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Rational Inefficiency, Adjustment Costs and

Sequential Technologies

Abstract

In this paper we propose a novel approach to estimate the rational inefficiency of decision making

units in the presence of adjustment costs. Using sequential definitions of the production technol-

ogy, we show how cost inefficiency can be decomposed into rational and residual inefficiency as

well as inefficiency caused by technical change. Furthermore, we estimate lower bounds for the

unobserved adjustment costs based on unexploited cost reductions due to rational inefficiency.

These adjustment costs are used to evaluate the feasibility of exploiting cost reductions caused by

residual inefficiency. We demonstrate the empirical applicability of our model by estimating and

decomposing the cost inefficiency of U.S. coal-fired power plants using panel data which cover the

period between 1994 and 2009.

JEL classification: D24, L20, O33

Keywords: Rational inefficiency; Cost inefficiency; Adjustment costs; Sequential technologies;

Nonparametric efficiency analysis



1 Introduction

The classical approaches to evaluate the efficiency of decision making units (DMUs), e.g. firms,

assume that inefficiencies arise because DMUs are unaware of and, hence, do not exploit all tech-

nological possibilities (see e.g. Fried et al. (2008) for an overview of the literature). For example,

analyses of cost inefficiency quantify potentials to decrease costs by radial reductions of input

consumption (technical inefficiency) and by factor substitution (allocative inefficiency) given the

available production technology. This methodology implicitly assumes that all inefficiencies can

be reduced without costs. Therefore, DMUs do not face any adjustment costs for shifts towards

the technological frontier to reduce technical inefficiencies or along the frontier to reduce alloca-

tive inefficiencies. However, as pointed out by Wibe (2008) this assumption may lead to seriously

biased results if i.e. technical efficiency can only be achieved by investing in new equipment (e.g.

modern computers) and these expenditures are larger than the cost reductions due to increased

efficiency. In this case, firms are misclassified as operating economically inefficient.

This situation is an example of rational inefficiency, a concept which has been introduced by

Bogetoft and Hougaard (2003). They point out that inefficiency as measured by production

economists may be the result of rational behavior based on an unknown utility function of the

decision makers of a DMU. For example, cost inefficiencies due to excess payments to employees

may be explained by the objective of the management to increase the loyalty of the employees

and prevent them from switching to another firm. Asmild et al. (2013) apply this model to

analyze the efficiency of bank branches in Canada and evaluate whether the found inefficiencies are

rational. While this approach allows to address the plausibility of inefficiency results, it does not

allow to disentangle and quantify the extend of rational and residual inefficiency associated with

economic inefficiency.1 Fandel and Lorth (2009), Färe et al. (2012) and Lee and Johnson (2015)

define rational inefficiency in the context of price reactions in markets with limited competition,

hence where the assumption of price taking behavior can not be maintained. For example, in

an oligopoly it may be rational for a firm not to produce its technologically maximal amount of

outputs since the increased supply may reduce the price and thus may lead to a decrease in the

firms profits.

Both approaches to rational inefficiency are based on static models which do not account for

dynamic behavior or adjustment costs. Dynamic models of inefficiency (see e.g. Sengupta (1999),

Nemoto and Goto (1999, 2003), Silva and Stefanou (2003, 2007) and Atkinson and Cornwell

(2011)) estimate optimal paths of dynamic efficiency accounting for adjustment costs.2 In these

models DMUs can be rationally inefficient if the adjustment costs associated with reaching the

technological frontier are higher than the intertemporal cost reductions.3 However, in order to

combine efficiency analysis and dynamic optimization these models are based on rather restrictive

assumptions regarding the information of the analyzed DMUs, the uniqueness of the classifica-

tion of inputs and the possibilities to estimate key variables (see e.g. Fallah-Fini et al. (2014)

1 We refer to residual inefficiency as the part of economic inefficiency which can not be explained by rational
behavior of the DMU.

2 See Førsund (2010) for an overview of the literature on dynamic efficiency models.
3 Note that the term rational inefficiency is not used in the literature on dynamic inefficiency. There it is common

to address this issue by differentiating static from dynamic inefficiency. However, firm behavior which leads to
static inefficiencies but is dynamic efficient can be seen as a special case of rational inefficient behavior.
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for an overview of the models and the assumptions). For example, all DMUs are assumed to

exhibit perfect anticipation of future variables (e.g. prices). Moreover, inputs can be clearly dif-

ferentiated into variable and quasi-fixed factors with the latter being associated with adjustment

costs. Both assumptions are rather questionable from an empirical point-of-view. In particular,

the conventional approach to assume that capital is the single quasi-fixed input while all other

factors are variable is challenged by empirical findings. While there is a long debate whether

labor is a variable factor (see e.g. Hall (2004)), recent studies for power plants (see Carlson et al.

(2000) and Abadie and Chamorro (2009)) found that materials (specifically: fuels) may not be

variable either and, thus, without adjustment costs due to long-term contracts and costs asso-

ciated with switching fuel types. This also leads to difficulties when estimating the adjustment

costs as done in the above summarized models since the adjustment costs of multiple factors may

be interrelated and direct data on adjustment costs as used by de Mateo et al. (2006) may not

be available.

In this paper we propose a new approach to estimate the rational inefficiency of DMUs taking into

account adjustment costs and a dynamic production structure. We extend the concept of Bogetoft

and Hougaard (2003) to an analysis of cost inefficiencies and present a possibility to decompose

the overall economic inefficiency into rational and residual inefficiency. In contrast to previous

dynamic models of inefficiency, we do not rely on dynamic optimization to quantify inefficiency

and impose only minimal assumptions regarding the information of the firms and the structure

of the production technology. Our model is based on the assumption that at each point in time

t the DMUs have knowledge about their individual production structure in t and all previous

periods. That is, DMUs do not “forget” once exploited production possibilities. On an aggregate

level for all DMUs this assumption leads to sequential technologies (see Tulkens and Vanden

Eeckaut (1995)) where the technology set in period t contains the production points of period

t and all previous periods. The difference between individual and overall sequential production

possibilities allows to estimate the inefficiency with regard to a known production structure due to

adjustment costs (rational inefficiency) as well as with regard to potentially unknown production

points (residual inefficiency). These components can be further decomposed into technical and

allocative inefficiency as well as inefficiency caused by technical change. Based on the unexploited

cost reductions due to rational inefficiency, lower bounds on the adjustment costs can be estimated

and used to evaluate the feasibility of exploiting the residual inefficiency.

