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Abstract

How does asset encumbrance affect the fragility of intermediaries subject to rollover

risk? We offer a model of covered bonds that features the bankruptcy remoteness

and replenishment of the asset pool that backs secured funding. Encumbering assets

allows a bank to raise cheap secured debt and expand profitable investment, but it also

concentrates risk on unsecured debt and thus exacerbates fragility. Deposit insurance

or guarantees induce excessive encumbrance, shifting risks to the deposit insurance fund

or the guarantor. Prudential regulation to correct this negative externality are limits

on encumbrance, capital requirements, and surcharges on deposit insurance premia.
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1 Introduction

The unhappy experience with securitization markets in the wake of the great recession

and global financial crisis has renewed the focus on the collateralization of bank balance

sheets. Banks in many jurisdictions have turned to secured funding markets to finance their

activities. In the United States, covered bonds have been advocated as a means of revitalizing

mortgage finance (Paulson, 2009; Soros, 2010). Indeed, Campbell (2013) forcefully argues

that “the US has much to learn from mortgage finance in other countries, and specifically

from the Danish implementation of the European covered bond system.” (p.1)

Covered bonds are “secured senior debt” issued by banks. These are claims on orig-

inating banks, collateralized by a pool of mortgages that remain on balance sheet. This

cover pool is ring-fenced, or encumbered, and is therefore bankruptcy-remote. Critically,

the cover pool is dynamic, whereby banks must replenish non-performing assets with per-

forming ones of equivalent value and quality to maintain the requisite collateralization over

the life of the bond.1 These institutional features provide strong incentives for banks to

underwrite mortgages carefully, avoiding some of the pitfalls with the originate-to-distribute

model (Bernanke, 2009; Keys et al., 2010; Purnanandam, 2011).

Covered bonds have formed a cornerstone of bank funding in Europe since the late

18th century.2 During the past two centuries, covered bonds have proven to be a safe asset

for investors with no experiences of default and only rare delayed payments. Despite their

longevity as a financial instrument, there has been no theoretical analysis of covered bonds

and their implications for financial stability. This paper fills this gap by developing a model

of bank funding and asset encumbrance in which covered bonds assume centre stage.
1Covered bond holders are also protected by dual recourse. If the value of the cover pool is insufficient,

they have a claim of the shortfall on unencumbered assets that is of equal seniority to unsecured creditors.
2They are especially important in Germany, where the Pfandbrief system was established by Frederick

the Great following the Seven Years War (1756–63) to supply credit to Prussian landowners, and in Denmark
where they emerged to finance reconstruction following the Great Fire of Copenhagen in 1795. See Wand-
schneider (2013) for a historical discussion of the Pfandbrief system in 18th century Prussia. Mastroeni
(2001) details the origins of covered bonds in other European jurisdictions.
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In our model, a banker seeks funding to finance profitable investment opportunities.

The banker has access to secured and unsecured debt markets, each with its own distinct

investor clienteles. Debt is issued in two stages. First, building on Rochet and Vives (2004),

the banker attracts unsecured debt from risk-neutral investors by offering demandable-debt

claims. The banker invests these proceeds and his own funds. Second, the banker attracts

secured debt from infinitely risk-averse investors, reflecting the highly restrictive mandates

of pension funds and other large institutional investors. The banker issues covered bonds by

encumbering, or ring-fencing, a fraction of existing assets into the cover pool that remains

on balance sheet. The cover pool is bankruptcy-remote and the returns of its assets back the

covered bond. The banker invests these additional funds raised from covered bond issuance.

The banker is subject to a balance sheet shock that has knock-on effects. First, since

the cover pool is dynamic, the banker must replace any non-performing assets in the cover

pool with performing unencumbered assets. This maintains the value of the cover pool, but

at the expense of the remainder of the balance sheet. Second, since premature liquidation is

costly, the rollover decisions of unsecured creditors constitutes a coordination problem that

can lead to multiple equilibria (Diamond and Dybvig, 1983). To uniquely pin down behavior,

we use a global games approach (Carlsson and van Damme, 1993; Morris and Shin, 2003;

Goldstein and Pauzner, 2005). A private signal about the balance sheet shock informs the

decision on whether to roll over unsecured debt. An unsecured debt run occurs if and only

if the balance sheet shock is sufficiently high relative to the value of unencumbered assets.

We link the incidence of ex-post runs to the banker’s ex-ante issuance of covered bonds, and

also solve for the unique face values of secured and unsecured debt.3

Our analysis suggests that covered bonds may not be the panacea that the proponents

of such instruments might hope for. We highlight two opposing balance sheet effects of asset

encumbrance and covered bond issuance. The first is a bank funding channel: greater

covered bond issuance allows the banker to make additional profitable investments, which
3Our approach steps outside of Modigliani and Miller (1958). Costly liquidation of investment drives a

wedge between debt and equity, and we assume that secured and unsecured debt markets are segmented.

2



increases the expected equity value and reduces the potential for a run. The second is a risk

concentration channel: as more bonds are issued, the balance sheet shock is asymmetrically

concentrated on unsecured creditors, exacerbating rollover risk and increasing the incidence

of an unsecured debt run. The optimal level of asset encumbrance balances these two effects.

Covered bonds are safe assets for risk-averse investors due to two institutional features.

The first feature is the replenishment of cover pool assets that protects covered bond holders

from the balance sheet shock. The second feature is the bankruptcy-remoteness of the cover

pool, whereby covered bond holders do not suffer a dilution of their claims in the event of

bankruptcy.4 At the same time, these features are responsible for making unsecured debt

more risky for risk-neutral investors and the bank more fragile. Unsecured debt holders suffer

the full extent of the balance sheet shock and they can only lay claim to the unencumbered

assets in bankruptcy. In sum, covered bonds are a safe, stable, and cheap source of bank

funding but at the the expense of riskier, more fragile, and more expensive unsecured debt.

We study normative implications of asset encumbrance when a proportion of unsecured

debt is guaranteed. Such schemes usually apply to retail deposits and are often extended

to unsecured wholesale debt during times of crisis.5 Assuming a deep-pocketed guarantor,

a guarantee reduces both the rollover risk and the cost of unsecured funding, since the

guarantor pays in bankruptcy. As a result, the privately optimal amount of encumbrance

increases in the coverage of the guarantee. However, by encumbering assets, the banker shifts

risks to the guarantor. Since the banker does not internalize the impact of encumbrance

on the cost of the guarantee, the privately optimal levels of asset encumbrance and bank

fragility are excessive. The extent of these excesses increase in guarantee coverage and in

the dead-weight loss of raising the funds that back the guarantee (e.g., distortionary taxes).
4We also show that dual recourse is never called upon in equilibrium, since infinitely risk-averse investors

evaluate holding a covered bond at the largest possible balance sheet shock. This result is consistent with
the finding of Wandschneider (2013), who notes that dual recourse has never been called upon in practice.

5For example, during the 2007/8 crisis, Australia, Canada and New Zealand were prominent among
countries that enacted special arrangements for banks to have new and existing wholesale bank funding
guaranteed by the government until market conditions normalized. Recent analysis of the interplay between
government guarantees and financial stability include König et al. (2014) and Allen et al. (2015).
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Our welfare criterion is constrained efficiency. A social planner chooses the amount

of asset encumbrance to maximize the expected payoffs net of the expected cost of the

guarantee, taking the rollover risk of unsecured debt and the face values of guaranteed and

non-guaranteed unsecured debt as given. We study three tools of prudential regulation,

namely (i) a limit on asset encumbrance; (ii) a minimum capital requirement, and (iii) a

surcharge for asset encumbrance. This surcharge may be paid to a deposit insurance fund

or as a contribution to a bailout fund. Several jurisdictions introduced regulation aimed at

curbing excessive encumbrance, for example limits on encumbrance in Australia and New

Zealand, ceilings on the amount of secured funding in Canada and the United States, and

an inclusion of encumbrance levels in deposit insurance premia in Canada.

Our results suggest that imposing either a limit on encumbrance or a minimum capital

requirement will induce the banker to choose the constrained efficient level of encumbrance,

which induces the constrained efficient level of fragility. The bank’s capital ratio is given

by its own funds divided by total assets. A minimum capital ratio effectively limits the

amount of secured-debt-funded investment, because more encumbrance lowers the capital

ratio. Therefore, a floor on the capital ratio effectively becomes a bound on encumbrance.

Finally, a surcharge for encumbrance reduces the unencumbered assets and increases fragility.

As a result, the banker reduces the level of encumbrance. However, if the surcharge schedule

is continuous, the banker still pays a positive surcharge to encumber the constrained efficient

level, which exacerbates fragility. Therefore, constrained efficiency requires the surcharge

schedule to have a large discontinuity at the constrained efficient level of encumbrance.

Our model offers several testable implications about asset encumbrance and the re-

liance on collateralized funding by banks.6 In line with the trade-off between profitability

and fragility, higher liquidation values and cheaper unsecured debt reduce the rollover risk
6The existing literature on covered bonds is empirical. Carbo-Valverde et al. (2011) examine the extent to

which covered bonds are a substitute for mortgage-backed securities. Prokopczuk and Vonhoff (2012) study
how market liquidity and asset quality affect the pricing of covered bonds. Beirne et al. (2011) empirically
examine the effectiveness of the European Central Bank’s covered bond purchase program during 2009-10.
Rixtel et al. (2015) contrast various bond issuance by European banks.
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of unsecured funding, which lowers fragility and thus raises encumbrance levels. In con-

trast, greater conservatism in unsecured debt markets increases fragility and thus reduces

encumbrance. A lower outside option of investors, perhaps because of lower competition

or unconventional monetary policy, increases the bank funding channel and encumbrance.

