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Abstract

Satellite data on nighttime luminosity is an increasingly popular proxy for

economic activity in developing countries. However, their use for analyzing

inequality and convergence on a global scale is severely limited by top-coding

of the NOAA satellite images, which fail to accurately capture the brightness of

large and densely populated cities, as well as by comparability problems between

satellites. As a result, they severely underestimate differences between urban and

rural regions, and developed and developing countries. We propose a new and easy-

to-use procedure to correct for top-coding in nighttime lights, which borrows from

the top incomes literature. We show that just as top incomes, top lights are Pareto

distributed. We then derive simple formulas for the top-coding adjusted spatial Gini

coefficient and top-coding adjusted average light intensity. Using data for Germany

we show that by correcting for top-coding of the top 2% of lights, we can account for

up to 40% of the difference between saturated and unsaturated satellites. We also

analyze corrections for between and within satellite measurement errors. Finally, we

present three economic applications to determine where the influence of top-coding

is most severe. We show that top-coding and satellite calibration affects estimates

of the income elasticity of light, regional inequalities and urban-rural differences.

JEL Classification: D3, O1, O18, C34

Keywords: Development, Inequality, Nighttime Lights, Top-Coding, Top Incomes
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1 Introduction

Economic activity in countries with low quality statistical data is hard to track. This

is a problem which not only plagues studies focusing on developing countries but also

those dealing with growth, inequality and development on a global scale. Advanced

economies tend to be over-represented in empirical studies, while less developed countries,

particularly in Africa, are left out due to data unavailability. This data constraint is so

severe that it has been referred to as a ‘statistical tragedy’ (Devarajan, 2013).

Data from weather satellites circling the earth at night while capturing light emissions

are increasingly seen as a way out of this dilemma. A growing literature in economics

is now using nighttime lights as a proxy for national or local economic activity (e.g.

see Chen and Nordhaus, 2011; Henderson et al., 2012; Michalopoulos and Papaioannou,

2013; Hodler and Raschky, 2014; Dreher and Lohmann, 2015). The advantages of the

night lights data are obvious. The data are publicly available as a time series from 1992

onwards for nearly all parts of the world below the Arctic circle. They have a high

resolution compared to regional national accounts data and they are measured uniformly

across the globe. Hence, they are deemed to be comparable both within and between

countries. As Henderson et al.’s (2012) seminal paper shows, night lights predict output

growth while allowing us to circumvent thorny discussions over adjustments for exchange

rates and price levels. One important drawback of this new data, however, is that they

are top-coded in big cities and densely populated areas. Top-coding rises with income and

hence distorts estimates of regional inequality and convergence. The main contribution

of this paper is to demonstrate that the upper tail of the distribution of night light

intensities follows a Pareto law and to present top-coding corrected estimates of average

lights and spatial inequalities.

Geo-referenced images of night lights are typically obtained from the National

Geophysical Data Center (NGDC) at the National Oceanic Administration Agency

(NOAA), whose DMSP-OLS satellites have been orbiting the earth for some decades

now with the primary purpose of detecting sunlit clouds. As a byproduct, they measure

light emissions in the evening hours between 8:30 and 10:00 pm local time around the

globe every day. The recorded data are preprocessed (removing observation of cloudy

days and sources of lights which are not man-made, such as auroral lights or forest fires)

as well as averaged over cloud-free days. The result is a data set of annual light intensities

from 1992 to 2013 at a resolution of 30 by 30 arc seconds for every pixel around the globe1

(corresponding approximately to 0.86 square kilometers at the equator). Figure 1 shows

how the night lights provide a view on economic activity and human settlement patterns

around the world at the turn of the millennium.

1Areas close to the polar zones (65 degrees south and 75 degrees north latitude) are excluded. As
these regions are very sparsely populated, the exclusion affects approximately 0.0002 percent of the global
population (see Henderson et al., 2012).
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Figure 1: Map of ‘stable lights’ in 1999, saturated
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The values of this so-called ‘stable lights’2 product are recorded in a fixed range

of digital numbers (DN) from 0 (missing or completely dark) to 63 (bright). Due to

sensor saturation, the satellites are not able to capture a light intensity higher than 63,

rendering them unable to distinguish between a mid-sized city and a booming metropolis

in most developed countries. This top-coding of the data understates the differences

in lights between rural and bright urban areas, inducing downward bias in inequality

measures and upward bias in the speed of convergence. It is an underestimated problem

for studies of regional convergence on a global scale (such as Lessmann and Seidel, 2015),

light-based estimates of national GDP growth (Henderson et al., 2012), and estimates of

spatial inequalities (Alesina et al., 2016).

Globally, not too many pixels are top-coded, but the truncation of the scale is

enormous. Cities like Berlin, New York, or Tokyo are more than ten times brighter

than recorded by the stable lights data. As an example, consider Figure 2 for Germany

in 1999, where the saturated data on the right hit the 63 DN threshold in most big

urban agglomeration. The saturated data on the left do not differentiate among larger

cities. The non-saturated lights on the right clearly allow us to locate the brightest spots

(Berlin, Hamburg, Munich) and contrast them to dimmer cities. Top-coding tends to

affect developed countries more than their less-developed counterparts, but as bustling

economic centers such as Jakarta and Lagos grow further, it will also lead to distorted

results within developing countries. In fact, top-coding may in part explain why night

lights are more strongly correlated with economic variables in developing rather than

developed countries (see Pinkovskiy and Sala-i Martin, 2014; Nordhaus and Chen, 2015).

2We use the terms ‘stable lights’ and ‘saturated lights’ interchangeably to refer to the same data.
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This conjecture was recently confirmed by Mellander et al. (2015) for Sweden: Using high

resolution grids of administrative data, they find that night lights predict local activity

in the form of population, wages and establishments much better once top-coding is

taken into account. We later show that this point carries over to estimates of the income

elasticity of lights in OECD countries.

Figure 2: Germany, Satellite F12 in 1999, saturated (stable-lights) and unsaturated
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Top-coding has received little attention in the literature so far since we lacked reliable

time-series data on non-saturated lights.3 This situation has now changed. For seven

years, additional satellites flew with various fixed gain settings that are less sensitive to

light and thus capable of capturing the upper part of the light distribution. The resulting

‘radiance-calibrated’ data are not top-coded but at least three major problems remain:4

(i) The data are only available for a few years whereas stable lights series forms a panel

from 1992 to 2013. (ii) Even for values that are not strictly at the top-coding boundary,

there are large differences in brightness between the two data series. (iii) The radiance-

calibrated series exhibits great variability over the years and is not strictly comparable

across images from different satellites and years.

Measurement errors are also present in the ‘stable lights’ data and severely limit their

value as a panel data set. The satellites’ sensors deteriorate over their lifetime and have

to be replaced every couple of years. As a result, the images are not strictly comparable

3Until recently only one cross-section of unsaturated lights in 2006 was made available by the NGDC.
Henderson et al. (2012) make use of this data to gauge the influence of top-coding, but are not able to
replace the stable lights data with this product which is a much more stringent robustness check.

4Hsu et al. (2015) outline a procedure to obtain these ‘radiance-calibrated’ images by blending the
various fixed gain images with the stable lights series.
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across and within satellites. In settings such as panel regressions, we may resort to

a combination of satellite fixed effects and time fixed effects, but in others, it is not

possible to ensure the comparability of the DNs in the time-series dimension. This holds

in particular when changes in the shape of the regional, national or global distribution of

lights are to be analyzed. Yet even in panel regressions, estimates of the long-run income

elasticity of lights tend to greatly exceed estimates of short run elasticities (at least in

part because the latter are dominated by noise).

We offer a simple and computationally attractive solution to the top-coding problem.

Borrowing methods from the top incomes literature, we propose to extend the distribution

of lights using a Pareto tail. For income data which typically suffers from top-coding

and non-reporting, modeling the top share based on a Pareto distribution and then

recomputing inequality measures has become the de facto standard in the literature (e.g.

see Atkinson, 2005; Atkinson et al., 2011; Dell, 2005). We derive simple formulas for

the spatial Gini coefficient and average light intensity that combine the two data sources

and suggest a three step approach of correcting the lights data. First, we estimate the

Pareto parameter α using the radiance-calibrated data, then we transfer these estimates

to the corresponding years of the saturated data, interpolating the intermediate years,

and finally we combine the lower part of the observed distribution with the upper part of

the Pareto distribution. This approach can even be extended to correct the data at the

pixel level and we are currently working on implementing such a correction.

First results show that our top-coding correction makes a substantial difference. The

estimated Gini coefficient of lights in Germany increases by 2 to 5 points depending on

the year. This difference accounts for about 40% of the difference between the saturated

(‘stable lights’) and unsaturated (‘radiance-calibrated data’) at the national level. Note

that in many ways, this understates the severity of the correction in other countries or

regions. Germany is a decentralized territorial state. Many other countries in Europe are

more densely populated (e.g. the Netherlands) or more centralized (e.g. France) which

drives up top-coding in some areas and hence also the extent of our correction.

Next we provide a primer on different approaches to solve the satellite inter-

comparability problem. Elvidge et al. (2009) propose to scale the various images to

a reference area, Sicily, and a particular reference satellite. We show that although this

method perfectly scales the images, it is conceptually flawed and removes much of the

relevant time-series variation. We then propose alternative approaches.

Finally, we turn to three important economic applications to study the impact of

top-coding and inter-calibration. The first application revisits the seminal paper by

Henderson et al. (2012) and shows that the radiance-calibrated data works better for

OCED countries, while current calibration methods remove the underlying economic

trend alongside the “noise”. The second application turns to regional inequalities as in

Alesina et al. (2016) [tbc] and the third application evaluates the economic significance
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of urban regions and capital cities as in Storeygard (2016) [tbc].

The paper proceeds as follows. Section 2 illustrates the extent of top-coding at the

cell level. Section 3 establishes that the upper tail of the night lights is in fact Pareto

distributed and presents our top-coding correction. Section 4 analyzes between and within

satellite measurement errors. In Section 5 we present preliminary results of the impact

of top-coding and calibration on important research questions. Section 6 concludes.