We apply our model to an analysis of the cost efficiency of coal-fired power plants in the United

States. Based on a sample covering the years 1994 to 2009 we find that conventional models of cost

efficiency indicate potential cost reductions of 35% on average. However, using our decomposition

we find that 10% of these potential reductions can be explained by rational inefficiency. Moreover,

only half of the remaining residual inefficiency can be exploited if adjustment costs are taken into

account.

This paper is structured as follows: Section 2 presents the methodology of our new approach to

rational inefficiency while section 3 presents the data and results of our analysis of U.S. power

plants. Finally, section 4 concludes the paper.
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2 Methodology

In this section we present the theory of our approach to rational inefficiency. We start by dis-

cussing relevant theoretical concepts from production economics as well as the nonparametric

estimation of sequential technologies. This is followed by a presentation of our new model to

estimate rational and residual inefficiency. Finally, the consequences of different assumptions re-

garding the structure of adjustment costs for the feasibility of exploiting the residual inefficiency

are discussed.

2.1 Modeling and estimating sequential technologies

In the following we consider a production process where m inputs x ∈ Rm
+ are used to produce

k outputs y ∈ Rk
+. The technology set of this process, which comprises all technically feasible

input-output combinations, is defined as:

T =
{

(x,y) ∈ Rm+k
+ : x can produce y

}
. (2.1)

Since our subsequent discussion of cost inefficiency and its decomposition into rational and resid-

ual inefficiency relies on input orientation we present the relevant axioms from production theory

using the input correspondence of T , L : Rk
+ → 2R

m
+ , which maps outputs into subsets of inputs.

The images of this correspondence are the input requirement sets (or input sets) for T and are

defined as:

L (y) =
{
x ∈ Rm

+ : (x,y) ∈ T
}
. (2.2)

Following Shephard (1970) we assume that these input sets satisfy the following axioms (see Färe

and Primont (1995) for further discussions on these axioms):

1. Inactivity: x ∈ L (0).

2. No free-lunch: 0 /∈ L (y) if y ≥ 0.4

3. Strong disposability of inputs: If x ∈ L (y) and x′ = x, then x′ ∈ L (y).

4. Strong disposability of outputs: If x ∈ L (y) and y′ 5 y, then x ∈ L (y′).

5. Convexity: If x1 ∈ L (y) and x2 ∈ L (y), then αx1 + (1− α)x2 ∈ L (y) with α ∈ [0, 1].

6. Closeness: L (y) is a closed set.

The inactivity axiom implies that “doing nothing” is technically feasible while the no free-lunch

axiom ensures that outputs can not be produced without using any inputs. Strong disposability

of inputs and outputs allows for inefficiency, e.g. given an input-output combination the same

amount of outputs can be produced using more inputs and the same amount of inputs can be used

to produce less outputs.5 Convexity implies that convex combinations of feasible input vectors

are also part of the input set while the closeness axiom ensures that the closure of the input set

is also part of the set.

4 Here and in the following ≥ and ≤ imply that at least one element of the vector has to satisfy inequality, while
= and 5 imply that all elements can hold with equality.

5 Our model can also be applied if inputs and/or outputs are only weakly disposable (see e.g. Färe et al. (1989)).
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The closure (or isoquant) of the input set L (y) can be defined as (see Färe et al. (1993)):

Isoq (y) =
{
x ∈ Rm

+ : γx /∈ L (y) , 0 5 γ < 1
}
. (2.3)

Hence, the isoquant for an output vector y comprises all input vectors for which no proportional

(radial) reduction is feasible given that the scaled input vector should be capable of producing y.

The above discussed technology is based on a static setting. In our model we assume that panel

data for i = 1, . . . , n DMUs covering t = 1, . . . , T periods are available. The equivalent of the

static technology set in a dynamic setting is the contemporaneous technology set:

T t =
{

(xt,yt) ∈ Rm+k
+ : xt can produce yt

}
. (2.4)

The term “contemporaneous” indicates that this set is only based on observations from period t

(see Tulkens and Vanden Eeckaut (1995) for the definitions and further discussions of panel data

technologies). The corresponding input sets are defined as:

Lt (yt) =
{
xt ∈ Rm

+ : (xt,yt) ∈ T t
}
. (2.5)

In contrast to the contemporaneous technology set, the sequential technology set for period t

contains all input-output combinations which are attainable in period t as well as all combinations

which were technically feasible in previous periods. Formally, the sequential input sets are defined

as:

L̃t (yt) = convex

{
t⋃

s=1

Ls (yt)

}
. (2.6)

Hence, the sequential input sets of period t are given by the convex hull of the union of all con-

temporaneous input sets of time periods 1 to t. The convex hull implies that convex combinations

between observations of different periods are also technically feasible. Therefore, contemporane-

ous as well as sequential input sets satisfy the convexity axiom.6 We further assume that the

dynamic input sets satisfy all remaining axioms stated above.

Based on the input sets of two different time periods, shifts in the frontiers can be used to calculate

technical changes.7 Shestalova (2003) proposes a model to estimate technical change based on

sequential technologies.8 In our following discussion we will show how a specific assumption

regarding the structure of the technical change can be used to simplify the estimation of the

inefficiency caused by technical change in our model.

7. Implicit Hicks input neutrality: Lt (yt) = L̄(yt)
A(t,yt)

The axiom of implicit Hicks input neutrality has been proposed for single output technologies

by Blackorby et al. (1976) and for the case of multiple outputs by Chambers and Färe (1994)

(see Färe and Grosskopf (1996) for a detailed discussion of the axiom). Here, A (t,yt) denotes

6 See O’Donnell et al. (2008) for a discussion of the analysis of convex and non-convex unions of technology sets.
7 See Agrell and West (2001) for a comparison of different indices to measure productivity and technical change

and their relationship to the optimizing behavior of the firms.
8 Note that the use of sequential technologies precludes the possibility of technological regress. However, as

pointed out by Shestalova (2003) technical regress is rarely observed in production processes of industrialized
countries.
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the factor of technical change which proportionally scales the time independent (basic) input set

L̄ (yt). Implicit Hicks input neutrality implies that the input sets are shifted radially, hence the

technical change is ray-preserving.

Combining implicit Hicks input neutrality and a sequential definition of the input sets we find

that the input sets satisfy

L̃t (yt) = convex

{
t⋃

s=1

Ls (yt)

}

= convex

{
t⋃

s=1

L̄ (yt)

A (s,yt)

}

= convex

 L̄ (yt)

max
s∈{1,...,t}

A (s,yt)


=

L̄ (yt)

max
s∈{1,...,t}

A (s,yt)
.

