the true null H0 : ri = 1, ∀i), while Simes’ test is again the least powerful one.

These results can be summarized as follows. When there is only low mean abso-
lute cross-sectional correlation ρ̂ε, in terms of size the CAIN-TSL performs comparably
to Choi’s and Hartung’s κ2 test, being as powerful as Choi’s and more powerful than
both Hartung’s tests. This conclusion holds regardless of the null hypothesis under con-
sideration. When the cross-sectional correlation is high, the CAIN-TSL test offers best
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size-power trade-off under the null hypothesis of no cointegration. This is particularly im-
portant in view of the sequential rank testing procedure, which begins with H0 : ri = 0,∀i.
Also, even when Assumption 2 is violated, the CAIN-TSL test may be used to test for
no cointegration when the estimated ρ̂ε is low to average, or when the number of cross-
sections is not too large. Otherwise Hartung’s test with κ1 is recommended, as it controls
the size better. When testing for higher cointegrating ranks under high cross-sectional
correlation, then it might be preferable to employ Choi’s test without any correction for
the cross-sectional dependence, or Hartung’s κ2 test. They would yield high power with-
out running the risk of an inflated Type I error probability, due to the lower than nominal
size of the individual TSL test under such null hypotheses. Simes’ simple intersection test,
although almost correctly sized in all settings, is, in general, least powerful. It outperforms
the other tests in terms of power only under null hypotheses H0 : ri = r, ∀r for r > 0 when
T is small; it these cases, however, its power is trivial.

6 Empirical illustration

We illustrate the use of the CAIN-TSL test by applying it to investigate the exchange
rate pass-through in the Euro area. We employ the same model and data used by Baner-
jee and Carrion-i Silvestre (2015). The panel consists of monthly observations over the
period 1995–2005 (T = 123) for nine different industries across seven Euro-Area countries:
France, Netherlands, Germany, Italy, Ireland, Greece and Spain; for more details on the
data we refer to the latter paper. The long-run relationship between (the logarithms of)
the import price mpt, the exchange rate ert and the foreign price fpt is given by

mpt = α+ βt+ b · ert + c · fpt + ut,

where a linear trend term is included to reflect the trending behaviour of the individual
variables.

Banerjee and Carrion-i Silvestre (2015) apply their proposed residual-based tests for
panel cointegration with level shifts, and with level shifts and breaks in the cointegrating
relationships. They find evidence of cointegration with one or two heterogeneous breaks
in the levels and in the cointegrating relation, although not in the observable variables
alone, but only after allowing up to twelve unobserved nonstationary common components
into the model. They do not test for a stable cointegrating relation with trend breaks,
as their proposed panel test for this setting does not accommodate heterogeneous break
dates for the different units. Our aim, however, is to investigate exactly whether a stable
long-term relationship exists, possibly around a broken linear trend. We further seek for
evidence of cointegration between the observed variables, without decomposing them into
unobservable common and idiosyncratic components. In this regard our analysis may be
viewed as complementary to that of Banerjee and Carrion-i Silvestre (2015).

For determining the break dates we follow a mixed approach. We first run the univari-
ate unit root tests with trend breaks of Narayan and Popp (2010) and Im et al. (2010) and
let them determine the slope break dates endogenously for each series. After analysing
clusters of break dates for the exchange rate and foreign price series, we identify the major
economic and financial events that likely have triggered the change in trend slope.6

In this way we identify two major break points. The first one is in May 2000 and marks
the end of a period of almost steady depreciation of the Euro against the US dollar since
its introduction in 1999. On March 10, 2000 the NASDAQ Composite Index closed at (by

6The unit root test results indicate that the most series are integrated; they are available upon request.
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then) an all-time high of over 5000, and the decline from this peak signalled the beginning
of the dot-com bubble burst. In an effort to protect the economy, the Federal Reserve
raised the federal funds rate by 25 basis points on March 21 and subsequently by another
50 basis points on May 16, effectively pinning the federal funds rate to a historic high of
6.5% until the beginning of 2001. From May 2000 until around May 2002 the exchange
rate fluctuated around a level of 0.9 USD/EUR.