Higher risks to a bank’s balance sheet increase fragility and therefore reduces encumbrance.

Under mild conditions on parameters or distributional assumptions about the shock, en-

cumbrance levels are higher for better-capitalized banks and for more-profitable investment.

Our paper focuses on covered bonds but its financial stability implications of secured

funding may be applicable more broadly. At the heart of our model is the interaction be-

tween the rollover risk of unsecured debt and the bankruptcy-remoteness and replenishment

of the asset pool that backs secured debt. The arrangement of some term repos is sim-

ilar, where safe harbor arrangements ensure the bankruptcy remoteness of collateral and

the replenishment of asset pool occurs via the creditor’s right to ask for a substitution of

collateral or via variation margins. Credit card asset-backed securities also have the features

of replenishment and bankruptcy remoteness of the asset pool.

An important paper on bank funding is Greenbaum and Thakor (1987). The authors

present a signaling model in which the choice of deposit funding (on-balance sheet) versus

securitized funding (off-balance sheet) is based on the quality of projects. Borrowers choose

between funding modes. Under deposit-based funding, the borrower’s risk-adjusted loan rate

reflects the value of collateralization and screening costs incurred by banks and depositors.

If the borrower instead chooses securitized funding, the degree to which the bank provides

recourse in the event of default is chosen, which signals quality to non-bank investors.

More recent work has begun to examine the interplay between secured and unsecured

funding. Gai et al. (2013) and Eisenbach et al. (2014) explore the relationship between bank

fragility and funding structures using partial equilibrium frameworks. Gai et al. (2013) use

global game techniques to examine how the liquidity and solvency risk of a bank changes

with the composition of funding. They distinguish between short- and long-term funding
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in the repo market and show how “dashes for collateral” by short-term secured creditors

can occur. Eisenbach et al. (2014) develop a balance sheet approach to explore alternative

funding structures that is amenable to graphical analysis. They treat creditor behavior as

exogenous and study how bank stability depends on various balance sheet characteristics

including leverage, debt maturity structure, and the liquidity of the bank’s asset portfolio.

The paper proceeds as follows. Section 2 sets out the model. Section 3 studies the

rollover decision of unsecured funding, and solves for the equilibrium in the secured and

unsecured funding markets. Introducing guarantees for unsecured funding, section 4 studies

the private incentives to shift risk to a guarantor, such as a deposit insurance fund. We

study how prudential safeguards can mitigate such incentives. Section 5 concludes.
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2 Model

There are three dates, t = 0, 1, 2, and three agents – a banker and two segmented clienteles of

wholesale investors. The banker is risk-neutral and consumes at t = 2. The first clientele of

mass one is risk-neutral and indifferent between consuming at t = 1 and t = 2. By contrast,

the second clientele of mass ω is infinitely risk-averse and consumes at t = 2. To fix ideas,

this clientele may be thought of as pension funds, reflecting their mandate for high-quality

and safe assets. All investors have a unit endowment at t = 0 and access to safe storage

that yields r > 1 at t = 2.

At t = 0 the banker has own funds E0 and seeks additional funding from wholesale

investors to finance profitable and high-quality investments. Each investment matures at

t = 2 and its return is R > r. Premature liquidation of investments at t = 1 is costly and

yields a fraction ψ > 0 of the return at maturity, where ψR < r. The cost of liquidation may,

for example, reflect efficiency losses as asset ownership is transferred from skilled bankers to

relatively unskilled institutional investors (Diamond and Rajan, 2001).

There are two rounds of funding at t = 0. In the first, unsecured funding round, risk-

neutral investors deposit their endowment with the banker to receive a demandable debt

claim as in Rochet and Vives (2004). Unsecured debt, D0 ≡ 1, can be withdrawn at t = 1

or rolled over until t = 2. This rollover decision is taken by a group of professional fund

managers, indexed by i ∈ [0, 1]. These managers face strategic complementarity in their

decisions, whereby an individual manager’s incentive to roll over increases in the proportion

of managers who roll over. The relative cost to managers of rolling over, 0 < γ < 1, plays an

important role in this decision.7 The higher is γ, the more conservative are fund managers,

and the less likely that unsecured debt is rolled over. The face value of unsecured debt,

Du ≤ R, is independent of the withdrawal date. The banker invests the proceeds from the

unsecured funding and her own funds.
7Rochet and Vives (2004) argue that the decision of fund managers is governed by their compensation. In

case of bankruptcy, the manager’s relative compensation from rolling over is negative, c < 0. Otherwise, the
relative compensation is positive, b > 0. The conservativeness ratio γ ≡ c

b+c
summarizes these parameters.
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In the second, secured funding round, the banker can attract covered bond funding

from risk-averse investors by pledging high-quality assets. Specifically, the banker encum-

bers, or ring-fences, a fraction 0 ≤ α ≤ 1 of existing assets and places them in the cover pool

– a bankruptcy-remote vehicle on the bank’s balance sheet. The level of asset encumbrance

is publicly observed at t = 1. We denote by B0 ≥ 0 the total amount of covered bond

funding raised, and by Db ≤ R the face value of a covered bond at t = 2. Table 1 shows the

bank’s balance sheet at t = 0 once all wholesale funding is raised and investment is made.

Assets Liabilities
(cover pool) α(1 + E0) B0

(unencumbered assets) (1− α)(1 + E0) +B0 1
E0

Table 1: Balance sheet at t = 0

A defining feature of covered bonds is the dynamic replenishment of the cover pool

after an adverse shock. Replenishment requires the banker to maintain the value of the

cover pool at all dates, replacing non-performing assets in the cover pool with performing

unencumbered assets. Covered bond holders are, thus, protected and effectively become

senior debt holders. But replenishment hurts unsecured debt holders, since the entire shock

is concentrated on them. We suppose that the balance sheet of the bank is subject to a

shock S ≥ 0 at t = 2. The shock has a continuous probability density function f(S) > 0,

a cumulative distribution function F (S), where f ′(S) ≤ 0, so that small shocks are more

likely than larges ones. The banker observes the shock at t = 1 and replenishes the cover

pool. Table 2 shows the balance sheet at t = 2 for a small shock, S > 0, when all unsecured

debt is rolled over at t = 1. The value of bank equity at t = 2 is denoted by E(S).

Assets Liabilities
(cover pool) Rα(1 + E0) B0Db

(unencumbered assets) R
[
(1− α)(1 + E0) +B0

]
− S Du

E(S)

Table 2: Balance sheet at t = 2 after a small shock
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Another defining feature of covered bonds is dual recourse. Under bankruptcy, the

bank is closed and covered bond holders receive the market value of the cover pool, ψRα(1+

E0), at t = 2. If, however, this is insufficient to meet their claims worth DbB0 in total, then

each covered bond holder has a claim on the bank’s unencumbered assets for the residual

amount, Db − ψRα1+E0
B0

, at t = 2, with equal seniority to unsecured debt holders.

If a proportion ` ∈ [0, 1] of unsecured debt is not rolled over at t = 1, the banker

liquidates an amount `Du
ψR to serve withdrawals. Due to partial liquidation and the balance

sheet shock, the value of unencumbered assets at the final date is R
[
(1−α)(1 +E0) +B0−

`Du
ψR

]
− S = R

[
(1−α)(1 +E0) +B0

]
− `Du

ψ − S. Since the banker must serve the remaining

proportion (1− `) of unsecured debt, with face value Du, along with the residual claims of

covered bond holders as required by dual recourse, bankruptcy occurs at t = 2 if

R
[
(1− α)(1 + E0) +B0

]
− S − `Du

ψ
< (1− `)Du +

[
DbB0 − αRψ(1 + E0)

]
. (1)

If the shock were common knowledge, the rollover behavior of fund managers would be

characterized by multiple equilibria, as illustrated in Figure 1. If no unsecured debt is rolled

over, ` = 1, bankruptcy is avoided whenever the shock is smaller than a lower bound S ≡

R
[
(1−α)(1+E0)+B0

]
−
(
B0Db−αRψ(1+E0)

)
− Du

ψ . For S < S, it is a dominant strategy

for fund managers to roll over. We assume that the banker is well-capitalized, E0 >
1−ψ2R2

ψ2R2 ,

so no run occurs absent a shock, S > 0. Likewise, if ` = 0, bankruptcy occurs whenever the

shock is larger than an upper bound S ≡ R
[
(1−α)(1+E0)+B0

]
−
(
B0Db−αRψ(1+E0)

)
−Du.

For S > S, it is a dominant strategy for fund managers not to roll over. Since 0 < S < S <∞

for any funding choices, both dominance regions are well defined.

- Shock S

S S

Liquid Liquid / Bankrupt Bankrupt

Roll over Multiple equilibria Withdraw

Figure 1: Tripartite classification of the shock
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Unlike the banker, wholesale investors cannot observe the shock before it materializes.

However, fund managers receive a noisy private signal, xi, about the shock at t = 1 upon

which they base their rollover decisions. Specifically, they receive the signal xi ≡ S+εi, where

εi is idiosyncratic noise drawn from a continuous distribution G with support [−ε, ε], for

ε > 0. The idiosyncratic noise is independent of the shock and independently and identically

distributed across fund managers. Such incomplete information facilitates a unique solution

to the coordination game between fund managers (Morris and Shin, 2003).