(2.7)

In this derivation the first equality follows from the definition of the sequential input sets while

the second follows from implicit Hicks input neutrality. The third equality follows from the

possibility to dispose inputs while the last equality follows from the convexity of the input sets.

This derivation shows that given implicit Hicks input neutral technical change the sequential

input set of period t can be calculated as the maximal radial expansion between periods 1 and t

of the basic input set caused by technical change.

In order to estimate the sequential input sets we rely on nonparametric methods (Data Envelop-

ment Analysis, DEA) by Charnes et al. (1978) which in contrast to parametric methods do not

impose a specific functional form on the isoquants of the input sets. Given a sample of i = 1, . . . , n

observations with input-output combinations (xt,i,yt,i) covering t = 1, . . . , T periods the DEA

estimation of the sequential input sets reads as:

̂̃
Lt(yt) =

{
x : x = X̃tλt,yt 5 Ỹ tλt,λt = 0,1Tλt = 1

}
. (2.8)

In this formulation, X̃t denotes the m× (n · t) matrix of inputs and Ỹ t the k × (n · t) matrix of

outputs from periods s = 1, . . . , t. λt denotes the (n · t) × 1 vector of weight factors which are

used to obtain the convex combinations of observations that span the frontier. Following Banker

et al. (1984) the weight factors are restricted to be non-negative and to sum up to unity implying

that the technology exhibits variable returns to scale (VRS).9 The estimation of the set can be

modified to exhibit constant returns to scale (CRS) by dropping the summing-up restriction.

2.2 Measuring and decomposing rational inefficiency

In the following we discuss how economic inefficiency can be decomposed into rational and residual

inefficiency based on the assumption of sequential technologies. In our discussion we focus on the

9 The non-convex version of the model, the Free Disposal Hull estimator by Deprins et al. (1984), can be obtained
by adding the restriction λt ∈ {0, 1}.
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decomposition of cost inefficiency. However, the same structure of decomposition can be applied

to analyses of revenue or profit inefficiency.

Our approach to estimate the rational inefficiency of DMUs is based on comparing the inefficiency

results obtained from analyzing the overall sequential input sets L̃t (yt) defined above and the

DMU-specific individual sequential input sets L̃t
i (yt). We define the individual input sets as:

L̃t
i (yt) = convex

{
x = xs,i ∈ Rm

+ : xs,i can produce yt, s ∈ {1, . . . , t}
}
. (2.9)

The individual isoquants (or frontiers) corresponding to L̃t
i (yt) are denoted by Ĩsoq

t

i (yt). Anal-

ogously to the overall sequential input sets, L̃t
i (yt) contains the current and all past input com-

binations of DMU i which can produce the output vector yt implying that the DMU does not

“forget” once exploited production possibilities. Moreover, we assume that the axioms defined

above can also be imposed on L̃t
i (yt) implying that the DMUs do not only have knowledge about

their current and past production points but are also aware of the possibilities to produce inef-

ficiently (due to the free disposability of inputs) and to combine the input vectors (due to the

convexity of the set). By definition L̃t
i (yt) ⊆ L̃t (yt) implying that the cost inefficiency based

on L̃t
i (yt) can never be larger than the cost inefficiency based on L̃t (yt). Moreover, since we

assume yt = yt,i when analyzing the inefficiency of the DMUs it follows that L̃t
i (yt) 6= ∅ and the

proposed decomposition is always feasible. The nonparametric estimator
̂̃
Lt
i (yt) can be obtained

by replacing the matrices X̃t and Ỹ t in equation (2.8) by the matrices X̃t,i and Ỹ t,i which only

contain the input and output vectors of DMU i for s = 1, . . . , t.

In line with the literature on cost inefficiency we assume that the DMUs are cost minimizers.

Hence, given their available information on prices and technological possibilities they minimize

the costs of producing yt. However, in contrast to the conventional approaches we assume that

changes in the input vectors are associated with adjustment costs. The adjustment costs can be

associated with radial movements to the frontier (e.g. cost associated with optimizing production

chains which allows to reduce the number of low and high skilled workers) or non-radial movements

along the frontier (e.g. firing and hiring costs in order to replace high skilled by low skilled

workers). We assume that while these costs are unobservable for the researcher, they are known

to the DMUs. Therefore, they affect the cost minimization of the DMUs. Differentiating the

individual and the overall sequential input sets allows to analyze inefficiency with regard to

the known production possibilities contained in L̃t
i (yt) and with regard to potentially unknown

production possibilities contained in L̃t (yt). Given the assumption of cost minimizing behavior

and unobserved adjustment costs, the inefficiency based on L̃t
i (yt) can be classified as rational

inefficiency since the optimizing DMU chooses an inefficient input combination although it is

aware of seemingly superior, less cost intensive input combinations as contained in the individual

inputs set. We interpret this inefficiency as being caused by the unobserved adjustment costs.

This approach to rational inefficiency and adjustment costs can also be interpreted in the sense of

Bogetoft and Hougaard (2003). For example, if the adjustment costs in form of reduced motivation

of employees are higher than the decrease in labor costs due to the reduction of bonus payments,

then the DMU operates rationally inefficient by choosing a point which lies within L̃t
i (yt).

10

10 In this example we assume that the labor costs are an input of the production process.
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However, in contrast to Bogetoft and Hougaard (2003) our model does not necessarily attribute

all inefficiency to either entirely rational or non-rational behavior.

In our approach the residual (possibly non-rational) inefficiency is measured as the difference

between the inefficiency as measured by exploiting the overall sequential input sets and the

estimated rational inefficiency. This inefficiency may result because the DMUs are not aware of the

additional technological possibilities captured in the overall set L̃t (yt). Hence, this inefficiency is

potentially non-rational and should be decreased by the DMUs. However, following the argument

by Wibe (2008) the additional production possibilities may be caused by technical progress which

can only be exploited by investing in new technologies. Without any further information regarding

the costs associated with following the technical progress, this type of inefficiency can not be

classified as being non-rational. Therefore, we further differentiate inefficiency caused by technical

change from residual inefficiency.