From May 2002 the Euro began appreciating against the dollar, and the foreign prices
(fp) in our system began rising as well. Several factors can be pointed out as contributing
to this change. The first one are the terrorist attacks on the World Trade Center in
New York on September 11, 2001. In the weeks following the attacks investors became
unsure about how terrorism would affect the US economy. Investors’ confidence in the
securities markets was next shaken by the accounting fraud scandals which preceded the
bankruptcy of several major US corporations, e.g. Enron, Tyco and WorldCom, in the
period December 2001 – May 2002. The decline of the dollar relative to the Euro can also
be related to the US trade deficit – the share of the US in total world exports has been
declining since 2001. At the same time, the Euro was physically introduced in January
2002 and became a full fledged currency in March 2002, after the coins and notes of the
national currencies of the Euro-area countries were officially withdrawn from circulation.

In determining the break dates for the subsequent CAIN-TSL cointegration tests we
only consider potential breaks in the exchange rate and foreign price series. The reasoning
is that as the import prices are assumed to be determined by the exchange rate and the
foreign prices, it is the structural breaks in these two variables which are carried over. We
note that the exchange rate series have very similar dynamics across countries during the
period 1996–1999, and that there is a single exchange rate for all countries following the
introduction of the Euro. Furthermore, the foreign price series are also identical for all
countries and only differ across industries. Therefore assuming homogeneous break dates
across countries is not too restrictive.

For the cointegration analysis we consider nine industry panels, each with N = 7
country cross-sections. In this way we are able to test the ERPT hypothesis separately
in each industry, as the degree of exchange rate pass-through is likely to differ across
industries.

We first test for cointegration using the test of Saikkonen and Lutkepohl (2000) (hence-
forth SL) allowing for an intercept and trend, but no structural breaks. In this way we
are able to identify the industries in which “classical” cointegration around a stable trend
holds despite the individual series exhibiting trend breaks. In such cases we would say that
the series are rather “co-breaking”, with the breaks in trend slope appearing around the
same time and being similar over the individual series, and hence not influencing the coin-
tegrating relation. For combining the individual-unit statistics into a panel statistic which
is robust to cross-sectional dependence, we employ the modified Inverse Normal method
of Hartung. A small-scale simulation study revealed that the CAIN test proposed here is
not suitable for combining the individual SL test statistics without structural breaks; the
panel test is rather oversized.7 However, Hartung’s approach with κ1 = 0.2 does control
the type I error probability well in such setting. Hence, we use it to look for evidence of
cointegration at the panel level without considering structural breaks. Table 6 reveals that
the industries for which this holds at the usual 5% level are 3: Mineral fuels, 4: Animal

7These results are omitted for brevity, but are available upon request. They further indicate that the
CAIN test could be employed, however, to combine a mixture of individual SL and TSL test statistics, if
the number of SL statistics without breaks is low compared to that of TSL statistics, and also when N is
relatively small.
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and vegetable oils and 8: Manufactured goods. For the latter, however, we remark that
the panel test rejects the null of no cointegration only because of the extremely small
p-value for Germany; none of the p-values for the other countries are close to 0, hence
we include this industry into the subsequent analysis with structural breaks as well. Fur-
ther we note that the p-values of Hartung’s panel tests for industries 2: Crude materials
(inedible, except fuels), 5: Chemicals and related products and 6: Manufactured goods
classified chiefly by materials indicate rejection of the null hypothesis of no cointegration
only at the 10% level.

When testing for cointegration around a broken trend with the CAIN-TSL test, we
first consider each of the two identified break dates separately. Introducing a break in May
2000 does not lead to rejecting the null hypothesis of no cointegration for any industry,
except for Industry 4: Animal and vegetable oils, a result which was found also without
considering any breaks.8 Hence despite being selected by the univariate unit root tests,
May 2000 turns out not to be a relevant break date in the cointegration analysis.

