

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Chorniy, Anna

Conference Paper

Sex, Drugs, and ADHD: The Effects of ADHD Pharmacological Treatment on Teens' Risky Behaviors

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2016: Demographischer Wandel - Session: Child Health, No. D09-V2

Provided in Cooperation with:

Verein für Socialpolitik / German Economic Association

Suggested Citation: Chorniy, Anna (2016): Sex, Drugs, and ADHD: The Effects of ADHD Pharmacological Treatment on Teens' Risky Behaviors, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2016: Demographischer Wandel - Session: Child Health, No. D09-V2, ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft, Kiel und Hamburg

This Version is available at: https://hdl.handle.net/10419/145766

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Sex, Drugs, and ADHD: The Effects of ADHD Pharmacological Treatment on Teens' Risky Behaviors

February 25, 2016

Abstract

In the U.S., 8% of children are diagnosed with ADHD and 70% are taking medications, yet little evidence exists on the effects of ADHD treatment on children's outcomes. We use a panel of South Carolina Medicaid claims data to investigate the effects of ADHD drugs on the probability of risky sexual behavior outcomes (STDs and pregnancy), substance abuse disorders, and injuries. To overcome potential endogeneity, we instrument for treatment using physicians' preferences to prescribe medication. Our findings suggest that pharmacological treatment has substantial benefits. It reduces the probability of contracting an STD by 3.6 percentage points (7.7 percentage points if we include STD screening), reduces the probability of having a substance abuse disorder by 12.5 percentage points, reduces the probability of injuries by 3.1 percentage points per year, and associated with them Medicaid costs decrease by \$122, or 0.07 standard deviation.

1 Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the common chronic mental conditions affecting children. In the U.S., 11% of children age 4-17 (6.4 million) are estimated to have an ADHD diagnosis and almost 70% of them report taking medication for the condition (e.g. Visser et al. (2014)). However, little evidence exists on the effects of ADHD treatment on children's outcomes.

The two most recently published studies produce mixed evidence on the effects of ADHD treatment. Currie et al. (2014) find that taking stimulant medication is associated with a deterioration in academic outcomes and relationship with parents. In contrast, Dalsgaard et al. (2014) show that treatment is associated with fewer hospital visits and a reduction in the number of interactions with the police.

Our paper has three major contributions to this literature. First, we are building on our earlier work to investigate the effects of ADHD medication treatment on a seldom studied set of outcomes associated with this condition: adolescent risky behaviors and the incidence of injuries (Chorniy (2015)). The occurrence of injuries allows us to evaluate short-term effects of ADHD treatment, while substance abuse and risky sexual behavior outcomes speak for the long-term effects of medication. Second, we use Medicaid spending on treatment of these negative events to evaluate the impact of ADHD drugs on the severity of ADHD, and compare the cost of ADHD treatment with the costs of negative health events. Finally, we provide innovative supporting evidence in favor of using provider propensity to prescribe as an instrument for medical treatment. Variants of this instrument were employed in the work by Dalsgaard et al. (2014) and Duggan (2005), as discussed in Section 5.

We use a panel data set of South Carolina Medicaid claims paid out in 2003-2013. Our sample of diagnosed and undiagnosed children includes an average of 257,000 enrollees per year, or nearly 50% of all beneficiaries and over 25% of all SC children and teens. Children enrolled in Medicaid are disproportionately diagnosed with ADHD. Between 2003 and 2011, the average incidence of ADHD in South Carolina was 12.6%. However, for children and teens enrolled in Medicaid, the average rate in these years was 19.7%. Although we are unable to make a statement on the effectiveness of ADHD treatment in general population, our sample represents a large fraction of the state population, and an even higher fraction of diagnosed children. Since children on Medicaid are disproportionately diagnosed with ADHD and their incentives are distorted in the absence of a drug price tag, this population is arguably more appropriate for this study from a policy perspective.

¹CDC. "Trends in the Parent-Report of Health Care Provider-Diagnosed and Medicated ADHD: United States, 2003—2011."

Nearly 80% of SC Medicaid children and teens are taking ADHD drugs. Consistent with the national trend, our data also show a steep increase in Medicaid spending on ADHD prescription drugs. Between 2003 and 2013 spending on ADHD prescription drugs rose by 296% in 2013 dollars. This increase in spending is a consequence of both the increase in the number of prescriptions filled and the prices of the drugs. The number of patients who take ADHD medications rose by 68% and the number of prescriptions per person went up by 18% suggesting that the overall trend is driven by the extensive margin.²

Our results suggest that pharmacological treatment reduces the probability of every negative health and behavioral outcome that we identified in the data. Our preferred specification shows that if a patient is treated with ADHD medication the probability of contracting an STD decreases by 3.6 percentage points (7.7 percentage points if we include STD screening), having a substance abuse disorder decreases by 12.5 percentage points, getting injured by 3.1 percentage points each year and annual injury spending decreases by \$122, or 0.07 standard deviation.³ Finally, the probability of teenage pregnancy decreases by 3.7 percentage points, though the effect is not statistically significant.

2 Background and previous research

2.1 ADHD and ADHD-associated negative health outcomes

The American Psychiatric Association defines ADHD as a neurodevelopmental condition present if either six or more of the inattention symptoms or six or more hyperactivity-impulsivity symptoms "have persisted for a least 6 months to a degree that is maladaptive and inconsistent with developmental level." Inattentive symptoms include difficulty holding attention on tasks, following instructions, and distractibility among others. Hyperactivity and impulsivity criteria include excessive talking, difficulty waiting, and fidgeting. Causes of ADHD are not fully understood but genes are recognized as a major determinant of the condition.

ADHD may adversely impact major life activities from childhood to adulthood. Earlier studies have found that untreated ADHD could have severe consequences and be distressing

²There is some evidence of ADHD being increasingly misdiagnosed (e.g. Evans et al. (2010), Elder (2010), and Schwandt and Wuppermann (2015) among others). This question is out of scope of this paper. If there are false positive cases of ADHD diagnosis in our sample, our estimates of the effect of ADHD treatment on negative health outcomes outcomes can be interpreted as a lower bound of the actual effect of medication. ³In 2013 dollars.

⁴The American Psychiatric Association publishes the Diagnostic and Statistical Manual of Mental Disorders (DSM), where it sets criteria for the classification of mental disorders. It is the standard classification of mental disorders used by mental health professionals in the United States. The most current version is DSM-5 published in May 2013, a revision of DSM-IV-TR that came out in 2000.

not only for children who suffer from the condition but also for their families (Kvist et al. (2013), Fletcher and Wolfe (2009)), siblings (Breining (2014)), friends, peers (Aizer (2008)), and teachers (Barkley (2006)). Children with ADHD tend to have problems with self-control and discount the future more heavily than their unaffected peers. This makes them more injury-prone⁵ and more likely to engage in risky behaviors such as: dangerous driving,⁶ substance use and abuse,⁷ and risky sexual behaviors.⁸ Children growing up with ADHD were found to be more likely to experience teen pregnancy, sexually transmitted diseases (STDs), depression, and personality disorders as adults.

These health and behavioral outcomes can be explained in the theoretical framework of investment in child well-being. Every child is born with a multidimensional endowment of abilities. They include cognitive (e.g. IQ, memory) and noncognitive skills (e.g. self-control, patience, and time preference)(Conti and Heckman (2014)). Due to their genetic condition, children who suffer from ADHD have a relatively low initial stock of noncognitive skills. The literature on child development indicates that gaps in abilities that form early in life persist into adulthood and can explain a large array of differentials in adult outcomes. Conti and Heckman (2014) provide an extensive review of the empirical evidence on the effects of investment in the two dimensions of child human capital, cognitive and noncognitive skills, on educational attainment, asocial and risky behaviors, and health. Heckman et al. (2006) find that both cognitive and noncognitive abilities affect wages, schooling, work experience, occupational choice, and participation in a range of adolescent risky behaviors. These results

⁵Besides having more frequent injuries, these children also tend to have more severe injuries than their peers (Barkley (2006), Swensen et al. (2004), and Marcus et al. (2008)). In a recent study, Dalsgaard et al. (2015) show that children with ADHD have a higher risk of injuries, but it declines in patients treated with stimulant medications.

⁶One of the strongest findings in the medical literature is that ADHD adolescents are more likely be involved in a car accident and they are more often at fault in such accidents (Barkley (2006), Weiss and Hechtman (1993)).

⁷Looby (2008) provides a review of major studies on the association of ADHD and substance use and abuse, including alcohol, tobacco, and drugs. Some of them find that teens with ADHD are on average more likely than individuals without ADHD to smoke, use and abuse alcohol and drugs, and develop health problems related to these activities. However, others conclude that there are additional related conditions that contribute to the likelihood of these negative health outcomes, e.g. conduct disorder symptoms and association with deviant peers. Despite a disagreement on the relationship between ADHD and substance use, Looby (2008) review suggests that ADHD treatment reduces the risk of substance use disorders in children with ADHD. Using a meta-analysis, Wilens et al. (2003) also find that stimulant medications reduce the risk for subsequent drug and alcohol use disorders.

⁸Adolescents with untreated ADHD have difficulty controlling their impulses and planning ahead. These teens also tend to struggle with low self-esteem and for that reason, teenage girls often seek affirmation of boys through sexual attention (Arnold (1996)). Adolescent girls' symptoms of ADHD often worsen due to the hormonal changes at puberty (Resnick (2005)). Their condition makes them more likely to become sexually active earlier than their peers, have more partners on average, and use birth control inconsistently (Kessler et al. (1997), Payne (2014)). This association is also found in a more recent study by Sarver et al. (2014).

have important policy implications, but most interventions do not directly target children's noncognitive abilities. The Perry Preschool experiment may be an exception; it did not result in IQ improvements but instead had a beneficial impact on many child outcomes. Heckman et al. (2006) argue that these beneficial impacts were achieved by altering social skills.