To formally define our decomposition of cost inefficiency into rational and residual inefficiency as

well as technical change, we consider the cost functions based on the overall and the individual

sequential input sets:

Ct (pt,yt) = min
x

{
pTt x : x ∈ L̃t (yt)

}
,pt > 0, (2.10)

Ct
i (pt,yt) = min

x

{
pTt x : x ∈ L̃t

i (yt)
}
,pt > 0. (2.11)

Here, pt denotes the m × 1 vector of input prices of period t which we assume to be strictly

positive.11 In order to reduce the notational complexity we assume that the input prices are the

same for all DMUs. If the prices differ, then pt can be replaced by pt,i in the cost functions and

our following decompositions. Estimates of the cost functions as well as the following distance

functions can be obtained by replacing the unknown sequential input sets by the nonparametric

estimators from equation (2.8). The resulting cost minimizing input vectors of the overall and the

individual cost function are denoted by xt,∗(pt,yt) and xt,∗
i (pt,yt). It is important to note that

due to the use of sequential input sets the individual frontier and, hence the cost minimizing input

vector, may not consist of observations from period t. We denote by r 5 t the period based on

which the frontier is constructed. If the frontier is constructed using observations from different

periods, then r is equal to the most recent period included in the convex combinations since the

input set of this period also includes all previous input combinations. Particularly relevant for our

analysis is the case that L̃r
i (yt) = L̃t

i (yt) but L̃r (yt) ⊂ L̃t (yt) implying that technical progress

has occurred for the overall technology between periods r and t, but DMU i did not follow this

technical change. In this case inefficiency due to unexploited technical progress arises.

Based on the cost functions we measure and decompose the cost efficiency of a DMU i as:

CEt
i (pt,xt,yt) =

Ct (pt,yt)

pTt xt
=

Ct
i (pt,yt)

pTt xt︸ ︷︷ ︸
RAT t

i (pt,xt,yt)

× C
r (pt,yt)

Cr
i (pt,yt)︸ ︷︷ ︸

RESr
i (pt,yt)

× Ct (pt,yt)

Cr (pt,yt)︸ ︷︷ ︸
TCr,t

i (pt,yt)

. (2.12)

Here, CEt
i (pt,xt,yt) denotes the cost efficiency of DMU i, while RAT t

i (pt,xt,yt) denotes the

11 The assumption pt > 0 ensures that the infinum of the cost function is a minimum.
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rational efficiency. The residual efficiency is represented by RESr
i (pt,yt) and TCr,t

i (pt,yt) mea-

sures the efficiency with regard to technical change.12 Values less than unity imply inefficiency

with regard to the analyzed component. Hence, the percentage amount of cost inefficiency and

possible cost reductions can be calculated as 100 ×
(
1− CEt

i (pt,xt,yt)
)
. The inefficiency and

the associated cost reductions for the components can be estimated likewise.

As discussed above, the rational inefficiency is measured as the cost inefficiency relative to the

individual sequential input set of DMU i. Note that by definition Ct
i (pt,yt) = Cr

i (pt,yt) and

xr,∗
i (pt,yt) = xt,∗

i (pt,yt). Therefore, the residual inefficiency measures the difference in the

minimal costs with regard to the overall and the individual input set for period r. This approach

allows to disentangle residual inefficiency from inefficiency caused by technical progress. The

additional inefficiency is measured by the third component in the above decomposition. This

component is based on the technical change that occurred for the overall frontier between periods

r and t. Hence, it measures the extent of technical progress which has not been exploited by

DMU i. It exhibits a value equal to unity if either no technical change has occured or r = t

implying that DMU i has shifted its individual frontier and therefore followed technical change.

By differentiating shifts in the overall technology from shifts in the individual frontier our model

accounts for localized technical progress as introduced by Atkinson and Stiglitz (1969). For ex-

ample, learning-by-doing may enhance the production possibilities for the overall frontier while

this is not possible given the individual technology.

Applying the Farrell (1957) measure of technical input efficiency allows to further decompose

the efficiency components into radial (technical) and non-radial (allocative) efficiency. While the

technical efficiency measures equiproportional decreases in all inputs, the allocative efficiency

measures cost reduction potentials due to changes in the input mix, hence due to movements

along the isoquant. The radial Farrell measures corresponding to the cost functions are defined

as:

θt (xt,yt) = min
{
θ : θxt ∈ L̃t(yt)

}
, (2.13)

θti (xt,yt) = min
{
θ : θxt ∈ L̃t

i(yt)
}
. (2.14)

Based on these measures the decomposition of the components reads as:

RAT t
i (pt,xt,yt) = θti (xt,yt)︸ ︷︷ ︸

TEt
RAT,i(xt,yt)

× Ct
i (pt,yt)

pTt θ
t
i (xt,yt)xt︸ ︷︷ ︸

AEt
RAT,i(xt,pt,yt)

, (2.15)

RESr
i (pt,yt) = θr

(
xt,∗
i (pt,yt) ,yt

)
︸ ︷︷ ︸

TEr
RES,i(pt,yt)

× Cr (pt,yt)

θr
(
xt,∗
i (pt,yt) ,yt

)
Cr
i (pt,yt)︸ ︷︷ ︸

AEr
RES(pt,yt)

, (2.16)

TCr,t
i (pt,yt) = θt (xr,∗ (pt,yt) ,yt)︸ ︷︷ ︸

TEr,t
TC,i(pt,yt)

× Ct (pt,yt)

θt (xr,∗ (pt,yt) ,yt)C
r (pt,yt)︸ ︷︷ ︸

AEr,t
TC,i(pt,yt)

. (2.17)

12 Due to the use of sequential input sets all technical change is technical progress.
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In this decomposition, TEr,t
TC,i (pt,yt) measures the additional radial reductions in the input

vector due to technical progress relatively to the cost-minimizing point on the overall frontier

of period r. If the technical change is implicit Hicks input neutral (see axiom 7 in the previous

section), then the result for this component is independent of the point from which the shift in

the frontier is measured. Hence, xr,∗ (pt,yt) does not need to be estimated in order to estimate

the radial influence of technical change and the measure is independent of the prices of the inputs

which define the cost-minimizing point on the frontier. Combining this finding with result (2.7)

it follows that

TEr,t
TC,i (yt) = max

s∈{1,...,r}
A(s,yt)×

[
max

s∈{1,...,t}
A(s,yt)

]−1

(2.18)

implying that in case of Hicks input neutrality the measure can be interpreted as the ratio of

maximal expansions of the overall input sets.

x1

x2

0

Ĩsoq
t
(y)

Ĩsoq
t−1

(y)

Ĩsoq
t

A(y) = Ĩsoq
t−1

A (y)
At−2

At−1Bt−1

Ct−1

At

Bt

Ct

A∗

A∗∗
A∗∗∗

Figure 1: Example of rational and residual inefficiency

To visualize our approach to rational inefficiency, figure 1 depicts the overall and individual

sequential input sets based on three different DMUs (A, B and C). The DMUs are using two

inputs x1 and x2 to produce a single output y. The amount of produced output is equal for all

DMUs and fixed for all time periods in order to depict the decomposition in input space. The

dashed lines in the figure represent isocost lines. The bold lines Ĩsoq
t
(y) and Ĩsoq

t−1
(y) represent

the isoquants for the overall sequential input sets, while Ĩsoq
t

A(y) represents the isoquant of the

individual sequential input set for DMU A. In order to reduce the complexity of the figure, the

overall sequential isoquant for period t (t− 1) is completely based on observations from period t

(t−1). This implies that the overall sequential input sets are equal to the overall contemporaneous

input sets. In contrast, the individual isoquant for DMU A is based on observations from periods

t− 1 and t− 2. Therefore, Ĩsoq
t

A(y) = Ĩsoq
t−1

A (y).