We next consider a level shift and a trend break in May 2002. The results of the
individual TSL tests and the panel CAIN-TSL tests are presented in Tables 7 and 8,
respectively. The high degree of cross-sectional dependence, resulting primarily from the
similar exchange rate dynamics and the identical foreign prices series, is reflected in the
high value of the estimated ρ̂ε (see Table 8). We find that including this trend break has a
significant impact on the results from the cointegration analysis for at least some industries.
For example, in Industry 1: Beverages and tobacco we now find evidence of one stable long-
run relation, as well as for Industry 8: Manufactured goods. For industry 5: Chemicals
and related products including the break results in finding two cointegrating relations.
On the contrary, we find that such a trend break in the presumed cointegrating relation
is not relevant for industries 2: Crude materials and related products, 6: Manufactured
goods classified chiefly by materials and 7: Machines, transport equipment. These findings
remain robust when a break in any month in the period February – June 2002 is considered.
Furthermore, the results are not fundamentally altered when considering two breaks – in
May 2000 and May 2002, respectively, although the second cointegrating relationship for
Industry 5: Chemicals and related products is not captured in this case. This might be
due to the loss of power which naturally occurs if considering non-existent breaks.

We conclude that considering the possibility of a trend break plays an important role in
establishing a cointegrating relationship between import prices, exchange rate and foreign
prices for at least three different industries in the data set under investigation.

7 Conclusion

In this paper we propose a new meta-analytic approach (CAIN) to test for the cointe-
grating rank in panels where structural breaks and cross-sectional dependence are allowed
for. It is an extension of the likelihood-based rank test of Trenkler et al. (2007) (TSL), and
requires only the p-values of the individual LR trace statistics of the TSL test. The CAIN-
TSL test is based on a modification of the popular inverse normal method for p-values
combination, employing a novel estimator for the unknown correlation between the pro-
bits. We propose a way to estimate this correlation as a function of the system dimension,
the cointegrating rank under the null hypothesis and the average absolute cross-sectional
correlation between the residuals of the individual VAR models in first differences. The
latter is easily estimable in practice and provides an easy-to-interpret measure of the de-
gree of cross-sectional dependence. In a Monte Carlo study we demonstrate the superior

8For brevity we do not report these results, but they are available upon request.
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properties of the CAIN-TSL test in comparison with other meta-analytic approaches re-
cently proposed in the panel unit-root literature. An application of the test to investigate
the exchange rate pass-through in a panel of Euro-area countries provides an illustration
of its usefulness in practice.
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Table 3: Monte Carlo study results, not near-unit root processes (case A) and near-unit root processes (case B).
Empirical size and power under H0 : ri = 0, ∀i = 1, . . . , N .

True cointegrating rank 0: Size True cointegrating rank 1, case A: Power True cointegrating rank 1, case B: Power

T=100 T=200 T=100 T=200 T=100 T=200

N = 5 N = 15 N = 25 N = 5 N = 15 N = 25 N = 5 N = 15 N = 25 N = 5 N = 15 N = 25 N = 5 N = 15 N = 25 N = 5 N = 15 N = 25

Test Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4) Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4) Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4)

Choi 0.05 0.04 0.03 0.04 0.04 0.03 0.56 0.92 0.99 0.99 1.00 1.00 0.16 0.27 0.36 0.58 0.92 0.99

Hartung κ1 0.04 0.02 0.01 0.04 0.01 0.01 0.43 0.68 0.79 0.96 1.00 1.00 0.13 0.15 0.17 0.51 0.80 0.93

Hartung κ2 0.05 0.04 0.03 0.05 0.03 0.02 0.46 0.73 0.82 0.97 1.00 1.00 0.16 0.23 0.28 0.54 0.85 0.95

Simes 0.06 0.06 0.07 0.05 0.05 0.06 0.36 0.50 0.57 0.94 1.00 1.00 0.14 0.17 0.19 0.48 0.68 0.78

CAIN-TSL 0.05 0.04 0.03 0.04 0.04 0.03 0.56 0.92 0.99 0.99 1.00 1.00 0.16 0.27 0.35 0.58 0.92 0.99

Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1) Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1) Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1)

Choi 0.05 0.05 0.05 0.04 0.05 0.05 0.49 0.84 0.95 0.98 1.00 1.00 0.13 0.23 0.30 0.49 0.84 0.95

Hartung κ1 0.04 0.02 0.01 0.04 0.02 0.01 0.35 0.56 0.66 0.93 1.00 1.00 0.10 0.12 0.12 0.42 0.65 0.79

Hartung κ2 0.05 0.04 0.03 0.05 0.04 0.04 0.38 0.62 0.71 0.93 1.00 1.00 0.13 0.18 0.20 0.44 0.71 0.84

Simes 0.05 0.06 0.06 0.05 0.05 0.06 0.29 0.39 0.45 0.89 0.99 1.00 0.11 0.13 0.14 0.37 0.51 0.60