2 The Extent of Top-Coding in Worldwide Lights at

the Cell Level

How important is the top coding issue? A comparison of the saturated, stable lights with

the unsaturated, radiance-calibrated data can be conducted for the seven years (out of

22) for which both data exist. For illustration, we select the year 2010.5 Our analysis

covers 246 countries and territories of the earth. While light is measured at the pixel

level, in this data set it is aggregated to the cell level where each cell is 0.5× 0.5 decimal

degrees (about 56 km2 at the equator). Tiny states such as Gibraltar consist of one cell,

while at the other extreme Russia comprises 12,324 cells. In total, we have 70,894 cells

around the world, for which we have saturated and radiance calibrated light data.6

Table 1: Stable lights v radiance-calibrated data, worldwide, 2010, cell level

All Cells Only Cells With Nonzero Lights

Saturated Rad.-Cal. Saturated Rad.-Cal.

Average
Light
Intensity
in Cell

World Mean 2.3380 2.5021 4.5808 4.9046
World St.Dev. 6.2078 11.5521 8.0766 15.8054
World Min. 0.0000 0.0000 0.0008 0.0008
% Cells at Min. 48.96 48.98 0.00 0.00
World Max. 63.0000 649.9613 63.0000 649.9613
% Cells at Max. 0.00 0.00 0.00 0.00

Maximum
Light
Intensity
in Cell

World Mean 16.8994 30.3922 33.1112 59.5743
World St.Dev. 22.6879 87.7104 21.7198 115.5057
World Min. 0.0000 0.0000 3.0000 2.8196
% Cells at Min. 48.96 48.98 0.00 0.00
World Max. 63.0000 2415.6758 63.0000 2415.6758
% Cells at Max. 5.39 0.0000 10.56 0.0000

# Cells 70894 70894 36183 36167

Rad.-Cal. Max. of Cells with Saturated Max. Light of 63 (World Mean) 186.3893

5The saturated data are averaged across the whole year, while the radiance calibrated data come
from satellite F16 20100111-20101209 rad v4, which circled the earth from 11 January to 9 December,
2010.

6The number of light pixels in each cell varies between 1 and 3600, with a mean of 2959.39.

6



Table 1 shows world summary statistics of the average and maximum light intensities

in each cell in 2010, comparing the saturated ‘stable lights’ data (first column) to the

radiance-calibrated, unsaturated numbers (second column). While the world mean of

the saturated and radiance-calibrated lights are rather close (2.34 vs 2.50 for average

light intensity in cell), the standard deviation of the latter is twice as high. It does not

suffer from top-coding and is measured on a much wider range. By construction, the

world maximum of the saturated average light intensity lies at 63 DN, the maximum

of the scale, but the corresponding radiance-calibrated value is about ten times as high

(649.96). The contrast becomes even starker, when we examine the maximum rather than

average light intensities measured in each cell (lines 7-12). As most cells contain both

bright and dim spots, the average confounds both and is not the most suitable indicator

for the range and values of top lights. The world maximum of the radiance calibrated

maximum light intensities of all cells is 2415.68 – 80 times as high the top coding threshold

of the saturated data! Even if an observation at this magnitude might be dismissed as an

outlier,7 there is a total of 5.39% of all cells worldwide with a maximum light intensity at

the top-coding threshold of 63. In fact, even this number is an understatement. Around

the world, there is an enormous number of cells without any light at all; 48.96% of all

cells, or 34711, have both an average and maximum light intensity of zero. In an analysis

of global growth, distribution and development these (mostly) uninhabited wide plains

without the faintest trace of light have to be neglected. Focusing on the remaining 36167

cells with at least one non-zero light in columns 3 and 4, we see that (i) the world means

of average and maximum light intensities are doubled, with radiance-calibrated maximum

light intensity showing a world mean of 59.57 and standard deviation of 115.51, (ii) the

percentage of cells affected by top-coding at 63 also doubles to 10.56%. Hence, when

looking only at cells with nonzero light, every tenth cell contains at least one pixel which

has or exceeds a luminosity of 63 DN. Calculating the radiance-calibrated maximum light

intensity of these cells gives a global mean of 186.39, three times the threshold. So both

the number of cells affected and the extent of top coding are considerable.

Which countries are most affected by top-coding? Table 2 presents the figures for

seven selected countries, while results for all 265 countries and territories individually

are contained in Table A-1 in the Appendix. It becomes clear that countries which are

predominantly (i) small (ii) highly developed and (iii) have a large degree of urbanization

have particularly many cells where the maximum saturated luminosity is at the 63 DN

threshold. In Israel and Belgium, this applies to 48% and 44% of all nonzero cells

respectively. In these densely populated countries all cells tend to be lit, while in vast

countries with areas of wilderness such as USA, Brazil and China, cells with at least one

pixel larger than zero represent only between 60% and 70% of the total number of country

7The cell of interest lies in Saudi-Arabia, pointing to the possibility of a gas flare at the origin of the
brightness.
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Table 2: Stable lights v radiance-calibrated data, selected countries, 2010, cell level

USA Brazil Israel Iran Nigeria China Belgium

Number of Nonzero Cells 3603 1962 23 641 446 2782 27
Nonzero Cells in % 71.26 64.41 100.00 90.69 82.60 67.62 100.00

Saturated

Max. LI (Country Mean) 43.72 36.57 48.00 40.75 23.16 36.98 57.44
Max. LI (Country Max) 63.00 63.00 63.00 63.00 63.00 63.00 63.00

Radiance Calibrated

Max. LI (Country Mean) 98.73 50.96 246.93 83.32 23.52 75.55 145.01
Max. LI (Country Max) 1904.87 648.63 1099.83 1253.87 459.58 1926.59 465.11

Average Rad-Cal. Max. LI
if Saturated Max. LI of 63 184.07 230.27 464.16 140.46 157.99 52.00 236.31

% of Cells with Saturated
Max. Light Intensity of 63 21.59 10.45 47.83 20.28 3.93 9.06 44.44

cells. Still, also in these countries we find a non-negligible number of cells affected by

top-coding. In the U.S., nearly 22% of nonzero cells have a maximum at the 63 DN

threshold. The radiance calibrated data report their mean at 184, with the maximum

reaching up to 1905. The brightest pixel in China is even slightly brighter. The figures for

Iran and Nigeria further underline that top-coding is not only an issue for rich countries.

Sensor saturation occurs at such a low level that virtually all the countries of the world

have at least one cell where some pixels are affected by it.

3 Correcting for Top-Coding

Given the importance of top-coding for the analysis of spatial inequality and development

based on lights, how can we correct for it in a simple yet appropriate fashion? We

suggest a top-coding correction for the whole panel, making use of the years for which

we have radiance-calibrated data and applying methods from the top income literature.

The histogram in Figure 3 of the distribution of the radiance-calibrated maximum light

intensities of the cells affected by top-coding demonstrates the analogy. As with top

incomes, the range is broad but only very few top-coded cells actually have a maximum

light intensity of around 2000; the majority is concentrated in the region of 100 to 300.8

The procedure we outline below in effect joins the bottom and the top part from

two different data sources to obtain a top-coding corrected Gini coefficient of lights and

average light intensities. It thus mirrors the merging of income surveys and tax records

in the top incomes literature. In this way we can easily calculate light Ginis for all the

countries of the world. We illustrate our procedure with pixel level data for Germany.

Germany is a highly developed country with a fairly high but not above-average rate of

8Note that there are 1251 out of top-coded 3821 cells which have a radiance-calibrated value below
63, which points to the difficulty of a one-to-one comparison due to the noise involved.
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urbanization. The worldwide dataset shows that 25% of all nonzero cells in Germany in

2010 contained at least one pixel at the 63 DN threshold.

Figure 3: Distribution of Radiance-Calibrated Maximum Light Intensities of Cells
Affected by Top-Coding (Saturated Maximum Light Intensity = 63 DN)
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3.1 Top-Coding in Germany

We begin by presenting several summary statistics of the ‘stable lights’ series for Germany

at the pixel level over the period from 1992 to 2013. Table 3 yields several insights: (i)

The mean luminosities of German nonzero pixels fluctuate between 11 and 17 DN, with

no trend discernible but quite some variation across years and satellites. (ii) The number

of individual pixels affected by top-coding are small and below 1%. However, due to their

geographical dispersion, this translates into 25% of cells in Germany containing at least

one top-coded pixel, as discussed earlier. (iii) Inequality in lights, as measured by the

Gini coefficient of these saturated data, is relatively stable across the years, fluctuating

between 0.38 and 0.44.

What difference does it make when we now look at radiance-calibrated data for

Germany as in Table 4? With only seven satellite observation periods, which also do not

always align with calendar years, we have to be cautious with a one-to-one comparison

to the saturated light series. Still, the summary statistics reveal some striking results

regarding spatial inequalities. The Gini coefficients based on radiance calibrated data are

around 10 percentage points higher than those suggested by the stable lights data. Thus,

although only a small number of pixels are subject to top-coding, their influence on

inequality seems to be significant and they drive up mean luminosities by a considerable

amount. Hence, the saturated lights severely underestimate both mean light intensity

and inequality in lights.