Table 3 summarizes the timeline of events.

t = 0 t = 1 t = 2

1. Unsecured debt issuance 1. Banker observes shock 1. Investment matures
2. Investment 2. Dynamic replenishment 2. Shock materializes
3. Asset encumbrance 3. Private signals about shock 3. Banker honors debts
4. Secured debt issuance 4. Unsecured debt withdrawals
5. Additional investment

Table 3: Timeline of events.

3 Equilibrium

We solve the model backwards. We start by analyzing the rollover decisions by fund man-

agers at t = 1, for a given amount and face value of funding and level of asset encumbrance.

Next, we study the optimal choices of the banker at t = 0. In the secured funding round,

the banker chooses the amount of covered bond funding, B0, the level of asset encumbrance,

α, and the face value of covered bonds, Db, to maximize the expected value of bank equity

subject to the participation constraint of infinitely risk-averse investors. In the unsecured

funding round, the banker chooses the face value of unsecured funding, Du, to maximize the

expected value of equity, subject to the participation constraint of risk-neutral investors.
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3.1 Rollover risk of unsecured debt

Under imperfect information about the shock, there is a unique Bayesian equilibrium in each

unsecured debt rollover subgame at t = 1 summarized in Proposition 1. In what follows, we

consider the limit case of vanishing private noise, ε→ 0.

Proposition 1. Bankruptcy threshold. There exists a unique Bayesian equilibrium in

each unsecured debt rollover subgame. It is characterized by a bankruptcy threshold

S∗ ≡ R
[
B0 + (1− α)(1 + E0)

]
− κDu −

(
B0Db − αRψ(1 + E0)

)
∈
(
S , S

)
, (2)

where κ ≡ 1 + γ
(

1
ψ − 1

)
∈
(

1, 1
ψ

)
. Fund managers roll over unsecured debt if and only if

S ≤ S∗ such that bankruptcy occurs if and only if S > S∗.

Proof. See Appendix A.

Coordination failure in the unsecured funding market is measured by κ−1. It increases

in the conservativeness of fund managers and decreases in the liquidation value of assets. In

the former case, more conservative fund managers choose to roll over less often and cause

costly liquidation. In the latter case, the damage of not rolling over is greater.

The partial impact of funding choices on the bankruptcy threshold is summarized in

Corollary 1.

Corollary 1. The bankruptcy threshold S∗ decreases in asset encumbrance and the face

value of secured and unsecured funding but increases in the amount of covered bond funding:

∂S∗

∂α
= −R(1−ψ)(1+E0) < 0,

∂S∗

∂Db
= −B0 < 0,

∂S∗

∂Du
= −κ < 0,

∂S∗

∂B0
= R−Db ≥ 0.

Proof. See Appendix A.
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The intuition is as follows. First, greater asset encumbrance reduces both the amount

of unencumbered assets available to meet withdrawals by fund managers and the net claim of

covered bond holders under dual recourse. The overall effect of greater encumbrance is that

fund managers withdraw deposits for a larger range of shocks. Second, more costly secured

funding raises the dual recourse claims of covered bond holders. It induces withdrawals of

unsecured debt at t = 1 to prevent a dilution of their claims. Third, more costly unse-

cured funding exacerbates the degree of strategic complementarity among fund managers,

which induces them to withdraw unsecured debt more often. Fourth, more secured funding

increases both the amount of unencumbered assets and the claim to covered bond holders

under dual recourse. The former effect dominates as covered bonds are cheap, Db ≤ R.

3.2 Secured funding and asset encumbrance

We derive the banker’s objective function in the secured round of funding, taking as given

the face value of unsecured funding. For values of the shock below the bankruptcy threshold,

S ≤ S∗, the equity value is positive and equal to the value of investments net of the shock

and total debt repayments to investors, E(S) = R(1 +E0 +B0)− S −B0Db −Du > 0. For

shocks above the bankruptcy threshold, the value of equity is zero due to limited liability.

We derive the participation constraint of infinitely risk-averse investors. The expected

utility from holding a covered bond is no smaller than the return on storage. Each covered

bond has face value Db, backed by an equal share of the liquidated cover pool, αψR 1+E0
B0

,

along with dual recourse on the bank’s unencumbered assets in bankruptcy. If the shocks

wipes out unencumbered assets, S > Smax ≡ R[B0 +(1−α)(1+E0)], bankruptcy occurs and

dual recourse has zero value. However, covered bonds remain safe because of bankruptcy

remoteness.8 Taken together, the banker’s problem in the secured funding round is
8In general, the value of the covered bond to an infinitely risk-averse investor is

min
S

{
Db, αRψ

1 + E0

B0
+max

{
0,

Db
B0Db + (1− `∗(S))Du

ψ

(
R
[
B0 + (1− α)(1 + E0)

]
− S − `∗(S)Du

ψ

)}}
,

where `∗(S) = IS>S∗ . At S = Smax, it is a strictly dominant action to withdraw, `∗(Smax) = 1.
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max
{α,B0,Db}

π ≡
∫
E(S)dF (S) = F (S∗)

[
R
(
1 + E0 +B0

)
−Du −B0Db

]
−
∫ S∗

0
SdF (S)

s.t. r ≤ min

{
Db,

αRψ(1 + E0)

B0

}
. (3)

Critically, the dual recourse provision is never called upon in equilibrium. This result is con-

sistent with the finding of Wandschneider (2013) that in over two-hundred years of covered

bonds, the dual recourse clause has never been invoked.

Lemma 1. Bank funding channel. If risk-averse investors are abundant, ω ≥ ω, the

face value of covered bonds is D∗b = r and its issuance volume is B∗0 = α∗(1 +E0)ψz, where

the relative return is z ≡ R
/
r.

Proof. See Appendix B.

Lemma 1 states the bank funding channel. Encumbering more assets allows the banker

to issue more covered bonds. As more covered bond funding is attracted, the banker expands

its balance sheet via additional investment and increases its expected equity value. By

encumbering all assets, the bank can at most issue ω ≡ ψz(1 +E0) of covered bonds. If the

mass of risk-averse investors exceeds ω, then the total issuance volume is absorbed.

Lemma 2. Risk concentration channel. Encumbering more assets increases fragility:

dS∗

dα
=
∂S∗

∂α
+
∂S∗

∂B∗0

dB∗0
dα

= −R (1− ψz) (1 + E0) < 0. (4)

Proof. See Appendix B.

Lemma 2 states the risk concentration channel. Issuing covered bonds concentrates

the shock on unsecured debt holders. Dynamic replenishment of the cover pool makes cov-

ered bonds effectively senior to unsecured debt. While greater asset encumbrance leads to
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more secured funding that increase unencumbered assets, the effect of dynamic replenish-

ment dominates because of over-collateralization. Therefore, the net effect of greater asset

encumbrance is a higher incidence of unsecured debt runs on the bank (higher bank fragility).

As Figure 2 illustrates, the banker’s optimal choice of asset encumbrance takes both

the bank funding and the risk concentration channels into account.
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Figure 2: Expected value of equity as a function of the level of asset encumbrance. In this
example, we set R = 1.1, r = 1, E0 = 1.1, ψ = 0.7, γ = 0.025, Du = 1.05, and the shock
follows an exponential distribution with rate λ = 1.1.

Proposition 2. Optimal asset encumbrance. There exists a unique privately optimal

level of asset encumbrance α∗ ∈ [0, 1]. There exist unique bounds on investment profitability

R and R such that the encumbrance level is interior for R < R < R and implicitly given by:

F (S∗ (α∗))

f (S∗ (α∗))
=

(1− ψz)
ψ (z − 1)

[
(κ− 1)Du + α∗(1− ψ)R(1 + E0)

]
. (5)

Proof. See Appendix C.

To obtain an interior solution, we require two conditions. First, the expected profit

function satisfies dπ
dα

∣∣
α=0

> 0, whereby the banker is strictly better off encumbering some

assets. This condition yields the lower bound on asset profitability R. Second, the expected

profit function satisfies dπ
dα

∣∣
α=1

< 0, whereby the banker is strictly better off not encumbering

all assets. This condition yields the upper bound on asset profitability R.
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Focusing on the interior solution, Proposition 3 describes how the privately optimal

level of asset encumbrance varies with parameters and the face value of unsecured funding.

Proposition 3. Determinants of asset encumbrance. The privately optimal level of

asset encumbrance α∗ increases in the liquidation value ψ. It decreases in the conservatism

of fund managers γ, the return on storage r, and the face value of unsecured funding Du.

If the return on storage satisfies r < r, then α∗ increases in initial bank capital E0 and in

investment profitability R. If the shock distribution F̃ stochastically dominates F according

to the reverse hazard rate, the corresponding levels of asset encumbrance satisfy α̃∗ ≤ α∗.

Proof. See Appendix D.

These results highlight the trade-off between profitability and fragility associated with

asset encumbrance. A higher liquidation value lowers the degree of strategic complementarity

among fund managers, for any given level of encumbrance. Withdrawals by some managers,

and the resulting liquidation of assets, cause less damage to others. As a result, the bank

is less fragile and bankruptcy occurs for a smaller range of shocks. As a result, the banker

encumbers more assets to increase investment and its expected equity value. Overall, there

are fewer but more liquid unencumbered assets on the bank’s balance sheet. By the same

logic, a decrease in the face value of unsecured debt increases the level of asset encumbrance.