CAIN-TSL 0.04 0.04 0.04 0.04 0.04 0.04 0.48 0.83 0.93 0.98 1.00 1.00 0.13 0.21 0.26 0.49 0.82 0.94

Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3) Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3) Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3)

Choi 0.06 0.08 0.11 0.06 0.09 0.12 0.42 0.71 0.82 0.95 1.00 1.00 0.13 0.22 0.29 0.42 0.69 0.82

Hartung κ1 0.04 0.03 0.04 0.05 0.04 0.04 0.28 0.42 0.47 0.85 0.97 0.99 0.10 0.11 0.12 0.32 0.47 0.57

Hartung κ2 0.06 0.06 0.06 0.06 0.06 0.07 0.31 0.47 0.53 0.86 0.97 0.99 0.12 0.16 0.17 0.35 0.54 0.64

Simes 0.06 0.06 0.06 0.05 0.05 0.06 0.24 0.31 0.33 0.79 0.93 0.96 0.10 0.11 0.11 0.28 0.37 0.42

CAIN-TSL 0.04 0.05 0.05 0.05 0.05 0.06 0.38 0.61 0.70 0.94 1.00 1.00 0.12 0.15 0.17 0.38 0.59 0.70

Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1) Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1) Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1)

Choi 0.05 0.05 0.06 0.05 0.06 0.07 0.66 0.95 0.99 1.00 1.00 1.00 0.20 0.37 0.49 0.70 0.96 0.99

Hartung κ1 0.04 0.02 0.02 0.04 0.02 0.02 0.52 0.77 0.87 0.98 1.00 1.00 0.17 0.23 0.27 0.62 0.90 0.97

Hartung κ2 0.05 0.04 0.04 0.05 0.05 0.04 0.55 0.80 0.89 0.99 1.00 1.00 0.20 0.31 0.37 0.65 0.93 0.98

Simes 0.06 0.06 0.06 0.06 0.05 0.06 0.45 0.60 0.68 0.97 1.00 1.00 0.17 0.22 0.26 0.58 0.81 0.89

CAIN-TSL 0.04 0.03 0.03 0.04 0.04 0.04 0.63 0.92 0.98 1.00 1.00 1.00 0.18 0.29 0.35 0.67 0.93 0.99

Notes: Rejection frequencies at 5% significance level, 5000 replications. Power is not size-adjusted, as size-adjustment would not be available in practice.
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Table 4: Monte Carlo study results, case A: not near-unit root processes.
Empirical size and power under H0 : ri = 1, ∀i = 1, . . . , N .

True cointegrating rank 1, hypothesized rank 1: Size True cointegrating rank 2, hypothesized rank 1: Power

T=100 T=200 T=100 T=200

N = 5 N = 15 N = 25 N = 5 N = 15 N = 25 N = 5 N = 15 N = 25 N = 5 N = 15 N = 25

Test Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4) Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4)

Choi 0.001 0.000 0.000 0.003 0.000 0.000 0.41 0.78 0.92 0.99 1.00 1.00

Hartung κ1 0.001 0.000 0.000 0.005 0.000 0.000 0.28 0.46 0.56 0.97 1.00 1.00

Hartung κ2 0.002 0.000 0.000 0.007 0.001 0.000 0.32 0.54 0.63 0.98 1.00 1.00

Simes 0.010 0.006 0.009 0.016 0.017 0.016 0.23 0.27 0.27 0.95 1.00 1.00

CAIN-TSL 0.001 0.000 0.000 0.003 0.000 0.000 0.41 0.77 0.91 0.99 1.00 1.00

Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1) Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1)

Choi 0.002 0.000 0.000 0.006 0.001 0.000 0.40 0.75 0.88 0.99 1.00 1.00

Hartung κ1 0.004 0.000 0.000 0.006 0.001 0.000 0.26 0.42 0.51 0.97 1.00 1.00

Hartung κ2 0.005 0.001 0.000 0.008 0.001 0.000 0.28 0.49 0.58 0.97 1.00 1.00

Simes 0.009 0.007 0.004 0.020 0.019 0.024 0.20 0.24 0.25 0.95 1.00 1.00

CAIN-TSL 0.002 0.000 0.000 0.005 0.001 0.000 0.39 0.72 0.85 0.99 1.00 1.00

Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3) Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3)

