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Abstract: The 2007-2008 financial crisis highlighted that a turmoil in the

financial sector including bursting asset price bubbles can cause pronounced

and persistent fluctuations in real economic activity. This justifies the con-

sideration of evolving and bursting asset price bubbles as another source of

fluctuations in business cycle models. In this paper rational asset price bubbles

are incorporated into a life-cycle RBC model as first developed by Ŕıos-Rull

(1996). The calibration of the model to the post-war US economy and the nu-

merical solution show that the model is able to depict plausible bubble-driven

business cycles. In particular, the model generates i) a higher and empirically

more plausible volatility of consumption at the cost of ii) a lower and empiri-

cally less plausible contemporaneous correlation of consumption with output

than the life-cycle RBC model without bubbles.
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1. Introduction

The 2007-2008 financial crisis highlighted that a turmoil in financial markets and burst-

ing asset price bubbles can cause pronounced and persistent fluctuations in real economic

activity. This motivated renewed interest in considering financial markets within DSGE

models as an impulse and a propagation mechanism for aggregate fluctuations. Although

financial frictions were incorporated in RBC models over 25 years ago by Bernanke and

Gertler (1989) and are becoming more prevalent in recent contributions on DSGE models

(see, for instance, Brunnermeier and Sannikov (2014), Boz and Mendoza (2014), or Covas

and Den Haan (2012)) asset price bubbles are rarely considered in DSGE models. Build-

ing on the contribution by Martin and Ventura (2012) I therefore set up and numerically

solve a life-cycle RBC model with asset price bubbles in this paper. The calibration of

the model to the post-war US economy and the numerical solution show that the model

is able to depict plausible bubble-driven business cycles. In particular, the model gener-

ates i) a higher and empirically more plausible volatility of consumption at the cost of ii)

a lower and empirically less plausible contemporaneous correlation of consumption with

output than the life-cycle RBC model without bubbles.

This paper is related to the following three strands of literature. First, since the semi-

nal contribution by Tirole (1985) rational asset price bubbles have been incorporated in

general equilibrium models. In the Tirole (1985) model bubbles always crowd-out capital.

Empirically it is not plausible that the capital stock and output decline during episodes of

existing asset price bubbles, and increase when bubbles burst. The correlation should be

the reverse. Therefore, recent models extend the Tirole (1985) model – mostly by financial

frictions – in order to derive equilibria where bubbles create a crowding-in of capital such

that capital and output increase during periods of existing bubbles (see, among others,

Gaĺı (2014), Martin and Ventura (2012), and Farhi and Tirole (2012)). Most of these con-

tributions consider two-period overlapping generation (OLG) models and derive explicit

conditions for the existence of bubbles and the characteristics of bubbles in general equi-

librium. I contribute to this literature by considering rational bubbles within a large-scale

OLG model.

Second, models that incorporate aggregate uncertainty and analyze business cycles exist
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also within the the literature on large-scale OLG models as initiated by Auerbach and

Kotlikoff (1987). The first to develop a life-cycle RBC model was Ŕıos-Rull (1996), and

more recent contribution are, among others, Heer and Maußner (2012) and Iacoviello and

Pavan (2013). The model presented in this paper can be seen as an extension of the

Ŕıos-Rull (1996) model by financial frictions and rational asset price bubbles.

Third, within the infinitely-lived agent DSGE literature a few contributions do also

consider asset price bubbles. Bernanke and Gertler (1999) consider irrational asset price

bubbles within an RBC model with financial frictions. As the authors state, they ”use

the term “bubble” [here] loosely to denote temporary deviations of asset prices from

fundamental values” (p. 19). Two further contributions within this literature are Miao

et al. (2015) and Luik and Wesselbaum (2014). The numerical solution in both studies is

based on local perturbation methods. By log-linearizing the dynamic systems of equations

only small shocks can be considered. It is hard to justify, however, that bursting bubbles

presents a small shock and that local solution techniques are an accurate approximation.

I therefore apply a global solution technique for solving the model in this paper.

To the best of my knowledge, this paper is the first to set up and numerically solve

a life-cycle RBC model featuring rational bubbles. This is important for at least two

reasons. First, bubbles in two-period OLG models exist at least for some 30 years, which

is implausibly long. In order to depict a short-term phenomenon like asset price bubbles,

one period in the model should correspond at least to one year in calendar time. Second,

and more importantly, by implementing rational bubbles in a large-scale OLG model the

effect of evolving and bursting bubbles as an impulse for aggregate fluctuations can be

analyzed and compared to business cycles resulting from TFP shocks.

The paper is structured as follows. In section 2 the model is presented and an equilib-

rium is defined. In the following section 3 the calibration is explained and the model is

solved numerically. Section 4 extends the model to elastic labor supply and compares the

results with the model without elastic labor supply. The last section concludes.
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2. The Model

2.1. Set Up

Demographics. Time is discrete and the economy exists up to infinity. The economy

consists of individuals of different age groups. Each period some individuals enter and

some individuals leave the economy. The age of an individual is denoted by the subscript

s. Young individuals enter the economy at a real life age of 21 years which is denoted

by s = 1. After entering the economy individuals supply inelastically one unit of labor

per period for T ≥ 1 periods. Then individuals live for further TR ≥ 1 periods in

retirement before dying and leaving the economy. Hence, the life-span for every individual

in this economy is T +TR periods. In the classic OLG-model developed by Allais (1947),

Samuelson (1958), and Diamond (1965) T = TR = 1. In the vein of Auerbach and

Kotlikoff (1987) I will calibrate the parameters T and TR such that one period in the

model corresponds to one year.

Total population is assumed to grow at a constant rate n ≥ 0. Let N s
t denote the size

of the cohort consisting of individuals of age s in period t. Total population is then given

by Nt =
∑T+TR

s=1 N s
t . Without loss of generality total population in period t = 0 is set

equal to one. It follows that total population is given by

Nt = (1 + n)t, (1)

and the cohort size is given by

N s
t =


(1 + n)t−s+1N1

0 , if 0 < s ≤ T + TR

0, else

(2)

where N1
0 =

1∑T+TR

s=1 (1 + n)1−s
is the size of the cohort consisting of individuals that enter

the economy in period t = 0.

Utility. After entering the economy individuals supply inelastically one unit of labor in

every period for T periods, earning labor income wt. For s > T retirement is mandatory,

households do not work and live from wealth accumulated in earlier periods of their lives.
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Preferences of an individual of age s = 1 at period t are described by the intertemporal

von Neumann-Morgenstern expected utility function

EtU s
t = Et

T+TR∑
s=1

βs−1u(cst+s−1), (3)

where 0 < β is the subjective discount factor, u(c) is instantaneous utility, and cst denotes

consumption of an individual of age s in period t. Instantaneous utility is given by the

CRRA utility function

u(cst+s−1) =

(
cst+s−1

)1−ε − 1

1− ε
, (4)

where ε > 0 is a constant preference parameter that equals the inverse of the intertemporal

elasticity of substitution as well as the Arrow-Pratt measure of relative risk-aversion.