As the degree of conservatism increases, fund managers roll over less often and the

bank is more fragile, for any given level of encumbrance. The banker responds to height-

ened fragility in a precautionary manner by reducing the level of encumbrance. It forgoes

profitable investment via issuing covered bonds, in return for more stable unsecured debt. A

higher outside option for investors increases the face value of covered bonds and correspond-

ingly decreases their issuance volume, which reduces unencumbered assets and heightens

fragility, for any given level of encumbrance. As before, the banker responds by reducing en-

cumbrance. Similarly, a less favorable distribution of the balance sheet shock (F̃ ) increases

fragility for a given encumbrance level and induces the banker to encumber fewer assets.
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An increase in initial bank capital has the following effects. First, greater capital

allows the banker to scale up its balance sheet, encumber more assets, and issue more

covered bonds. Second, greater capital also allows for the absorption of higher losses, which

has two opposing effects. On the one hand, this reduces bank fragility and induces greater

asset encumbrance. On the other hand, the expected equity value is lower, which reduces

encumbrance. If the return on storage is sufficiently low relative to the return on investment,

the bank funding channel is sufficiently strong and the banker unambiguously encumbers

more assets. Likewise, an increase in investment profitability leads to a similar ambiguous

effect on the privately optimal level of asset encumbrance. The same sufficient condition on

the upper bound on the return on storage arises. Tighter predictions on how private choices

of asset encumbrance vary with bank capital and investment profitability can be obtained

for specific shock distributions.

Corollary 2. Uniform shock distribution. Suppose the shock is uniformly distributed,

S ∼ U [0, R(1 + E0 + ω)]. If interior, the privately optimal level of asset encumbrance is

α∗ =
R(1 + E0)ψ (z − 1)− (κ− 1 + ψ (z − κ))Du

R(1 + E0) [ψ2 (2− z)− 2z + 1]
, (6)

which ambiguously increases in initial bank capital and in investment profitability.

Proof. See Appendix D.

3.3 Unsecured funding

Having established the equilibrium in the secured funding round, we turn to the unsecured

funding round. We solve for the equilibrium face value of unsecured funding.

Figure 3 shows how the repayment of unsecured debt depends on the size of the

shock. If the bank is solvent, S < S∗∗ ≡ S∗(α∗), unsecured debt holders receive the

promised paymentDu. For intermediate shocks, they receive an equal share of the liquidated
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unencumbered assets. Investors receive zero by limited liability for a large shock, S >

S∗max ≡ Smax(α∗) = R(1 +E0)[1− α∗(1− ψz)]. In sum, for small and intermediate shocks,

S, the unsecured debt claim pays min
{
Du, ψ

(
S∗max − S

)}
.

- Shock S

S∗∗ S∗max
Full DefaultPartial DefaultFull repayment

Figure 3: The size of the shock determines the payment to unsecured debt holders.

In the unsecured funding round, the banker sets the face value of unsecured debt Du to

maximize its expected value of equity, subject to the participation of risk-neutral investors.

The expected equity value decreases in the face value of unsecured debt, dπ(α∗)
/
dDu =

−F (S∗∗)− κf(S∗∗))E(S∗∗)) < 0. Hence, the banker chooses the smallest face value consis-

tent with satisfying the participation constraint of risk-neutral investors:

r = F (S∗∗)D∗u + ψ

∫ S∗
max

S∗∗
[S∗max − S] dF (S) ≡ V (D∗u), (7)

where V (Du) is the value of the unsecured debt claim if the face value is Du.

Proposition 4. Unsecured funding. There exists a unique face value of unsecured debt,

D∗u > r, if the investment return relative to storage is sufficiently low, R ≤ R̃, and if

investors always accept unsecured debt when promised the investment return.

Proof. See Appendix E.

The first sufficient condition, R ≤ R̃, ensures that the value of the debt claim increases

in the face value of unsecured debt, dV
dDu

> 0, so at most one solution D∗u exists. The second

sufficient condition ensures the existence of D∗u. Since V (Du = r) < r, a solution D∗u

exists if risk neutral investors accept unsecured debt when promised the investment return,

V (Du = R) > r. Since default occurs with positive probability, the face value is D∗u > r.
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Corollary 3. Secured funding is cheaper than unsecured funding, D∗b = r < D∗u.

Corollary 3 follows immediately from comparing the results of Proposition 4 and

Lemma 1. While dynamic replenishment and bankruptcy remoteness make covered bonds

a cheap source of funding, these features also make unsecured funding more costly.

Proposition 5. Tail risk and unsecured funding costs. Consider two distributions, F

and F̃ . If F̃ first-order stochastically dominates F in that F̃ (S) = F (S) for S ≤ R(1 +E0 +

ω)− κr and F̃ (S) < F (S) for R(1 + E0 + ω)− κr < S < R(1 + E0 + ω), then D̃∗u < D∗u.

Proof. See Appendix F.

Proposition 5 links the tail risk of the shock to the face value of unsecured funding.

Both distributions, F and F̃ , assign the same probability to small and intermediate shocks,

S ≤ R(1 + E0 + ω) − κr > S∗, so the privately optimal encumbrance choice is the same,

α̃∗ = α∗. However, these distributions differ for large shocks, which are less likely under

F̃ than under F (lower tail risk). Under F̃ , unencumbered assets have a higher expected

liquidation value in bankruptcy, inducing risk-neutral investors to accept a lower face value

of unsecured debt.

4 Public Guarantees

In many jurisdictions, unsecured debt holders enjoy the benefits of explicit (or perhaps

implicit) public guarantee schemes. Such schemes, which usually apply to retail deposits,

often extend to unsecured wholesale depositors during times of crisis. But deposit insurance

schemes do not typically incorporate the effects of collateralized bank balance sheets. A

bank with a large deposit base may, therefore, find it optimal to issue secured funding in

order to shift risks to the deposit guarantee scheme. Guaranteed unsecured debt holders

do not factor in the consequences of increased asset encumbrance and the benefits of public
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guarantees are externalized. As a result, prudential safeguards are required to limit excessive

asset encumbrance and bank fragility. These safeguards include caps on asset encumbrance

(Australia and New Zealand), ceilings on the amount of secured funding (Canada and the

United States), and inclusion of encumbrance levels in deposit insurance premia (Canada).

Our model provides a natural framework with which to examine these normative

issues. We focus on the secured funding round at t = 0 and show how prudential safeguards

— a cap on asset encumbrance or, equivalently, covered bond issuance; a premium to an

insurance fund; and minimum capital requirements — establish constrained efficiency.

Let a fraction 0 < m < 1 of unsecured debt be guaranteed and the guarantor (e.g.,

the government) be deep-pocketed. Guaranteed debt holders have no need to withdraw at

t = 1. If Dg denotes the face value of guaranteed debt, the bankruptcy condition becomes

R
[
(1−α)(1+E0)+B0

]
−S− `(1−m)Du

ψ
< (1−`)(1−m)Du+mDg+

[
DbB0−αRψ(1+E0)

]
.

(8)

The value of unencumbered assets at t = 2 is again the left-hand side of equation (8). At

t = 1, a fraction ` of the (1−m) non-guaranteed unsecured debt is withdrawn, resulting in

costly liquidation. Therefore, guarantees reduce the amount of liquidation that the banker

has to make in order to serve interim-date withdrawals. The remaining non-guaranteed

unsecured debt is rolled over, so the banker at t = 2 must serve these, (1 − `)(1 −m)Du,

along with guaranteed unsecured claims, mDg, and claims to covered bond holders due to

dual recourse. Applying the global games method, the bankruptcy threshold changes to

S∗m = R [(1− α)(1 + E0) +B0]−mDg − (1−m)κDu −
[
DbB0 − αRψ(1 + E0)

]
. (9)

We assume that the face value of non-guaranteed unsecured debt exceeds that of guar-

anteed unsecured debt, Du ≥ Dg.9 As a result, κDu > Dg and the bankruptcy threshold
9While this result arises endogenously at the unsecured funding round, our focus on the secured funding

round keeps the normative analysis simple and offers sharp predictions.
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increases in the coverage of the guarantee, ∂S∗m
/
∂m > 0. This reduction in the incidence of

runs is a consequence of the lower cost and greater stability of guaranteed funding. Guar-

anteed unsecured funding is more stable since it is not associated with rollover risk, κ > 1.

The equilibrium in the secured funding market at t = 0 yields D∗b = r and B∗0 =

αzψ(1+E0), as before. The risk concentration effect remains unchanged, dS∗m
/
dα = −R(1−

zψ)(1 + E0) < 0. In establishing the privately optimal choice of asset encumbrance, α∗m,

the banker ignores the guarantee cost but takes into account the stabilizing influence of

guaranteed unsecured debt on rollover behavior. The banker’s problem can be reduced to:

max
α

π ≡ F (S∗m)
[
R(1 + E0)(1 + α(z − 1)ψ)−mDg − (1−m)Du

]
−
∫ S∗

m

0
SdF (S)

s.t. S∗m = R(1 + E0) [1− α (1− ψz)]−mDg − (1−m)κDu. (10)

Proposition 6 states the privately optimal choice of asset encumbrance with public guaran-

tees. We focus on the interior solution, which arises under similar constraints on investment

profitability as in Proposition 2.

Proposition 6. Public guarantees and the privately optimal encumbrance level.

There exists a unique privately optimal level of asset encumbrance with public guarantees.

An interior solution α∗m ∈ (0, 1) is implicitly given by:

F (S∗m(α∗m))

f(S∗m(α∗m))
=

1− ψz
ψ(z − 1)

[(κ− 1)(1−m)Du + α∗m(1− ψ)R(1 + E0)]. (11)

An increase in the coverage of the guarantee induces greater asset encumbrance, dα∗
m

dm > 0.