What would be the first idea that one might have to deal with top-coding in the years

where both the saturated and radiance-calibrated lights are observed? Simply replacing

9



Table 3: Summary Statistics of the Saturated Data for Germany, Pixel Level

Satellite Mean (if x > 0) % with DN=63 Gini Satellite Mean (if x > 0) % with DN=63 Gini

F101992 13.74 0.29 0.3848 F152002 14.34 0.17 0.3885
F101993 11.93 0.15 0.4038 F152003 10.57 0.04 0.4218
F101994 11.91 0.13 0.3964 F152004 10.01 0.05 0.4352
F121994 16.02 0.40 0.3607 F152005 11.75 0.11 0.4293
F121995 14.25 0.34 0.4040 F152006 11.11 0.06 0.4499
F121996 14.41 0.21 0.3913 F152007 10.79 0.09 0.4361
F121997 14.34 0.19 0.3902 F152008 17.53 0.60 0.3640
F121998 16.30 0.22 0.3800 F162004 11.91 0.12 0.3944
F121999 17.49 0.62 0.3716 F162005 10.94 0.13 0.4318
F141997 12.20 0.25 0.4173 F162006 12.37 0.07 0.4072
F141998 13.48 0.07 0.4051 F162007 12.76 0.16 0.4080
F141999 12.68 0.10 0.4088 F162008 13.07 0.17 0.4204
F142000 13.21 0.27 0.4146 F162009 13.77 0.27 0.3966
F142001 12.85 0.31 0.4219 F182010 23.34 0.65 0.3285
F142002 14.47 0.22 0.4103 F182011 14.62 0.26 0.4050
F142003 13.37 0.32 0.4314 F182012 17.42 0.54 0.3778
F152000 14.05 0.03 0.3849 F182013 14.97 0.23 0.3875
F152001 14.53 0.26 0.3974

Table 4: Summary Statistics of the Radiance Calibrated Data for Germany, Pixel Level

Satellite F12 (96/97) F12 (99) F12 (00) F14 (02/03) F14 (04) F16 (05/06) F16 (10)
Obs. Period 16 Mar 96 - 19 Jan 99 - 03 Jan 00 - 30 Dec 02 - 18 Jan 04 - 28 Nov 05 - 11 Jan 10 -

12 Feb 97 11 Dec 99 29 Dec 00 11 Nov 03 16 Dec 04 24 Dec 06 9 Dec 10

Mean (if x > 0) 17.69 18.43 19.09 22.01 19.49 18.93 20.62
St. Dev. 26.64 31.40 33.81 36.48 33.21 28.08 25.91
Minimum 3.29 0.23 0.55 4.52 3.91 3.39 3.83
Maximum 435.25 1129.49 825.16 965.85 1045.85 500.00 487.51
99 Percentile 139.17 153.72 184.11 189.89 174.47 150.58 144.44

Gini 0.5059 0.4971 0.5073 0.5191 0.5276 0.5045 0.4577
Theil 0.5441 0.5763 0.6155 0.6038 0.6274 0.5367 0.4260

# Nonzero Obs 560175 579375 595639 578815 606840 556996 602719

the pixels with at the top-coding threshold by their radiance-calibrated counterparts.

However, working with the raw values of the radiance calibrated lights is practical for

two reasons, (i) the instability of the values across years and satellites, (ii) the different

data ranges between saturated and radiance calibrated lights. For (i), consider Table 4.

The maximum pixel luminosity in Germany (as measured by satellite F14) in 2004 is 1045

but it is only 500 a mere one year later in 2005/06 (as measured by satellite F16). This

variability can mostly be attributed to measurement errors introduced when the different

fixed gain images and the stable lights images are merged at the NGDC.9 To illustrate

argument (ii), we regress the saturated lights on the radiance calibrated one for the years

where both are available.10 Table 5 We restrict the data range to the nonzero pixels with

a luminosity smaller than 60, i.e. those thought to be mostly unaffected by top coding.

9There are possibilities to inter-calibrate the satellites (Hsu et al., 2015), but they come with strings
attached. We discuss this issue in detail in Section 4 of this paper.

10As Table 4 shows, the radiance calibrated satellites have slightly different observation periods than
the calendar years of the saturated lights. For our comparative analysis we work with the calendar years
in which the vast majority of radiance calibrated data fall, e.g. year 2006 for Satellite F16 (05/06) (28
Nov 2005 - 24 Dec 2006).
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Hence, an equivalence between saturated and radiance calibrated data should be possible.

Instead, the regression coefficient is only of the magnitude of around 0.5 and the constant

is significantly positive. The radiance-calibrated data are overall more spread out and the

average (non-top-coded) pixel has a radiance calibrated luminosity of more than twice

the saturated value.11

Table 5: Regression of Saturated on Radiance Calibrated Data for Germany, Pixel Level

Year 1996 1999 2000 2003 2004 2006 2010

Rad. Calibrated 0.5409 0.5925 0.4397 0.4219 0.3376 0.4344 0.6531
(0.0003) (0.0005) (0.0003) (0.0003) (0.0002) (0.0002) (0.0006)

Constant 5.3452 7.0599 5.2533 4.6301 3.6077 4.3855 10.8590
(0.0075) (0.0111) (0.0092) (0.0087) (0.0055) (0.0070) (0.0151)

R2 0.8562 0.7544 0.7551 0.7942 0.8696 0.8510 0.6386

We draw two conclusions from our comparison: First, not all of the difference

between saturated and radiance-calibrated lights can be due to top-coding. While this

complicates the direct comparison, we will see that appropriately correcting for top-

coding does account for a sizable proportion of the difference and produces relatively

stable results. Second, rather than using the raw values of the radiance-calibrated

satellites, we circumvent their instability by working only with the shape parameters

of their distributions.

3.2 Finding the Top-Coding Threshold

The question of where to put the top-coding threshold is more intricate that it looks

at first sight. While the scale of the saturated values goes up to 63 DN, we have good

reason to assume that many pixels of 62 DN, 61 DN and down to the mid-50s are already

subject to top-coding and should be brighter than they are recorded.

Consider the histogram in Figure 4 with saturated values larger than 40 DN in the

year 2008. The decreasing shape of the histogram, which implies that there are fewer

observations with higher values, only holds till the mid-50s: Remarkably many pixels

cluster at saturated light values between 55 and 63. If only the values at exactly 63 were

affected by top-coding we would expect a declining number of pixels up and including to

62 DN and only a bulk at 63. Further evidence for this argument is provided by Figure 5b:

Looking just at radiance calibrated top lights (at a really high value of 200 and above)

in Germany in 2010, we see that they are associated with a saturated value of not only

63 DN, but there are a considerable number of 62s, 61s and all the way down to the

11While this may be in part owed to slight displacements of the pixels between the satellites inducing
classic attenuation bias, we find it unlikely that it induces such strong variation. Increasing the size of
the pixels by some scale factor, say 5, alleviates this problem somewhat but also averages out all of the
interesting data points at the top.
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Figure 4: Satellite F162008 with Histogram (values larger than 40) and Top 1 and 2%
Correction, Germany, Pixel Level

mid-50s. Figure 5a reverses the focus and depicts the distribution of the corresponding

radiance-calibrated lights for all those pixels with a saturated value of 55 DN or above.

While some radiance-calibrated values are very low, we do note the typical shape of the

Pareto distribution among the high values.

Figure 5: The Upper Part of the Light Distribution in Germany in 2010
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While we will examine the Pareto property of top lights in the next subsection, let

us conclude from this analysis that the top-coding threshold should be set below 63 DN.

Still, in percentage terms of overall nonzero pixels, we talk about the very top of the

distribution: The number of nonzero pixels with the exact value of 63 DN is below 1%

and including lower values down to the mid-50s can be thought to raise the percentage
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of top-coded pixels to 2%. For Germany, these are around 12,000 pixels.

3.3 Are Top Lights Really Pareto Distributed?

We now present our top-coding correction procedure based on the Pareto distribution:

We use the radiance calibrated data to estimate the Pareto parameter, based on which

we can then extrapolate the saturated data beyond the top-coding threshold.

Of course, the first thing to do is to confirm our hypothesis and establish that there

is a Pareto distribution of top lights. While a Pareto tail in the light distribution has not

yet been examined, it is a standard feature of the top income literature, see for instance

Piketty (2003), Atkinson (2005), Atkinson, Piketty, and Saez (2011) and Dell (2005)

for the top of the income distribution in individual countries and Lakner and Milanovic

(2015) for the global income distribution.

In fact Vilfredo Pareto (1897) first discovered that top incomes above a threshold yc

tend to follow the cumulative distribution (CDF)

F (y) = 1−
(
yc
y

)α
for y ≥ yc (1)

and probability density function (PDF)

f(y) = α · yα0 · y−α−1 for y ≥ yc (2)

with parameter α > 0. The complement of the CDF (1) is the survival function, hence

the probability that the random variable Y is larger than the given value y:

F (y) =

(
yc
y

)α
for y ≥ yc (3)

When taking logarithms of equation (3) – or plotting top incomes on a log scale, as

Pareto did – one ends up with the characteristic linear relation:

log(F (y)) = α · (log(yc)− log(y)) = −α · log(y) + cons. (4)

This is the basis of the popular Zipf plot: In a log-log-diagram, plot the data on the

x-axis and the survival function on the y-axis. If a (downward sloping) linear relationship

emerges, the data is concluded to be Pareto distributed. Figure 6 shows the Zipf plots

of the top 2% light pixels in Germany for each of the 7 radiance calibrated satellites.12

Despite some outliers at the very end, the Zipf plots for top lights in Germany look fairly

12When using not the top 2% but top 1% or top 0.5%, the plots look very similar. The same holds
for the Mean Excess plot as well as the Discriminant Moment Ratio Plot, which we also repeated for
alternative top percentiles.
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linear and are hence indicative of the Pareto assumption.

Figure 6: Zipf Plot for Germany, Pixel Level Data, Top 2%

Another unique feature of the Pareto distribution is the so-called ‘Van der Wijk’s

Law’: The average income of all incomes above a given income y is proportional to y,

with the factor of proportionality equal to α
α−1 :∫∞

y
tf(t)dt∫∞

y
f(t)dt

=
α

α− 1
· y (5)

Van der Wijk’s Law can be tested with a Mean Excess plot, which is shown in Figure 7

for the German top 2% light data: For each luminosity value (in the top 2%) on the

x-axis, the average luminosity of all pixels brighter than this one is plotted on the y-

axis. The resulting graphs look remarkably linear, with their slope hence equal to the

constant factor of proportionality. With ‘Van der Wijk’s Law’ apparently fulfilled, the

Mean Excess plots provide further evidence of the Pareto distribution in top lights.

Even if Zipf plots and Mean Excess plots are standard methods for determining

the Paretian nature of a data set, there has been a longstanding debate regarding

their appropriateness (see already Lorenz, 1905). Cirillo (2013) demonstrates that data

generated by other distributions such as the lognormal can look very similar to Paretian

data in a Zipf or Mean Excess plot. She therefore proposes an additional test which

does not rely on pure visual evaluation of linearity: The discriminant moment ratio plot

shows the coordinate pair of coefficient of variation (this is, standard deviation divided

by mean) on the x-axis and skewness on the y-axis. As each parametric distribution has
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Figure 7: Mean Excess Plot for Germany, Pixel Level Data, Top 2%

its particular curve of coordinate pairs, one can divide the area, among others, into a

Paretian area, a Lognormal area and a Gray area in between. Figure 8 for Germany

shows that 5 out of the 7 radiance calibrated satellites are well inside the Pareto area

and the other two in the gray zone.