Given this production structure it is obvious that in period t DMU A produces cost inefficient.
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The overall cost efficient input combination to produce y in period t is given by the point Bt.

The overall cost efficiency of DMU A is given by the ratio of the costs based on input bundle Bt

to the actual costs associated with the point At. The rational efficient point is given by At−1,

which can be obtained by moving to the rational technical efficient point (A∗) and changing

the input structure according to the rational allocative efficient point (At−1). In this example,

r = t−1 implying that while the overall frontier has shifted due to technical progress, no technical

change regarding the individual input set can be observed. Therefore, the residual efficient point

which is located on the frontier of the overall sequential input set for r = t − 1 is Bt−1. The

residual technical efficient point is A∗∗ while Bt−1 is allocative efficient. Due to technical progress

between periods t − 1 and t the overall frontier function shifts towards the origin. The radial

input reductions could be exploited by moving from Bt−1 to A∗∗∗, while the non-radial changes

could be exploited by moving from A∗∗∗ to Bt.

2.3 Adjustment costs and residual inefficiency

In the following we discuss how adjustment costs and their effect on the cost inefficiency of DMUs

can be estimated based on the theoretical framework described above. We start by discussing

general definitions and assumptions regarding the adjustment costs in our model. This is followed

by a description of the estimation of lower bounds for the adjustment costs based on individual

sequential input sets. The section concludes with a discussion of the assessment of the feasibility

to exploit the residual inefficiency based on the estimated adjustment costs.

As discussed in the introduction, the empirical literature challenges the theoretical assumption

that inputs can be clearly classified as quasi-fixed and variable factors, with the latter not be-

ing associated with adjustment cost. Moreover, the literature finds that adjustment costs are

interrelated, hence individual adjustment costs may not be identifiable. Therefore, in our model

we assume that each of the m inputs can lead to adjustment costs if the amount of the input

is changed. Moreover, we analyze the aggregate costs of simultaneous adjustment of these m

inputs. We denote by ACt
i (x1,x2) the (unobserved) overall adjustment costs of DMU i in period

t associated with shifting from the input vector x1 to the input vector x2. Based on these costs

we define the average adjustment costs (adjustment costs relative to distance) as

AvACt
i (x1,x2) =

ACt
i (x1,x2)

||x1 − x2||
(2.19)

where ||x1 − x2|| denotes the Euclidean distance between x1 and x2. We do not use the Farrell

(1957) measure to estimate the distance in (2.19) since it can only be applied to measure radial

distances. While, in principle, the non-radial (allocative) distances can also be measured radially

as the distance of the technically efficient point to the isocost line, this distance does not only

depend on the physical amount of inputs but also on the input prices. Since the distance measure

should be independent of the prices we apply the Euclidean distance.13 However, the Euclidean

distance is nonetheless related to the radial measurement of inefficiency since the Farrell (1957)

measure can be interpreted as the ratio of two norms (see Cooper et al. (2007)).

13 See Briec (1998) for an approach to efficiency analyses based on Hölder norms which encompass the Euclidean
distance as a special case.
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In order to make our model as generally applicable as possible we only impose the minimal

assumptions regarding the adjustment costs needed to conduct our analysis. In particular, we do

not impose a specific functional form of the adjustment costs. Hence, the estimation of the input

sets as well as the adjustment costs is nonparametric.

In our model we assume that the adjustment costs are comparable across the DMUs implying

that:

AvACt
i (x1,x2) = AvACt

l (x1,x2) ∀i, l. (2.20)

This assumption is needed to empirically analyze the structure of the adjustment costs as will be

discussed below. Note that we do not assume that the adjustment costs are time independent.

Hence, we allow for e.g. adjustment cost reducing technical progress. Furthermore, we assume

that the adjustment costs are symmetric:

AvACt
i (x1,x2) = AvACt

i (x2,x1) . (2.21)

This assumption is particularly important for evaluating the feasibility of exploiting the residual

allocative inefficiency. It ensures that the adjustment costs for movements along the frontier are

not influenced by the direction of the movement.

In our model we do not impose a-priori restrictions on the structure of the adjustment costs.

Although the majority of the theoretical and empirical literature assumes convex adjustment

costs (see Hamermesh and Pfann (1996) for an overview of the literature), we also consider the

possibility of linear (see e.g. Rothschild (1971)) or concave (see e.g. Abowd and Kramarz (2003))

adjustment costs. Therefore, the adjustment costs may exhibit:14

Convexity: AvACt
i (x1,x2) > AvACt

i (x1,x3) with ||x1 − x2|| > ||x1 − x3||
Linearity: AvACt

i (x1,x2) = AvACt
i (x1,x3) ∀x1,x2,x3

Concavity: AvACt
i (x1,x2) < AvACt

i (x1,x3) with ||x1 − x2|| > ||x1 − x3||
(2.22)

To estimate the adjustment costs we build upon the results from the decomposition of the cost

inefficiency discussed above. Our approach models rational inefficiency as the distance to the in-

dividual sequential input set due to adjustment costs. The unexploited cost reductions associated

with moving from the actual input vector to the cost minimizing point on the individual frontier

can therefore be interpreted as lower bounds on the unobserved adjustment costs. Moreover,

based on the decomposition into technical and allocative rational inefficiency, lower bounds for

the radial and the non-radial adjustment costs can be estimated. Formally, the bounds on the

radial and the non-radial adjustment costs are given by:

RAvACt
i

(
xt, θ

t
i(xt,yt)xt

)
=
pTt
(
xt − θti (xt,yt)xt

)
||xt − θti (xt,yt)xt||

, (2.23)

NRAvACt
i

(
θti (xt,yt)xt,x

t,∗
i (pt,yt)

)
=
pTt

(
θti (xt,yt)xt − xt,∗

i (pt,yt)
)

||θti (xt,yt)xt − xt,∗
i (pt,yt) ||

. (2.24)

Based on these bounds we are able to evaluate the feasibility of exploiting the cost reductions

14 In this definition we assume that no fixed adjustment costs (see e.g. Cooper and Haltiwanger (2006)) are present.
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due to residual inefficiency. Intuitively, we analyze whether the cost reductions associated with

removing the residual inefficiency are smaller than the lower bounds on the adjustment costs. In

this case, the cost reductions are not feasible and the DMUs operate efficiently by not investing

into restructuring their input usage.