Proof. See Appendix G.

The intuition for Proposition 6 relates to the cost and stability of funding. For any

given level of encumbrance, as the fraction of guaranteed unsecured debt increases, there is

less rollover risk, and the bankruptcy threshold S∗m increases, which reduces the range of

shocks for which the bank is fragile. Consequently, the banker encumbers more assets in
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order to expand its balance sheet and to increase the expected value of bank equity.

Unlike the banker, the planner accounts for the expected costs of guaranteeing a

fraction m of unsecured debt, denoted by C. Suppose that guaranteed debt is senior to

non-guaranteed claims. In bankruptcy, the value of unencumbered assets is ψ(Smax − S).

Since the face value of guaranteed debt is mDg, the bank has sufficient resources to serve

guaranteed debt as long as ψ(Smax−S) ≥ mDg. We can express this condition as an upper

bound on the balance sheet shock, S ≤ Smax − mDg
ψ .10 Partial default, and thus costs to

the guarantor, occur for Smax −mDg/ψ < S ≤ Smax. Full default occurs for larger shocks,

S < Smax. Taken together, the expected cost to the guarantor is:

C ≡
∫ Smax

Smax−
mDg
ψ

[
mDg − ψ

(
Smax − S

)]
dF (S) +mDg

∫ ∞
Smax

dF (S). (12)

Lemma 3. Guarantee cost. The expected cost to the guarantor increases in both the level

of asset encumbrance and in the fraction of guaranteed unsecured debt; it is also weakly

convex in the level of encumbrance and has a positive cross-derivative:

∂C

∂α
> 0,

∂C

∂m
> 0,

∂2C

∂α2
≥ 0,

∂2C

∂α∂m
> 0. (13)

Proof. See Appendix H.

Lemma 3 summarizes the key features of the cost of guaranteeing unsecured debt.

First, as more assets are encumbered, the the upper bound Smax decreases, so the guarantor

pays out for a larger range of shocks. Second, an increase in the fraction of guaranteed debt

has two effects: (i) a decrease in the lower bound Smax − mDg
ψ and thereby increase the

range of shocks over which the guarantee is paid; and (ii) an increase in the coverage of the

guarantee. Third, greater coverage increases the expected costs of the guarantee.
10To ensure that the guarantor always repays guaranteed debt if solvent, we impose Smax − mDg

ψ
> S∗

m,
for which an upper bound on the fraction of guaranteed debt, m < m ≡ ψ+γ(1−ψ)

1+γ(1−ψ)
∈ (0, 1), suffices.
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The planner chooses the level of asset encumbrance to maximize the expected equity

of the banker net of the expected costs of the guarantor (investors break even). Formally,

the constrained efficient level of asset encumbrance, αP , solves the planner’s problem:

max
α

W ≡ π −
(
1 + ξ

)
C (14)

s.t. S∗m = R(1 + E0) [1− α (1− ψz)]−mDg − (1−m)κDu ,

where ξ ≥ 0 measures the dead-weight loss of raising the funds to back the guarantee, for

example due to (unmodelled) distortionary taxation. We again focus on interior solutions.

Proposition 7. Public guarantees and constrained inefficiency. The privately opti-

mal level of asset encumbrance is excessive, α∗m > αP . This gap increases in the coverage of

the guarantee, d(α∗
m−α∗

P )
dm > 0, and in the dead-weight loss, d(α∗

m−αP )
dξ > 0. The privately opti-

mal level of bank fragility is excessive, S∗∗m ≡ S∗m(α∗m) < S∗m(αP ) ≡ SP , and the gap increases

in the coverage of the guarantee, d(SP−S∗∗
m )

dm > 0 and in the dead-weight loss, d(SP−S∗∗
m )

dξ > 0.

Proof. See Appendix I.

The expected cost of guaranteeing unsecured debt drives a wedge between the privately

optimal and constrained efficient levels of asset encumbrance. Greater coverage makes a

larger proportion of unsecured bank funding cheap and stable, pushing up the privately

optimal level. However, the expected cost of the guarantee also increases, so the wedge

increases in coverage. Moreover, a higher dead-weight loss of funds that back the guarantee

reduces the constrained efficient level of encumbrance without affecting the privately optimal

level. Finally, the excessive fragility of the bank and the associated comparative statics are

a direct consequence, since a higher level of asset encumbrance leads to more fragility.

Proposition 7 clarifies why policymakers (e.g., CGFS, 2013) have emphasized the

importance of prudential safeguards to mitigate the risks of heavy asset encumbrance. In

what follows, we consider three schemes that a regulator can introduce before the secured
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funding round at t = 0 in order to influence the banker’s choice of asset encumbrance.

These include (i) caps on asset encumbrance (or, equivalently, on covered bond issuance);

(ii) minimum capital requirements; and (iii) surcharges based on asset encumbrance. Let

α∗∗m denote the constrained privately optimal level of asset encumbrance.

We start with the cap on asset encumbrance. The formal constrained problem for the

banker is given in (10) with the additional constraint of an encumbrance limit, α ≤ α.

Proposition 8. Caps on asset encumbrance. A cap on asset encumbrance α < α ≡ αP

attains the constrained efficient allocation (αP , SP ) as the constrained private optimum.

Proof. See Appendix J.

The privately optimal level of encumbrance is constrained efficient, α∗∗m = αP , which

also results in a constrained efficient level of bank fragility, S∗∗m = SP . Intuitively, the bank

funding channel still dominates the risk concentration channel at α = αP , so the banker

wishes to encumber more assets but is limited by the regulatory cap, as shown in Figure 4.
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Figure 4: Expected value of equity and welfare as functions of the level of asset encumbrance.
In this example, we set R = 1.1, r = 1, E0 = 1.1, ψ = 0.7, γ = 0.025, m = 0.2, Du = 1.05,
Dg = 1.0, ξ = 0.01 and the shock follows an exponential distribution with rate λ = 1.1.

Second, we consider minimum capital requirements. Let e denote the bank’s capital

ratio at t = 0. It is given by the ratio of the bank’s own funds, E0, and its total assets,

1 + E0 + B0. Using the equilibrium relation B0 = αzψ(1 + E0), we can express the bank’s
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capital ratio as a function of its asset encumbrance level and parameters:

e(α) ≡ E0

(1 + E0)(1 + αψz)
, (15)

whereby more asset encumbrance expands the balance sheet with debt-funded investment

and therefore strictly decreases the capital ratio, de
eα < 0.

Proposition 9. Minimum capital requirements. A minimum capital ratio, e(α) ≥ e ≡

e(αP ), attains the constrained efficient allocation as the constrained private optimum.

Proof. See Appendix J.

Encumbering more assets attracts more covered bond funding and thus allows the

banker to invests more, for a constant initial capital. Therefore, imposing a lower bound e

on the bank’s capital ratio, the regulator indirectly influences the privately chosen level of

asset encumbrance. In particular, setting e ≡ e(αP ), the constrained efficient level of asset

encumbrance is achieved, also resulting in the constrained efficient level of bank fragility.

In sum, if appropriately tailored, both a cap on asset encumbrance and a minimum capital

ratio attain the constrained efficient level of asset encumbrance and bank fragility.

Third, we consider the surcharge for encumbering assets ∆(α) paid by the banker at

t = 0. This surcharge is similar to the deposit insurance premium paid to a deposit insurance

fund. We consider schedules for which there is no surcharge without encumbrance, ∆(0) = 0,

and where the surcharge is weakly increasing in the level of asset encumbrance, ∆α ≥ 0.

In contrast with the two previous regulatory tools, no additional constraint is added to the

banker’s problem but the objective function and the bankruptcy threshold change:

max
α

F (S∆
m)
[
R
(
(1 + E0)(1 + α(z − 1)ψ)−∆(α)

)
−mDg − (1−m)Du

]
−
∫ S∆

m

0
SdF (S)

s.t. S∆
m ≡ R [(1 + E0)(1− α(1− ψz))−∆(α)]−mDg − (1−m)κDu. (16)
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Asset encumbrance surcharges impose a private cost on the banker, hence they may

be a useful tool to curb the private incentives to excessively encumber assets. But there may

be a tension between attaining the constrained efficient levels of encumbrance and fragility.

Since surcharges reduce unencumbered assets, a higher surcharge can heighten bank fragility.

Proposition 10. Asset encumbrance surcharge. There exists no continuous schedule

of asset encumbrance surcharges that attains constrained efficiency. However, a schedule

that is discontinuous at αP can attain constraint efficiency.

Proof. See Appendix J.

Our first result suggests that surcharge schedules that are continuous, for example

linear in the level of asset encumbrance, cannot attain constrained efficiency. Intuitively, the

surcharge must be sufficiently large for high levels of encumbrance, α > αP , to deter excessive

encumbrance and obtain the constrained efficient level of encumbrance. By continuity, the

surcharge is also positive at αP . But this reduces unencumbered assets, heightens rollover

risk, and adds to bank fragility. In other words, a continuous surcharge schedule can attain

the constrained efficient level of asset encumbrance, but leads to excessive fragility.

Our second result suggests that constrained efficiency can be attained if the schedule of

asset encumbrance surcharges has a discontinuity at αP . Consider the following example. No

surcharge is applied as long as the level of asset encumbrance is less than αP . The bank can

encumber assets up to the constrained efficient level without generating excessive fragility.