Firms. Firms of mass one employ two production factors – capital Kt and labor Lt –

to produce a homogeneous final output good according to the Cobb-Douglas technology

Yt = AtK
α
t (EtLt)

1−α , (5)

where 0 < α < 1 is the capital income share. Technological progress is labor augmenting,

deterministic and expressed as Et+1 = (1 + g)Et. The variable At depicts exogenous and

stochastic total factor productivity (TFP) shocks evolving according to an AR(1) process:

lnAt+1 = ρ lnAt + zat+1, (6)

where zat ∼ N(0, σa) is the innovation term and 0 ≤ ρ < 1 measures the persistence of

TFP-shocks.

Competitive profit maximization yields wages wt and interest rates rt

wt = (1− α)
Yt
Lt
, (7)

rt = α
Yt
Kt

− δ, (8)

where δ is the capital depreciation rate.
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Financial friction. Besides differences in age individuals further differ with respect

to their investment efficiency. A small share of the population is comparably produc-

tive at investing in capital used for production. Think of these productive individuals

as the entrepreneurs in the economy or individuals with higher financial literacy. The

population share of productive individuals is constant and given by 0 ≤ η ≤ 1. These

productive individuals are able to transform one unit of the final output good one-to-one

into productive capital used in production. The remainder of the population, 1 − η, is

unproductive at investing and has to incur costs of 1− σ when investing one unit of the

final output good, where 0 ≤ σ ≤ 1. The gross return to investment in capital faced

by productive individuals is then equal to 1 + rt while it is σ(1 + rt) for unproductive

individuals. Individuals are born as either productive or unproductive investors and stay

productive or unproductive investors throughout their whole life.

If financial markets were frictionless, unproductive individuals would lend all their

wealth to productive individuals such that both groups would be better off, the allocation

of investment would be efficient, and the capital stock in the economy would be larger

than in an economy without lending between unproductive and productive individuals.

However, it is assumed – as in Martin and Ventura (2012) – that unproductive individuals

lending resources to productive individuals face a default probability greater than 1 − σ

such that it is never profitable for unproductive individuals to lend resources to productive

individuals. The result is a financial friction: no borrowing or lending takes place between

productive and unproductive individuals, investments are inefficiently allocated, and a

wedge is drawn between the returns to capital faced by productive and unproductive

individuals.

Bubbles. Individuals can save labor income in order to smooth consumption and finance

consumption in retirement when no labor income is earned. Therefore individuals can

either supply capital aj,st for the production of a final output good, or purchase a zero-

dividend asset bj,st , where aj,st (bj,st ) denotes the capital stock (zero-dividend assets) held

by an individual of productivity type j ∈ {U, P} and age s at the beginning of period

t.1 Note, bj,st denotes the value of the zero-dividend asset in terms of the final output

1Tirole (1985) first introduced rational asset price bubble in a simple two-period OLG model.
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good. An asset price can be decomposed into a fundamental and a bubble component,

where the fundamental component is the sum of the discounted stream of expected future

dividends or rents.2 The zero-dividend asset’s fundamental is by definition zero such that

its price contains a bubble when bt is greater than zero. Following Tirole (1985) I refer to

the zero-dividend asset just as “bubble” in the remainder.

The aggregate bubble Bt is obtained by summing up all the bubbles held by individuals

in the economy

Bt =
T+TR∑
s=1

N s
t

[
ηbP,st + (1− η)bU,st

]
, (9)

where bj,s+1
t+1 is the quantity of bubbles purchased by an individual of productivity type

j ∈ {U, P} and of age s at the end of period t. The size of the bubbles held by all

productive (unproductive) individuals of age s in period t is ηN s
t b
P,s
t ((1 − η)N s

t b
P,s
t ).

Summing up the bubbles of all cohorts and productivity types gives Bt as described by

(9).

In a given period t bubbles can be initiated and existing bubbles can burst.3 Follow-

ing Martin and Ventura (2012) the creation and destruction of bubbles is governed by

investors’ sentiment zbt ∈ {0, 1}. When investors are optimistic zbt = 1, they believe that

the zero-dividend asset has a positive value, new bubbles can be initiated, and bt ≥ 0.

When investors are pessimistic zbt = 0, they want to sell all their zero-dividend assets, they

will not purchase further zero-dividend assets, and bt = 0. Investors’ sentiment zbt follows

a simple Markov-process with the transition matrix P, as depicted in Table 1. If investors

are optimistic in period t, zbt = 1, the probability that investors are also optimistic in

the next period t + 1 is given by the constant parameter 0 ≤ o ≤ 1. The probability of

investors becoming pessimistic after being optimistic is hence 1− o. Similarly, if investors

are pessimistic in period t, zbt = 0, the probability that investors are also pessimistic in

the next period t + 1 is given by the constant parameter 0 ≤ p ≤ 1. The probability of

switching from pessimism to optimism is then 1− p.

When investors are optimistic, zt = 1, working productive individuals create new bub-

bles b̂Nt and sell them to other individuals in the same period. For the sake of simplicity

2See, for instance, Blanchard and Watson (1983, 2f.), or, more recently, Brunnermeier (2008, 3).
3Weil (1987) first added a stochastic probability of bursting bubbles to the Tirole (1985) model.
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Table 1: Transition matrix P

zbt+1 = 1 zbt+1 = 0

zbt = 1 o 1− o

zbt = 0 1− p p

it is assumed that each working productive individual creates the same amount of new

bubbles. The creation of new bubbles is exogenous and given by

b̂Nt = zbtθEt, (10)

where θ ≥ 0 is the size of newly created bubbles when technological growth is absent

(Et = 1) and investors are optimistic (zbt = 1). The parameter θ has to be multiplied by

labor productivity Et in order for a balanced-growth path to exist. The aggregate value

of newly created bubbles is then

BN
t := b̂Nt

T∑
s=1

ηN s
t =

η

1 + φ
Ntb̂

N
t , (11)

where φ :=
∑T+TR

s=T+1N
s
t∑T

s=1N
s
t

is the constant old-age dependency ratio, 1
1+φ

is the constant pop-

ulation share of all working individuals, and η
1+φ

Nt is the size of all productive working

individuals.

The ex-post realized return to bubbles is given by

1 + qt =


1 + qot =

Bt+1

Bt +BN
t

if zbt = 1,

0 if zbt = 0,

(12)

or equivalently as (1 + qt) = zbt (1 + qot ), where qot is the return to bubbles under the

realization zbt = 1.

The timing of events is described in detail in appendix A.1.
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Household optimization. For j ∈ {P,U} the households’ budget constraints read

cj,st + aj,s+1
t+1 + bj,s+1

t+1 = wjt +Rj
ta
j,s
t + zbt (1 + qot )b

j,s
t s = 1, ..., T

cj,st + aj,s+1
t+1 + bj,s+1

t+1 = Rj
ta
j,s
t + zbt (1 + qot )b

j,s
t s = T + 1, ..., T + TR

0 = aj,1t = bj,1t = aj,T+TR+1
t = bj,T+TR+1

t . (13)

The first equation depicts the budget constraints of all working individuals and the second

equation the budget constraint of all retired individuals. Productive working individuals

earn not only labor income, but also income from creating new bubbles, i.e. wPt =

wt + zbt (1 + qot )b̂
N
t , while unproductive individuals earn only labor income, i.e. wUt = wt.