Choi 0.004 0.003 0.002 0.015 0.017 0.017 0.40 0.67 0.79 0.99 1.00 1.00

Hartung κ1 0.003 0.001 0.001 0.014 0.007 0.005 0.24 0.34 0.41 0.95 1.00 1.00

Hartung κ2 0.004 0.002 0.001 0.018 0.012 0.011 0.27 0.40 0.47 0.96 1.00 1.00

Simes 0.008 0.007 0.005 0.024 0.018 0.019 0.18 0.21 0.21 0.92 0.99 1.00

CAIN-TSL 0.002 0.001 0.000 0.010 0.008 0.005 0.34 0.55 0.63 0.98 1.00 1.00

Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1) Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1)

Choi 0.003 0.002 0.002 0.009 0.007 0.006 0.43 0.78 0.90 0.99 1.00 1.00

Hartung κ1 0.003 0.001 0.001 0.008 0.004 0.003 0.30 0.49 0.60 0.98 1.00 1.00

Hartung κ2 0.005 0.002 0.002 0.011 0.007 0.005 0.33 0.56 0.67 0.98 1.00 1.00

Simes 0.011 0.010 0.007 0.019 0.014 0.018 0.24 0.29 0.31 0.96 1.00 1.00

CAIN-TSL 0.002 0.001 0.000 0.006 0.002 0.002 0.40 0.69 0.81 0.99 1.00 1.00

Notes: Rejection frequencies at 5% significance level, 5000 replications. Power is not size-adjusted, as size-adjustment would not be

available in practice.
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Table 5: Monte Carlo study results, case B: near-unit root processes.
Empirical size and power under H0 : ri = 1, ∀i = 1, . . . , N .

True cointegrating rank 1, hypothesized rank 1: Size True cointegrating rank 2, hypothesized rank 1: Power

T=100 T=200 T=100 T=200

N = 5 N = 15 N = 25 N = 5 N = 15 N = 25 N = 5 N = 15 N = 25 N = 5 N = 15 N = 25

Test Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4) Diagonal factor loading matrix γi ∼ i.i.d.U(−0.4, 0.4)

Choi 0.000 0.000 0.000 0.001 0.000 0.000 0.02 0.01 0.01 0.37 0.66 0.83

Hartung κ1 0.000 0.000 0.000 0.002 0.000 0.000 0.03 0.01 0.00 0.34 0.55 0.70

Hartung κ2 0.000 0.000 0.000 0.003 0.000 0.000 0.03 0.02 0.01 0.38 0.65 0.81

Simes 0.005 0.003 0.002 0.008 0.005 0.006 0.04 0.03 0.04 0.33 0.46 0.53

CAIN-TSL 0.000 0.000 0.000 0.001 0.000 0.000 0.02 0.01 0.01 0.37 0.66 0.83

Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1) Diagonal factor loading matrix γi ∼ i.i.d.U(0, 1)

Choi 0.000 0.000 0.000 0.002 0.000 0.000 0.03 0.02 0.01 0.38 0.67 0.82

Hartung κ1 0.001 0.000 0.000 0.001 0.000 0.000 0.02 0.01 0.00 0.32 0.53 0.66

Hartung κ2 0.001 0.000 0.000 0.002 0.000 0.000 0.03 0.02 0.01 0.36 0.63 0.76

Simes 0.004 0.002 0.001 0.008 0.005 0.006 0.04 0.03 0.03 0.30 0.41 0.47

CAIN-TSL 0.000 0.000 0.000 0.002 0.000 0.000 0.03 0.01 0.01 0.37 0.64 0.79

Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3) Diagonal factor loading matrix γi ∼ i.i.d.U(−1, 3)

Choi 0.000 0.000 0.000 0.003 0.001 0.000 0.04 0.05 0.05 0.39 0.64 0.76

Hartung κ1 0.000 0.000 0.000 0.002 0.000 0.000 0.02 0.02 0.02 0.31 0.47 0.58

Hartung κ2 0.001 0.000 0.000 0.003 0.001 0.001 0.03 0.03 0.04 0.34 0.55 0.65

Simes 0.003 0.002 0.001 0.008 0.004 0.005 0.03 0.03 0.03 0.27 0.35 0.40

CAIN-TSL 0.000 0.000 0.000 0.001 0.000 0.000 0.03 0.02 0.02 0.34 0.52 0.61

Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1) Unrestricted factor loading matrix γi ∼ i.i.d.U(0, 1)