In this paper, we focus on a variety of negative health outcomes associated with ADHD: injuries, substance use, and risky sexual behavior. Injury events allow us to evaluate the short-term effects of ADHD treatment, while the risky behavior related events speak for the long-term treatment effects.

2.2 Prior Studies

An existing body of medical literature suggests that ADHD medication has positive impacts on mitigating core symptoms of ADHD, yet little is known about the effects of treatment on health, behavioral, and educational outcomes, particularly in the long run. One of the major attempts to estimate the long-term effects of ADHD treatment in a clinical setting was funded by the U.S. National Institute of Mental Health in the early 1990s. The Multimodal Treatment of Attention Deficit Hyperactivity Disorder (MTA) randomly assigned 579 ADHD-diagnosed children age 7-9.9 years old to 14 months of treatment management. The study finds that medication treatment alone and medication treatment combined with behavioral therapy reduces inattention and hyperactivity, the core symptoms of ADHD. However, there was little or no difference in academic performance, social skills and parentchild relationships. An important limitation of the study is that nearly 70% of individuals assigned to the control group also received medication. Molina et al. (2009) investigates the effects for these randomized treatment groups 6-8 years following intervention. They find that the groups do not differ significantly on any repeated measures or new measures of outcomes: contacts with the police and arrests, delinquent behavior, social skills and academic performance.

Currie et al. (2014) take advantage of a policy change in Quebec which expanded insurance coverage for prescription medications to estimate the effect of ADHD treatment on emotional functioning and academic outcomes. Using data from the 1994-2008 National Longitudinal Survey of Canadian Youth, they find that stimulant medication treatment is associated with a decrease in academic outcomes such as grade repetition, math scores, and the probability of having any post-secondary education for girls, a deterioration in relationship with parents, and an increase in the probability of depression.

Dalsgaard et al. (2014) exploit the idiosyncratic differences in physician preferences to prescribe pharmacological treatment to analyze the effects of ADHD treatment on hospital visits and criminal behavior. Consistent with earlier research (e.g. Duggan (2005)), they find that prescribing practices vary significantly across medical care providers. This implies that two children with identical symptoms and characteristics have a different probability of being diagnosed and treated with medications depending on their physician's preferences. Using Danish registers data and provider probability to prescribe as an instrument, Dalsgaard et al. (2014) find that treatment receipt is associated with fewer hospital visits and fewer police interactions.

In a recent study, using the same data these authors and a number of co-authors estimate odds ratios for injuries, mean change in prevalence rates, and ER visits before and after the treatment with stimulant medication (Dalsgaard et al. (2015)). They find that children with ADHD have a higher risk of injuries than a non-ADHD group, but it declines in patients treated with stimulant medication.

We contribute to the existing literature in three ways. First, we look at a seldom studied set of ADHD-related negative health outcomes: teenage pregnancies, incidence of STDs, substance abuse disorders, and injuries. To our knowledge, this paper and its dynamic model companion (Chorniy (2015)) are the first to directly study the effects of ADHD treatment on these outcomes in health economics literature. Our general conclusions on the effect of treatment on injuries are consistent with the medical literature (Dalsgaard et al. (2015)); but we are not aware of any comparable studies on the other outcomes.

Second, we take advantage of Medicaid costs reported in the data to estimate the impact of ADHD medication on the severity of the condition. Medical treatment may be effective in reducing the severity of negative health outcomes even if the likelihood of having one is unchanged. Medicaid costs are also useful for policy recommendations. In South Carolina, out-of-pocket costs for Medicaid enrollees under 19 years old are zero or negligible. This distorts the patients' incentives and puts the burden of cost-benefit analysis on policy-makers. Medicaid investment in ADHD treatment might be balanced via a reduction in its spending on the ADHD-associated events. We briefly examine this question in the current work and leave the detailed study to future research.

Finally, we provide innovative supporting evidence in favor of using provider propensity to prescribe as an instrument for medical treatment. Its variants were employed in the work by Dalsgaard et al. (2014) and Duggan (2005). Our data allow us to construct a more precise measure of provider preferences and test whether there is evidence of the instrument being correlated with provider quality and whether there is evidence of provider shopping. For robustness, we also provide comparative results across a variety of instruments and

treatment definitions.

3 Data

We use a large panel data set of South Carolina Medicaid claims that spans 11 years from 2003 to 2013. It includes 145,264 children and teenagers who had at least one ADHD-related claim between 3 and 18 years old during this time period. This sample makes up approximately 20% of the children population in the state.

Our data include basic demographic information collected to determine Medicaid eligibility and a complete set of health services utilization records for all individuals: hospital, outpatient, and pharmacy claims. It is supplemented by several variables from the enrollees' birth certificates including mother's age, race, and education. Following earlier research work that used Medicaid or other administrative claims data (e.g. Frank et al. (2004)), we compile a set of ICD-9 diagnosis codes and CPT procedure codes to identify individuals who have ADHD, cases of pregnancy, STDs, substance use and abuse disorders, and injuries from the insurance claims data. Administrative data are not well-suited for distinguishing two consecutive independent events of the same kind from continuous care for the same event. For this reason, we focus on the first occurrence of each negative health outcome: teenage pregnancy, STD contraction, STD screening, and substance use and abuse disorders. While we use the first observed negative health outcome event to identify the incidence of negative health outcomes, we track all Medicaid spending related to these events across time.

We use pharmacy claims to extract information on ADHD prescription medications that were filled by a patient. Each record has a dispense date, National Drug code (NDC),¹⁵

⁹Medicaid has two components: traditional fee-for-service (FFS) and services provided through managed care organizations (MCO). Due to the differences in reporting requirements, the complete information on all services provided to a patient are only available for those enrolled in the FFS plan. However, mental health is one of the "carved-out" conditions that is covered by the FFS component even if an individual is enrolled into a managed care plan. We use all available claims and when possible, perform robustness checks by excluding MCO enrollees.

¹⁰The International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes are used by Medicaid for reporting purposes in the years covered by our sample. A hospital claim may have up to 9 diagnosis codes and an outpatient claim may have up to 4 codes.

¹¹The Current Procedural Terminology (CPT) codes are used to indicate services provided to a patient. A hospital claim may have up to 100 procedure codes and an outpatient claim may have up to 8 codes.

¹²For substance use and abuse disorders we use a methodology developed in Bouchery et al. (2012).

¹³The ICD-9 codes for injuries were borrowed from Marcus et al. (2008).

¹⁴We disregard any out-of-pocket expenditures in this study. In 2013, most eligible individuals faced a small copay per doctor visit (\$3.30), per prescription (\$3.40 for adults over 19 years old and zero otherwise), and per hospital stay (\$25).

¹⁵NDC is an 11-digit classification issued by the Food and Drug Administration (FDA) for all the approved drugs. Under this system, different package and dosage sizes of the same drug molecule have separate NDCs.

quantity purchased, dispense fee, and the amount paid by Medicaid. We use our previous work (Chorniy (2015)) to identify drugs that are typically prescribed to patients with ADHD and to construct our instrumental variable (Section 4).

To estimate our model, we put a number of restrictions on the original data set. First, we select individuals who are consistently enrolled for Medicaid for a year or more for us to be able to estimate the effect of treatment. For lapses in enrollment that last under three months, we assume that patients are enrolled but receive no medical treatment. For inconsistent eligibility periods that result in longer lapses in coverage (48% of the enrollees), we only keep medical history prior to the lapse. These criteria leave us with 107,062 Medicaid enrollees.

Second, due to the fact that our instrument is constructed using the event of the initial ADHD diagnosis, we exclude individuals for whom we are unable to identify this event. Based on the earlier literature (e.g. Crawford and Shum (2005)), these are patients who had their first ADHD-related visit within 180 days from their first appearance in the sample and patients who fill a prescription prior to their first observed ADHD-related provider visit. This restriction excludes additional 29,974 individuals from the sample. Additionally, a patient had to be diagnosed between 3 and 18 years old and be in the sample for at least one full year since the event of the first ADHD diagnosis to be included in the analysis; 62,643 patients satisfied this criteria. Our final sample has 58,685 individuals after excluding ADHD children with missing basic demographic information and children for whom we were unable to calculate provider propensity to prescribe.¹⁷

Table 1 shows summary statistics on individual, mother, and home environment characteristics. Boys comprise 66% of the sample; whites and blacks are represented nearly equally. On average, children are first diagnosed with ADHD at 8 years old, and half of them are diagnosed by age of 7. Nationwide, among children age 4-17 years whose parents reported "mild" ADHD symptoms the median age of diagnosis is 7.0 years old, 6.1 years for those with "moderate" symptoms, and 4.4 years for "severe" cases of ADHD. Given that the population we are looking at is slightly older, our statistic is generally consistent with that reported in the Visser et al. (2014).

The families predominantly consist of a single adult and two children. Their reported net monthly income is \$574 on average. Data on mother's characteristics from the in-state

¹⁶Once eligibility for Medicaid is established, the health insurance coverage is available for an enrollee for a 12-month period (unless the enrollee becomes ineligible during this time), after which the eligibility needs to be reconfirmed. An eligible individual who received services prior to the actual enrollment can be covered retroactively for up to two months prior to the month when eligibility was established.

¹⁷We are unable to calculate a provider propensity to prescribe for providers who diagnose less than 2 patients with ADHD in a year.

birth certificates are matched to 72% of children in our sample. The majority of mothers in the sample have at least some high-school education (37%) or a high school diploma (40%).

In addition to the entire cohort of children on Medicaid who are diagnosed with ADHD in SC between 2003-2013, we have a supplemental random sample of children on Medicaid who were never diagnosed with ADHD.¹⁸ We use this sample to test the validity of our identification strategy (see Section 5). Summary statistics for this group of children are shown in the appendix (Table 11 and Table 12).