Due to the financial friction, productive individuals face higher returns to capital than

unproductive individuals such that RP
t = 1 + rt < RU

t = σ(1 + rt). The third line of the

budget constraints states that individuals enter the economy with zero wealth and that

individuals leave no debt after death.

The households optimization problem then reads

max
{cj,st+s−1, a

j,s+1
t+s , bj,s+1

t+s }T+TR

s=1

Et
T+TR∑
s=1

βs−1u(cj,st+s−1),

s.t. (13) and bj,s+1
t+1 ≥ 0.

The non-negativity constraint on bubbles is imposed because bubbles are assumed to be

freely disposable. It is possible, however, that households run temporary into debt, i.e.

aj,st < 0.

The first order conditions consist of two stochastic Euler equations – the first is derived

from the first order condition for optimal capital and the second from the first order

condition for optimal bubbles – a complementary slackness condition, and the budget

constraints:

(
cj,st
)−ε

=βEt
{
Rj
t+1

(
cj,s+1
t+1

)−ε}
s = 1, ..., T + TR − 1(

cj,st
)−ε

=βEt
{

(1 + qt+1)
(
cj,s+1
t+1

)−ε}
+ ωj,s+1

t+1 s = 1, ..., T + TR − 1

ωj,s+1
t+1 bj,s+1

t+1 =0 and (13), (14)
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where ωj,s+1
t+1 is the multiplier associated with the non-negativity constraint of bubbles.

2.2. Equilibrium

A competitive equilibrium consists of a sequence of individual consumption, capital, and

bubbles

{{
cP,st , cU,st , aP,st , aU,st , bP,st , bU,st

}T+TR+1

s=1

}∞
t=0

satisfying the FOC’s of the household

optimization problem as given by (14), a sequence of prices {wt, rt, qot }∞t=0 satisfying (7)

and (12), a sequence of shocks
{
zat , z

b
t

}∞
t=1

drawn from their respective distributions and

initial values {aP,s0 , aU,s0 , bP,s0 , bU,s0 }T+TR−1
s=1 , za0 , z

b
0, q

o
0 such that

• the labor market clears

Lt =
T∑
s=1

N s
t =

1

1 + φ
Nt, (15)

• the capital market clears

Kt+1 =
T+TR∑
s=1

N s+1
t+1

[
ηaP,s+1

t+1 + σ(1− η)aU,s+1
t+1

]
, (16)

• the market for bubbles clears

(1 + qt)(Bt +BN
t ) =

T+TR∑
s=1

N s+1
t+1

[
ηbP,s+1

t+1 + (1− η)bU,s+1
t+1

]
, (17)

• the goods market clears4

Yt = Ct + ∆Kt+1 + δKt +
T+TR∑
s=1

(1− η)(1− σ)N s
t a

U,s+1
t+1︸ ︷︷ ︸

output-loss due to the financial friction

, (18)

• capital does not become negative (or, equivalently, the bubble does not become too

4Although it is not necessary to state this equation – it is implied by the budget constraints – it is useful
as a consistency check in the numerical solution. Note further that aggregate consumption is defined

as Ct =

T+TR∑
s=1

Ns
t

(
ηcP,st + (1− η)cU,st

)
.
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large)5

T+TR∑
s=1

ηN s
t a

P,s+1
t+1 ≥ 0 and

T+TR∑
s=1

(1− η)N s
t a

U,s+1
t+1 ≥ 0 (19)

• and bubbles are freely disposable

Bt ≥ 0. (20)

3. Numerical Solution

The model economy grows asymptotically at a rate g + n + gn. Some variables have

therefore to be normalized in order to yield a stationary system. The notation of normal-

ized variables is as follows: A normalized aggregate variable Xt is defined by xt := Xt
EtNt

. A

normalized individual-level variable xj,st is defined by x̃j,st :=
xj,st
Et

. The normalized system

of equations is derived in appendix A.2.

3.1. Calibration

The model is calibrated with respect to the postwar US economy. Whenever possible I

use values common in the literature.

Demographics. Periods in the model correspond to years in real-time. I therefore set

the number of years individuals spend working to 40 (T = 40) and the number of years in

retirement to 20 (TR = 20). The values for T and TR are taken from Heer and Maußner

(2012), who calibrate a life-cycle RBC model to quarters and set T = 160 and TR = 80.

The annual population growth rate n is set equal to 1 percent since the US was inhabited

by 159 million individuals in 1950 and by 230 million in 2013 (UN, 2013, 61).

Preferences. The subjective discount factor is set below, but close to unity as common

in the literature, i.e. β = 0.9975 (see, for instance, Heer and Maussner (2009)). The

intertemporal elasticity of substitution 1/ε cannot be inferred from time series of economic

variables. According to a recent empirical meta-analysis by Havránek (2015) it should be

far below unity. I choose a value of 0.25 such that ε = 4.

5Due to the financial friction the total capital of unproductive or productive individuals cannot be
negative. If, for example, total capital of unproductive individuals would be negative that would imply
that unproductive individuals borrow resources from productive individuals at the return σ(1 + rt)
contradicting the imposed financial friction.
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Table 2: Set of parameters

Parameter Value Parameter Value
T 40 ρ 0.814
TR 20 σa 0.0142
n 0.01 σ 0.6
β 0.9975 η 0.05
ε 4 o 10

11

α 0.34 p 6
7

δ 0.08 θ 0.15
g 0.02

Production. The capital income share and the capital depreciation rate are set in

accordance with Prescott (1986) implying α = 0.34 and δ = 0.08. The growth rate g is

determined by the population growth rate n and the growth rate of aggregate output.

In the period 1960-2014 real US-GDP grew on average by approximately 3 percent as

calculated from the US Bureau of Economic Analysis. Aggregate output in the model

economy grows at the rate n + g + ng. The growth rate of Et is then given by g =

(0.03 − n)/(1 + n) ≈ 0.02. The parameters for the AR(1) process for technology are set

equal to ρ = 0.814 and σa = 0.0142. These parameters correspond to a quarterly AR(1)

process with ρ = 0.95 and σa = 0.00763 as given in Prescott (1986).6

Financial friction. The parameters η and σ are not common in the literature on quan-

titative macroeconomic models and empirical time series for calibrating these parameters

do not exist. I assume that 5 percent of the population is much more efficient in investing

than the rest of the population. Further, σ is chosen such that the wedge between the in-

terest rate of productive and unproductive individuals is sufficiently large for expansionary

bubbles to exist. Therefore, η = 0.05 and σ = 0.6.

Bubbles. A growing body of literature investigates the characteristics of financial cy-

cles.7 The studies differ, amongst others, with respect to the definition of financial cycles,

the method of measurement, the relevant variables for measuring the financial cycle, as

well as the length of the financial cycle, economic upturns and downturns. According to

6See Heer and Maussner (2009, Ch. 10, appendix 5) for how to derive parameters for the annual AR(1)
process based on parameters of a quarterly AR(1) process.