Since the input vectors analyzed to obtain the rational inefficiency and residual inefficiency and,

hence, their distance may vary, assumptions regarding the structure of the adjustment costs

as given by equation (2.22) need to be imposed. Based on assumption (2.20), the estimated

adjustment costs for different DMUs can be used to empirically test whether the assumed structure

is correct. Using the nonparametric approach by Abrevaya and Jiang (2005), this test can be

conducted without imposing functional assumptions. For the case of a single explanatory variable

(e.g. the distance between the input vectors in our model) a simplified version of the test has

been proposed by Niermann (2007).

Based on the structural form of the adjustment costs, the conditions for the non-exploitability of

the technical residual inefficiency are:

Convexity:
pTt

(
xt,∗i (pt,yt)− θr

(
xt,∗
i (pt,yt) ,yt

)
xt,∗i (pt,yt)

)
||xt,∗

i (pt,yt)− θr
(
xt,∗
i (pt,yt) ,yt

)
xt,∗
i (pt,yt) ||

<
pTt
(
xt − θti (xt,yt)xt

)
||xt − θti (xt,yt)xt||

and ||xt,∗
i (pt,yt)− θr

(
xt,∗
i (pt,yt) ,yt

)
xt,∗
i (pt,yt) || = ||xt − θti (xt,yt)xt||,

Linearity:
pTt

(
xt,∗i (pt,yt)− θr

(
xt,∗
i (pt,yt) ,yt

)
xt,∗i (pt,yt)

)
||xt,∗

i (pt,yt)− θr
(
xt,∗
i (pt,yt) ,yt

)
xt,∗
i (pt,yt) ||

<
pTt
(
xt − θti (xt,yt)xt

)
||xt − θti (xt,yt)xt||

,

Concavity:
pTt

(
xt,∗i (pt,yt)− θr

(
xt,∗
i (pt,yt) ,yt

)
xt,∗i (pt,yt)

)
||xt,∗

i (pt,yt)− θr
(
xt,∗
i (pt,yt) ,yt

)
xt,∗
i (pt,yt) ||

<
pTt
(
xt − θti (xt,yt)xt

)
||xt − θti (xt,yt)xt||

and ||xt,∗
i (pt,yt)− θr

(
xt,∗
i (pt,yt) ,yt

)
xt,∗
i (pt,yt) || 5 ||xt − θti (xt,yt)xt||.

(2.25)

Similar conditions for the non-exploitability of the allocative residual inefficiency can be defined

by replacing the initial amounts of inputs with the technical efficient amounts and the technical

efficient amounts by the allocative efficient amounts. Note that by excluding the inefficiency effect

due to technical change, we evaluate the cost reductions for the same period of the individual

and the overall frontier. Hence, we do not address the cost reductions which are obtained by

following technical change, e.g. by investing into new computers. Without any additional infor-

mation regarding the causes and costs of technical change, we can not evaluate whether these

cost reductions are feasible.

Combining the concepts of rational inefficiency, technical change and adjustment costs we are able

to evaluate in detail the feasibility of reducing costs by changing the input structure of a DMU.

In particular, given a situation in which the residual inefficiency can not be exploited due to high

adjustment costs and the technical progress is associate with high investments, DMUs may be

reclassified as operating completely economically efficient although the conventional analysis of

cost inefficiencies classifies them as being inefficient.
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3 Empirical application to U.S. power plants

In this section we apply our model to an analysis of the cost efficiency of coal-fired power plants

in the United States. These plants haven been previously analyzed in a large number of studies

on technical, economic and environmental efficiency (see e.g. Zhou et al. (2008) for a survey).

Particularly relevant for our analysis are the studies on cost efficiency (see Zeitsch and Lawrence

(1996), Goto and Tsutsui (1998), Olatubi and Dismukes (2000), Tone and Tsutsui (2007) and

Welch and Barnum (2009)) which typically find large cost inefficiencies that are predominantly

caused by allocative inefficiency.15 Results on potential cost inefficiencies are used e.g. to evaluate

whether mergers in the electric sector lead to efficiency increases (see Kwoka and Pollitt (2010)).

We apply our model to evaluate whether the previously found cost inefficiencies can be explained

by rational behavior. Moreover, we analyze which cost reductions are feasible if adjustment costs

are taken into account. We start by describing the construction of the panel dataset. Following

this description we present and discuss the results of our analysis and the decomposition of the

inefficiency. The section concludes with an evaluation of the feasibility to exploit the residual

inefficiency.

3.1 Construction of the dataset

In order to evaluate the efficiency of U.S. power plants we construct a dataset which is closely

related to the datasets studied in the previous literature. In particular, we follow Färe et al.

(2013) to obtain balanced panel data for the power plants. However, in contrast to Färe et al.

(2013) we do not analyze their environmental efficiency. Therefore, we collect data for a smaller

number of inputs and outputs leading to a larger sample size due to fewer missing observations.

We assume that in the production process of the plants the inputs labor, capital and fuels are

used to produce the output electricity. Following Färe et al. (2007) we define plants which use

coal as their primary energy source as coal-fired power plants. However, these plants may in

addition also use oil and natural gas. Data on the labor input (measured in number of workers)

are obtained from form 1 of the Federal Energy Regulatory Commission (FERC).16 In this form

annual information regarding the average number of employees of the plants are collected. We

use the capacity of the plants (measured in megawatts, MW) which is also reported in FERC

form 1 as a proxy for the capital stock. Data on the fuel inputs (measured in millions of british

thermal units, BTUs) as well as the electricity output (measured in megawatt hours, MWh) are

obtained from the US Energy Information Administration (EIA).17 For the years 1994 to 2007

data are available from file EIA-767, while for the years 2006 and 2007 (2008 and 2009) these

data are reported in file EIA-906 (EIA-923).