Hence, the Discriminant Moment Ratio Plot confirms the results from the Zipf and

Mean Excess plot and we are quite safe to assume a Pareto distribution for top lights in

Germany.

3.4 Augmenting the Saturated Data with a Pareto Tail

Our top-coding correction follows a three-step procedure to derive national or sub-

national estimates of inequality using the lights data

1. Estimate the shape parameter α of the Top 2% using the radiance-calibrated data

2. Transfer these α estimates to the corresponding years of the saturated data, using

parameter interpolation for intermediate years

3. The saturated data for all values below the threshold (98%) are combined with a

Pareto tail for the top 2% based on the determined α

The maximum likelihood estimates of the Pareto parameter α of the radiance

calibrated data for Germany are shown in Table 6. When assuming a Pareto distribution

for the top 2%, most satellites’ α parameters are between 2.2 and 2.6. For comparison,
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Figure 8: Discriminant Moment Ratio Plot for Germany, Pixel Level Data, Top 2%

Table 6: Estimation Results of the Pareto Parameter Alpha for Different Top Percentage
Levels, Germany, Pixel Level

Satellite F12 (96/97) F12 (99) F12 (00) F14 (02/03) F14 (04) F16 (05/06) F16 (10)
Pareto Alpha (Top 2%) 2.2612 2.1594 1.9442 2.5176 2.4761 2.5944 2.7843
(Standard Error) (0.0214) (0.0201) (0.0178) (0.0234) (0.0225) (0.0245) (0.0254)
Mean (Top 2%) 172.98 198.42 241.00 230.38 210.28 178.99 166.41
# Obs (Top 2%) 11204 11588 11914 11577 12154 11223 12055
Top 2% Threshold 96.48 106.53 117.04 138.87 125.36 110.00 106.64
Pareto Alpha (Top 1%) 2.8316 2.5309 2.7705 2.9757 3.1118 3.1849 3.6340
(Standard Error) (0.0378) (0.0333) (0.0359) (0.0391) (0.0399) (0.0427) (0.0468)
Mean (Top 1%) 215.15 254.13 288.09 286.00 257.09 219.49 199.28
# Obs (Top 1%) 5602 5793 5960 5789 6068 5570 6027
Top 1% Threshold 139.17 153.72 184.11 189.89 174.47 150.58 144.44
Pareto Alpha (Top 0.5%) 3.5802 2.8452 3.5367 3.3156 3.6194 3.9211 4.6784
(Standard Error) (0.0676) (0.0529) (0.0648) (0.0616) (0.0657) (0.0743) (0.0852)
Mean (Top 0.5%) 258.87 320.01 345.78 350.48 310.33 261.01 231.18
# Obs (Top 0.5%) 2801 2897 2978 2894 3035 2784 3013
Top 0.5% Threshold 186.56 207.54 248.01 244.77 224.59 194.44 181.77

the parameter estimates for the smaller top shares (1% and 0.5%) are higher and hence

associated with both more probability mass near the cut-off threshold and a shorter tail.

They also exhibit much larger standard errors and are based on fewer observations.

Figure 4 shows the difference between topping up the saturated data of satellite

F162008 with a Pareto tail for the top 1% and top 2%.13 As discussed above, we have

13Note that the matching density values of the saturated data (the histogram) and the Pareto
distributions have been chosen for visual presentation. A histogram based on all values rather than
just those above 40 DN would lead to lower density values but what matters is the shape. The combined
semi-parametric CDF can be calculated with the formula by Dupuis and Victoria-Feser (2006):

F (y) =

{
G(y) if y ≤ yc
G(yc) + (1−G(yc)) · Fα(y) if y > yc

(6)
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good reasons to assume a top-coding threshold rather in the 50s than at exactly 63 DN, so

we henceforth conduct our top-coding procedure for the top 2% (while presenting results

for the top 1% in the Appendix).

After augmenting the bottom 98% of the saturated data with a top 2% Pareto tail for

each of the saturated satellite-years we arrive at our top-coding corrected Gini coefficients.

One can think of the top 2% being replaced by values drawn from a Pareto distribution

with the estimated shape parameter (as is common in the top incomes literature, e.g.

see Alfons et al., 2013), however, in order to compute the corrected Gini coefficients we

do not even have to got that far. Thanks to a simple formula for the Gini coefficient

of two non-overlapping subgroups, we do not have to actually conduct the replacement

of the top tail at the pixel level. The Appendix shows that the overall Gini consists of

the weighted sum of the bottom-share and top-share Ginis (within-Gini) as well as the

difference between the top share of total lights minus top share of pixels (between-Gini)

(e.g. see Cowell, 2013):

G = ωBφBGB + ωTφT
1

2α− 1
+ [φT − ωT ] (7)

where ωB and ωB are the pixel shares for the data below the threshold, denoted B, and the

data above the threshold, denoted T , with ωT = 1− ωT . The shares of all income (light)

accruing to either data source are φB = ωBµB/µ and φT = ωTµT/µ. The overall mean

is simply a weighted-average of the data below the threshold and the Pareto distributed

data above:

µ = ωBµB + ωT
α

α− 1
yc (8)

where µB is estimated by the sample mean below the threshold yc.

The formulas highlight two important insights about the dynamics of the top-coding

corrected Gini coefficient and mean. On the one hand, a greater share of top-coding,

brighter top-coded pixels, and a greater spread in the distribution of the top-coded data

all increase estimates of inequality. Unsurprisingly, the bias induced by top-coding into

assessments of inequality will be larger in urbanized or highly developed areas compared

to rural or less-developed regions. On the other hand, top-coding substantially drives up

differences in mean lights in areas affected by it. For illustration, consider this simple

numerical example. If top-coding affects only 5% of the study area of interest, the shape

parameter is α = 2, average light intensity in the non-top-coded pixels is 20 DN and top-

coding occurs at yc = 63 DN, then the corrected mean is 25.3 DN. While this example

is more in line with a densely populated nation, if the analyst wishes to analyze smaller

regions or study urban development, then both the share of top-coded pixels and estimates

17



of the shape parameter are likely to rise considerably.

Plugging a top-coded percentage of the top 2%, i.e. ωT = 2%, into (7), it becomes

obvious that the formula for the top-coding corrected Gini just depends on α, yc, µB and

GB, all of which are available without replacement at the pixel level:

G =
0.982 · µB ·GB + 0.022 · α

α−1yc ·
1

2α−1 + 0.02 · α
α−1

0.98 · µT + 0.02 · α
α−1yc

− 0.02. (9)

Table 7: Light Gini with a Pareto Tail for the Top 2%, Germany, Pixel Level

Satellite Gini unadjusted α yc µP GP µR GR G ∆

F101992 0.3848 2.26 55 12.82 0.3559 98.61 0.2839 0.4180 0.0331
F101993 0.4038 2.26 53 10.98 0.3686 95.02 0.2839 0.4380 0.0341
F101994 0.3964 2.26 52 10.97 0.3608 93.23 0.2839 0.4300 0.0336
F121994 0.3607 2.26 57 15.12 0.3371 102.19 0.2839 0.3922 0.0315
F121995 0.4040 2.26 57 13.31 0.3783 102.19 0.2839 0.4367 0.0327
F121996 0.3913 2.26 55 13.49 0.3656 98.61 0.2839 0.4224 0.0311
F121997 0.3902 2.23 56 13.42 0.3642 101.63 0.2895 0.4238 0.0336
F121998 0.3800 2.19 57 15.41 0.3594 104.77 0.2953 0.4119 0.0319
F121999 0.3716 2.16 60 16.59 0.3525 111.75 0.3013 0.4053 0.0337
F141997 0.4173 2.23 54 11.24 0.3847 98.00 0.2895 0.4520 0.0347
F141998 0.4051 2.19 54 12.57 0.3785 99.25 0.2953 0.4391 0.0340
F141999 0.4088 2.16 54 11.75 0.3780 100.58 0.3013 0.4450 0.0362
F142000 0.4146 1.94 56 12.26 0.3860 115.31 0.3462 0.4595 0.0449
F142001 0.4219 2.14 56 11.89 0.3924 105.32 0.3057 0.4597 0.0377
F142002 0.4103 2.33 55 13.56 0.3874 96.46 0.2737 0.4390 0.0287
F142003 0.4314 2.52 58 12.41 0.4048 96.22 0.2478 0.4598 0.0284
F152000 0.3849 1.94 55 13.14 0.3579 113.25 0.3462 0.4289 0.0440
F152001 0.3974 2.14 57 13.59 0.3718 107.21 0.3057 0.4333 0.0360
F152002 0.3885 2.33 56 13.42 0.3623 98.22 0.2737 0.4195 0.0310
F152003 0.4218 2.52 48 9.67 0.3851 79.63 0.2478 0.4477 0.0259
F152004 0.4352 2.48 49 9.09 0.3955 82.19 0.2530 0.4638 0.0285
F152005 0.4293 2.54 51 10.83 0.3981 84.22 0.2457 0.4544 0.0251
F152006 0.4499 2.59 51 10.18 0.4177 82.99 0.2387 0.4743 0.0244
F152007 0.4361 2.64 51 9.85 0.3997 82.06 0.2334 0.4608 0.0247
F152008 0.3640 2.69 59 16.63 0.3444 93.93 0.2284 0.3864 0.0224
F162004 0.3944 2.48 52 10.98 0.3590 87.23 0.2530 0.4230 0.0286
F162005 0.4318 2.54 51 10.00 0.3958 84.22 0.2457 0.4584 0.0266
F162006 0.4072 2.59 52 11.45 0.3763 84.61 0.2387 0.4321 0.0249
F162007 0.4080 2.64 55 11.81 0.3769 88.50 0.2334 0.4336 0.0256
F162008 0.4204 2.69 56 12.12 0.3920 89.15 0.2284 0.4451 0.0248
F162009 0.3966 2.74 55 12.84 0.3690 86.67 0.2235 0.4194 0.0228
F182010 0.3285 2.78 61 22.55 0.3182 95.19 0.2189 0.3468 0.0183
F182011 0.4050 2.78 57 13.69 0.3809 88.95 0.2189 0.4272 0.0222
F182012 0.3778 2.78 60 16.52 0.3591 93.63 0.2189 0.3995 0.0217
F182013 0.3875 2.78 57 14.05 0.3630 88.95 0.2189 0.4099 0.0224

Table 7 shows the Gini coefficient of the saturated data for Germany (Col.2), all
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the ingredients for top-coding correction according to formula (9) as well as the resulting

corrected Gini coefficient (Col.10) and the difference to the unadjusted one (last column):

We see that correcting for top-coding with the help of a Pareto tail increases the Gini

coefficient by 3 to 4 percentage points in earlier years and 2 to 3 percentage points

in later years.14 This makes a huge difference indeed. Remember that for the radiance

calibrated satellites we found Gini coefficients which are 10 percentage points higher than

the saturated ones (cf Table 4). Simply adjusting the top 2% of the data accounts for up

to 40% of the difference between saturated and radiance-calibrated Gini coefficients.