For encumbering assets beyond αP , however, the surcharge is so high that all unencumbered

assets are wiped out. An unsecured debt run would follow, leading to bankruptcy where the

bank’s equity value is zero. As a result, the bank always chooses a level of asset α∗∗m ≤ αP .

Since the bank funding channel again dominates the risk concentration channel for any α ∈

[0, αP ], the banker’s constrained privately optimal choice of asset encumbrance is α∗∗m = αP

and results in the constrained efficient level of bank fragility. An example of a discontinuous

surcharge schedule that achieves constrained efficiency is ∆̂(α) = R(1 + E0 + ω)Iα>αP .
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5 Conclusion

This paper presents the first model of bank funding with covered bonds and explores their

implication for financial stability. We decompose the influence of asset encumbrance into two

distinct balance sheet effects. First, covered bonds issuance funds more profitable investment

and increases the expected value of bank equity (bank funding channel). Second, because of

dynamic replenishment of the cover pool, balance sheet shocks are asymmetrically shifted

to unsecured debt holders, resulting in greater fragility (risk concentration channel). The

bank’s choice of asset encumbrance balances this trade-off between profitability and fragility.

Covered bonds are safe assets and a cheap source of bank funding but they exacerbate

the riskiness and fragility of unsecured debt and render it more costly. These results stem

from the replenishment and bankruptcy remoteness of the cover pool that protect covered

bond holders from balance sheet shocks and the dilution of their claims to the cover pool

assets in bankruptcy. Our implications about financial stability arise from the interaction of

rollover risk of unsecured debt and these two features of secured debt. Similar insights may

apply to term repos where safe harbor arrangements ensure bankruptcy remoteness and the

right to substitute collateral or variation margins are economically similar to replenishment.

We derive normative implications about asset encumbrance in the context of guaran-

teed unsecured debt. The privately optimal level of encumbrance is excessive because the

banker does not internalize the effect of encumbrance on the cost of providing the guarantee.

Absent prudential safeguards, banks have strong incentives to issue covered bonds in order

to shift risk to the guarantor. Accordingly, proposals that emphasize covered bonds as a

means of reviving mortgage finance need to be accompanied by prudential regulation.

We study three forms of regulation aimed at curbing excessive asset encumbrance

by banks. First, a limit on the level of asset encumbrance may be imposed to restore

constrained efficiency. This is consistent with measures taken in some jurisdictions like

Australia, Canada, New Zealand, and the US. Second, since a bank’s capital ratio is sensitive
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to the level of encumbrance, minimum capital requirements can be used to the same effect.

Finally, we consider surcharge for asset encumbrance paid to a deposit insurance fund or

to contribute to a bailout fund. Our results suggest that a surcharge schedule has to be

discontinuous in the level of asset encumbrance in order to restore constrained efficiency.

Our model generalizes to other settings. In practice, the mix of assets that back

covered bonds are often heterogeneous, including mortgages and public debt, and subject

to decreasing marginal returns. Following a balance sheet shock, the replenishment of the

cover pool would not only affect the amount of unencumbered assets, but also its risk profile.

Since lower-risk assets would be swapped into the asset pool first, the risk concentration

effect would be exacerbated, raising fragility and reducing asset encumbrance. Regarding

our normative implications, if there is uncertainty about the deep pocket of the guarantor,

unsecured but guaranteed bank creditors may sometimes run on the bank as well. Such

additional fragility would reduce the incentives of the bank to encumber assets and issue

covered bonds. We leave a full treatment of this case to future work.
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A Proof of Proposition 1

In each rollover subgame, it is sufficient to establish the existence of a unique Bayesian

equilibrium in threshold strategies for sufficiently precise private information. Morris and

Shin (2003) show that only threshold strategies survive the iterated deletion of strictly

dominated strategies; see also Frankel et al. (2003). Specifically, we consider the limiting case

of vanishing private noise, ε → 0. Each fund manager i uses a threshold strategy, whereby

unsecured debt is rolled over if and only if the private signal suggests that the balance sheet

shock is small, xi < x∗. Hence, for a given realization S ∈ [S, S], the proportion of fund

managers who do not roll over debt is:

`
(
S, x∗

)
= Prob

(
xi > x∗

∣∣S) = Prob (εi > x∗ − S) = 1−G
(
x∗ − S

)
. (17)

A critical mass condition states that bankruptcy occurs when the balance sheet shock

reaches a threshold S∗, where the proportion of unsecured debt not rolled over is evaluated

at S∗:

R
[
B0 + (1−α)(1 +E0)

]
−S∗− `

(
S∗, x∗

)Du

ψ
=
(
1− `

(
S∗, x∗

))
Du +

(
B0Db−αRψ(1 +E0)

)
The posterior distribution of the balance sheet shock conditional on the private signal is

derived using Bayes’ rule. The indifference condition states that the fund manager who

receives the critical signal xi = x∗ is indifferent between rolling over and not rolling over

unsecured debt:

γ = Pr (S < S∗|xi = x∗) . (18)

Using the definition of the private signal xj = S + εj of the indifferent fund manager,

we can state the conditional probability as follows:
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1− γ = Pr (S ≥ S∗|xi = x∗) = Pr (S ≥ S∗|xi = x∗ = S + εj) (19)

= Pr (x∗ − εj ≥ S∗) = Pr (εj ≤ x∗ − S∗) (20)

= G
(
x∗ − S∗

)
(21)

The indifference condition implies that x∗ − S∗ = G−1
(

1− γ
)
. Inserting the indiffer-

ence condition into `
(
S∗, x∗

)
, the proportion of fund managers who do not roll over when

the balance sheet shock is at the critical level S∗ is perceived by the indifferent fund manager

to be:

`
(
S∗, xi = x∗

)
= 1−G

(
x∗ − S∗

)
= 1−G

(
G−1

(
1− γ

))
= γ. (22)

Therefore, the bankruptcy threshold S∗ stated in Proposition 1 follows. For vanishing

private noise, the signal threshold also converges to this value, x∗ → S∗, allowing us to

concentrate solely on the bankruptcy threshold. The partial derivatives of S∗ are immediate.

B Proof of Lemma 1 and Lemma 2

We prove that B∗0 = α∗ψR(1+E0)
D∗
b

and D∗b = r in any equilibrium. We also derive the total

effect of asset encumbrance on the bankruptcy threshold. We guess and verify that D∗b < R.

The partial derivatives of the objective function with respect to B0 and Db are

∂π

∂B0
= (R−Db) [F (S∗) + f(S∗)E(S∗)] > 0 (23)

∂π

∂Db
= −B0 [F (S∗) + f(S∗)E(S∗)] < 0, (24)

where the equity value just before bankruptcy is E(S∗) = (κ−1)Du+α(1−ψ)R(1+E0) > 0.
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We prove B∗0 = α∗ψR(1+E0)
D∗
b

by contradiction. First, suppose that D∗b >
α∗ψR(1+E0)

B∗
0

.

Infinitely risk-averse investors value the covered bond claim at α∗ψR(1+E0)
B∗

0
since bankruptcy

occurs with positive probability. This violates the supposed optimality of D∗b , since lowering

the face value would raise the objective function ( ∂π∂Db < 0) without affecting the constraint.

Contradiction. Thus, D∗b ≤
α∗ψR(1+E0)

B∗
0

. Second, suppose D∗b <
α∗ψR(1+E0)

B∗
0

. Infinitely risk-

averse investors value the covered bond claim at Db since the bank is solvent with positive

probability. This violates the supposed optimality of B∗0 , since raising the issuance volume of

covered bonds would raise the objective function ( ∂π∂B0
> 0) without affecting the constraint.

Contradiction. Thus, D∗b ≥
α∗ψR(1+E0)

B∗
0

. Taking together, we have the bank funding channel.

As a result of B∗0 = α∗ψR(1+E0)
D∗
b

, the problem of the banker reduces to

max
{α,B0}

π(α,B0) ≡ F (S∗)
[
R
(
1 + E0 +B0)− αRψ(1 + E0)−Du

]
−
∫ S∗

0
SdF (S)

s.t. (25)

S∗ = S∗(α,B0) = R[1 + E0 +B0]− αR(1 + E0)− κDu

r ≤ αψR(1 + E0)

B0
.

Since ∂π(α,B0)
∂α < 0, and ∂π(α,B0)

∂B0
> 0, the participation constraint of risk-averse investors

binds in equilibrium, so B∗0 = α∗ψR(1+E0) and D∗b = r < R, which verifies the supposition.

Thus, the bankruptcy threshold becomes S∗(α) = R(1+E0)[1−α(1− ψR
r )]−κDu. The

total effect of asset encumbrance on this threshold is dS∗(α)
dα = −R(1 + E0)

(
1− ψR

r

)
< 0,

the risk concentration effect.

C Proof of Proposition 2

This proof continues from the proof of Lemma 1 and Lemma 2. Using D∗b = r and B∗0 =

α∗ ψRr (1 +E0), we obtain at a simple unconstrained optimization problem in which both the

risk concentration and the bank funding channels are taken into account:
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max
α∈[0,1]

π(α) ≡ F (S∗(α))

[
R(1 + E0)

(
1 + αψ

(
R

r
− 1

))
−Du

]
−
∫ S∗(α)

0
SdF (S)

s.t. (26)

S∗(α) = R(1 + E0)

[
1− α

(
1− ψR

r

)]
− κDu.