Choi 0.000 0.000 0.000 0.002 0.000 0.000 0.03 0.02 0.02 0.39 0.66 0.80

Hartung κ1 0.000 0.000 0.000 0.001 0.000 0.000 0.03 0.01 0.01 0.37 0.57 0.71

Hartung κ2 0.001 0.000 0.000 0.002 0.000 0.000 0.04 0.02 0.01 0.41 0.67 0.81

Simes 0.004 0.003 0.002 0.008 0.006 0.006 0.05 0.05 0.04 0.37 0.52 0.62

CAIN-TSL 0.000 0.000 0.000 0.001 0.000 0.000 0.02 0.01 0.01 0.35 0.57 0.68

Notes: Rejection frequencies at 5% significance level, 5000 replications. Power is not size-adjusted, as size-adjustment would not be

available in practice.
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Table 6: Individual SL cointegrating rank tests without structural breaks and industry-specific panel tests employing Hartung’s combination
of p-values

0: Food and live animals chiefly for food 1: Beverages and tobacco 2: Crude materials (inedible, except fuels)

H0 : r = 0 H0 : r = 1 H0 : r = 0 H0 : r = 1 H0 : r = 0 H0 : r = 1

Country lag ŝ SL LR p-value SL LR p-value lag ŝ SL LR p-value SL LR p-value lag ŝ SL LR p-value SL LR p-value

France 2 19.55 0.42 7.44 0.61 4 19.08 0.46 8.53 0.49 2 19.74 0.41 4.91 0.88

Netherlands 2 13.83 0.84 6.67 0.70 4 19.40 0.43 7.34 0.62 3 20.83 0.34 8.23 0.52

Germany 3 16.78 0.63 5.69 0.81 4 26.65 0.09 6.43 0.73 4 24.35 0.16 8.68 0.47

Italy 3 21.53 0.29 9.69 0.37 4 21.07 0.32 9.63 0.37 4 26.36 0.09 4.00 0.94

Ireland 4 17.62 0.57 7.74 0.58 4 22.70 0.23 15.00 0.07 2 31.43 0.02 7.96 0.55

Greece 3 24.49 0.15 6.54 0.72 4 19.78 0.41 8.77 0.46 2 29.87 0.03 12.16 0.18

Spain 2 21.77 0.28 7.79 0.57 4 16.80 0.63 8.07 0.54 4 22.97 0.22 7.65 0.59

Hartung κ1 −0.15 0.44 0.35 0.64 −0.45 0.33 −0.17 0.43 −1.36 0.09 0.44 0.67

Hartung κ2 −0.16 0.44 0.35 0.64 −0.45 0.33 −0.17 0.43 −1.39 0.08 0.46 0.68

3: Mineral fuelds, lubricants and related materials 4: Animal and vegetable oils, fats and waxes 5: Chemicals and related products

H0 : r = 0 H0 : r = 1 H0 : r = 0 H0 : r = 1 H0 : r = 0 H0 : r = 1

Country lag ŝ SL LR p-value SL LR p-value lag ŝ SL LR p-value SL LR p-value lag ŝ SL LR p-value SL LR p-value

France 3 21.52 0.29 3.39 0.97 4 22.58 0.23 6.56 0.71 3 30.18 0.03 6.04 0.77

Netherlands 2 19.89 0.40 4.88 0.88 3 32.92 0.01 4.25 0.93 3 23.23 0.20 6.44 0.73

Germany 4 29.48 0.04 5.73 0.80 4 29.19 0.04 7.27 0.63 3 28.71 0.05 5.38 0.84

Italy 2 42.03 0.00 5.39 0.84 4 17.09 0.61 7.69 0.58 4 26.08 0.10 7.18 0.64

Ireland 3 23.82 0.18 4.19 0.93 4 18.68 0.49 9.79 0.36 3 18.69 0.49 6.05 0.77

Greece 4 27.00 0.08 5.53 0.82 4 38.25 0.00 8.27 0.52 3 30.97 0.02 10.02 0.34

Spain 3 23.04 0.21 4.86 0.88 4 20.43 0.36 5.72 0.80 3 22.38 0.24 4.62 0.90

Hartung κ1 −3.15 0.00 1.27 0.90 −3.48 0.00 0.51 0.70 −1.53 0.06 0.70 0.76

Hartung κ2 −3.53 0.00 1.28 0.90 −4.27 0.00 0.52 0.70 −1.57 0.06 0.71 0.76

6: Manufactured goods classified chiefly by materials 7: Machines, transport equipment 8: Manufactured goods