Table 2 reports summary statistics on ADHD medical treatment and ADHD-related negative health outcomes that we observe in the sample. Nearly all children diagnosed with ADHD have attention deficit disorder with hyperactivity (ICD-9: 314.01) as opposed to disorder without hyperactivity (ICD-9: 314.00). In our primary specification, we define pharmacological treatment as one or more prescriptions filled after the diagnosis (79% of patients). Following earlier literature, we also introduce two alternative definitions. For example, if we define treatment as a period of at least six month on medication in a given year (Dalsgaard et al. (2014)), only 52% of our diagnosed children receive treatment.

On average, we observe every Medicaid enrollee for eight years. During this time, 1,811 of them become pregnant before age 19; 3,288 contract an STD and an additional 2,184 are tested for an STD condition. For 5,864 teens we observe at least one claim that indicates a substance abuse disorder. The most frequent outcome that we observe yearly are injuries. Of all ADHD-diagnosed children, 80% of children and teens have at least one injury while in the sample.

In order to take into account the severity of negative health outcome events, we calculate the total Medicaid spending using the respective claims. The average annual cost of treatment for an STD condition is \$400 (\$354 per patient if we include all patients who were screened for an STD). The annual cost of a substance abuse condition, including spending on prescribed medications is \$1,499 per patient. Finally, the average cost of injuries per person per year is \$704. These expenditures vary widely across patients with the upper tail costing Medicaid thousands of dollars.¹⁹

¹⁸It includes eligibility information, hospital, and outpatient claims for the undiagnosed children under 19 years old with higher weights assigned to relevant birth cohorts.

¹⁹All spending amounts are adjusted to 2013 dollars.

Table 1: Summary Statistics: Individual and Family Characteristics

	N obs.	Mean	Median	SD	Min	Max
Individual characteristics						
Age 1 st in sample	58,685	4.12	3.00	4.04	0	18
Age at 1 st ADHD diagnosis	58,685	7.98	7.00	3.46	3	18
Male	$58,\!685$	0.66			0	1
Race: White	58,685	0.47			0	1
Black	58,685	0.43			0	1
Hispanic	58,685	0.02			0	1
Family & home environment						
Monthly family net income	58,685	573.94	408.80	584.93	0	5,189
Number of adults	58,685	1.03	1.00	0.59	0	3
Number of children	58,685	1.91	2.00	0.96	0	6
Ever in foster care	58,685	0.09			0	1
Ever had disability	58,685	0.15			0	1
Mother's characteristics						
Age when gave birth	42,488	23.41	22.00	5.47	11	48
Educ: Less than HS	42,488	0.05			0	1
Some HS	42,488	0.37			0	1
HS diploma	42,488	0.40			0	1
Some college	42,488	0.13			0	1
College degree or higher	42,488	0.05			0	1

Notes: The sample includes every SC Medicaid enrollee who was diagnosed with ADHD between 3 and 18 years old in 2003-2013 and who was eligible for Medicaid at least one year after this event. Family characteristics are averaged per patient/eligibility year. Foster care and disability rates are calculated based on Medicaid enrollment categories. Mother characteristics are reported based on in-state birth certificate information matched to Medicaid records. They are available only for a subsample of the 42,488 patients. Mother's age and educational attainment are recorded at the time of the child's birth. "HS" stands for high school education level.

Table 2: Summary Statistics: Medical Treatment and Negative Health Outcomes

	N obs.	Mean	Median	\mathbf{SD}	Min	Max
Medical diagnosis & treatment						
1 st diagnosis: ADD w/ hyperactivity	58,685	0.74			0	1
ADD w/o hyperactivity	58,685	0.24			0	1
1+ Rx filled (ever)	58,685	0.79			0	1
1+ Rx filled within a year (1st diag)	58,685	0.72			0	1
6+ Rx filled within a year (ever)	58,685	0.52			0	1
Annual cost of ADHD visit	58,685	586.75	152.10	1819.20	1	151,980
Annual cost of ADHD Rx	$46,\!355$	419.33	265.38	466.81	1	$7,\!897$
Years in sample	$58,\!685$	7.94	8.00	2.73	1	11
Outcome: Risky sexual behavior						
1. Teen Pregnancy						
Age at 1 st pregnancy	1,811	16.67	17.00	1.75	11	19
Race: White	1,811	0.53			0	1
Black	1,811	0.43			0	1
2. STD						
Age at 1 st STD	3,288	14.46	14.00	2.49	11	19
Age at 1 st STD (incl. screening)	5,472	14.80	15.00	2.33	11	19
Male	3,288	0.42			0	1
Race: White	$3,\!288$	0.57			0	1
Black	3,288	0.35			0	1
Annual cost of STD	$3,\!288$	399.84	152.32	1129.51	4	19,728
Annual cost of STD+test	$5,\!472$	353.88	181.80	777.86	2	19,728
Outcome: Substance Abuse						
Age at 1 st substance abuse	5,864	15.12	15.00	2.11	11	19
Male	5,864	0.64			0	1
Race: White	5,864	0.51			0	1
Black	5,864	0.42			0	1
Annual cost of substance abuse	5,864	1498.32	430.45	3640.24	1	113,834
Outcome: Injuries						
Ever injured	58,685	0.80			0	1
Age at injury	46,730	9.07	8.50	3.72	3	19
Male	46,730	0.67			0	1
Race: White	46,730	0.50			0	1
Black	46,730	0.40			0	1
N of injury claims	$58,\!685$	0.37	0.27	0.44	0	12
Annual cost of injuries	46,730	704.37	247.10	4072.36	2	501,616

Notes: The sample includes every SC Medicaid enrollee who was diagnosed with ADHD between 3 and 18 years old in 2003-2013 and who was eligible for Medicaid at least one year after this event. Alternative treatment definitions are used for the robustness checks in Section 10. Annual costs of treatment and negative health outcomes are given in 2013 dollars per patient/year conditional on treatment or the occurrence of a negative health outcome. They are based on the Medicaid reimbursement. The out-of-pocket patient costs are nearly zero for the population in our sample.

4 Empirical Model

4.1 Lifetime Effects of ADHD Treatment

We use a linear probability model to estimate the effects of ADHD medical treatment on the incidence of adverse health and behavioral outcomes in adolescents who are diagnosed with the condition. In this experiment, we compare the outcomes of treated and not treated children with ADHD. We model outcomes as shown in Equation 1.

$$Y_i = X_i \beta + \alpha_i Treatment_i + \gamma_1 County_i + \gamma_2 Year_i + \varepsilon_i$$
 (1)

where Y represents one of the negative health outcomes that are common for individuals (i) diagnosed with ADHD: STD contraction and STD screening, substance use and abuse, and teenage pregnancy. X is a vector of covariates that includes observed individual characteristics (race, gender, birth year), net monthly family income at the first ADHD diagnosis, patient age, and duration of enrollment. We also control for the location (county of patient's residence at diagnosis) and the year of diagnosis. We exclude all individuals who have experienced an adverse outcome (STD, STD test, substance abuse, or pregnancy) prior to their ADHD diagnosis and estimate the model using post-diagnosis medical history. For outcomes STD, STD testing, substance abuse, and teenage pregnancy, we utilize a subsample of relevant birth cohorts of SC Medicaid enrollees. They are individuals born between 1987 and 1996, whose teen years overlap with our sample period and who are enrolled in Medicaid for at least one year during this time. Treatment takes a value of one if the individual fills at least one ADHD prescription after being diagnosed with the condition, as described in Section 3.

The parameter of interest in this equation is α . In the linear probability model framework, it can be interpreted as the average impact of ever being treated for ADHD on the likelihood of negative health outcomes in adolescence.

Equation 1 can be rewritten to reflect two potential sources of bias:

$$Y_i = X_i \beta + \bar{\alpha} Treatment_i + Treatment_i (\alpha_i - \bar{\alpha}) + \gamma_1 County_i + \gamma_2 Year_i + \varepsilon_i$$
 (2)

²⁰The length of the time period the individual was enrolled in Medicaid between 2003 and 2013.

²¹Note that the baseline IV ("ever treated") does not exclude the possibility that an individual is be diagnosed, then experiences an adverse event, and only then is prescribed treatment. There are 75 such cases in our data. Using the alternative IV that defines treatment as a prescription filled within 365 days from the initial diagnosis, there are 16 such cases (see Section 7.2). Since our analysis excludes all individuals who experience an adverse event prior to their ADHD diagnosis, it cannot be the case that the adverse event determines the instrument and thus, we will have unbiased estimates of the effect of "ever filling a prescription" on the probability of adverse events.

There are two potential concerns that arise when estimating Equation 2. First, if Treatment is correlated with ε , unobserved factors that make some individuals more likely to receive treatment also influence their health and behavioral outcomes. For example, relatively more caring parents might be more likely to pursue medical treatment for their child. These parents are also more likely to take measures to reduce the probability of negative health outcomes associated with ADHD. In this case, our results might be biased towards finding that ADHD treatment reduces the probability of negative health outcomes. On the contrary, if perhaps children with the most severe ADHD symptoms are the ones to seek treatment and are also relatively more likely to experience negative health outcomes, the effect of medication treatment would be biased towards zero. Second, Treatment will be correlated with α_i if individuals select treatment based on expected gains. In this case, the child's outcomes may determine treatment receipt.

4.2 Identification

Following Dalsgaard et al. (2014) and Duggan (2005), we instrument for individual treatment with provider propensity to prescribe. If two equally sick patients have a different prescription outcome because they saw physicians with a respectively high or low propensity to prescribe, it provides exogenous variation necessary to evaluate the causal effect of treatment.

$$PP_{dit} = \frac{\text{N patients treated}_{dt} - 1 * (\text{Treated}_{dit} = 1)}{\text{N patients}_{dt} - 1}$$
(3)

We define provider d's propensity to prescribe (PP) medication to an individual i in year t as the share of all his/her patients' treatment outcomes in a given year, excluding the focal individual (Equation 3). Specifically, provider propensity to prescribe is equal to the sum of other patients prescribed medication divided by the sum of all other patients diagnosed by the same provider in the same year. The focal individual i is excluded from the calculation of propensity to prescribe. This warrants potential endogeneity concerns since the patient's characteristics are not a part of the provider propensity to prescribe measure. In our data a provider diagnoses 38 patients per year, on average. To be included in our analysis, we require the provider to diagnose two or more patients per year.