Using the risk concentration channel, the first and second derivative of the objective

function value with respect to the level of asset encumbrance are:

1

R(1 + E0)

dπ

dα
≡ F (S∗)ψ

(
R

r
− 1

)
−
(

1− ψR

r

)
f(S∗)E(S∗(α)) (27)

1

R(1 + E0)

d2π

dα2
≡ dS∗(α)

dα

[
ψ

(
R

r
− 1

)
f(S∗(α))−

(
1− ψR

r

)
f ′(S∗(α))E(S∗(α))

]
−
(

1− ψR

r

)
(1− ψ)R(1 + E0)f(S∗(α)) < 0 (28)

The sign of the second-order derivative is ensured by f ′ ≤ 0 and ψR < r. Therefore, the

objective function is globally concave and there exists at most one solution. If a solution

exists, it is a (global) maximum. By continuity of the objective function π, and the closed set

[0, 1] over which the banker maximizes, a solution α∗ exists. This establishes the existence

and uniqueness of a global maximum.

We next study whether this solution is interior. First, we require α∗ > 0. Rewriting

dπ
dα

∣∣
α=0

> 0 and using S∗(α = 0) = R(1 + E0)− κDu yields:

F [R(1 + E0)− κDu]

f [R(1 + E0)− κDu]
>

(1− ψR
r )

ψ
(
R
r − 1

)(κ− 1)Du.

Focusing on the left-hand side of condition (29), we note that F (.)
f(.) is strictly increasing. The

argument itself increases in R. The right-hand side decreases in R. Consequently, α∗ > 0
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for any R > R, which is implicitly defined by

F [R(1 + E0)− κDu]

f [R(1 + E0)− κDu]
=

(1− ψR
r )

ψ
(
R
r − 1

)(κ− 1)Du. (29)

Note that R ∈
(
r, rψ

)
, since the right-hand side of condition (29) goes to positive infinity

for R→ r and to zero for R→ r
ψ , while the left-hand side is positive but finite.

Second, we require α∗ < 1. Rewriting dπ
dα

∣∣
α=1

< 0 and using S∗(α = 1) = RψR
r (1 +

E0)− κDu yields:

F [R(1 + E0)ψRr − κDu]

f [R(1 + E0)ψRr − κDu]
<

(1− ψR
r )

ψ
(
R
r − 1

)[(κ− 1)Du + (1− ψ)R(1 + E0)
]
.

The argument of the left-hand side increases in R, while he right-hand side decreases in R.

Thus, α∗ < 1 for any R < R implicitly defined by

F [R(1 + E0)ψRr − κDu]

f [R(1 + E0)ψRr − κDu]
=

(1− ψR
r )

ψ
(
R
r − 1

)[(κ− 1)Du + (1− ψ)R(1 + E0)
]
. (30)

Since the right-hand side of this expression again goes to positive infinity for R → r
ψ , and

since the left-hand side remains positive but finite, an upper bound R < r
ψ exists.

Next, we show that R > R for any given Du. Since the bankruptcy threshold S∗

decreases in asset encumbrance α (Lemma 2), the left-hand side in condition (30) is smaller

than the left-hand side in condition (29). Moreover, the right-hand side in condition (30) is

larger than the right-hand side in condition (29) because of the additional term. As a result,

R > R, which justifies our labels. In sum, α∗ ∈ (0, 1) for any R ∈
(
R,R

)
.
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D Proof of Proposition 3 and Corollary 2

We compute comparative statics of α∗ with respect to y ∈ {R, γ, ψ, r, E0, λ,Du}. We focus

on intermediate investment profitability, R ∈
(
R,R

)
, in order to guarantee an interior

solution α∗ ∈ (0, 1). The implicit function theorem yields dα∗

dy = − παy
παα

. To derive the

partial derivatives, we use the bankruptcy threshold in equation (26) together with the

derivative of the expected profit with respect to asset encumbrance, πα, in equation (27).

First, we report the partial derivatives of the threshold S∗∗ ≡ S∗(α∗), where the

relative return is z = R
r :

∂S∗∗

∂α
= −R(1 + E0)(1− ψz) < 0 (31)

∂S∗∗

∂Du
= −κ < 0 (32)

∂S∗∗

∂R
= (1 + E0)[1− α∗(1− 2ψz)] > 0 (33)

∂S∗∗

∂γ
= −

(
1

ψ
− 1

)
Du < 0 (34)

∂S∗∗

∂r
= −α∗ψz2(1 + E0) < 0 (35)

∂S∗∗

∂E0
= R[1− α∗(1− ψz)] > 0 (36)

∂S∗∗

∂ψ
= Rzα∗ +

γDu

ψ2
> 0. (37)
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Second, we report the partial derivatives of the implicit function defined by πα(α∗) = 0:

παα =
(
ψ(z − 1)f(S∗∗)− (1− ψz)E(S∗∗)f ′(S∗∗)

) ∂S∗∗
∂α

(38)

−(1− ψz)f(S∗∗)(1− ψ)R(1 + E0) < 0

παDu = −f(S∗∗)[ψz + (1− ψ)κ− 1] + κ(1− ψz)f ′(S∗∗)E(S∗∗) < 0 (39)

παγ = [(1− ψ)f(S∗∗)− (1− ψz)f ′(S∗∗)E(S∗∗)]
∂S∗∗

∂γ
< 0 (40)

παr = −ψ R
r2

[F (S∗∗) + f ′(S∗∗)E(S∗∗)] + ψ(z − 1)f(S∗∗)
∂S∗∗

∂r
(41)

−(1− ψz)f ′(S∗∗)E(S∗∗)
∂S∗∗

∂r
< 0

παψ = (z − 1)F (S∗∗) + ψ(z − 1)f(S∗∗)
∂S∗∗

∂ψ
+ zf(S∗∗)E(S∗∗) (42)

−(1− ψz)f ′(S∗∗)∂S
∗∗

∂ψ
E(S∗∗) + (1− ψz)f(S∗∗)

[
α∗R(1 + E0) +

γDu

ψ2

]
> 0.

Third, by the implicit function theorem, we obtain the first four comparative statics

reported in Proposition 3: dα∗

dψ > 0, dα
∗

dγ < 0, dα
∗

dr < 0, and dα∗

dDu
< 0.

Fourth, suppose that the balance sheet shock distribution F̃ stochastically dominates

the distribution F according to the reverse hazard rate. This implies that

f̃

F̃
≥ f

F
, (43)

which means that F/f ≥ F̃ /f̃ . Let π̃α(α̃∗) = 0 denote the implicit function defining the

privately optimal level of asset encumbrance, α̃∗ under the balance sheet shock distribution

F̃ . We therefore have that π̃α ≤ πα for all levels of asset encumbrance. Furthermore, since

π̃αα < 0 and παα < 0, it follows that the privately optimal levels of asset encumbrance will

satisfy α̃∗ ≤ α∗.

Finally, we consider the comparative statics of the privately optimal level of asset

encumbrance with respect to initial bank capital and investment profitability:
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παE0 =

[
ψ(z − 1)

∂S∗∗

∂E0
− (1− ψz)α∗R(1− ψ)

]
f(S∗∗)− (1− ψz)f ′(S∗∗)E(S∗∗) (44)

παR =
ψ

r
F (S∗∗)− (1− ψz)E(S∗∗)f ′(S∗∗) (45)

+f(S∗∗)

[
ψ(z − 1)

∂S∗∗

∂R
+
ψ

r
E(S∗∗)− (1− ψz)α∗(1− ψ)(1 + E0)

]
.

Since f ′(S∗∗) ≤ 0, a sufficient condition for παE0 > 0 is g(z) ≡ z2 + 1−2ψ
ψ z − 1−ψ

ψ2 > 0. Let

the two roots be z1 < z2 such that g(z) > 0 for z < z1 and z > z2. One can show that

z1 < 1, a contradiction. However, one can show that z2 <
1
ψ , the upper bound on z, where

z2 ≡
2ψ − 1 +

√
4(1− ψ)2 + 1

2ψ
. (46)

Let r ≡ R
z2
, such that g(z) > 0 ∀ r < r, so παE0 > 0 and dα∗

dE0
> 0 by the implicit function

theorem. One can also show that g(z) > 0 is sufficient for παR > 0, which yields dα∗

dR > 0.

Consider the special case of a uniform distribution, S ∼ U [0, R(ω + 1 + E0)], where

the upper bound is always above Smax. The first-order condition of the privately optimal

level of asset encumbrance is linear. Rewriting yields the expression stated in Corollary 2.

Differentiation with respect to E0 yields

dα∗

dE0
=

[ψz + (1− ψ)κ− 1]Du

R(1 + E0)2[1− 2ψ − ψ2z(z − 2)]
> 0, (47)

since the numerator is unambiguously positive and the denominator is positive between the

two roots, 2ψ−1
ψ < z < 1

ψ , which includes the full support of the relative return. Similarly,

dα∗

dR
=

[ψz + (1− ψ)κ− 1]Du

R2(1 + E0)[1− 2ψ − ψ2z(z − 2)]
> 0, (48)

which is unambiguously positive for the same reason.

38



E Proof of Proposition 4

The equilibrium face value of unsecured debt D∗u is implicitly defined by the binding par-

ticipation constraint of risk-neutral investors, V (D∗u) = r. The proof of existence and

uniqueness of D∗u is in four steps. First, for any given Du, the value of the unsecured debt

claim decreases in the level of asset encumbrance:

∂V

∂α∗
= Du[1− κψ]f(S∗∗)

dS∗∗

dα∗
− ψR(1 + E0)(1− ψz)

∫ S∗
max

S∗∗
dF (S) < 0. (49)

Intuitively, more asset encumbrance reduces both the pool of unencumbered assets and the

range of balance sheet shocks for which unsecured debt holders are repaid in full, so the

overall effect on the value of the unsecured debt claim is negative.