In order to evaluate the cost efficiency of the plants we also collect data on the input prices. For

the price of the capital stock which is proxied by the capacity of the plants we follow Olatubi

and Dismukes (2000) and use the capital costs of installed capacity (measured in $ per kilowatt,

KW) as reported in FERC form 1. The fuel prices (measured in $ per BTU) are calculated as the

15 For an analysis of regulated cost inefficiency see Granderson and Linvill (2002).
16 The FERC data are available from www.ferc.gov/docs-filing/forms/form-1/data.asp.
17 The EIA data are available from www.eia.gov/electricity/data/detail-data.html.
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Table I: Descriptive statistics of power plant data (1994-2009)

Variable Unit Min. Mean Median Max. St.dev.

Inputs

Capacity MW 116.00 869.40 700.00 2560.05 642.92
Labor Workers 33.00 145.33 123.00 458.00 81.28
Coal Mill. BTUs 326693.86 51028329.85 41071286.00 190033216.00 41945363.53
Oil Mill. BTUs 0.00 68424.21 29938.44 2794475.00 140090.17
Gas Mill. BTUs 0.00 329711.68 0.00 30407340.00 1717936.99

Output

Electricity MWh 22664.00 5069017.69 4040040.00 18918042.00 4275894.99

Prices

Capacity $ per KW 25.47 481.69 419.98 1654.87 242.92
Labor $ per worker 34662.98 62627.77 60924.71 95792.54 13678.82
Coal $ per BTU 0.65 1.52 1.35 4.41 0.66
Oil $ per BTU 0.33 7.10 5.51 25.82 4.80
Gas $ per BTU 1.11 4.67 3.83 11.51 2.51

weighted annual average of the prices paid during the analyzed year. Data on the expenditures

and purchased amounts of the fuels are obtained from file EIA-423 for the years 1994 to 2007

and from file EIA-923 for the years 2008 and 2009. Finally, the annual wages of the workers

(measured in $ per worker) are collected form the County Business Patterns (CBP) of the US

Census Bureau.18 We use data on the average payment for employees in the industry sector with

the North American Industry Classification Code (NAICS) “22111” (electric power production).

Since several counties do not provide information regarding the annual payments we use state-level

data instead of county-level data.

Our final analyzed dataset covers 37 coal-fired power plants during the period 1994 to 2009. This

relatively small sample size is in line with the numbers of plants analyzed in previous studies

using detailed data as described above (see e.g. Färe et al. (2013) and Hampf (2014)). Other

studies which analyze larger sample sizes of power plants usually aggregate different power plant

technologies (e.g. gas- and coal-fired power plants) in a single technology set (see Heshmati et al.

(2012) for critical remarks on this approach) or use data on the generator-level (see e.g. Hampf

and Rødseth (2015)). However, the latter approach does not capture the possibility of plants to

switch between different generating units in order to decrease costs associated with producing

a fixed amount of electricity. Therefore, we focus solely on plant-level data for coal-fired power

plants. Descriptive statistics of the data can be found in table I.

3.2 Results of the efficiency analysis

In the following we present the results for the cost efficiency and the proposed decomposition

into rational and residual efficiency for U.S. power plants. Our estimations are based on the

18 The CBP data are available from www.census.gov/econ/cbp/index.html.
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assumption that the production technology exhibits variable returns to scale. However, we also

conducted the analysis assuming constant returns to scale and found very similar results. The

differences in the average efficiency results are less than 5% and the decomposition leads to an

identification of the same sources that drive cost inefficiency.
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Figure 2: Results of the cost efficiency and its decomposition

Figure 2 depicts the average results of our analysis for the years 1994 to 2009. The upper left

panel shows the results of a conventional analysis of cost efficiency based on overall sequential

technologies.19 The annual average results for the cost efficiency are represented by the bold line

while the average technical (allocative) efficiency is represented by the dashed (dotted) line. The

figure shows that the cost efficiency is about 65% and relatively stable throughout the analyzed

period with the exception of the last analyzed year 2009. For this year we observe a drop in the

19 In our presentation we focus on the average results for all plants. Detailed results for each plant and year can
be obtained from the author upon request.
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cost efficiency as well as the allocative efficiency. This finding can be explained by the decreases

in the price for natural gas in the United States due to fracking of shale gas (see Wang et al.

(2014)). This price change renders input mixes which in addition to coal also contain gas more

cost efficient than a production which is solely using coal. However, reaching this best practice is

associated with adjustment costs which should be taken into account when analyzing the potential

inefficiency and cost reductions.

Comparing the results for the two components, we find that the cost inefficiency is largely caused

by allocative inefficiencies indicating that the plants operate with inefficient input mixes given

the analyzed technology set. The numerical results as well as the dominating influence of the

allocative inefficiency are in line with the findings of the previous literature. For example, Olatubi

and Dismukes (2000) use cross-sectional data on U.S. power plants for the year 1996 and find

an average cost efficiency of 65%, an average technical efficiency 93% and an average allocative

efficiency of 66%.

Following Belu (2015), who argues that the technical efficiency should increase for DMUs with

a modern capital stock, we also analyze whether the obtained technical efficiency results are

plausible. Our comparison of the annual technical efficiency scores and the year of installment of

the generating units shows an average correlation of 0.466 implying that our efficiency analysis

leads to plausible results in the sense of Belu (2015). However, given the conventional approach to

cost efficiency it is not clear whether the inefficiency is caused by rational behavior of the plants

and whether the inefficiency can be exploited if adjustment costs are accounted for.

The remaining three panels of figure 2 present the average results of the decomposition of the

cost efficiency and its components into rational and residual efficiency as well as the efficiency

effect of technical change. In each panel the bold line represents the overall efficiency, while the

rational efficiency is depicted by dashed lines, the residual efficiency is represented by dotted

lines and the efficiency effect of technical change is indicated by the dot-dashed lines. The

decomposition of the costs efficiency into rational and residual efficiency indicates an rational

efficiency of approximately 90% implying an cost inefficiency of 10% can be explained by rational

behavior. Stating differently, in the absence of adjustment costs the DMUs could decrease their

costs by 10% if they exploit all available production possibilities in their individual technology

set, hence without knowledge of the overall technology. The residual efficiency is about 70%.

Therefore, the costs could be decreased by approximately 30% if this inefficiency is exploited and

no adjustment costs are present.