Since we only observe filled prescriptions, our calculated provider's propensity to prescribe a drug to a patient with ADHD includes both the probability that he/she writes a prescription and the probability that the patient fills the prescription (Dalsgaard et al.

(2014)). Both the probability that a provider prescribes medication to the patient and the probability that the patient fills the prescription, conditional on the provider's engagement with the patient, are relevant provider variation.²²

Stockl et al. (2002) survey 1,000 randomly selected physicians who prescribe stimulant medication to patients between December 2001 and May 2002. They document considerable variation in physicians' perception on the severity of ADHD medication side effects and their concern about the medication being used for purposes other than patient's medical needs. Similar to earlier research, we find that patients face significant variation in the probability of receiving a prescription (Figure 1).

The first stage is given by Equation 4:

$$Treatment_i = \delta P P_i + X_i \theta + \nu_i \tag{4}$$

where PP_i is a patient-specific probability to receive a prescription from the diagnosing provider; X_i is a vector of controls from the Equation 1. The second stage is given by Equation 5:

$$Y_i = \alpha Treatment_i + X_i \beta + \varepsilon_i \tag{5}$$

where $Treatment_i$ is the predicted treatment from Equation 4, and β is the marginal treatment effects of ADHD medication on adolescent's negative health outcomes. To illustrate our identification strategy, consider two types of doctors: doctors with a high propensity to prescribe and doctors with a low propensity to prescribe. For very severe cases of ADHD, both doctors would recommend medication treatment and thus the effect of treatment on children's negative health outcomes cannot be identified. Alternatively, for children with few to no ADHD symptoms, both doctors would not recommend medication treatment. The comparison of outcomes across doctors' prescribing behaviors would thus focus on the variation of treatment among marginal cases. Equation 5 will produce consistent estimates provided that PP_i influences treatment and is uncorrelated with the error term ε_i (see Section 5 for supporting evidence).

4.3 Yearly Effects of ADHD Treatment

Another way to look at the effects of ADHD treatment on negative health outcomes is by taking advantage of the panel feature of our data set. It allows us to control for patient's age, year-specific trends, and other observed time-varying factors that could have an effect on

²²In the earlier literature, physician prescribing practices were found to vary with the reimbursement mechanism (Dickstein (2014)) and their individual preferences (Hellerstein (1998)).

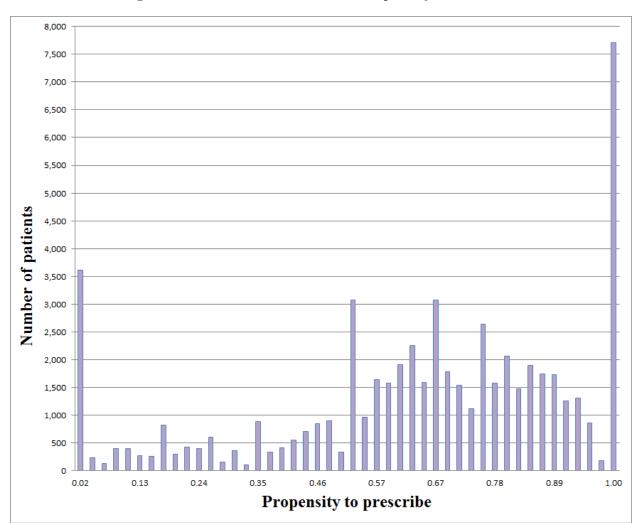


Figure 1: Distribution of Provider Propensity to Prescribe

Notes: The figure shows the distribution of the probability that a patient receives a prescription from a particular physician in the year she was diagnosed based on the sample of 58,685 ADHD-diagnosed patients enrolled in SC Medicaid in 2003-2013. Provider propensity to prescribe varies from zero to one.

individual health outcomes. For example, age-specific risks of outcomes such as pregnancy, STD contraction, and substance abuse are in the fixed effects, which reduces the variance in the error term.

Moreover, this approach requires fewer assumptions about data. While in the "lifetime" analysis (cross-section setup) it is assumed that an individual had no adverse outcomes if she is not actively enrolled in Medicaid and has no claims, ²³ per-year effects are identified strictly off the observed continuous Medicaid enrollment period. Due to the nature of administrative records, we are unable to reliably tell apart two separate negative health events of the same type. Thus, we do not track individuals past their first adverse outcome (except for the injuries). The empirical model is specified in the Equation 6 below.

$$Y_{it} = \alpha Treatment_i + X_i\beta + Z_{it}\gamma_1 + \gamma_2 County_{it} + \gamma_3 Year_{it} + \gamma_4 Year \times County_{it} + \varepsilon_{it}$$
 (6)

where Y is a negative health outcome for an ADHD patient i in year t; Treatment represents medical treatment instrumented with provider propensity to prescribe. As in the "lifetime" effects analysis, treatment is defined as "ever treated" and the instrument itself does not have a time subscript. X is a vector of controls that includes individual characteristics that do not vary with time: race, sex, and birth cohort; Z includes time-varying controls: age, monthly family income; Year represents year controls; County stands for the county of residence; Year × County are county/year interactions, and ε is a stochastic error term. Note that we exclude all individuals who have experienced an adverse outcome (STD, STD test, substance abuse, or pregnancy) prior to their ADHD diagnosis and we estimate the model using post-ADHD diagnosis medical history. For STD, STD testing, substance abuse, and teenage pregnancy outcomes we utilize a subsample of individuals born between 1987 and 1996, whose teen years overlap with the time period of our data set.

For the outcomes related to teenagers' risky behavior, the parameter of interest, α can be interpreted as the average effect of ever receiving treatment on the first incidence of a negative health outcome. For the incidence and number of injuries, the coefficient on treatment can be interpreted as the average annual effect of ever receiving treatment. Ideally, one would like to know how treatment length or being diagnosed at a certain ages can change treatment effects. However, we are unable to address the endogeneity issues that arise with the use of treatment length or age of diagnosis with our instrument. Thus, it is left for the future research to find an identification strategy that would shed light on these questions.

 $^{^{23}}$ See discussion in Section 5.2.4

²⁴For robustness, we use county unemployment rate, county income, and county population density instead of county controls and our findings hold.

5 IV Validity

5.1 Condition 1: First Stage Results

The first stage results for the entire sample (Table 3) and the outcome-specific results (Table 6) show that the relationship between the provider propensity to prescribe ADHD medication and the probability that the child ever fills a prescription is positive. It holds when we include a number of controls, such as family and individual characteristics, mother's age and education level, county, and birth cohort fixed effects. The estimated magnitude of the coefficient in the specification that includes all the controls and fixed effects (Table 3, column 3) suggests that a 10 percentage point increase in the provider propensity to prescribe is associated with a 3.53 percentage point increase in the probability of treatment receipt.

This relationship does not seem to be driven by the "extreme" values of provider propensity to prescribe. When we exclude all providers who either never prescribe ADHD medication or prescribe drugs to every child they diagnose, the first-stage result becomes stronger.

5.2 Condition 2: Exclusion Restriction

In order for our instrumental variable approach to be valid, the exclusion restriction must hold. In our data, providers are not randomly assigned to patients but it is necessary that provider propensity to prescribe affects patient outcomes only through pharmacological treatment.

In this section, we devise a number of tests that could be indicative of a violation of this assumption. There are three potential threats that we address and provide suggestive evidence in favor of the validity of doctor propensity to prescribe. First, provider prescribing preferences might be correlated with the provider quality and thus, would affect patient outcomes directly rather than through treatment receipt. Second, both our instrument and patient outcomes may be correlated with unobserved individual, family, and other characteristics. Finally, there might be a sample selection problem if the individual's length of enrollment in Medicaid is related to the provider propensity to prescribe. Although these tests do not ensure that the exclusion restriction is satisfied, they provide us with more confidence in that our instrument is valid.

Table 3: Results: First Stage

	(1)	(2)	(3)	(4)
Propensity to prescribe	$0.414^a \ (0.006)$	$0.368^a \ (0.006)$	$egin{array}{c} 0.353^a \ (0.007) \end{array}$	$0.424^a \\ (0.010)$
Male		0.044^{a}	0.047^{a}	0.049^{a}
Race: Black		(0.003) -0.057^a (0.004)	(0.004) -0.051^a (0.004)	(0.004) -0.053^a (0.005)
Hispanic		-0.131^{a}	-0.162^{a}	-0.169^{a}
Other		(0.010) -0.056^a	(0.014) -0.068^a	(0.015) -0.073^a
Family net income		(0.007) 0.006	(0.009) 0.005	(0.009) 0.006
Number of adults		(0.022) -0.027	(0.022) 0.012	(0.028) 0.001
Number of children		(0.027) -0.002 (0.002)	(0.031) -0.002 (0.002)	(0.035) -0.001 (0.002)
Cohort & County F.E.	N	Y	Y	Y
Mother characteristics	N	N	Y	Y
Propensity to prescribe $\in (0,1)$	N	N	N	Y
R-squared	0.081	0.147	0.124	0.115
N obs.	58,685	58,685	42,693	34,507

Notes: The dependent variable in every specification is the binary prescription outcome of a patient. It equals one if the patient had an ADHD prescription while on Medicaid and zero otherwise. Controls that are not shown include individual's first county of residence, foster care, and disability status. Mother characteristics include mother's age when she gave birth and educational attainment. Family net income is measured in ten thousands of dollars; the coefficients on the number of adults are scaled up by 10 in order to show the magnitude of the effect. Coefficient estimates that are significant at 1%, 5%, and 10% level are denoted with a, b, and c respectively. Standard errors are in parentheses. They are clustered by individual's provider who diagnosed them with ADHD.