7See, for instance, Borio (2014), Claessens et al. (2012), Drehmann et al. (2012), and Claessens et al.
(2010).
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Drehmann et al. (2012) the average length of the financial cycle for the post-world war II

period in industrialized countries is 16 years. Galati et al. (2016) and Rünstler and Vlekke

(2015) derive very similar values (14.4 years and 12 to 16.5 years). Further, Drehmann

et al. (2012) provide a measure for the average length of aggregate asset prices’ up- and

downswings. According to this measure the share of time spent in an upswing (down-

swing) within one financial cycle is approximately 60 (40) percent. Hence, the upswing’s

(downswing’s) duration is on average 10 (6) years. In the model the average duration of

an upswing is given by the Markov process governing the behavior of zbt and is equal to

o(1− o) + 2o2(1− o) + ... =
1

1− o
.

Hence, o is given by o = 10
10+1

, and, similarly, p = 6
6+1

. The creation of new bubbles –

governed by θ – is set such that the bubble-to-capital ratio is approximately equal to 1

percent in the deterministic steady state, implying a value of θ = 0.15. Large values of θ

can result in bubbles becoming too large and violating the equilibrium conditions. The

calibration of the model is summarized in Table 2.

3.2. Deterministic steady state

The deterministic steady state is a hypothetical trajectory where the stochastic exoge-

nous state-variables zat and zbt are equal to their expected values with probability one.

The computation of the deterministic steady state is necessary for the numerical solution

of the dynamic system in subsection 3.3.

The limiting distribution of the Markov process of investors’ sentiment, π, is given by

π =

 1−p
(1−o)+(1−p)

1−o
(1−o)+(1−p)

 . (21)

The expected value of zbt is then given by z̄ := limT→∞ Et[zbT ] =
1− p

(1− o) + (1− p)
. In

the deterministic steady state zbt = z̄, zat = 0, and At = 1 for all t.
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The stochastic Euler equations given by (33) become deterministic and read

(
(1 + g)c̃j,s+1

c̃j,s

)ε
=βRj s = 1, ..., T + TR − 1(

(1 + g)c̃j,s+1

c̃j,st

)ε
=β(1 + q) + ω̃j,s+1

(
c̃j,s+1

)ε
s = 1, ..., T + TR − 1

ω̃j,s+1b̃j,s+1 =0 and (29), (22)

In what follows I assume θ > 0, as in the calibration, such that new bubbles are created

in the deterministic steady state. What is now the relation between the certain return to

bubbles q and the return to capital r?

First, when (1 + q) = Rj individuals are indifferent with respect to the allocation of

their wealth between productive capital aj,s and bubbles bj,s, otherwise individuals hold

only productive capital or only bubbles. The equilibrium condition for bubbles (17)

necessitates that q is large enough such that some individuals in the economy choose

to purchase bubbles, because new bubbles are created in each period. This rules out

1 + q < σ(1 + r), because otherwise the newly created bubbles would not be purchased

and the equilibrium condition (17) would be violated.

Second, assume (1 + q) = RU = σ(1 + r). Unproductive individuals hold bubbles and

their non-negativity restriction does not bind, i.e. ω̃U,s = 0. Productive individuals would

not purchase bubbles because 1 + q < RP = (1 + r) and their non-negativity restriction

would bind, i.e. ω̃P,s > 0, and b̃P,s = 0. Unproductive individuals are indifferent with

respect to the amount of bubbles purchased. Any distribution of the existing bubble

across all unproductive individuals would satisfy the household optimality and market

equilibrium conditions. I assume that each individual holds the same amount of bubbles,

i.e. bU,s = bU .

Third, only if (1 + q) ≥ (1 + r) all individuals in the economy would hold bubbles, i.e.

ω̃j,s = 0. The discussion is summarized by

1 + q =


= σ(1 + r) if b <

∑T+TR

s=1 (1− η)N s+1
0 s̃U,s

∈ [σ(1 + r), (1 + r)] if b =
∑T+TR

s=1 (1− η)N s+1
0 s̃U,s

= (1 + r) if b >
∑T+TR

s=1 (1− η)N s+1
0 s̃U,s,

(23)
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Figure 1: Age profiles
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where total individual wealth s̃j,s is defined as s̃j,s := ãj,s + b̃j,s for j ∈ {U, P}.

In the simulations I consider only the case where 1 + q = σ(1 + r), because the model

would otherwise yield empirically implausible bubbles where the capital stock declines

when bubbles emerge and increases when bubble burst. Therefore it is always checked

that the wealth of the unproductive individuals is smaller or equal than the existing

bubble such that (23) is satisfied. The size of individual bubbles is then given by b̃P,s = 0

and

b̃U =
1

(1− η)(1−N1
0 )
b. (24)

The numerical procedure that has been employed to solve for the steady state is closely

related to Auerbach and Kotlikoff (1987) and similar to the “direct computation method”

as described in Heer and Maussner (2009). The solution algorithm is described in detail

in appendix C.1.

In the steady state the aggregate (normalized) capital stock and the aggregate (nor-

malized) bubble are given by k = 1.150 and b = 0.012. The returns to capital differ

strongly between productive and unproductive individuals and are given by RP = 1.172

and RU = 0.7032. The bubble is positive and considerably smaller than the aggregate

wealth of all unproductive individuals – which is equal to 1.506 – hence (23) is satisfied.

Figure 1 depicts the individual wealth and consumption profiles. The consumption pro-

file is increasing for productive individuals and decreasing for unproductive individuals.

This is a direct result of the financial friction which draws a wedge between the interest

rates faced by productive and unproductive individuals. Consumption of a productive

individual grows at a constant rate of 2 percent over a life span while consumption of an

15



unproductive individual declines at constant rate of 10 percent.8 The increasing consump-

tion profile of productive individuals therefore also implies a much steeper wealth profile,

because productive individuals need to accumulate more wealth for higher consumption

levels at an older age than unproductive individuals.

3.3. Dynamics

The model is solved with the deterministic extended path (DEP) method. This pro-

cedure was first applied to DSGE models by Gagnon (1990). As shown by Heer and

Maußner (2008) the DEP method yields the highest accuracy in the computation of the

standard business cycle model at the cost of longer computational time when compared

with log-linear solution methods, second-order approximations, the parameterized expec-

tations approach, Galerkin projetions, and value function iterations. In contrast to local

methods like the log-linear or higher-order approximations as well as linear-quadratic ap-

proximations the DEP method is a global method and therefore better suited for the

present model, because the shocks due to evolving and bursting bubbles can shift the

economy far away from its steady state.