The decomposition into technical and allocative rational and residual efficiency presented in the

lower two panels shows the same patterns as the decomposition of the cost efficiency. Again,

we find rational inefficiencies but a larger influence of the residual efficiency. Moreover, we find

that the residual technical efficiency is very stable during the sample period and changes in the

technical efficiency are solely caused by a decline in the rational efficiency. In contrast, the residual

allocative efficiency increases while the rational allocative efficiency decreases. In particular, for

the year 2009 we observe a drop in the rational allocative efficiency. This implies that the DMUs

did not move to previous more gas-intensive input mixes due to unobserved adjustment costs. This

result supports the finding by Abadie and Chamorro (2009) that changes in the fuel structure are

also associated with significant costs. For both components, as well as the overall cost efficiency
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we find that the technical change component is very close or equal to one indicating that nearly

no technical progress has occurred or that the plants were able to follow the technical progress.

Since no substantial changes to the generating technology of the power plants (e.g. installment of

new generators) can be observed in the data during the analyzed period, we interpret this finding

as an indication of a lack of technical change.
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Figure 3: Results of feasible cost efficiency

Based on the results for the rational efficiency and the conditions (2.25) we evaluate whether the

residual inefficiencies can be exploited if adjustment costs are accounted for. We assume that

the costs are comparable across the power plants (see equation (2.20)) and test for linearity of

the costs. The results of the test by Niermann (2007) are presented in table II in the appendix.

For both cost types, technical and allocative adjustment costs, we find for the majority of years

that the cost functions are linear. Only for the year 2005 we find that the technical adjustment

costs are concave, while for the year 2009 we find evidence for a convex structure of the allocative

adjustment costs. However, we note that the results for the feasibility are not largely influenced

if the costs are assumed to be linear for all years.

The feasible cost efficiency as well as its decomposition are depicted in the right panel of figure 3.

For a comparison, the left panel repeats the figure on the conventional analysis of cost inefficiency

and the decomposition. The bold lines represent the cost efficiency, while the dashed (dotted)

lines represent the technical (allocative) efficiency. The feasible cost efficiency is estimated based

on the residual inefficiency which can be exploited if adjustment costs are accounted for. In

this case, comparing both figures we find that the measured efficiency of the power plants is

substantially increased. The overall cost efficiency is increased from 65% to 85% indicating that

instead of 35% only 15% of the cost reductions can be exploited by adopting best practices. This

symmetrically affects the radial and the non-radial input changes since the technical efficiency

increases from 90% to 95% and the allocative efficiency increases from 70% to 88%. Moreover,

we find that the obtained cost inefficiencies in the year 2009 due to decreased gas prices can not

be exploited if the adjustment costs associated with reaching the benchmark.
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4 Conclusion

In this paper we have presented a new approach to estimate rational inefficiency based on se-

quential definitions of production technologies. We further showed how lower bounds on technical

and allocative adjustment costs can be obtained by evaluating unexploited cost reductions based

on individual input sets. These lower bounds can be used to quantify the extend of feasible cost

reductions if adjustment costs are taken into account. Compared to previous models on rational

inefficiency, our model does not attribute all inefficiency to either entirely rational or non-rational

behavior but allows to decompose the overall inefficiency into rational and residual inefficiency.

In contrast to approaches based on dynamic optimization, our model depends on less restrictive

assumptions regarding the behavior of the DMUs and and provides a completely nonparametric

approach to estimate and decompose the rational inefficiency as well as to analyze the feasibility

of cost reductions in the presence of adjustment cost.

Applying our model to a sample of coal-fired power plants in the United States we found that

approximately 10% of the 35% of inefficiency can be explained by rational behavior. The rational

and the residual inefficiency are largely caused by allocative inefficiency indicating that most

plants operate with inefficient input mixes. In contrast, the technical efficiency with regard

to both components is relatively high. Moreover, we found that nearly no technical progress

occurred within the analyzed period from 1994 to 2009 showing the technological frontier of the

plants has not exhibited large shifts during this period. Taking into account adjustment costs,

we found that the cost inefficiency decreases from 35% to only 15%. This shows that previous

studies which obtained comparable numerical results based on a conventional approach to cost

efficiency significantly overestimate the possibilities to reduce costs in the generation of electricity.

Therefore, our results imply that analyses which are based on evaluating cost inefficiencies (e.g.

studies on the benefits from mergers in the electricity sector, see Kwoka and Pollitt (2010)) may

lead to biased results and policy implications if rational inefficiencies and adjustment costs are

not taken into account.

However, we want to stress that our findings are only based on the relatively small number of 37

power plants. While this sample size is comparable to the number of analyzed plants in previous

studies, it nonetheless provides limits to the generalizability of the results on rational inefficiency

of power plants. Therefore, future research may evaluate whether the found efficiency patterns

can also be obtained using plant data from different countries (e.g. data for Japanese power plants

as analyzed in e.g. Goto and Tsutsui (1998)). Furthermore, in this study we discuss how our

theoretical model can be applied using nonparametric DEA methods to estimate the technology

sets and efficiency measures. Alternatively, parametric models which account for statistical noise

could be applied. Future research may follow Park and Lesourd (2000) and compare the results

based on parametric and nonparametric techniques to evaluate to which extent the rational and

residual inefficiency, as well as the feasibility of the cost reductions, are influenced by random

effects. Finally, our methodology could be extended by including a frontier separation approach

(see Charnes et al. (1981)) to differentiate the rational inefficiency for several subgroups (e.g.

power plant types) within the overall technology.
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Appendix

Table II: Results of the Niermann (2007) test of linearity

H0 : Technical adjustment costs are linear

1995 1996 1997 1998 1999 2000 2001 2002
Test statistic 1.164 0.329 -0.830 -0.563 0.621 -0.840 1.431 0.721
p-value 0.244 0.742 0.407 0.573 0.535 0.401 0.153 0.471

2003 2004 2005 2006 2007 2008 2009
Test statistic -0.885 -0.041 -1.686 1.199 -0.222 0.671 1.233
p-value 0.376 0.967 0.092 0.230 0.825 0.502 0.218

H0 : Allocative adjustment costs are linear

1995 1996 1997 1998 1999 2000 2001 2002
Test statistic 1.326 1.030 0.714 -1.638 0.152 -0.443 -0.577 0.718
p-value 0.185 0.303 0.475 0.101 0.879 0.658 0.564 0.472

2003 2004 2005 2006 2007 2008 2009
Test statistic 0.988 0.005 0.002 0.398 0.517 0.952 2.015
p-value 0.323 0.996 0.998 0.691 0.605 0.341 0.044

Note: Statistical significant results (p-values less than 0.1) are indicated in bold.
The null hypothesis of non-concave technical adjustment costs was rejected
in 2005 (p-value: 0.046).
The null hypothesis of non-convex allocative adjustment costs was rejected
in 2009 (p-value: 0.022).
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