5.2.1 Placebo test: provider propensity to prescribe at mean age of ADHD diagnosis

Physician quality, experience, and training have an impact on patient outcomes. If the propensity to prescribe medication reflects physician quality, it may confound our results. For example, it could be the case that providers who prescribe medication to every single one of their patients do not properly evaluate patient symptoms and/or determine a treatment strategy that would suit each particular case. In other words, if high prescribing providers are those of lower quality, we would expect to find that treatment has unfavorable effects on health outcomes.

To address this concern we devise a placebo test. If provider quality is not related to his or her propensity to prescribe, we should see no relationship between the instrument and health outcomes of children who were never diagnosed with ADHD. By definition, this group has no diagnosing physician in the data. Instead, we identify the first doctor a patient who was never diagnosed with ADHD saw when he or she was eight years old. It is the mean age of ADHD diagnosis in our sample of diagnosed children.²⁵

Table 4 presents results for the undiagnosed sample as well as the reduced form regression estimates for the diagnosed sample. The point estimates of the coefficients on the propensity to prescribe have large confidence intervals suggesting that there is no statistically significant relationship between provider quality and propensity to prescribe.

5.2.2 Confounding factor: provider selection

Another potential bias may arise if parents of children with relatively severe symptoms of ADHD seek and use prior information about the provider's propensity to prescribe. If they, on average, visit physicians with a relatively high propensity to prescribe, this could bias our findings of the effects of ADHD medication downward. Similarly, if the parents of children with relatively less severe ADHD symptoms seek pharmacological treatment, it could result in an upward bias in our findings.

We do not have a strong prior on the direction of the bias. The medical evidence on the effectiveness of ADHD medication is mixed and the evidence on long-term effects is very limited. Additionally, there is a large array of potential side effects associated with these drugs. They include sleep problems, suppressed appetite, nausea, headaches, stunted growth, aggression and irritability, and cardiac risks (Barkley (2006)). Parents have to weigh the expected benefits and costs associated with medicating their child.

²⁵Due to a high provider mobility in and out of Medicaid, we could not match all first-in-sample provider IDs to the diagnosing provider IDs.

Table 4: IV Validity: Placebo Test

	STD	$\begin{array}{c} \mathbf{STD} \\ +\mathbf{test} \end{array}$	Subst. abuse	Teen Preg.
Panel A. Undiagnosed Children				
Propensity to Prescribe	0.009	0.004	-0.003	-0.013
	(0.009)	(0.012)	(0.008)	(0.008)
Male	-0.079^a	-0.158^a	0.036^{a}	-
	(0.006)	(0.007)	(0.006)	-
Race: Black	-0.031^a	-0.017^{c}	-0.056^{a}	-0.017^{b}
	(0.009)	(0.010)	(0.009)	(0.008)
Hispanic	-0.045^a	-0.038^{b}	-0.047^a	-0.010
	(0.016)	(0.019)	(0.015)	(0.014)
Other	0.002	-0.016	-0.071^a	-0.018
	(0.021)	(0.025)	(0.017)	(0.018)
Number of adults	0.0004	-0.004	-0.005	-0.008
	(0.005)	(0.006)	(0.005)	(0.005)
Number of children	-0.006^b	-0.005	0.006^{b}	0.013^{a}
	(0.003)	(0.004)	(0.003)	(0.003)
Family net income	0.002	-0.007	-0.013^a	-0.014^a
	(0.004)	(0.005)	(0.004)	(0.004)
N obs.	10,743	10,743	10,743	7,938
Panel B. Children Diagnosed with	ADHD			
Propensity to Prescribe	-0.017^{c}	-0.037^a	-0.059^a	-0.019
	(0.010)	(0.012)	(0.020)	(0.021)
Male	-0.129^a	-0.210^a	0.048^{a}	-
	(0.007)	(0.008)	(0.008)	-
Race: Black	-0.011^{c}	0.014	-0.076^a	-0.023^{c}
	(0.007)	(0.008)	(0.010)	(0.013)
Hispanic	-0.037	-0.019	-0.122^a	-0.064^{c}
	(0.022)	(0.027)	(0.027)	(0.037)
Other	-0.023^{c}	-0.039^a	-0.089^a	-0.075^a
	(0.012)	(0.014)	(0.016)	(0.024)
Number of adults	-0.006^{c}	-0.019^a	-0.019^a	-0.016^{c}
	(0.004)	(0.005)	(0.006)	(0.008)
Number of children	0.006^{b}	0.013^{a}	0.011^{a}	0.034^{a}
	(0.002)	(0.003)	(0.003)	(0.005)
Family net income	-0.002	-0.008	-0.028^a	-0.023^a
	(0.004)	(0.006)	(0.005)	(0.008)
N obs.	14,736	14,736	14,736	5,570

Notes: Panel A and B show the results of the IV validity test. Propensity to prescribe ADHD medication is constructed by using the individual's provider at the mean age of ADHD diagnosis for the non-ADHD sample. The coefficients in Panel A are estimated on the sample of children who do not have ADHD using OLS. The dependent variables take value of one if a child experienced each of the respective adverse events; it is zero otherwise. The coefficients in Panel B are from the reduced form equation: regressing the outcome on doctor propensity to prescribe. Coefficient estimates that are significant at 1%, 5%, and 10% level are denoted with a,b, and c respectively. Standard errors are in parentheses. They are clustered by individual's provider.

Table 5 reports the results on the relationship between physician propensity to prescribe and observed individual, mother, and family characteristics. They include mother's age and educational attainment at the time she gave birth, family net income measured at the individual's first ADHD diagnosis, the severity of ADHD, and comorbid psychiatric conditions diagnosed prior to ADHD. We find no evidence of a consistent relationship between these observed characteristics and our instrumental variable except for a tightly-estimated small effect for the family composition. For example, a family with one child versus two children would face a doctor with only 0.3 percentage points lower prescribing probability.

Unlike Dalsgaard et al. (2014), we find a very small and statistically insignificant correlation between family income and provider propensity to prescribe. It is likely due to the differences in the sample population. Medicaid enrollees are a relatively homogeneous group income-wise and are well-suited for our research design. Finally, we find no statistically significant relationship between provider propensity to prescribe and the severity of the underlying condition approximated by the history of injuries prior to the ADHD diagnosis.

Although there are many unobserved characteristics that could have an impact on the choice of the ADHD provider, we argue that our test has a significant power. Covariates like family income and mother's characteristics have a long history of being used as predictors of health, parent quality, and other outcomes that we could be potentially concerned about.

5.2.3 Treatment shopping: second provider selection

About 10% patients in our sample (5,734 individuals) switch their health care provider after being diagnosed with ADHD. If the reason for a switch is to alter their treatment, it could undermine our research design and create a bias. In particular, the concern is that patients are shopping for treatment and if the first physician did not prescribe medication, they would search for a provider who would. For these patients, we look at the relationship between prescribing practices of the diagnosing physician and their subsequent physician. Of the individuals that switch providers, 57.6% go to a subsequent provider with a higher propensity to prescribe than the diagnosing provider, 39.4% go to a subsequent provider with a lower propensity to prescribe, and 3.0% go to a subsequent provider with a propensity to prescribe equal to the first diagnosing provider. Approximately 83% of switchers receive pharmaceutical treatment and 79% of those who do not switch receive pharmaceutical treatment.

Figure 2 plots this relationship. The plot shows no clear linear pattern in the switchers' behavior, suggesting that individuals who switch to a subsequent provider do so randomly or for reasons independent of the provider propensity to prescribe. We also look for the possibility of a nonlinear relationship. The coefficient on the quadratic term is small, positive

and significant (0.07 (0.01)).²⁶ It suggests that for patients who first encounter providers with "extreme" prescribing preferences (either prescribe to no one or prescribe to all patients) and switch to another provider, their subsequent provider propensity to prescribe is slightly higher than average. If we regress the individual decision to switch on an indicator of provider being "extreme", we find that their patients are 2 percentage points more likely to switch providers (Table 13).

Further, we find no evidence of correlation between provider switching and mother's education or income (Table 13), and the mean values of mother and family characteristics do not differ significantly for individuals who go to a higher prescribing subsequent provider in relationship to individuals who go to a lower prescribing subsequent provider (Table 14). All these patterns suggest that strategic treatment shopping in our sample is not a significant issue but it also indicates that patients might be driven away from providers with the extreme preferences to prescribe ADHD medication.

5.2.4 Provider propensity to prescribe and individual's length of Medicaid enrollment

The final test we perform is concerned with the length an individual is enrolled in Medicaid. In the data, we observe the individual so long as they are enrolled. If the decision to enroll in Medicaid is related to doctor propensity to prescribe, it is a potential concern for the identification strategy.

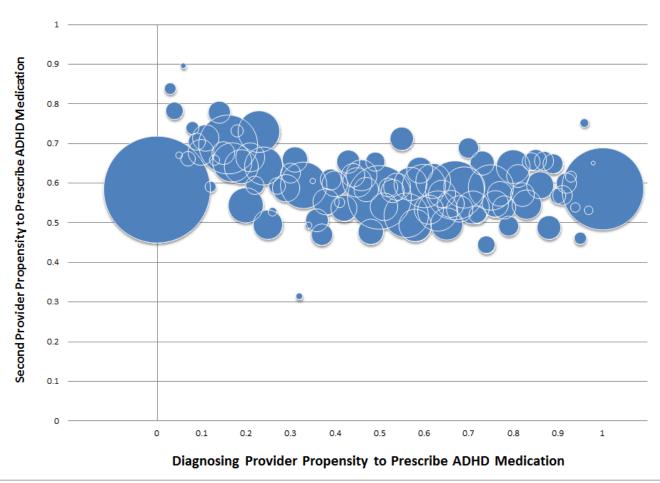

For example, if a patient was diagnosed by a provider with a relatively high propensity to prescribe and received medication, it is plausible to suggest that she may remain enrolled for a longer period of time than otherwise. One might argue that the longer an individual is enrolled, the more probable it is that we will observe a negative health outcome for that individual: STD contraction, STD screening, substance abuse disorder, or teenage pregnancy.²⁷ Positive correlation between doctor propensity to prescribe and enrollment could bias our results towards finding that pharmaceutical treatment receipt, instrumented with provider propensity to prescribe, is correlated with worse patient outcomes.