The DEP method works as follows: For given endogenous and exogenous (stochastic)

state variables in period t the conditional expectations of the stochastic state variables for

the entire time span of the simulation is calculated and plugged into the stochastic Euler

equations. The result is a deterministic dynamic system of equations. This deterministic

system is solved for a time-span large enough for the economy to be very close to its

deterministic steady state. From the solution the endogenous state variables at t + 1

and the control variables at t are stored. In t + 1 a new realization of the shocks is

drawn and the whole procedure is repeated. Proceeding in this manner one obtains an

approximation of a realized time path of the true stochastic model which – as shown by

Heer and Maußner (2008) – can be very accurate.

The deterministic counterpart of the true stochastic dynamic system of equations as

well as the solution algorithm are described in appendix C.2.

I will compare three different numerical solutions in the following: i) an economy with-

8The constant growth rate of individual consumption is obtained by rearranging the Euler equation

such that cj,s+1

cj,s − 1 =
(βRj)

1
ε

1+g − 1.
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Figure 2: Bubble-driven business cycles
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out bubbles, i.e. θ is set equal to zero, ii) an economy with bubbles but without TFP

shocks, and iii) an economy with both types of shocks.

Figure 4 in the appendix depicts the impulse response functions for the model economy

without bubbles. For all t = 2, ...30 zat is equal to zero, except for t = 1, where a posi-

tive shock of one standard deviation occurs. When the positive TFP shock materializes

in the first period output, wages, interest rates, consumption, and investment increase

immediately, whereas capital reacts with a lag of one period. Consumption increases by

0.45 percent, output by 1.4 percent, and investment by more than 8 percent. All variables

converge back to their steady states, but consumption converges very slowly reflecting the

households’ desire for distributing the positive income shock evenly over their life-span.

Figure 2 depicts a simulation for an economy with bubbles and without TFP shocks.

During the 50 years simulated two episodes of asset price bubbles occur. When bubbles

emerge capital stock, output, investment, and consumption increase and stay above their

17



Table 3: Business cycles statistics of the US-economy

Variable Standard Relative First-order Contemporaneous
deviation standard auto- correlation

deviation correlation with output

Output 0.014 1.000 0.221 1.000
Consumption 0.011 0.819 0.287 0.917
Investment 0.047 3.382 0.171 0.943
Hours 0.014 1.006 0.302 0.890

Table 4: Business cycles statistics of the model

Variable Standard Relative First-order Contemporaneous
deviation standard auto- correlation

deviation correlation with output

TFP-shocks
Output 0.009 1.000 0.127 1.000
Consumption 0.002 0.241 0.172 0.985
Investment 0.057 6.263 0.020 0.933

Bubble-shocks
Output 0.001 1.000 0.459 1.000
Consumption 0.007 12.100 0.052 -0.242
Investment 0.020 35.850 0.032 -0.447

Both shocks
Output 0.009 1.000 0.115 1.000
Consumption 0.007 0.784 0.088 0.313
Investment 0.060 6.588 0.075 0.858

respective trend. When bubbles burst all four variables decline. From the height of the

first bubble-driven cycle to the subsequent trough output declines by approximately 1.5

percentage points, capital stock by four percentage points and consumption by almost

eight percentage points. Note, aggregate consumption is much more volatile than in the

bubble-less model economy depicted in Figure 4. The reason is that bursting bubbles

destroy a part of individual wealth, whereas TFP shocks imply a reduction in wages or

interest rates leaving current wealth unchanged.

How does the model fare with respect to second moments? To answer this question

second moments of empirical time series of aggregate output, consumption, investment,

and hours for the US are reported in Table 3 and second moments of the time series

generated by the model are reported in Table 4. The empirical time series are from the

US Bureau of Economic Analysis and cover the period 1954–2011. All variables – the

empirical time series as well as the generated time series from the model – are expressed

in logarithms and HP-filtered with an annual smoothing parameter of 6.25 as proposed

by Ravn and Uhlig (2002). The time series generated by the model are obtained from

simulating the model for 500 periods and dropping the first 100 observations in order to
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make sure that initial conditions do not effect the calculated second moments.9

The empirical time series reveal standard business cycle facts,10 namely that i) in-

vestment is three times more volatile than output, ii) aggregate hours are as volatile as

output, iii) consumption is less volatile than output, and iv) all four variables are pro-

cyclical (strong contemporaneous correlation with output). Since I am looking at annual

data the first-order autocorrelation is of course lower than for quarterly data implying

less persistent fluctuations at the annual frequency.

The results for the life-cycle RBC model without bubbles is depicted in the first four

rows of Table 4. The model generates slightly insufficient volatility in output, slightly

to strong volatility in investment and far to low volatility in consumption. The relative

volatility of consumption with respect to output is almost four times smaller than in the

empirical time series. The persistence of all variables is to small while their contempora-

neous correlation with output matches the empirical moments quite well.

Considering the model economy with shocks from evolving and bursting bubbles and

without TFP-shocks in Table 4 reveals implausible business cycle statistics. By con-

struction of the rather small bubble (1 percent of the capital stock in the steady state)

bubble-driven business cycles imply rather small deviations of output, consumption and

investment from their respective trends. Consumptions and investment are way to volatile

in relation to output. This is a result of the transmission channel of bubbles, which imply

drastic changes in individual wealth. Taken as a sole source of business cycle fluctuations

evolving and bursting bubbles seem rather implausible. Adding asset price bubbles to the

model economy with TFP-shocks, however, results in second moments that better match

their empirical counterparts. Most importantly, the model can generate much higher and

empirically more plausible volatility of consumption. Relative to output the volatility of

consumption in the model (0.784) is very close to its empirical counterpart (0.819). This

better performance in terms of consumption volatility comes at the cost of lower contem-

poraneous correlation of consumption with output, as can be seen in the last column of

Table 4.

9On a Intel R© CoreTM i7 processor with four times 2.80GHz the computation of the model for 500
periods takes approximately 30 minutes.

10See, for instance, King and Rebelo (1999, ch. 2.2) for a description of stylized facts of US business
cycles.
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4. The model with elastic labor supply

In RBC models, another important propagation mechanism besides capital accumula-

tion is labor supply. I therefore loosen the assumption of an inelastic labor supply in this

section. The changes to the model are shown in appendix B.

The computation of the steady state is similar to the model with inelastic labor supply,

except that i) besides k also l has to be guessed and updated initially and ii) also lj,s

has to be computed in the solution of the household problem. The solution algorithm

is provided in appendix D. In the steady state k = 0.4338, l = 0.399, b = 0.01474,

RP = 1.2515, RU = 0.7509, and the bubble is considerably smaller than aggregate wealth

of all unproductive individuals which is equal to 0.5814.

The impulse-response function for a TFP-shock in the model with elastic labor supply

and without bubbles is shown in Figure 5 in the appendix. The graphs depict the difference

of a time-path where the error term zat is equal to zero for all t and a time-path where

zat = 0 for all t except for t = 1, where zat is equal to one standard-deviation σa. Two

qualitative differences to the model with inelastic labor supply are striking. First, the

lagged increase of capital stock is much more pronounced such that output first jumps to

a higher level and afterwards increases even further before converging back to its steady

state level. Second, aggregate consumption drops initially, stays below its steady state

for 15 years and stays above its steady state afterwards for a very long period before

converging back to its steady state. Individuals smooth consumption and therefore even

forgo higher consumption and leisure in the first periods in order to earn and save more

and finance higher consumption in later periods of their lives. Compared to the model

with inelastic labor supply individuals can now better smooth consumption via adjusting

their labor supply which results in a flatter consumption curve. Although the drop in

consumption is quantitatively very small (0.1 percent) it stands in contrast to empirical

business cycle facts. All variables except consumption are much more volatile in the model

with elastic labor supply.