Figure 9: Top-Coding Corrected Ginis for Germany (Averaged Across Satellites), Pixel
Level, Top 2% Correction

In order to be able to trace the top-coding adjusted Gini coefficient from Table 7

over time, we average the results for those years where we have more than one satellite.

The resulting time path in Figure 9 shows that inequality in light in Germany increased

rather steadily in the 2000 decade before going down in 2010 and recovering in the last

years. It is now up to further research to explain this development of the light Gini in

Germany and to compare it to those of other countries. Based on our proposed top-

coding correction procedure it is straightforward to follow the illustration of Germany

and to calculate inequality in light measures for all the countries of the world from 1992

to 2013. With such a database, one can literally shine a new light on regional inequality

and convergence in the world.

As we have shown above, our formula for the top-coding adjusted Gini coefficient (9)

14Tables Table A-4 and Figure A-1 in the Appendix show that with a Top 1% Pareto tail, the Gini
correction is less pronounced but follows the same direction.
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only depends on parameters from the bottom part of the saturated data and the top

of the radiance calibrated ones, making it unnecessary to actually replace the values in

the top tail at the pixel level. Still, there are some important questions in development

and regional economics for which an overall Gini in lights is not a sufficient measure of

analysis. For instance, spatial growth regressions or the identification of growth clubs

require light data at the pixel level of the corresponding geographical location. Our top-

coding correction procedure readily extends to that: The bottom part of the saturated

data (e.g. 98%) is kept and the top 2% is actually replaced at the pixel level by sorted

values drawn from a Pareto distribution with the estimated parameter, see also e.g. Alfons

et al. (2013). While such a pixel-level replacement is obviously more data-intensive, it is

straightforward to carry out.

4 Between and within satellite measurement errors

Apart from top-coding, there is another inherent limitation of the DMSP-OLS satellite

system that makes it difficult to compare its images across time (but does not affect

comparisons across space within one image). This limitation arises because the pictures

are recorded using a variable gain setting. The sensor gain basically works like a pre-

amplifier: it needs to be high if the satellites are supposed to register very dim lights

and low if they are to pick up very bright lights. Since the gain of the DMSP system is

variable and the value is not recorded on board, it cannot be recovered or linked back

to a physical quantity like radiance (Elvidge et al., 2009; Doll, 2008). This problem is

only made worse by the fact that different satellites have sensors that deliver, by their

different construction, brighter or dimmer pictures and those sensors tend to degrade over

time. As a result, the stable lights series suffers from jumps in the time-series dimension

that are caused both by switches in the satellite delivering the images (between satellite

measurement error) and changes in the ability of the sensors to detect light over time

(within satellite measurement error). Figure 10 plots the average light intensity in Sicily

as obtained from each separate satellite and shows how severe these jumps can be.

To be clear, the nature of the between and within satellite errors is such that there

are only three possible types of perturbations to the data: a) the brightness of the entire

intermediate range (y ∈ [1, 62]) is shifted by a constant in each image, b) the extent

of top-coding increases when the gain is higher on average than before, and c) the gain

setting is lower on average than before, leading to more bottom-coding; that is, a decrease

in the ability of the satellites to pick up dim lights. NOAA then applies a series of filters to

the data to remove background noise, ephemeral lights and more, but these adjustments

are uniformly applied to all images that make up a series of so-called composites. While

there is little that we can do about bottom-coding (the data are simply not observed),

the aim of this paper is to provide a thorough treatment and offer solutions of how to deal
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with the other two types of errors. We already addressed top-coding and now exclusively

focus on shifts in brightness among the different images.

Figure 10: Average lights in Sicily according to each satellite

10
12

14
16

18
A

ve
ra

ge
 L

ig
ht

 In
te

ns
ity

 in
 D

N

1990 1995 2000 2005 2010 2015

F10 F12

F14 F15

F16 F18

Economists usually deal with these measurement errors by including time fixed

effects in the regression of interest (e.g. see Henderson et al., 2012; Michalopoulos

and Papaioannou, 2013; Hodler and Raschky, 2014). Chen and Nordhaus (2011) and

Henderson et al. (2012) provide a detailed discussion and estimates of measurement errors

in lights and in GDP but do not correct the underlying data. The problem with using

time fixed-effects is that these are only a valid remedy in panel studies where the light

data is used in conjunction with other variables. If the time-series properties of the light

data itself are of interest, then some form of adjustment needs to be undertaken to smooth

out the artificial jumps in the series.

The producers of the lights data at NOAA suggest a very different procedure. Elvidge

et al. (2009) propose to “inter-calibrate” each image by scaling it to match the brightest

image within a fixed reference area. Specifically, they argue that Sicily covers the entire

dynamic spectrum of the saturated data and experienced little change in lighting since

1992. Then, they run quadratic regressions of the form E[F12 in 1999|X] = β0 + β1X +

β2X
2 where X stands for the corresponding pixel from any of the other satellites. The

estimated coefficients can then be applied to re-scale the global images and recalculate

all statistics of interest. Chen and Nordhaus (2011) already noticed that this procedure

is a bit awkward in the sense that does not impose any useful parameter restrictions; it

allows negative estimates of the intercept and, more generally, often produces estimates

outside of the observed data range. Nevertheless, this method has not been systematically

analyzed so far (apart from the original results presented in Elvidge et al., 2009, 2014).
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We highlight the properties of the calibration in this section. The next section shows how

this changes the results in several interesting applications.

To reproduce their approach, we isolate Sicily using the GADM (Global

Administrative Boundaries Dataset) and then build a pixel-level data set of all 35

satellites.15 We then run regressions of the reference satellite (F12 in 1999) on each

image and predict the adjusted value for each pixel. Table A-5 in the Appendix shows

the results of this exercise. As expected, the R2 is generally high and exceeds 0.90 for all

but four satellite-years. For F16 in 2009 to F18 in 2011, it falls substantially below 0.90.

It is not exactly clear if this is in part due to slight displacement of the pixels,16 if this is

purely due to sensor differences, or if this could also be the product of genuine economic

effects (such as the impact of the Great Recession in Europe since 2008).

Figure 11: Results of “inter-satellite calibration” and real GDP in Sicily
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Figure 11 shows why this approach is both attractive and very problematic at the

same time. It plots the average light intensity in Sicily before and after the adjustment.

We simply average the data whenever we have more than one satellite at our disposal.

One the one hand, the adjusted average light intensity is clearly perfectly stable across

all years. In fact, this follows from a basic property of OLS regression; namely, the

line always passes through the mass point {Ȳ , X̄}. Note that this property also implies

that the sum of light will be stable as well, if it is estimated on the same sample (since

15Note that we also align the underlying pixel grid, so that each pixel is matched to its nearest
neighbor across various images. Elvidge et al. (2009) first project the data into a Mollweide equal area
projection and then proceed with the analysis. Since Sicily is very small, these differences are likely to
be immaterial. However, it does ensure that all of our pixels are matched and N is the same across the
panel which highlights the properties of the method much more clearly.

16The exact location can vary between one and two kilometers. These distortions are introduced
during the compositing process undertaken at both on board of the satellites and at NOAA.
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N ·E[Y ] = N ·E[Y |X̄]). On the other hand, there is little reason to assume that average

(or total) lights in Sicily are actually that stable. In fact, there is lots of evidence to the

contrary. As Figure 11 also shows, regional national accounts indicate that real GDP

in Sicily grew substantially over the period form 1995 to 2007 and then fell again below

its initial value by 2014. Likewise, electricity consumption has increased steadily over

the entire period. The raw data also shows that the F18 satellite is actually brighter on

average than its antecedents (but its data was not available when Elvidge et al., 2009,

proposed to scale to the F12 satellite).

Even though it has empirical shortcomings, the approach proposed by Elvidge et al.

(2009) is perfectly suited to adjust images to match the average and total light intensity of

a particular reference satellite. Sicily is just not a good reference area. If light emissions

in Sicily in part mirror economic growth, then applying this adjustment to the entire

world will not only remove noise but instead remove parts of the underlying economic

trend as well. Such as scenario is entire plausible. For example, an increase in average

light intensity from 12 DN to 14 DN is approximately in line with a 15% increase in GDP

from 1995 to 2007. We return to this question in the next section.

Are there sensible alternatives? There are two ways to remedy this situation and still

produce a reliable time-series of night time lights. A first option is to find a reference

point where lights can actually reasonably be assumed to be constant over the two decades

in question. We are still searching for suitable candidates at the moment (but from an

economist’s point of view, parts of Japan may be an intriguing choice for the period

starting in the 1990s). A second option is use a different calibration approach. One

promising avenue is to exploit the fact that we have overlapping satellite-years for all

but the last switch of satellites (F16 to F18). We could therefore run panel regressions

of all satellites on a set of satellite dummies (to account for linear shifts), satellite time

trends (to account for sensor degradation) and year dummies (or a linear trend). This

approach should in theory be able to separately identify the between satellite differences,

the within satellite time trends, while absorbing the remaining time-series variation in

the time dummies (or trend) for the series from 1992 to 2009. Later versions of this paper

will include such an application and evaluate the utility of non-linear models that respect

the bound of the observed data.

5 Applications

We illustrate the economic significance of top-coding and satellite “inter-calibration” by

examining three prominent research questions. The first application revisits the seminal

paper by Henderson et al. (2012) which established that night lights are a good proxy for

GDP growth at the national level. The second application studies regional and ethnic

inequality inspired by a recent path-breaking paper by Alesina et al. (2016). Finally,
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we explore a central question in the urban economics literature, namely can we quantify

urban-rural differences using nighttime lights? Storeygard (2016), for example, assesses

the influence of transport costs on urban growth in Africa using the lights data.