Table 5 shows that the instrument is uncorrelated with the length of Medicaid enrollment. In other words, individuals are not selecting into the sample based on their diagnosing provider propensity to prescribe.

²⁶The coefficient estimates do not change when controls from our main regression specification are included.

²⁷Due to the easiness of enrollment in Medicaid and including the fact that the program would cover up to two months of claims retroactively, these adverse outcomes would likely result in an individual re-enrollment and would not pose a risk for the model identification.

Figure 2: Provider Shopping: Diagnosing and Subsequent Provider Propensity to Prescribe

Notes: In the data, 5,734 patients switch health care providers. This figure shows the relationship between the individual's diagnosing provider propensity to prescribe and their subsequent provider propensity to prescribe. Prescribing propensities vary from zero to one. The bubble size indicates the number of patients for each pair of propensity scores.

Table 5: IV Validity: Additional Evidence

Dependent Variable:	Proper to Pres	•	Enro Leng	llment th
Regressors	Coeff.	SE	Coeff.	SE
Individual Characteristics				
Male	0.011^{a}	0.003	-0.081^a	0.016
Race: Black	-0.020^a	0.003	0.292^{a}	0.017
Hispanic	-0.049^a	0.009	0.171^{a}	0.057
Other	-0.035^a	0.005	0.187^{a}	0.036
Mother & Family Characteristics				
Educ: Less than HS	0.002	0.006	0.103^{b}	0.039
Some HS	-0.002	0.003	0.077^{a}	0.018
Some college	-0.004	0.004	-0.269^a	0.024
College degree or higher	0.003	0.006	-0.406^a	0.036
Family net income	-0.002	0.002	-0.083^a	0.010
Number of adults	0.004^{b}	0.002	0.051^{a}	0.013
Number of children	0.003^{b}	0.001	0.059^{a}	0.007
Comorbid condition	-0.002	0.003	0.135^{a}	0.016
Severity of ADHD	-0.001	0.003		
Provider Propensity to Prescribe			0.006	0.028
N obs.	39,7	' 53	42,1	40

Notes: This table shows two additional tests in support of our instrumental variable. Both regressions are estimated using OLS and include birth cohort and county fixed effects. Family income is measured in thousands of dollars; ADHD severity is approximated by the incidence of injuries prior to ADHD diagnosis. Family characteristics are measured and fixed at the time of the individual's first ADHD diagnosis. Coefficient estimates that are significant at 1%, 5%, and 10% level are denoted with a, b, and c respectively.

6 Results

We find evidence that ADHD medication treatment reduces the probability and severity of a wide range of short-term and lifetime negative health outcomes. It is effective in reducing the probability of an ADHD teenager contracting an STD, becoming pregnant, suffering from a substance use and abuse disorder, and having an injury.

Tables 6–9 summarize these results. For every negative health outcome we show estimated coefficients using IV and OLS for comparison purposes. In most cases, OLS estimates agree in the direction of the effect with the IV-estimated coefficients, but they understate the magnitude of the beneficial effects associated with treatment. Notably, OLS estimates for the substance abuse and injury outcomes seem to have a larger bias relative to other outcome measures. The OLS estimates suggest that medical treatment increases the probability of suffering from a substance abuse disorder and getting injured while the IV estimates suggest that medical treatment decreases the probability of these negative health outcomes.

6.1 Lifetime Effects of ADHD Treatment

Table 6 summarizes the results. We find that medication is effective in reducing the probability of the outcomes produced by risky behaviors. Children with ADHD who received pharmacological treatment are 3.6 percentage points less likely to be treated for an STD condition, 7.7 percentage points less likely to be screened for an STD, and 12.5 percentage points less likely to receive medical attention related to a substance abuse disorder. The point estimate on the probability of teenage pregnancy is also negative (-3.7 percentage points) but not statistically significant.²⁸

Compared to the OLS estimates, the coefficients obtained using an IV are of the same sign for outcomes of STD contraction, STD screening, and teen pregnancy, but are larger in absolute value and statistically significant for STD contraction and STD testing. In other words, OLS understates the effects of treatment but indicates that treatment has favorable effects on outcomes. The OLS estimates for the outcome of substance abuse suggest that treatment slightly increases the probability of abusing substances. When we instrument for treatment, we find that the coefficient on treatment flips signs and increases in magnitude suggesting that treatment decreases the probability that an individual abuses substances.

The results also show that males are less likely to be treated (12.8 percentage points)

²⁸These results generally hold in a smaller sample of patients for whom we have birth certificate data. Table 15 shows the effects of ADHD treatment on adverse outcomes when we control for mother's age and education level.

or screened (20.7 percentage points) for an STD but 5.2 percentage points more likely to have medical history of substance abuse. This finding is consistent with the reports on STDs.²⁹ For example, the chlamydia case rate per 100,000 females in 2005 was more than three times higher than for males. Most of this difference is attributed to the fact that women are more likely to be screened than men. Whites are the most likely to suffer from one of the negative health outcomes that we focus on, which is also likely to be an outcome of higher probability of being screened.

Family characteristics that we control for include family composition (number of adults and children in the individual's household) as well as family net income at the time of the child's diagnosis. The coefficients on these controls are consistent with our prior. Going from a one to two-adult family decreases the probability of negative health outcomes by 0.6-1.9 percentage points depending on the type of the outcome. This result is statistically significant for the STD condition and screening combined, substance abuse, and teen pregnancy.

On the other hand, individuals in families with a higher number of children are more likely to experience one of the negative health outcomes. The magnitude of the effect varies from 0.6 to 3.3 percentage points, being the highest for teenage pregnancy. It is likely due to the fact that there is relatively less parental oversight in larger families. Finally, family income is negatively correlated with the incidence of risky behavioral outcomes. As we would expect, the better off the family is in terms of income, the less likely their child will experience a negative health outcome, however the magnitude of the effect is very low. A \$100 increase in the net monthly income would produce a 0.02, 0.08, 0.28, and 0.23 percentage point decrease in the probability of STD, STD screening, substance abuse, and teen pregnancy respectively. Note that most families on Medicaid are relatively poor and there is not enough income variation in this population group to evaluate the effect of income on the incidence of negative health outcomes.

Table 16 in the Appendix shows that the results are robust when we control for comorbid psychiatric conditions that the individual is diagnosed with prior to their ADHD diagnosis. When we exclude individuals who have been diagnosed with a comorbid psychiatric condition prior to their ADHD diagnosis, our results hold for the outcomes STD, STD testing, and substance abuse, however, the estimate on treatment is statistically significant for teenage pregnancy.

We also explore how our results vary across ADHD-diagnosed patients of different gender, race, and birth cohort. The results are reported in Table 7. These stratifications provides us with interesting insights. The results for male and female subpopulations sug-

²⁹CDC, "Trends in Reportable Sexually Transmitted Diseases in the United States, 2005". http://www.cdc.gov/std/stats05/trends2005.htm. Accessed on July 14, 2015.

gest that treatment reduces the probability of STD contraction and STD testing for both males and females but estimates are statistically significant only for females. As previously discussed, females have a higher prevalence of STDs likely due to the fact that they are screened for STDs more often than males. Treatment also reduces the probability of abusing substances for both males and females but the effect is only statistically significant for males.

We find little heterogeneity across races. Treatment reduces the probability of STD contraction and STD testing for both whites and minorities; however the effect of treatment on STD contraction and STD testing are not statistically significant for whites. Treatment reduces the probability of abusing substances for both whites and minorities but has a relatively larger effect for whites. Finally, treatment is associated with a statistically insignificant reduction in the probability of teenage pregnancy for whites and no effect for minorities.

Most interestingly, the effect of treatment differs across birth cohorts. Following earlier research, we split patients by the year of birth into two groups: "older" and "younger" cohorts. Our results are consistent with Dalsgaard et al. (2014), who find treatment to be less effective in younger cohorts. This result is interpreted in light of increased incidence of ADHD diagnosis, suggesting that average ADHD case is less severe in more recent cohorts than in older cohorts.

6.2 Yearly Effects of ADHD Treatment

Perhaps an even more policy-relevant question is what is the per year difference in outcomes for children who are treated with ADHD medication versus children who are not. The average cost of a prescription medication is \$347 per patient per year and the average cost of ADHD-related physician visits is \$562 per patient per year during the sample period (measured in 2013 dollars). It is valuable to compare these treatment expenditures to what Medicaid pays for treatment of realized negative health outcomes.³⁰

The results suggest that pharmaceutical treatment is associated with a 1.2 percentage point decrease in the probability of first contracting an STD, a 2.1 percentage point decrease in the probability of first being screened for an STD, a 2.0 percentage point decrease in the probability of first abusing substances, and a 3.1 percentage point decrease in the probability of being injured, or a reduction of 0.109 injuries in a given year. Our findings for injuries are in line with the findings of Dalsgaard et al. (2014).

The panel analysis results reported in Table 8 are consistent with our cross-section analysis: we find that treatment is associated with a reduction in the probability of contracting an STD, being screened for an STD, and abusing substances. The magnitudes of

³⁰It is one of the goals of our future work to differentiate these effects by the year of diagnosis, adherence status, and length of treatment.