Figure 3 depicts the results of a simulation with two bubble-episodes and without

TFP shocks. When bubbles emerge capital, consumption, and investment increase, and

when bubbles burst capital, consumption, and investment decline, similar to the model
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Figure 3: Bubble-driven business cycles (endogenous labor supply)
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with inelastic labor supply. However, in this model individuals react to the shocks of

evolving and bursting bubbles by adjusting their labor supply. The result is that labor and

output respond slower to the bubble shocks and first increase when bubbles burst before

decreasing. Consumption is slightly less volatile than output, output is more volatile than

labor and capital and investment are most volatile. Similar to the TFP-shock depicted in

Figure 5 in the appendix all variables except consumption are more volatile than in the

model with elastic labor supply.

Second moments generated from the model with elastic labor supply are depicted in

Table 5. The model without bubbles and with TFP-shocks generates volatility in output

which is very close to its empirical counterpart, but consumption and working hours are
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Table 5: Business cycles statistics for the model with elastic labor supply

Variable Standard Relative First-order Contemporaneous
deviation standard auto- correlation

deviation correlation with output

TFP-shocks
Output 0.013 1.000 0.139 1.000
Consumption 0.0004 0.033 0.371 -0.749
Investment 0.113 8.645 0.026 0.922
Hours 0.001 0.470 0.145 0.100

Bubble-shocks
Output 0.003 1.000 0.127 1.000
Consumption 0.005 1.604 0.059 -0.849
Investment 0.034 10.650 0.067 -0.904
Hours 0.004 1.201 0.066 0.962

Both shocks
Output 0.013 1.000 0.168 1.000
Consumption 0.005 0.380 0.064 -0.276
Investment 0.118 8.948 0.113 0.774
Hours 0.007 0.541 0.116 0.938

far too stable and investment is far too volatile. Consumption is countercyclical and

investment is acyclical. Both should be procyclical. The model with bubble-shocks and

without TFP-shocks generates higher volatilities in consumption, investment and hours,

lower volatility in output (due to the rather small bubbles) and countercyclical investment.

Adding bubble-shocks to the economy with TFP-shocks yields higher, but still too low,

volatilities in consumption and working hours. The contemporaneous correlation with

output is also higher and consumption is now almost acyclical.

5. Conclusion

Given their empirical relevance for business cycles it is important to integrate asset price

bubbles into DSGE models. This paper presents an important step towards this goal.

The computation of a life-cylce RBC model featuring rational asset price bubbles shows

that under an empirically reasonable parameter constellation asset price bubbles lead to

strong fluctuations in output, consumption, labor supply, capital stock and investment.

The simulated time paths show that the model is able to depict i) evolving asset price

bubbles together with increasing capital, investment, consumption, labor and output and

ii) bursting asset price bubbles leading to decreasing capital, investment, consumption,

labor and output. However, when labor supply is endogenous bursting bubbles lead to

first increasing labor supply before it starts to decline, such that output even shortly
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increases before decreasing in the subsequent periods.

The model did not consider a government and hence also no taxes, pensions and mon-

etary policy reacting to evolving and bursting bubbles. Adding a social security system

with pay-as-you-go pensions to the model would result in lower aggregate savings and

a lower capital stock, increasing the interest rate and possibly making the existence of

rational bubble impossible. However, only a part of the US-pension system is based on

governmental pay-as-you-go transfers, while the major part of pension is either occupa-

tional or private. Further, since World War II investment in the US has been heavily

driven by capital imports as the US run mostly current account deficits. The model

economy is a closed economy abstracting from international capital flows. Considering

international capital flows would increase the capital stock and make bubbles more likely.

Including further relevant macroeconomic aspects into the model to see how bubbles can

exist and conducting a welfare analyses remains therefore of future interest.
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Appendix

A. The basic model

A.1. Timing of events

Within a period t the exact timing of events is as follows:

• The sequence of capital
{
aP,st , aU,st

}s=T+TR

s=1
and bubbles

{
bP,st , bU,st

}s=T+TR

s=1
as well as

the return to bubbles in the optimistic state qot are predetermined from the previous

period.

• The two shocks zat and zbt materialize.

• Given total factor productivity At production takes place and labor and capital are

rewarded with their respective factor prices.

• If zbt = 1 bubbles from the previous period and newly created bubbles are traded.

If zbt = 0 the bubble bursts.

• Given capital income and labor income as well as the income from selling bubbles

individuals choose consumption cj,st and adjust their stock of capital aj,s+1
t+1 and

bubbles bj,s+1
t .

A.2. Normalization

Firms. Normalized output, wages, and interest rates are given by

yt = At

[
αkκt + (1− α)

(
1

1 + φ

)κ] 1
κ

w̃t :=
wt
Et

= (1− α)Aκt [(1 + φ)yt]
1−κ

rt = αAκt

(
yt
kt

)1−κ

− δ.
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Bubbles. The equations for bubbles in normalized variables change as follows

bt =
T+TR∑
s=1

N s
0

[
ηb̃P,st + (1− η)̃bU,st

]
(25)

b̃Nt :=
b̂Nt
Et

= zbrθ (26)

bNt =
η

1 + φ
b̃Nt (27)

1 + qt = zbt (1 + qot ). (28)

Note,
Ns
t

Nt
=

Ns
0

N0
= N s

0 is the time-constant population share of cohort s.

Household optimum. The budget constraints now read

c̃j,st + (1 + g)
(
ãj,s+1
t+1 + b̃j,s+1

t+1

)
= w̃jt +Rj

t ã
j,s
t + (1 + qt)̃b

j,s
t s = 1, ..., T

c̃j,st + (1 + g)
(
ãj,s+1
t+1 + b̃j,s+1

t+1

)
= Rj

t ã
j,s
t + (1 + qt)̃b

j,s
t s = T + 1, ..., T + TR

0 = ãj,1t = b̃j,1t = ãj,T+TR+1
t = b̃j,T+TR+1

t , (29)

with w̃Pt := w̃t + b̃Nt and w̃Ut := w̃t.

The FOCs in normalized variables are given by

(1 + g)ε
(
c̃j,st
)−ε

=βEt
{
Rj
t+1

(
c̃j,s+1
t+1

)−ε}
s = 1, ..., T + TR − 1

(1 + g)ε
(
c̃j,st
)−ε

=βEt
{

(1 + qt+1)
(
c̃j,s+1
t+1

)−ε}
+ ω̃j,s+1

t+1 s = 1, ..., T + TR − 1

ω̃j,s+1
t+1 b̃j,s+1

t+1 =0 and (29), (30)

with ω̃j,s+1
t+1 := Eε

t+1ω
j,s+1
t+1 .