Second, risk-neutral investors never accept a debt claim with face value Du = r:

V (Du = r) = rF (S∗∗) + ψ

∫ S∗
max

S∗∗
(S∗max − S)dF (S) (50)

< r
(
F (S∗∗) + ψκ[F (S∗max)− F (S∗∗)]

)
< r. (51)

Third, the value of the unsecured debt claim changes with its face value according to

dV
dDu

= ∂V
∂α∗

∂α∗

∂Du
+ ∂V

∂Du
, where ∂S∗∗

∂Du
= −κ and

∂V

∂Du
= F (S∗∗)− κ(1− ψκ)Duf(S∗∗) (52)

= f(S∗∗)
1− ψz
ψ(z − 1)

[(κ− 1)Du + α∗(1− ψ)R]− κ(1− ψκ)Duf(S∗∗), (53)

where we used the first-order condition for α∗. Since the indirect effect via α∗ is positive,

∂V
∂α∗

∂α∗

∂Du
> 0, and since α∗(1 − ψ)Rf(S∗∗) ≥ 0, a sufficient condition for dV

dDu
> 0 is that

the term multiplying f(S∗∗)Du is non-negative, −κ(1−ψκ) + 1−ψz
ψ(z−1)(κ− 1) ≥ 0. Rewriting

yields an upper bound on investment profitability relative to the return on storage:
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z ≤ z ≡ κ− 1 + κψ(1− κψ)

ψ(κ− 1) + κψ(1− κψ)
∈
(

1,
1

ψ

)
, (54)

which can be written as R ≤ R̃. This condition ensures the monotonicity of the unsecured

debt claim in its face value, dV
dDu

> 0, and suffices for uniqueness of D∗u (if it exists).

Fourth, existence requires that risk-neutral investors accept the debt claim for a

feasible face value. Since at most the investment return R can be promised, we require

V (Du = R) > r because of monotonicity. Since S∗∗(R) = R[(1 + E0)(1− α∗(1− ψz))− κ]:

r < RF (S∗∗(R)) + ψ

∫ S∗
max

S∗∗(R)
(S∗max − S)dF (S). (55)

Since greater asset encumbrance dilutes the unsecured debt claim, as shown in the first

point, a sufficient condition in terms of exogenous parameters of the model can be obtained

by evaluating this inequality at α∗ = 1:

r ≤ RF (R[(1 + E0)ψz − κ]) + ψ

∫ Rψz(1+E0)

R[(1+E0)ψz−κ]
(R[(1 + E0)ψz − κ]− S)dF (S). (56)

This condition suffices for the existence of D∗u. Figure 5 illustrates.
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Figure 5: Unsecured debt claim: its value increases in the face value.
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F Proof of Propositions 5

The bound S̆ = R(1 + E0 + ω) − κr is constructed to always ensure S̆ > S∗ (because

α∗ ≥ 0 and D∗u > r). By Proposition 2, which defines the privately optimal level of asset

encumbrance, α∗ = α̃∗ because both F and F̃ are identical for any S < S̆. Thus, the

difference in distribution affects the value of the unsecured debt claim only via the liquidation

value in bankruptcy, but not via changes in asset encumbrance.

Next, observe that V (Du|F̃ ) > V (Du|F ), for any given Du, because of the lower tail

risk under F̃ . Since risk-neutral investors always receive their outside option in expectation,

we have V (D̃∗u|F̃ ) = 1 = V (D∗u|F ). Since dV
dDu

> 0 as showed before, it follows that D̃∗u < D∗u.

G Proof of Proposition 6

The first-order condition is a straightforward extension of the model without public guar-

antees and follows directly from the problem in (10). The comparative static dα∗
m

dm > 0

follows from the implicit function theorem, since dα∗
m

dm = −παm
παα

> 0. The sign arises

from f ′ ≤ 0, S∗∗m ≡ S∗m(α∗m), ∂S∗
m

∂α = −R(1 + E0)(1 − ψz) < 0, ∂S∗
m

∂m = κDu − Dg > 0,

E(S∗∗m ) = (κ− 1)(1−m)Du + α∗m(1− ψ)R(1 + E0) > 0 as well as

παα ≡ R2(1 + E0)2(1− ψz)
[
E(S∗∗m )(1− ψz)f ′(S∗∗m )−

{
ψ(z − 1) + 1− ψ

}
f(S∗∗m )

]
< 0

παm ≡ R(1 + E0)
[
f(S∗∗m )ψ(z − 1)(κDu −Dg)− (1− ψz)

{
f ′(S∗∗m )E(S∗∗m ) [κDu −Dg]

− f(S∗∗m )(κ− 1)Du

}]
> 0

H Proof of Lemma 3

The partial derivatives of the expected cost to the guarantor with respect to the level of

asset encumbrance and the coverage of the guarantee are:
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∂C

∂α
≡ Cα = ψ(1− ψz)R(1 + E0)

[
F
(
Smax

)
− F

(
Smax −

mDg

ψ

)]
> 0 (57)

∂2C

∂α2
≡ Cαα = −ψ(1− ψz)2R2(1 + E0)2

[
f
(
Smax

)
− f

(
Smax −

mDg

ψ

)]
≥ 0 (58)

∂C

∂m
≡ Cm = Dg

[
1− F

(
Smax −

mDg

ψ

)]
> 0 (59)

∂2C

∂α∂m
≡ Cαm = (1− ψz)R(1 + E0)Dgf

(
Smax −

mDg

ψ

)
> 0 (60)

I Proof of Proposition 7

As for preliminaries, we have Wαα ≡ παα− (1 + ξ)Cαα < 0 and [0, 1] is a closed set, so there

exists a unique global welfare maximum at the constrained efficient level of encumbrance,

αP . If interior, this level solves the first-order condition πα(αP ) = (1 + ξ)Cα(αP ). The

associated level of fragility is SP ≡ S∗m(αP ).

To establish constrained inefficiency of the privately optimal level of asset encum-

brance, note that W (α∗m;m) = −C(α∗m;m) < 0. Since αP solves W (αP ;m) = 0, and the

objective function of the planner is globally concave, Wαα < 0, it follows that αP < α∗m.

We turn to the comparative statics of the gap between the privately optimal and

constrained efficient encumbrance levels. Since Wαξ = −Cα < 0, dαPdξ = −Wαξ

Wαα
< 0 by the

implicit function theorem (IFT), which yields the second comparative static, d(α∗
m−αP )
dξ > 0

(α∗m is independent of ξ). Similarly, the first comparative static obtains if dαP
dm < dα∗

m
dm . Let

Wαm ≡ παm − Cαm. By the IFT for both αP and α∗m, this inequality requires −Wαm
Wαα

<

−παm
παα
⇔ −παm−(1+ξ)Cαm

παα−(1+ξ)Cαα
< −παm

παα
⇔ Cαmπαα < παmCαα, which always holds.

Turning to bank fragility, excessive fragility and the comparative statics of the bank-

ruptcy threshold w.r.t. guarantee coverage arise from α∗m > αP ,
d(α∗

m−αP )
dm > 0, and dS∗

m
dα < 0.

Similarly, the comparative static on the dead-weight loss follows from dαP
dξ < 0 and dα∗

m
dξ = 0.
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J Proof of Propositions 8 – 10

We consider the cap on asset encumbrance and Proposition 8 first. From Proposition 7,

we know that the bank’s unconstrained choice of asset encumbrance, α∗m, is greater than

the constrained efficient level, αP . Moreover, because of the global concavity of π, πα > 0

for α < α∗m. Therefore, introducing the constraint α ≤ αP into the bank’s program at the

secured funding round at t = 0 implies that the constraint will always bind, α∗∗m = αP .

Second, we consider a minimum capital requirement and Proposition 9. The minimum

capital ratio, e(α) ≥ e ≡ E0
(1+E0)(1+ψzαP ) , can be re-written as a cap on the level of asset

encumbrance, α ≤ αP . As before, introducing a minimum capital ratio as an additional

constraint in the bank’s program at the secured funding round yields constrained efficiency.

Third, we consider the encumbrance surcharge and Proposition 10. We show by con-

tradiction that there exists no continuous schedule of asset encumbrance surcharge. Suppose

such a schedule exists and call it ∆̃. To ensure that the constrained privately optimal level

of asset encumbrance does not exceed αP , it must be true that ∆̃(α) > 0 for any α > αP .

(Intuitively, the surcharge is high enough to prevent the banker from increasing the asset

encumbrance level beyond αP , as is optimal without constraint; see Propositions 6 and 7.)

By continuity, ∆̃(αP ) > 0. Using the expression for the bankruptcy threshold in (16), we

obtain S∆
m(αP ) < SP , contradicting the supposed constrained efficiency of the schedule ∆̃.

Finally, we show by example that there exists a schedule that is sufficiently discon-

tinuous at αP and attains constraint efficiency. Consider the example in the main text, ∆̂.

The surcharge wipes out all unencumbered assets if α > αP is chosen, but does not affect

the problem if α ≤ αP . Therefore, we can effectively write the discontinuous schedule of

asset encumbrance surcharges as a constraint α ≤ αP on the banker’s problem. We have

already shown that this constraint attains constrained efficiency, which concludes the proof.
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