Table 6: Lifetime Effects of ADHD Treatment on Negative Health and Behavioral Outcomes

	S	STD	STD	${ m STD+test}$	Subst.	Subst. abuse	Pregi	Pregnancy
	STO	IV	STO	IV	\mathbf{STO}	IV	stortoniant Stor	IV
First stage		0.472^{a}		0.472^{a}		0.472^{a}		0.501^{a}
		(0.013)		(0.013)		(0.013)		(0.021)
ADHD Treatment	-0.009	$\textbf{-0.036}^c$	-0.009	-0.077^a	900.0	$\textbf{-0.}125^a$	-0.032^a	-0.037
	(0.006)	(0.022)	(0.007)	(0.026)	(0.008)	(0.045)	(0.012)	(0.041)
Male	-0.129^a	-0.128^{a}	-0.210^{a}	-0.207^{a}	0.047^{a}	0.052^{a}	ı	ı
	(0.007)	(0.007)	(0.008)	(0.008)	(0.008)	(0.008)		
Race: Black	-0.011^{c}	-0.015^{b}	0.015^{c}	900.0	-0.072^{a}	-0.087^{a}	-0.026^{b}	-0.027^{c}
	(0.007)	(0.007)	(0.008)	(0.000)	(0.010)	(0.011)	(0.013)	(0.014)
Hispanic	-0.037	-0.039^{c}	-0.017	-0.024	-0.117^{a}	-0.131^a	-0.066^{c}	-0.066^{c}
	(0.022)	(0.023)	(0.027)	(0.027)	(0.026)	(0.027)	(0.037)	(0.037)
Other	-0.023^{c}	-0.025^{b}	-0.039^{a}	-0.044^{a}	-0.087^{a}	-0.097^{a}	-0.077^{a}	-0.077^{a}
	(0.012)	(0.012)	(0.014)	(0.015)	(0.016)	(0.017)	(0.024)	(0.023)
Number of adults	-0.007^{c}	-0.006^{c}	-0.020^{a}	-0.019^{a}	-0.020^{a}	-0.018^{a}	-0.016^{c}	-0.016^{c}
	(0.004)	(0.004)	(0.005)	(0.005)	(0.006)	(0.000)	(0.008)	(0.008)
Number of children	0.006^{b}	0.006^b	0.013^{a}	0.012^{a}	0.010^{a}	0.009^a	0.034^{a}	0.033^{a}
	(0.002)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.005)	(0.005)
Family net income	-0.003	-0.002	-0.008	-0.008	-0.029^{a}	-0.028^{a}	-0.023^{a}	-0.023^{a}
	(0.004)	(0.004)	(0.005)	(0.003)	(0.005)	(0.005)	(0.007)	(0.007)
Mean outcome	0	0.129	0	0.229	0.5	0.261	0.5	0.271
N obs.	14,	14,736	14	14,736	14,	14,736	5,5	5,570

and net family income at first ADHD diagnosis, length of Medicaid eligibility, disability and foster care status. First stage coefficients show the relationship between treatment receipt and physician propensity to prescribe medication. All specifications are estimated on a subsample of relevant birth cohorts of SC Notes: The main coefficient estimates (in bold) in this table can be interpreted as the effect of treatment on the probability of a negative health outcome during an individual's adolescence. All specifications include individual county of residence and birth year fixed effects. We also control for the individual's age Medicaid enrollees and include individuals born between 1987 and 1996. For robustness, we exclude potentially endogenous variables: family income and duration of enrollment in Medicaid. The results stand nearly unchanged (results are available upon request). Coefficient estimates that are significant at 1%, 5%, and 10% level are denoted with a, b, and c respectively. Standard errors are in parentheses. They are clustered by individual's provider who diagnosed them with ADHD.

Table 7: Heterogeneity of the Effects of ADHD Treatment on Outcomes (lifetime)

Group	STD	$\begin{array}{c} \mathbf{STD} \\ +\mathbf{test} \end{array}$	Subst. abuse	Teen Preg.	N obs.
Panel A. Gender-ba	ased hete	rogeneit	y		
Male	-0.004	-0.046	-0.169^a	-	
	(0.024)	(0.030)	(0.053)		
Mean	0.074	0.138	0.267	-	$9,\!166$
Female	-0.090^{b}	-0.136^a	-0.073	-	
	(0.036)	(0.044)	(0.051)		
Mean	0.219	0.378	0.252	-	5,570
Panel B. Race-base	d heterog	geneity			
White	-0.023	-0.070	-0.146^{b}	-0.113	
	(0.042)	(0.044)	(0.067)	(0.073)	6,719
Mean	0.136	0.218	0.291	0.285	[2,780]
Minorities	-0.049^{c}	-0.083^a	-0.119^b	0.005	
	(0.024)	(0.030)	(0.048)	(0.045)	8,017
Mean	0.123	0.238	0.236	0.257	[2,790]
Panel C. Cohort-ba	sed heter	rogeneity	y		
Old	-0.042	-0.119^a	-0.227^a	-0.155^{c}	
	(0.039)	(0.045)	(0.068)	(0.085)	3,914
Mean	0.143	0.226	0.295	0.381	[1,466]
Young	-0.027	-0.051	-0.078^{c}	0.010	
-	(0.026)	(0.032)	(0.044)	(0.045)	10,822
Mean	0.124	0.230	0.249	0.232	[4,104]

Notes: This table reports the coefficient on ADHD treatment from the Equation 5 estimated on three subpopulations, stratified by gender, race, and birth cohort. The last column presents the number of observations for all outcomes, which differs for pregnancy outcome (males are excluded) and is reported in parentheses. Coefficient estimates that are significant at 1%, 5%, and 10% level are denoted with a, b, and c respectively. Standard errors are in parentheses.

the coefficients in the yearly effects regressions are complementary rather than directly comparable to the lifetime effects of ADHD treatment. In the former we specifically focus on the periods of the child's continuous enrollment in Medicaid, controlling for the patient's age and other time-varying parameters.

The coefficients on covariates of interest also support the findings on the lifetime effects. For the probability of injuries, the signs are as expected. Boys are more likely to get injured and the severity of the injuries is larger. They are 2.8 percentage points more likely to have an injury in a given year than girls. Whites are consistently more likely to suffer from any negative health outcome, including injuries, than blacks and Hispanics. We posit that this is related to the likelihood of using medical services in general.

6.3 Effects of ADHD Treatment on Medicaid Spending

All the results described above were based on the negative health outcomes and the event of an ADHD diagnosis that were identified using ICD-9 diagnosis codes and CPT procedure codes. Only occasionally the codes of this system are indicative of the severity of the condition or event. It is likely that ADHD medication has an effect not only on the incidence of the negative health outcomes but also on their severity. A way to address this question is to look at the direct cost to Medicaid of the outcomes that we observe in the data (with an exception of pregnancy). We posit that the more visits are needed and the more expensive they are to treat, the more severe is the patient's condition. We focus on the periods of continuous enrollment (as described in detail earlier). If a patient experienced an adverse event, we use Medicaid payments to the providers to calculate the cost of this event. The cost is zero if a patient did not experienced a negative health outcome.³¹

Panel A of Table 9 shows the results for the average annual cost to Medicaid over the patients' lifetime enrollment period for STD, STD testing, substance abuse, and injuries. In per year terms (Panel B), we control for patient age and other time-varying characteristics. If a patient is treated for ADHD, every patient per year would cost Medicaid \$11.74 (\$23.45) less in STD-related expenses (if we include STD tests); \$106.45 less in substance abuse-related costs, and \$122.16 fewer in injury spending. To give an indication of the relative size of these estimated effects, treatment reduces spending on substance abuse disorders by 0.069 standard deviation and injury spending by 0.074 standard deviation.

Note that both lifetime and per year effects of treatment on the incidence of STD and STD that includes testing are large and negative, but the effects on costs related to these events are rather modest. This is likely due to the difficulty of measuring STD-related

³¹Medicaid payments are CPI-adjusted to 2013 dollars.

Table 8: Yearly Effects of ADHD Treatment on Health and Behavioral Outcomes

	\mathbf{S}	STD	$\mathbf{STD} +$	+test	Subst.	Subst. abuse	Pregr	Pregnancy	$\operatorname{Injury}\ (0/1)$	(0/1)	N In	N Injuries
	STO	IV	STO	IV	STO	IV	STO	IV	STO	IV	STO	IV
First stage		0.469^a (0.006)		0.468^a (0.006)		0.473^a (0.006)		0.516^a (0.010)		0.327^a (0.003)		0.327^a (0.003)
ADHD Treatment	-0.003^a (0.001)	$ \begin{array}{l} \textbf{-0.012}^b \\ \textbf{(0.005)} \end{array} $	-0.003^{c} (0.002)	$-0.021^a \ (0.007)$	0.002 (0.002)	$-0.020^{c} \ (0.010)$	-0.009^a (0.003)	-0.004 (0.011)	0.005^c (0.003)	$-0.031^{c} \ (0.017)$	-0.003 (0.007)	-0.109^a (0.041)
Male	-0.028^a (0.002)	-0.028^a (0.002)	-0.053^a (0.002)	-0.052^a (0.002)	0.009^a (0.002)	0.011^a (0.002)	ı	ı	0.026^a (0.002)	0.028^a (0.002)	0.067^a (0.006)	0.073^a (0.006)
Race: Black	-0.001	(0.002)	0.005^a	0.003	-0.018^a	-0.020^{a} (0.002)	-0.007^b	-0.007^{c}	-0.046^{a}	-0.049^a	$\begin{array}{c c} -0.128^a \\ -0.07 \end{array}$	-0.136^{a}
Hispanic	-0.010^{c}	(0.032) -0.011^{c}	-0.007	00.0-	(0.027^a)	(0.030^a)	(0.023) (0.023^{b})	(0.02^{c})	(0.068^a)	(0.03)	(0.001)	(0.001)
N adults	(0.006) -0.002	(0.006) -0.002	(0.007) -0.031 ^a	(0.007) - 0.032^a	(0.007) -0.007 ^a	(0.007) - 0.007^a	(0.012) -0.012 ^a	(0.012) -0.012 ^a	$(0.009) \ 0.009^a$	$(0.009) \ 0.009^a$	(0.021) 0.017^a	$(0.022) \\ 0.016^a$
N children	(0.009) 0.001	(0.009)	(0.012) -0.002	(0.012) -0.004	(0.001) -0.001	(0.001) -0.001	(0.002) 0.010^a	(0.002) 0.010^a	(0.002) 0.002	(0.002) 0.001	(0.004)	(0.004) -0.002
Family income	(0.006) -0.002 ^b	(0.006) -0.002^b	(0.007) -0.003^a	(0.007) -0.003^a	(0.001) -0.006 ^a	(0.001) -0.006 ^a	(0.001) -0.011 ^a	(0.002) -0.011 ^a	(0.001) -0.008 ^a	(0.001) -0.009 ^a	(0.002) -0.018^a	(0.002) -0.018 ^a
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	(0.002)	(0.001)	(0.001)	(0.003)	(0.003)
Mean outcome	0.0	0.024	0.0	0.046	0.0	0.050	0.0	0.055	0.2	0.266	0.	0.464
N obs.	68,	68,378	64,	64,622	64,	64,328	25,	25,666	266	266,181	996	266,181