H0 : r = 0 H0 : r = 1 H0 : r = 0 H0 : r = 1 H0 : r = 0 H0 : r = 1

Country lag ŝ SL LR p-value SL LR p-value lag ŝ SL LR p-value SL LR p-value lag ŝ SL LR p-value SL LR p-value

France 4 17.92 0.55 7.08 0.65 3 19.53 0.42 7.05 0.66 4 18.17 0.53 4.98 0.87

Netherlands 4 25.17 0.13 6.52 0.72 3 16.98 0.62 4.56 0.91 4 23.54 0.19 12.00 0.19

Germany 3 23.65 0.18 7.30 0.63 4 17.78 0.56 5.91 0.78 2 47.87 0.00 19.30 0.01

Italy 3 31.34 0.02 7.26 0.63 3 19.44 0.43 5.43 0.83 4 13.77 0.84 4.73 0.89

Ireland 3 26.43 0.09 4.58 0.90 4 20.26 0.37 5.44 0.83 4 23.26 0.20 6.17 0.76

Greece 3 25.38 0.12 13.78 0.10 2 22.72 0.23 4.68 0.90 4 21.66 0.29 11.25 0.24

Spain 4 29.49 0.04 3.71 0.96 3 16.40 0.66 5.82 0.79 4 19.25 0.44 9.35 0.40

Hartung κ1 −1.48 0.07 0.85 0.80 −0.09 0.47 0.96 0.83 −2.41 0.01 −0.47 0.32

Hartung κ2 −1.51 0.07 0.90 0.82 −0.09 0.47 0.97 0.83 −2.95 0.00 −0.58 0.28

Notes: Hartung’s approach to combination of p-values is used to combine the individual SL LR trace statistics into a panel test statistic with a N(0, 1) distribution. The lag order

ŝ has been selected by the MAIC criterion of Qu and Perron (2007) under the null hypothesis of no cointegration.
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Table 7: Industry-specific CAIN-TSL panel cointegrating rank tests with a level shift and trend break in May 2002

0: Food and live animals chiefly for food 1: Beverages and tobacco 2: Crude materials (inedible, except fuels)

H0 : r = 0 H0 : r = 1 H0 : r = 0 H0 : r = 1 H0 : r = 0 H0 : r = 1

Country lag ŝ TSL LR p-value TSL LR p-value lag ŝ TSL LR p-value TSL LR p-value lag ŝ TSL LR p-value TSL LR p-value

France 3 26.22 0.23 8.81 0.69 4 26.59 0.21 11.45 0.43 3 17.61 0.78 8.87 0.69

Netherlands 3 23.76 0.36 5.78 0.93 4 30.27 0.09 17.18 0.09 3 21.83 0.49 11.60 0.42

Germany 3 26.35 0.22 5.04 0.96 4 41.80 0.00 15.16 0.16 4 18.89 0.69 13.77 0.24

Italy 4 21.92 0.48 9.39 0.63 4 28.14 0.15 11.81 0.40 4 27.02 0.19 11.35 0.44

Ireland 4 34.83 0.02 9.53 0.62 4 30.09 0.09 20.09 0.03 4 32.47 0.05 12.21 0.36

Greece 3 21.37 0.52 7.45 0.82 4 24.02 0.34 11.76 0.40 3 26.28 0.22 21.84 0.02

Spain 4 17.93 0.76 6.88 0.86 4 27.27 0.18 6.16 0.91 3 22.28 0.46 14.91 0.18

6: Manufactured goods classified chiefly by materials Industry 7: Machines, transport equipment 8: Manufactured goods

H0 : r = 0 H0 : r = 1 H0 : r = 0 H0 : r = 1 H0 : r = 0 H0 : r = 1

Country lag ŝ TSL LR p-value TSL LR p-value lag ŝ TSL LR p-value TSL LR p-value lag ŝ TSL LR p-value TSL LR p-value