The aim of these varied applications is to uncover for which questions the top-coding

problem is most severe and whether the average or the spread of the distribution are the

key area of concern.

5.1 Lights and GDP growth

We begin by reproducing the results in Henderson et al. (2012). Specifically, we build

a matched-sample of the stable lights data and the radiance calibrated data for the

seven years they have in common over the period from 1996 to 2010. Henderson et al.

(2012) calculate average light intensity in each cell that falls on land, weighted by the

size of that particular cell, and then run fixed effects regressions of log GDP at constant

local prices from the World Development Indicators on their measure of log lights per

square kilometer. Weighing each cell by its land area is necessary since the actual area

represented by each 30 by 30 arc seconds cell varies due to the curvature of Earth.

Henderson et al. (2012) report an income elasticity of lights that fluctuates around 0.26

to 0.28. When we use the 1992 to 2008 sample of the stable lights series, then we also

obtain an estimate of 0.282.

Does radiance-calibration change the income elasticity of lights? Table 8 suggests that

there seems to be quite some variability in the output-lights relationship. The estimated

elasticity already falls substantially by examining a different time period and using less

data. Radiance-calibration then induces another drop by about four points. However,

these estimates are still well within two standard errors of the results in Henderson et al.

(2012). Table 8 also reports per capita elasticities and shows that there is little substantive

change in the relationship at the country-level if we are interested in average living

standards instead. Here too, the coefficients obtained by using the radiance calibrated

data fall by a similar amount when we use per capita values.

The key point of using the non-saturated data is that it should be better able to

capture the growth experiences of rich countries which are relatively more affected by

top-coding than poorer countries. Since we have not yet applied our correction approach

at the pixel level, we investigate this question by contrasting estimates of the income

elasticity of lights for OCED and non-OCED countries obtained using the two different

data sources.

Table 8 illustrates an interesting and novel finding. It builds a simple statistical test

of whether the OECD and non-OECD elasticities are the same by interacting the lights

data with an OECD dummy. Column (1) shows that we reject the hypothesis that the

relationship is the same in OECD countries using the stable lights data. In fact, the

24



Table 8: Income elasticity of lights, 1996-2010, country-level

Saturated Data Radiance-calibrated Data

(1) (2) (3) (4)
GDP GDP per capita GDP GDP per capita

Log Lights per sq. km 0.226∗∗∗ 0.181∗∗∗

(0.072) (0.059)

Log Lights per capita 0.223∗∗∗ 0.179∗∗∗

(0.062) (0.053)

Constant 25.777∗∗∗ 13.940∗∗∗ 25.749∗∗∗ 13.245∗∗∗

(0.014) (0.945) (0.022) (0.785)

Within-R2 0.708 0.518 0.699 0.503
Observations 1353 1353 1353 1353
Countries 198 198 198 198

Note(s): All columns include country and time fixed-effects. Country-clustered standard errors in
parentheses. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

elasticity for OECD countries is only 0.0045 and a cluster-robust test does not reject

the null of zero (with p-value of 0.93). Using per capita value results in a slightly larger

elasticity for OECD countries but here too the result is not different from zero (with a

p-value of 0.147). Interestingly, the estimate for non-OCED countries only rises a little in

return. The picture is completely different using the radiance calibrated data. Now we can

no longer reject the hypothesis that the elasticities are different in OECD and non-OECD

countries. Column (3) of Table 9 shows that there is little change in the elasticity outside

of OCED countries as indicated by a statistically insignificant interaction effect. Column

(4) then repeats this exercise with the per capita data, where there is even less evidence

of a difference between OECD and non-OECD countries. Together these estimates seem

to indicate two important insights. On the one hand, the radiance calibrated data is

indeed better suited to analyze growth in richer regions. On the other hand, once the

somewhat lower elasticity is taken into account, the light-output relationship does not

differ systematically between rich countries and poorer countries.

Having established how top-coding affects the result in Henderson et al. (2012), we now

turn to how satellite inter-calibration affects the estimated output elasticities. For now

we just restrict our attention to the stable lights data (since calibrating the unsaturated

series is another issue). Again, we construct a simple test of the influence of calibrating

the series by just re-running the original regressions with the different data sets. Note

that this process is cumbersome because it requires us to adjust all images at the pixel

level first, then compute area-weighted images, and finally calculate the luminosity values

for each country in each satellite-year. Since the correction sometimes scales some pixels

in the new image above a DN of 63, we then replace these by their top-coded counterpart.
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Table 9: Income elasticity of lights, OECD v non-OECD, 1996-2010, country-level

Saturated Data Radiance-calibrated Data

(1) (2) (3) (4)
GDP GDP per capita GDP GDP per capita

Log Lights per sq. km 0.242∗∗∗ 0.184∗∗∗

(0.072) (0.062)

OECD × Log Lights per sq. km -0.237∗∗∗ -0.044
(0.035) (0.058)

Log Lights per capita 0.239∗∗∗ 0.180∗∗∗

(0.064) (0.056)

OECD × Log Lights per capita -0.172∗∗∗ -0.003
(0.042) (0.055)

Constant 25.843∗∗∗ 13.769∗∗∗ 25.763∗∗∗ 13.241∗∗∗

(0.012) (0.907) (0.014) (0.734)

Within-R2 0.718 0.526 0.699 0.503
Observations 1353 1353 1353 1353
Countries 198 198 198 198

Note(s): All columns include country and time fixed-effects. Country-clustered standard errors in
parentheses. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

As before, whenever we have two satellites at our disposal for any given year, we simply

average the adjusted data.

Table 10 shows the corresponding results. Column (1) uses the raw stable lights data

for the entire sample from 1992 to 2013. Again, we find an elasticity that is close to the

usual result of about 0.3. Column (2) introduces the series that has been calibrated using

the method described in the previous section and the coefficients reported in Table A-5 in

the Appendix – “Adjusted (1)”. The results are not good news for this type of calibration.

The elasticity is now only about half of the earlier estimate and the standard error widens,

so that we can no longer reject the null of zero. Since our calibration table yields different

results than those reported in Elvidge et al. (2014), we try again using their coefficients –

“Adjusted (2)”. Column (3) uses slightly fewer observations since we now lack coefficients

for two satellites but otherwise confirms our initial finding. Interestingly, the problem is

much less severe when we use per capita quantities as the second half of the table shows.

Our preliminary interpretation of this finding is that the NOAA approach to

calibrating satellites indeed removes much of the underlying trend in the lights series

together with the “noise”. As a result, the correlation between changes in lights and

changes in GDP weakens substantially (although the correlation in levels rises). Once

we divide both sides of the equation by population, this problem is alleviated by the
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Table 10: Income elasticity of lights, calibrations, 1992-2013, country-level

GDP v Lights per sq. km GDP per capita v Light per capita

(1) (2) (3) (4) (5) (6)

Raw data 0.316∗∗∗ 0.298∗∗∗

(0.078) (0.071)

Adjusted (1) 0.140 0.259∗∗

(0.098) (0.102)

Adjusted (2) 0.175 0.310∗∗

(0.134) (0.120)

Constant 25.812∗∗∗ 24.972∗∗∗ 24.724∗∗∗ 11.843∗∗∗ 10.235∗∗∗ 10.072∗∗∗

(0.024) (0.513) (0.741) (0.310) (0.109) (0.169)

Within-R2 0.748 0.677 0.673 0.563 0.475 0.471
Observations 4198 4199 4011 4195 4196 4008
Countries 199 199 199 199 199 199

Note(s): All columns include country and time fixed-effects. Country-clustered standard errors in
parentheses. Significant at: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

introduction of additional variation. This confirms an interesting trend across all these

tables, namely per capita quantities deliver much more stable estimates of the underlying

relationship than scale dependent quantities, such as GDP in constant prices.

5.2 Regional and ethnic inequalities

[To be completed later... The main purpose of this application is to show that estimates of

spatial and ethnic inequality can be very different when top coding is taken into account.

That point should already be clear from the discussion of Germany above where the Gini

differs by about 3-4 points even though it is not too densely populated. We then show

and discuss that this introduces bias in favor of the hypothesis of Alesina et al. (2016)

when it comes to the relationship between inequality and underdevelopment (as richer

countries will have more top-coding and hence appear to be more equal than they actually

are). Using our corrected data and the radiance-calibrated data, we will also present a

panel version of their base specification at the country-level.]

5.3 Urban-rural differences

[To be completed later... We plan to use two different ways of isolating the economic

significance of cities which is an important research question in the urban economics

literature (e.g. see Storeygard, 2016). First, we will use the urban extents data

produced by Schneider et al. (2010) use the MODIS (Moderate Resolution Imaging
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Spectroradiometer) satellites to classify urban regions. Most importantly, this data source

is independent of the DMSP night lights. A second approach will just look at capital

cities and cut out buffers (circles) around the city centroids corresponding to approximate

city radius. As a byproduct of this exercise, we will produce two motivating graphs for

this paper: in one we plot the intensity of top-coding in cities over the level of GDP per

capita (suspecting that this will be a steep line), in the other we plot the growth rates

of urban areas and non-urban areas over time using the original stable lights series, the

true radiance calibrated series and our Pareto imputed series.]

6 Conclusion

This paper deals with the problem of top-coding in satellite nighttime lights, which limits

their use as a proxy for economic activity in studies of global development and regional

convergence. When the full brightness of big cities is not measured, their continuing

growth cannot be observed, leading to a upward bias in estimates of regional convergence

and a downward bias in estimates of spatial inequality.

We show that top lights, just as top incomes, are Pareto distributed and suggest

a solution based on methods from the top income literature: We augment the lower

part of the saturated data with a Pareto tail based on an estimated α parameter from

the unsaturated, radiance calibrated data. Our simple formula for the top-coding-

corrected Gini coefficient in lights is computationally efficient because it does not require

replacement of data at the pixel level. Our results for Germany show that top-coding

correction makes a substantial difference, raising the estimated Gini coefficient of lights

by 2 to 5 points and accounting for up to 40% of the difference between the saturated

(‘stable lights’) and unsaturated (‘radiance-calibrated data’) at the national level.