Equilibrium. The equilibrium conditions in normalized variables are given by

Lt
Nt

=
1

1 + φ

kt+1 =
T+TR∑
s=1

N s+1
0

[
ηãP,s+1

t+1 + σ(1− η)ãU,s+1
t+1

]
(1 + qt)(bt + bNt ) = (1 + g)(1 + n)

T+TR∑
s=1

N s+1
0

[
ηb̃P,s+1

t+1 + (1− η)̃bU,s+1
t+1

]
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yt + (1− δ)kt = ct + (1 + n)(1 + g)kt+1 + (1 + g)(1− η)(1− σ)
T+TR∑
s=1

N s
0 ã

U,s+1
t+1

T+TR∑
s=1

ηN s
0 ã

P,s+1
t+1 ≥ 0 and

T+TR∑
s=1

(1− η)N s
0 ã

U,s+1
t+1 ≥ 0.
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B. The model with elastic labor supply

Each young individual has an time endowment of one unit per period. Individual leisure

is given by lj,st , individual labor supply by nj,st and 1 = lj,st +nj,st . The instantaneous utility

function is given by

u(c, l) =

(
clψ
)1−ε − 1

1− ε
, (31)

where ψ > 0 is the relative weight given to leisure and ε is the inverse of the intertemporal

elasticity of substitution.

The budget constraints now read

c̃j,st + (1 + g)
(
ãj,s+1
t+1 + b̃j,s+1

t+1

)
= w̃jtn

j,s
t +Rj

t ã
j,s
t + (1 + qt)̃b

j,s
t s = 1, ..., T

c̃j,st + (1 + g)
(
ãj,s+1
t+1 + b̃j,s+1

t+1

)
= Rj

t ã
j,s
t + (1 + qt)̃b

j,s
t s = T + 1, ..., T + TR

0 = ãj,1t = b̃j,1t = ãj,T+TR+1
t = b̃j,T+TR+1

t , (32)

and the FOC now also contain an intra-temporal condition reflecting the leisure-

consumption trade-off:

ψ
cj,st

lj,st
=wt

(1 + g)ε
(
c̃j,st
)−ε (

lj,st
)ψ(1−ε)

=βEt
{
Rj
t+1

(
c̃j,s+1
t+1

)−ε (
lj,s+1
t+1

)ψ(1−ε)
}

s = 1, ..., T + TR − 1

(1 + g)ε
(
c̃j,st
)−ε (

lj,st
)ψ(1−ε)

=βEt
{

(1 + qt+1)
(
c̃j,s+1
t+1

)−ε (
lj,s+1
t+1

)ψ(1−ε)
}

+ ω̃j,s+1
t+1 s = 1, ..., T + TR − 1

ω̃j,s+1
t+1 b̃j,s+1

t+1 =0 and (32), (33)

Output, wages, and interest rates can be written as

yt = At [αkκt + (1− α)lκt ]
1
κ

w̃t = (1− α)Aκt

(
yt
lt

)1−κ

rt = αAκt

(
yt
kt

)1−κ

− δ

where lt := Lt
Nt

is the average labor supply. Furthermore, the labor-market clearing con-
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dition changes to:

lt =
T+TR∑
s=1

N s
0

[
ηnP,st (1− η)nU,st

]
. (34)

All other equations remain unchanged.

Based on Ŕıos-Rull (1996), the new utility parameter capturing the weight of leisure in

the utility function, ψ, is set equal to 2 in the computation.11

11 Ŕıos-Rull (1996) uses a slightly different instantaneous utility function. By defining ψ := 1−αRı́os-Rull

αRı́os-Rull

and ε := 1 − αRı́os-Rull(1 − σRı́os-Rull), where αRı́os-Rull and σRı́os-Rull are parameters of the utility
function in Ŕıos-Rull (1996), the utility function in Ŕıos-Rull (1996) can be transformed into the
utility function of this paper. In Ŕıos-Rull (1996) α is set equal to 0.33 resulting in ψ = 2.03.
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C. Computation methods

C.1. Solution algorithm for the steady state

1. Define all parameter values, set A equal to one, and compute z̄ as well as N1
0 .

2. Provide an initial guess for k.

3. Given k obtain the values for (obey the order) r, w̃, q, q1 and

b =
θ(1 + q)η

(1 + φ) [(1 + n)g + n− q]

bN =
ηθ

1 + φ

b̃U =
1

(1− η)(1−N1
0 )
b, and b̃P = 0.

4. Solve for {s̃P,s, s̃U,s}T+TR−1
s=1 and by using the FOC conditions (22). For each j ∈

{P,U}:

• Guess c̃j,1

• Compute all {c̃j,s}T+TR

s=2 by iterating over the Euler equation

• Given {c̃j,s}T+TR

s=1 obtain all {s̃j,s+1}T+TR

s=1 from the budget constraints, where

sj,10 is set equal to zero, but sj,T+TR+1 is not predetermined

• If s̃j,T+TR+1 is not close enough to zero as defined by chosen tolerance criterion

repeat the last three steps with an updated c̃j,1 according to the Secant Method

(Newton’s Method does also work, but it is slower):

c̃j,1i+2 = c̃j,1i+1 −
c̃j,1i+1 − c̃

j,1
i

s̃j,T+TR+1
i+1 − s̃j,T+TR+1

i

s̃j,T+TR+1
i+1 (35)

5. Compute {ãj,s+1}T+TR−1
s=1 by ãj,s = s̃j,s − b̃j.

6. Compute k′ by making use of the capital and labor market equilibrium condition

k′ =
1

1 + n

T+TR∑
s=1

N s
0

[
ηãP,s+1 + σ(1− η)ãU,s+1

]
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7. Compare both k′ with k. If the difference is close to zero (defined by a tolerance

criterion) stop. Otherwise update the initial guess of k and go back to step 3.

In the last step of the solution algorithm the updating of the initial guess for k is linear,

i.e. a linear combination of k′ and the previous initial guess k (l). The steady state

solution is robust to small changes in parameters and initial guesses and takes only a few

seconds.

C.2. Solution of the dynamic stochastic system

The conditional expectation of the bubble shocks is equal to the condition probability

that zbt+k = 1 (the other possibility, zbt+k = 0, drops out due to the zero):

z̃bt+k := Et[zbt+k] = (1− zbt )P
(k)
21 + zbtP

(k)
11 , (36)

where P
(k)
ij is the entry in the i-th row and j-th column of P k.

The conditional expectation of the TFP-shock is equal to zero, i.e. z̃at+k := 0 for all

k > 0. The conditional expectation of A from period t on is given by

Ãt+k := Aρ
k

t . (37)

This deterministic dynamic system is now obtained by replacing all zbt+k by z̃t+k and

all At+k by Ãt+k for k > 0. In the firm sector At+k is replaced by Ãt+k for all k > 1 in the

equations for output, wages, and interest rates (25).