France 4 16.44 0.84 8.91 0.68 4 22.21 0.46 4.51 0.98 4 27.51 0.17 8.41 0.73

Netherlands 4 25.70 0.25 7.83 0.78 3 22.00 0.48 11.75 0.40 4 38.84 0.01 8.09 0.76

Germany 3 29.25 0.11 6.49 0.89 4 17.47 0.78 7.75 0.79 3 52.65 0.00 13.05 0.29

Italy 4 30.67 0.08 8.99 0.67 4 22.17 0.46 10.50 0.52 4 30.41 0.09 9.91 0.58

Ireland 4 15.28 0.89 4.90 0.97 4 22.82 0.42 9.99 0.57 4 23.00 0.41 11.65 0.41

Greece 3 26.65 0.21 8.50 0.72 3 30.40 0.09 10.82 0.49 4 49.57 0.00 16.60 0.11

Spain 4 15.70 0.88 8.98 0.68 4 12.43 0.97 3.89 0.99 4 31.56 0.06 10.43 0.53

5: Chemicals and related products

H0 : r = 0 H0 : r = 1 H0 : r = 2

Country lag ŝ TSL LR p-value TSL LR p-value TSL LR p-value

France 3 35.01 0.02 13.71 0.25 3.81 0.43

Netherlands 3 32.85 0.04 11.75 0.40 5.51 0.22

Germany 3 36.45 0.02 20.36 0.03 2.44 0.67

Italy 4 39.37 0.01 18.31 0.06 1.25 0.89

Ireland 4 32.83 0.04 19.62 0.04 1.81 0.79

Greece 3 34.56 0.03 16.71 0.10 3.90 0.41

Spain 4 28.23 0.15 9.74 0.60 2.11 0.73

Notes: The lag order ŝ has been selected by the MAIC criterion of Qu and Perron (2007) under the null hypothesis of no cointegration.
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Table 8: Individual TSL cointegrating rank tests with a level shift and trend break in May 2002

CAIN-TSL Hartung κ1 Hartung κ2
Industry H0 : ri ≤ r, ∀i ρ̂ε ˆ̄ρt t-stat p-value t-stat p-value t-stat p-value

0: Food and live animals cheifly for food r = 0 0.69 0.16 −0.85 0.20 −0.66 0.25 −0.69 0.25

1: Beverages and tobacco r = 0 0.66 0.14 −2.40 0.01 −1.66 0.05 −1.71 0.04

r = 1 0.66 0.15 −0.98 0.16 −1.20 0.11 −1.34 0.09

2: Crude materials (inedible, except fuels) r = 0 0.70 0.17 −0.57 0.28 −0.46 0.32 −0.48 0.32

5: Chemicals and related products r = 0 0.63 0.13 −3.73 0.00 −2.04 0.02 −2.05 0.02

r = 1 0.63 0.13 −2.03 0.02 −1.48 0.07 −1.53 0.06

r = 2 0.63 0.14 0.52 0.70 0.34 0.63 0.34 0.63

6: Manufactured goods classified chiefly by materials r = 0 0.71 0.18 −0.18 0.43 −0.31 0.38 −0.38 0.35

7: Machines, transport equipment r = 0 0.63 0.12 0.26 0.60 0.28 0.61 0.31 0.62

8: Manufactured goods r = 0 0.70 0.17 −3.75 0.00 −6.38 0.00 −7.82 0.00

r = 1 0.70 0.17 −0.11 0.46 −0.07 0.47 −0.08 0.47

Notes: H0 : ri ≤ 1 is tested only if H0 : ri = 0 is rejected; similarly for higher ranks under the null hypothesis.
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Appendix

Figure 1: Cross-sectional correlation of the probits against cross-sectional correlation of the
innovations, bi-variate system with true cointegrating rank zero, testing for H0 : ri = 0,∀i
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Table 9: True and estimated ρε under H0 : r = 0

Estimated ρ̂ε
True ρε True rank 0 True rank 1 True rank 2

0.2 0.200 0.196 0.192

0.4 0.400 0.392 0.384

0.6 0.600 0.589 0.577

0.8 0.800 0.786 0.771

Notes: Results from large-scale simulation study

with m = 3, T = 500 and N = 5.
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