For the next version of this paper, we plan to repeat this Gini top-coding correction

for all other countries, resulting in a worldwide panel data set of top-coding corrected

inequality measures from 1992-2013 to be used for further analysis.

For other applications where location specific light measures rather than a national

Gini index is required, we intend to conduct the top-coding correction at the pixel level

involving the replacement of pixels by those sampled from the Pareto distribution. While

this is obviously more data-intensive, it is straightforward to carry out, see e.g. Alfons

et al. (2013) for a similar application using income surveys.

Furthermore, in the future we also aim to provide a better approach to solve the

satellite inter-comparability problem. Having demonstrated that Elvidge et al.’s (2009)

suggestion of scaling the various images to a reference area satellite and reference area of

Sicily is flawed, it is now up to further research to find a better way that preserves the

time series dimension of the lights data.

Our first applications to determine for which question in development and urban

28



economics the top-coding problem is most severe also opens the door to further research.

One of our most intriguing findings is that the income elasticity of the saturated lights

differs significantly between OECD and non-OECD countries but that of the radiance

calibrated lights does not. It can be considered a riposte to studies which argue that

nighttime lights are an inadequate income proxy in developed countries. Overall, our

results so far indicate that after appropriately accounting for top-coding, nighttime lights

are a much better proxy of economic activity in all countries and open up many new ways

of looking at inequality and development on a global scale.
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A Appendix

A.1 A Pareto-augmented Gini coefficient for perfectly

separated groups

Following Mookherjee and Shorrocks (1982) we begin by defining the Gini coefficient over

multiple groups as

G =
1

2N2µ

∑
i

∑
j

|yi − yj| (A-1)

=
1

2N2µ

∑
k

∑
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∑
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|yi − yj| . (A-3)

where GK is the within group Gini coefficient of group k. The second term is a measure

of group overlap including their between group differences.

Perfect separation (no overlap between groups) implies
∑

i∈Nk

∑
j∈Nh
|yi − yj| =

NkNh |µk − µh|. Hence, we can simplify equation (A-3) to

G =
∑
k

(
Nk

N

)2
µk
µ
Gk +

∑
k

∑
h

NkNh

2N2µ
|µk − µh| . (A-4)

With two groups k, h ∈ {B, T} (where µT > µB) and some algebra, this becomes

G =

(
NB

N

)2
µB
µ
GB +

(
NT

N

)2
µT
µ
GT +

[(
NT

N

)2
µT
µ
− NT

N

]
. (A-5)

Now define the population (pixel) shares ωB and ωT , where ωT = 1 − ωB and the

group’s share of all income (light) as φB = ωBµB/µ and φT = ωTµT/µ. Last, recognize

that GP is computed using the non-censored data (y ∈ [0, yc)) and GB is the Gini of the

top coded data (y ∈ [yc,∞]) which we assume to be Pareto distributed. This implies

GT = 1/(2α− 1) and µ = ωBµB +ωTα/(α− 1)yc. Then we obtain equation (7) from the

main text

G = ωBφBGB + ωTφT
1

2α− 1
+ [φT − ωT ] (A-6)

which can be estimated easily using only the top-coded data, the censoring cut-off yc

and the estimated Pareto coefficient α.
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A.2 Additional Tables and Figures

Figure A-1: Top-Coding Corrected Ginis for Germany (Averaged Across Satellites),
Pixel Level, Top 1% Correction
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Table A-1: Number of Non-Zero Cells Affected by Top Coding in Each Country (Year
2010), Part 1

Country # Nonzero % of Nonzeros Top-Coded Top-Coded Mean of Max LI Top-Coded Max of Max LI

ALA 5 20.00 154.46 154.46
AFG 112 2.68 180.37 201.74
ALB 20 10.00 227.36 279.47
DZA 328 11.28 292.25 2132.96
ASM 4 0.00
AND 1 100.00 223.60 223.60
AGO 174 4.02 121.86 282.21
AIA 1 0.00
ATA 3 0.00
ATG 3 0.00
ARG 858 7.46 112.40 728.46
ARM 21 9.52 70.38 134.22
ABW 1 0.00
AUS 0
AUS 963 3.22 19.15 101.17
AUT 63 9.52 210.74 284.59
AZE 61 3.28 387.76 391.55
BHS 39 5.13 14.79 29.59
BHR 2 100.00 956.70 979.85
BRN 6 16.67 316.66 316.66
UMI 0
BGD 74 4.05 130.82 208.28
BRB 1 100.00 145.69 145.69
BLR 142 9.86 319.40 857.25
BEL 27 44.44 236.31 465.11
BLZ 12 0.00
BEN 30 3.33 116.22 116.22
BMU 1 0.00
BTN 14 0.00
BOL 183 6.01 304.82 492.90
BES 3 0.00
BIH 35 2.86 150.78 150.78
BWA 92 1.09 161.44 161.44
BVT 1 0.00
BRA 1962 10.45 230.27 648.63
IOT 1 0.00
VGB 2 0.00
BGR 67 2.99 121.01 214.05
BFA 54 5.56 113.72 135.56
MMR 225 1.78 54.84 189.15
BDI 13 0.00
KHM 70 1.43 49.37 49.37
CMR 91 2.20 152.74 167.05
CAN 1802 6.33 161.61 862.46
CPV 12 0.00
CYM 3 33.33 145.25 145.25
CAF 30 0.00
TCD 63 1.59 103.44 103.44
CHL 237 10.55 70.95 277.54
CHN 2782 9.06 52.00 855.42
CXR 1 0.00
C– 0
CCK 0
COL 254 8.27 269.74 516.20
COM 5 0.00
COG 47 4.26 144.95 171.07
COD 124 2.42 156.45 192.33
COK 2 0.00
AUS 0
CRI 33 12.12 234.84 313.89
HRV 56 8.93 184.85 314.41
CUB 68 4.41 143.69 208.74
CUW 1 100.00 205.92 205.92
CYP 9 55.56 233.78 393.68
CZE 57 12.28 203.13 291.41
CIV 109 2.75 166.18 194.89
DNK 52 28.85 111.13 296.96
DJI 5 20.00 100.89 100.89
DMA 1 0.00
DOM 30 10.00 267.07 419.87
ECU 77 9.09 202.16 414.18
EGY 186 29.57 209.82 940.31
SLV 13 15.38 205.36 290.85
GNQ 14 0.00
ERI 18 0.00
EST 47 12.77 522.36 929.22
ETH 169 0.59 134.15 134.15
ATF 0
FLK 12 0.00
FRO 5 0.00
FSM 4 0.00
FJI 18 0.00
FIN 272 12.13 274.22 640.80
FRA 324 29.94 187.71 874.55
GUF 13 0.00
PYF 30 0.00
ATF 7 0.00
GAB 46 0.00
GMB 10 0.00
PSE 7 85.71 294.09 679.34
GEO 41 2.44 263.22 263.22
DEU 230 24.78 138.96 487.51
GHA 81 6.17 121.13 182.31
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Table A-2: Number of Non-Zero Cells Affected by Top Coding in Each Country (Year
2010), Part 2

Country # Nonzero % of Nonzeros Top-Coded Top-Coded Mean of Max LI Top-Coded Max of Max LI

GIB 1 0.00
ATF 0
GRC 141 4.26 290.29 636.32
GRL 22 0.00
GRD 2 0.00
GLP 4 25.00 181.48 181.48
GUM 1 100.00 143.42 143.42
GTM 45 2.22 365.66 365.66
GGY 1 0.00
GIN 42 0.00
GNB 5 0.00
GUY 17 0.00
HTI 17 0.00
HMD 2 0.00
HND 51 1.96 244.49 244.49
HKG 2 50.00 953.36 953.36
UMI 0
HUN 63 11.11 174.10 366.56
ISL 68 1.47 62.84 62.84
IND 1200 14.67 66.03 499.33
IDN 644 3.57 59.45 632.81
IRN 641 20.28 140.46 813.13
IRQ 136 19.85 311.26 2149.87
IRL 60 10.00 304.86 620.18
IMN 1 0.00
ISR 23 47.83 464.16 1099.83
ITA 225 24.00 242.33 636.59
JAM 9 22.22 172.15 236.12
JPN 288 25.69 376.45 1842.57
UMI 0
JEY 1 0.00
UMI 0
JOR 33 18.18 321.89 658.07
ATF 0
KAZ 897 2.01 223.24 640.06
KEN 80 2.50 141.91 164.13
UMI 0
KIR 4 0.00
KWT 13 38.46 634.03 1288.69
KGZ 88 1.14 384.88 384.88
LAO 71 1.41 157.03 157.03
LVA 54 7.41 224.01 454.12
LBN 9 33.33 303.22 475.53
LSO 13 7.69 77.16 77.16
LBR 20 0.00
LBY 212 11.79 150.50 837.37
LIE 1 0.00
LTU 51 13.73 168.91 266.04
LUX 3 33.33 213.08 213.08
MAC 1 100.00 398.17 398.17
MKD 15 13.33 205.86 366.61
MDG 71 1.41 76.56 76.56
MWI 42 2.38 92.45 92.45
MYS 147 22.45 187.10 1524.76
MDV 25 0.00
MLI 76 2.63 149.98 150.88
MLT 1 100.00 349.44 349.44
MHL 8 0.00
MTQ 1 100.00 263.68 263.68
MRT 42 2.38 183.64 183.64
MUS 4 50.00 133.33 143.94
MYT 1 0.00
MEX 753 16.87 248.41 1846.80
UMI 0
MDA 31 0.00
MCO 1 0.00
MNG 158 0.63 29.87 29.87
MNE 11 0.00
MSR 1 0.00
MAR 161 9.32 141.17 620.97
MOZ 130 0.77 214.33 214.33
NAM 142 0.70 174.25 174.25
NRU 1 0.00
UMI 0
NPL 42 2.38 7.90 7.90
NLD 35 42.86 234.17 437.68
NCL 22 4.55 169.02 169.02
NZL 125 4.00 9.73 44.63
NIC 47 2.13 213.74 213.74
NER 75 1.33 97.76 97.76
NGA 280 3.93 157.99 450.62
NIU 1 0.00
NFK 1 0.00
PRK 51 0.00
MNP 3 0.00
NOR 334 12.28 249.36 703.33
OMN 115 20.87 201.73 603.67
PAK 284 8.45 243.27 961.49
PLW 2 0.00
VUT 9 0.00
UMI 0
PAN 36 5.56 204.00 241.65
PNG 60 1.67 111.98 111.98
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Table A-3: Number of Non-Zero Cells Affected by Top Coding in Each Country (Year
2010), Part 3