The households’ optimization problem is now a problem under certainty with the FOC:

(1 + g)ε
(
c̃j,st
)−ε

=βRj
t+1

(
c̃j,s+1
t+1

)−ε
s = 1, ..., T + TR − 1

(1 + g)ε
(
c̃j,st
)−ε

=β(1 + qt+1)
(
c̃j,s+1
t+1

)−ε
+ ω̃j,s+1

t+1 s = 1, ..., T + TR − 1

ω̃j,s+1
t+1 b̃j,s+1

t+1 =0 and (29), (38)

where the investment-efficiency-specific returns RP
t+1 = (1 + rt+1) and RU

t+1 = σ(1 + rt+1)
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are deterministic, as well as the return to bubbles as given by

1 + qt+1 = z̃t+1(1 + qot+1). (39)

The same arguments as in the deterministic steady state apply with respect to the

return to bubbles (see (23)). I consider only bubbles that potentially crowd-in capital

such that the return to bubbles is given by

z̃bt+k(1 + qot+k) = σ(1 + rt+k) (40)

for all k > 0.

Solution Algorithm

1. Initialization:

• Define parameter values and initial values {ãP,s1 , b̃P,s1 , ãU,s1 , b̃U,s1 }T+TR−1
s=1 , qo1

• Choose nn numbers of periods for the simulation

• Draw a random sequence of the shocks {zat , zbt}nnt=1

• Choose a number of transitional periods N large enough for the (deterministic)

system to be close to its steady state

• Calculate the deterministic steady state as explained in subsection 3.2

2. At each point in time t = 1, ..., nn:

• Calculate the conditional expectations z̃at+k and z̃bt+k ∀k = 1, ..., N as described

by (37) and (36)

• Transform the whole dynamic stochastic equation system into a determinis-

tic system by replacing
(
zat+k, z

b
t+k

)
with their expected values

(
z̃at+k, z̃

b
t+k

)
and

solve this deterministic model for the N periods by applying the direct com-

putation method, i.e. guess {kt+k}Tk=1 (that gives also w̃t, rt, qt, q
1
t , bt, b̃

U
t , and

bNt ), solve for the individual problem, and update the initial guess {kt+k}Tk=1

until convergence.12

12The household problem is solved similarly by guessing cj,1t , computing all other c’s by iterating over the
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• From the solution store {ãP,st+1, ã
U,s
t+1, b̃

P,s
t+1, b̃

U,s
t+1, c̃

P,s
t , c̃U,st }T+TR

s=1 and qot+1

• Use {ãP,st+1, ã
U,s
t+1, b̃

P,s
t+1, b̃

U,s
t+1}T+TR

s=1 and qot+1 as initial values for period t+ 1.

C.3. Solution algorithm for the steady state with elastic labor supply

1. Define all parameter values, set A equal to one, and compute z̄ as well as N1
0 .

2. Provide an initial guess for k and l.

3. Given k and l obtain the values for (obey the order) r, w̃, d̃, q, q1 and

b =
γ1(1 + q)η

(1 + n)(1 + g)(1 + φ)− (1 + q) (1 + φ+ γ2η)

bN =
η

1 + φ
(γ1 + γ2b)

b̃U =
1

(1− η)(1−N1
0 )
b, and bP = 0.

4. Solve for {s̃P,s, s̃U,s}T+TR−1
s=1 and {l̃P,s, l̃U,s}Ts=1 by using the Euler equations. For each

j ∈ {P,U}:

• Guess c̃j,1

• Compute all {c̃j,s}T+TR

s=2 by iterating over the Euler equations

• Obtain all {s̃j,s+1}T+TR

s=1 from the budget constraints

• If s̃j,T+TR+1 is not close enough to zero (as defined by some chosen tolerance)

repeat the last 3 steps with an updated c̃1 (here the Secant Method, Newton’s

Method does also work):

c̃j,1i+2 = c̃j,1i+1 −
c̃j,1i+1 − c̃

j,1
i

s̃j,T+TR+1
i+1 − s̃j,T+TR+1

i

s̃j,T+TR+1
i+1 (41)

5. Compute {ãs+1,U}T+TR−1
s=1 by ãs,U = s̃s,U − b̃U (ãs,P = s̃s,P ).

6. Compute {l̃P,s, l̃U,s}Ts=1 from the intra-temporal FOC

Euler equation, and computing all s’s by making use of the budget constraints. The last sj,T+TR+1
t

should then be equal to zero, otherwise the initial guess of cj,1t is updated until convergence.
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7. Compute k′ and l′ by making use of the capital and labor market equilibrium con-

dition

k′ =
1

1 + n

T+TR∑
s=1

N s
0

[
ηãP,s+1 + σ(1− η)ãU,s+1

]
l′ =

T∑
s=1

N s
0

[
η(1− lP,s) + (1− η)(1− lU,s)

]
.

8. Compare both k′ and l′ with k and l′, respectively. If the largest of both differences

is close to zero stop. Otherwise update the initial guess of k and l and go back to

step 3.

D. Solution algorithm for the dynamic stochastic system with elastic labor

supply

1. Initialize

• Define parameter values and initial values {ãs,P1 , b̃s,P1 , ãs,U1 , b̃s,U1 }T+TR−1
s=1 , q1

1 (I

choose the deterministic steady state)

• Choose nn numbers of periods for the simulation

• Draw a random sequence of the shocks {zat , zbt}nnt=1

• Choose a number of transitional periods N large enough for the (deterministic)

system to be close to its steady state

• Calculate the deterministic steady state for zat and zbt equal to the stationary

expected value of the Markov process, z̄a and z̄b

2. At each point in time t = 1, ..., nn:

• Calculate the conditional expectations z̃at+k and z̃bt+k ∀k = 1, ..., N as given by

(37) and (36)

• Transform the whole dynamic stochastic equation system into a determinis-

tic system by replacing
(
zat+k, z

b
t+k

)
with their expected values

(
z̃at+k, z̃

b
t+k

)
and

solve this deterministic model for the N periods by applying the direct compu-

tation method, i.e. guess {kt+k, lt+k}Tk=1 (that gives also w̃t, rt, qt, q
1
t , bt, b̃

U
t , bNt ,
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d̃t), and solve for the individual problem, update the initial guess {kt+k, lt+k}Tk=1

until convergence.13

• From the solution store {ãs,Pt+1, ã
s,U
t+1, b̃

s,P
t+1, b̃

s,U
t+1, c̃

s,P
t , c̃s,Ut }T+TR

s=1 and q1
t+1

• Use {ãs,Pt+1, ã
s,U
t+1, b̃

s,P
t+1, b̃

s,U
t+1}T+TR

s=1 and q1
t+1 as initial values for period t+ 1.

13The household problem is solved similarly by guessing cj,1t , computing all other c’s by iterating over
the Euler equation where l is substituted, computing all s’s by making use of the budget constraints.

The last sj,T+TR+1
t should then be equal to zero, otherwise the initial guess of cj,1t is updated until

convergence.
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E. Figures

Figure 4: Impulse response functions for a TFP shock in a bubble-less economy
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Figure 5: Impulse response functions for a TFP shock in a bubble-less economy with
elastic labor supply
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