Country # Nonzero % of Nonzeros Top-Coded Top-Coded Mean of Max LI Top-Coded Max of Max LI

PRY 100 6.00 269.54 455.01
PER 285 3.16 79.12 343.49
PHL 197 5.08 101.60 262.75
PCN 0
POL 200 31.00 229.44 807.23
PRT 74 12.16 213.10 414.27
PRI 9 66.67 246.54 512.63
QAT 8 37.50 585.79 1281.62
REU 3 33.33 203.26 203.26
ROU 134 9.70 181.36 446.95
RUS 4645 3.77 16.25 383.58
RWA 10 0.00
BLM 1 0.00
SHN 3 0.00
KNA 1 0.00
LCA 1 0.00
MAF 1 0.00
SPM 1 0.00
VCT 2 0.00
WSM 4 0.00
SMR 1 0.00
STP 2 0.00
SAU 538 24.35 256.89 2415.68
SEN 50 4.00 150.93 188.75
SRB 56 8.93 269.40 477.90
SYC 1 0.00
SLE 11 0.00
SGP 1 100.00 751.58 751.58
SXM 1 0.00
SVK 40 0.00
SVN 18 5.56 184.04 184.04
SLB 6 0.00
SOM 39 0.00
ZAF 446 7.85 181.15 725.13
SGS 5 0.00
KOR 77 32.47 524.56 1062.34
ESP 286 30.42 285.45 948.28
S– 1 0.00
LKA 32 6.25 177.83 205.81
SDN 264 2.27 141.46 341.84
SUR 21 9.52 7.60 8.90
SJM 0
SWZ 10 0.00
SWE 354 22.88 225.21 692.21
CHE 36 22.22 212.52 304.96
SYR 83 18.07 288.29 766.55
TWN 32 28.13 590.54 787.49
TJK 42 0.00
TZA 154 0.65 141.88 141.88
THA 244 10.66 228.87 1038.65
TLS 11 0.00
TGO 18 5.56 85.99 85.99
TKL 0
TON 6 0.00
TTO 6 83.33 299.55 417.19
ATF 0
TUN 78 17.95 169.98 504.89
TUR 399 8.02 274.48 743.44
TKM 136 6.62 326.31 1288.06
TCA 4 0.00
TUV 1 0.00
UGA 42 4.76 130.44 132.34
UKR 360 3.89 157.89 323.22
ARE 43 48.84 385.80 1149.82
GBR 223 30.49 288.02 773.94
USA 3603 21.59 184.07 1904.87
URY 77 3.90 239.68 407.15
UZB 138 7.97 188.02 484.71
VAT 1 100.00 473.26 473.26
VEN 208 17.79 62.54 427.90
VNM 166 4.82 226.49 666.56
VIR 3 66.67 103.48 111.41
UMI 1 0.00
WLF 3 0.00
ESH 23 4.35 204.21 204.21
YEM 124 5.65 264.01 539.51
ZMB 105 3.81 106.12 204.82
ZWE 96 1.04 108.37 108.37
ZWE 0
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Table A-4: Light Gini with a Pareto Tail for the Top 1%, Germany, Pixel Level

Satellite Gini unadjusted α yc µP GP µR GR G ∆

F101992 0.3848 2.83 59 13.26 0.3703 91.21 0.2144 0.3979 0.0131
F101993 0.4038 2.83 58 11.43 0.3862 89.67 0.2144 0.4178 0.0140
F101994 0.3964 2.83 58 11.42 0.3784 89.67 0.2144 0.4107 0.0143
F121994 0.3607 2.83 60 15.56 0.3489 92.76 0.2144 0.3727 0.0120
F121995 0.4040 2.83 60 13.77 0.3913 92.76 0.2144 0.4165 0.0125
F121996 0.3913 2.83 60 13.93 0.3784 92.76 0.2144 0.4042 0.0129
F121997 0.3902 2.73 59 13.87 0.3772 93.08 0.2241 0.4033 0.0132
F121998 0.3800 2.63 60 15.85 0.3698 96.79 0.2346 0.3931 0.0131
F121999 0.3716 2.53 62 17.04 0.3622 102.50 0.2462 0.3855 0.0139
F141997 0.4173 2.73 59 11.70 0.4010 93.08 0.2241 0.4320 0.0147
F141998 0.4051 2.63 58 13.01 0.3917 93.56 0.2346 0.4194 0.0143
F141999 0.4088 2.53 59 12.20 0.3934 97.54 0.2462 0.4253 0.0165
F142000 0.4146 2.77 60 12.72 0.4004 93.89 0.2202 0.4285 0.0138
F142001 0.4219 2.84 60 12.36 0.4073 92.63 0.2138 0.4354 0.0135
F142002 0.4103 2.91 59 13.99 0.3987 89.93 0.2077 0.4218 0.0114
F142003 0.4314 2.98 61 12.88 0.4184 91.88 0.2020 0.4437 0.0123
F152000 0.3849 2.77 59 13.58 0.3715 92.32 0.2202 0.3986 0.0137
F152001 0.3974 2.84 61 14.05 0.3848 94.17 0.2138 0.4104 0.0130
F152002 0.3885 2.91 59 13.87 0.3754 89.93 0.2077 0.4004 0.0119
F152003 0.4218 2.98 54 10.09 0.4027 81.33 0.2020 0.4341 0.0123
F152004 0.4352 3.11 55 9.52 0.4149 81.04 0.1914 0.4476 0.0124
F152005 0.4293 3.15 57 11.26 0.4133 83.53 0.1888 0.4404 0.0112
F152006 0.4499 3.18 57 10.62 0.4336 83.09 0.1862 0.4612 0.0113
F152007 0.4361 3.30 57 10.29 0.4176 81.81 0.1788 0.4472 0.0111
F152008 0.3640 3.41 62 17.08 0.3543 87.73 0.1719 0.3729 0.0089
F162004 0.3944 3.11 57 11.42 0.3764 83.99 0.1914 0.4062 0.0118
F162005 0.4318 3.15 57 10.45 0.4134 83.53 0.1888 0.4436 0.0118
F162006 0.4072 3.18 57 11.89 0.3915 83.09 0.1862 0.4181 0.0109
F162007 0.4080 3.30 59 12.27 0.3926 84.68 0.1788 0.4186 0.0106
F162008 0.4204 3.41 60 12.58 0.4064 84.90 0.1719 0.4305 0.0102
F162009 0.3966 3.52 59 13.28 0.3827 82.40 0.1655 0.4056 0.0090
F182010 0.3285 3.63 62 22.95 0.3235 85.54 0.1595 0.3350 0.0065
F182011 0.4050 3.63 60 14.14 0.3931 82.78 0.1595 0.4134 0.0084
F182012 0.3778 3.63 62 16.97 0.3687 85.54 0.1595 0.3858 0.0081
F182013 0.3875 3.63 60 14.49 0.3753 82.78 0.1595 0.3959 0.0084
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Table A-5: “Inter-satellite calibration” regression coefficients

Satellite Year β0 β1 β2 R2 N

F10 1992 0.2364 1.3649 -0.0055 0.900 37887
F10 1993 -1.6439 1.6338 -0.0097 0.936 37887
F10 1994 0.4946 1.3927 -0.0064 0.929 37887
F12 1994 1.1103 1.0156 -0.0000 0.916 37887
F12 1995 -0.0835 1.2111 -0.0034 0.925 37887
F12 1996 0.7600 1.1903 -0.0027 0.936 37887
F12 1997 -0.2448 1.1572 -0.0022 0.931 37887
F12 1998 -0.2424 1.0588 -0.0011 0.956 37887
F12 1999 0.0000 1.0000 0.0000 1.000 37887
F14 1997 -0.6512 1.6913 -0.0108 0.916 37887
F14 1998 0.2655 1.5840 -0.0093 0.969 37887
F14 1999 -0.8969 1.5694 -0.0087 0.970 37887
F14 2000 0.6693 1.3498 -0.0057 0.935 37887
F14 2001 -0.1938 1.3484 -0.0055 0.945 37887
F14 2002 0.8926 1.1701 -0.0032 0.929 37887
F14 2003 -0.1146 1.3156 -0.0050 0.944 37887
F15 2000 -1.1409 1.1311 -0.0022 0.940 37887
F15 2001 -1.0157 1.1246 -0.0015 0.959 37887
F15 2002 -0.0350 0.9547 0.0010 0.964 37887
F15 2003 -0.4731 1.5599 -0.0087 0.934 37887
F15 2004 0.7588 1.3035 -0.0047 0.949 37887
F15 2005 -0.2145 1.3421 -0.0051 0.939 37887
F15 2006 0.1245 1.3311 -0.0049 0.942 37887
F15 2007 1.2463 1.2801 -0.0042 0.910 37887
F15 2008 3.5115 0.7306 0.0032 0.916 37887
F16 2004 0.3563 1.1620 -0.0029 0.919 37887
F16 2005 -0.8824 1.4756 -0.0072 0.940 37887
F16 2006 0.1760 1.1191 -0.0013 0.926 37887
F16 2007 0.3880 0.9136 0.0013 0.949 37887
F16 2008 0.2815 0.9973 -0.0001 0.946 37887
F16 2009 2.3508 0.9401 -0.0005 0.807 37887
F18 2010 1.8984 0.5306 0.0060 0.839 37887
F18 2011 2.3274 0.7302 0.0017 0.755 37887
F18 2012 1.0646 0.6666 0.0045 0.939 37887
F18 2013 1.0978 0.7354 0.0030 0.939 37887

Note(s): Computed using a quadratic regression of the form: E[F12 in 1999|X] = β0 + β1X + β2X
2

where X stands for the corresponding pixel from any of the other satellites. Based on the DMSP-OLS
v4 stable lights data after applying the GADM boundaries to isolate the island of Sicily. The data are
adjusted such that the origins of the satellite images align, which may cause a slight displacement in
some images. Each grid cell is 30 arc seconds by 30 arc seconds. We do not project the data onto an
equal area grid since we want to induce minimal distortions. Instead, we weight each pixel by its land
area for the applications.
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