All specifications include individual's county of residence fixed effects, and their interactions. We also control for the individual's disability and foster care status. The coefficients on the number of children and adults are scaled up by 10 in the STD and STD screening regressions in order to report their magnitudes. First stage coefficient shows the relationship between treatment receipt and physician propensity to prescribe medication. All specifications except for injuries are estimated on a subsample of relevant birth cohorts of SC Medicaid enrollees and include individuals born between 1987 and 1996. Coefficient estimates that are significant at 1%, 5%, and 10% level are denoted with a, b, and c respectively. Standard errors are in parentheses. They are clustered by individual's provider who diagnosed them with ADHD. Notes: The main coefficient estimates (in bold) in this table can be interpreted as the average annual effect of treatment on the probability of a post-diagnosis negative health outcome.

costs. Our STD cost measure only includes expenses related to provider visit. The most common procedures performed are one-time test and the patient is also charged for the office visit itself. By construction, STD spending will have no-charge periods with intermittent chargers for STD test and office visit in the absence of pharmacological treatment spending information. Thus, our STD spending measure is understating the effect.

For one of our outcomes, substance abuse, we were able to use earlier literature to construct a comprehensive cost measure that includes medical doctor visits and the cost of pharmacological treatment. We are not aware of methodological work that would help us construct the same measure for STDs. The results on the incidence and cost of substance abuse are better aligned than the results for STD.

OLS estimates that we present for comparison purposes, have the same sign as the IV estimates and are mostly noisy.

7 Robustness

We perform several robustness checks. First, we test the sensitivity of the results to alternative definitions of pharmacological treatment. Our baseline findings have the same signs on the coefficients of interest and differ from the alternative specifications' results in an expected way. Second, we introduce two alternative instrumental variables: the first-indata provider propensity to prescribe and a geographic instrument based on child's school location. The alternative IVs would be expected to have weaker explanatory power but are arguably more exogenous. Both tell a story compatible with our preferred instrument. The summary of the results is shown in Table 10. Each row represents the three different treatment definitions and reports both the first stage coefficient and the coefficient on treatment instrumented with an alternative instrumental variable and our preferred instrument for comparison purposes.

7.1 Alternative definition of treatment

Pharmacological treatment can be defined in a number of ways. Our baseline definition considers an individual as treated if they have a record of taking any medication approved for ADHD after being diagnosed with ADHD. The estimates are reported in the top section of Table 10.

Alternatively, we could assign the treated status to individuals, who take a prescription within a year from their initial diagnosis. This definition captures the differences between treated and non-treated in the first years after the diagnosis better and thus, is expected to

Table 9: Effects of ADHD Treatment on the Costs of ADHD-associated Negative Health Outcomes to Medicaid

	S	STD	STD	$\mathbf{STD}\mathbf{+}\mathbf{test}$	Subst	Subst. abuse	I	Injury
	OLS	IV	OLS	IV	OLS	IV	OLS	IV
Panel A: Effects of ADHD	_	nt on Med	icaid Cost	ts of Nega	tive Healt	h Outcome	s per Year	Treatment on Medicaid Costs of Negative Health Outcomes per Year of Enrollment
First stage		0.504^a (0.016)		0.504^a (0.016)		0.504^a (0.016)		0.368^a (0.006)
Treatment	-5.22 (6.67)	$9.37 \\ (17.15)$	-7.57 (6.70)	2.09 (18.23)	-24.98 (22.62)	$-174.04^{b} \ (85.16)$	-31.26^b (15.52)	$-178.72^b \ (76.44)$
Mean outcome	20 (25	20.18 (251.72)	34	34.83 (261.26)	22 (1,0	$224.13 \\ (1,028.60)$	(2, 2)	202.10 2097.94)
N obs.	o, O	9,575	9,6	9,575	9,	9,575	<u></u>	58,408

Panel B: Yearly Effects of ADHD Treatment on Medicaid Costs of Negative Health Outcomes (Panel)

First stage		0.475^a (0.006)		0.475^a (0.006)		0.475^a (0.006)		0.328^a (0.003)
Treatment	-9.63^{c} (5.33)	-11.74 (12.49)	-10.96^b (5.06)	-23.45^{c} (13.33)	-11.02 (14.27)	-106.45 (58.06)	-33.49 (13.89)	$^{-122.16^b}_{(50.65)}$
Mean outcome	$\frac{17}{32}$	17.85 328.97)	31 (345)	31.37 345.42)	$\frac{158}{(1.5)}$	158.84 1.524.39	1 (6,	191.29 .279.69)
N obs.	74	74,016	74,	74,016	74,	74,016		233,149

Notes: The main coefficient estimates (in bold) in Panel A can be interpreted as the effect of treatment on the average cost of ADHD-related post-diagnosis negative health outcomes to Medicaid per year of uninterrupted individual's enrollment. In Panel B, we control for time-varying characteristics and the coefficients can be interpreted as the effect of ADHD treatment on the average annual cost of negative health outcomes to Medicaid. All specifications in Panel B include individual county of residence fixed effects, year fixed effects, and their interactions. Medicaid spending is adjusted to 2013 dollars. First stage coefficients show the relationship between treatment receipt and physician propensity to prescribe medication. All specifications except for injuries are estimated on a subsample of relevant birth cohorts of SC Medicaid enrollees and include individuals born between 1987 and 1996 who were eligible for Medicaid at age of 11 years old or later. Coefficient estimates that are significant at 1%, 5%, and 10% level are denoted with a, b, and c respectively. Standard errors are in parentheses. They are clustered by individual's provider who diagnosed them with ADHD. perform well in a setting where we are looking at the incidence of negative health outcomes immediately after the initial ADHD diagnosis. The relationship between the provider propensity to prescribe medication and treatment under this definition is stronger, as expected. By construction, a given provider prescribes medication within a year of the diagnosis. We impose this restriction in response to the data limitation as described in Section 4 in detail. The estimation yields relatively smaller point estimates for treatment in absolute value compared to our preferred specification. This result might be explained by the fact that 7% patients receive treatment after 365 days of being diagnosed and have beneficial outcomes but are being coded as never treated in this specification.

For the second test, we follow earlier literature (see Dalsgaard et al. (2014)) and define treatment as being treated for at least 6 months in a given year. This definition captures the idea of treatment adherence. Perhaps one prescription would not cure or even alleviate the condition, but half a year of treatment is more likely to have an impact on the child's health and behavioral outcomes. Again, by construction, the instrument based on patient adherence predicts a take up of any treatment weaker than the baseline. Perhaps not surprising, when we define the treated population as only those who adhere to treatment for six months, we find treatment to be more effective.

We present these results for comparison purposes and we argue that our baseline IV is more exogenous. The provider might influence adherence to treatment and health outcomes through channels other than prescribing medication. Moreover, the data show that it is common for a child to temporarily suspend treatment over school holidays and restart treatment later in the year. The IV based on six months of continuous treatment may not include these individuals. In other words, our IV can be interpreted as a lower bound estimate of the effects of treatment on negative health outcomes.

7.2 Alternative instrumental variables

We construct two alternative instrumental variables and test them on all treatment definitions described above. First, instead of the diagnosing provider propensity to prescribe we look at the first-in-data provider prescribing preferences regarding the ADHD medications. The purpose behind this IV is to address potential concerns about the provider selection based on the probability they would prescribe medication. We argue that children visit their pediatrician or family provider for most health issues, including ADHD, rather than selecting a specific provider to go to with ADHD-related concerns. We look at all child's medical records and select the individual's first-in-data provider. We calculate a measure of prescribing preferences for this provider based on all patients with ADHD the provider

diagnosed in that year. Note that not all providers have patients with ADHD every year and there is also a significant provider mobility in and out of Medicaid. For this reason, we do not have a first-in-data provider propensity to prescribe for everyone who was diagnosed with ADHD in our sample.

In line with our main specification findings, the results utilizing this alternative instrument suggest that treatment reduces the probability of STD contraction, STD screening, and substance abuse disorders (see Table 10). The reduction in sample size likely explains the increase in the noisiness of our coefficient estimates. These results provide additional support to the evidence we presented earlier (Section 5) on the absence of provider selection.

Next, we define an alternative geographic area instrument based on the school patients attend. We construct this instrument by taking the fraction of other students treated with medication divided by the total number of students diagnosed with ADHD in the individual's year of diagnosis at the individual's school. The results suggest that treatment reduces the probability of STD contraction, STD screening, and abusing substances, however the estimates are noisy likely due to the relatively weaker first stage. The first stage estimates are statistically weak for treatment defined as treated for at least 6 months in a given year and for this reason are not reported.

8 Conclusion

This paper investigates the effectiveness of ADHD medication in reducing the probability of short-term and long-term negative health outcomes associated with the disorder. Over the past decade, SC Medicaid spending on prescription drugs increased nearly three-fold to \$69 million in 2013. It is important to understand whether the increased expenditures on treatment produced any benefit in terms of improved health (fewer and less severe injuries), reduction in risky behaviors that potentially lead to teen pregnancies, STDs, and substance use and abuse. The focus population of our study are children from relatively disadvantaged families who are enrolled in SC Medicaid and who are diagnosed with ADHD. This population is particularly vulnerable: up to a quarter of Medicaid enrollees are diagnosed with ADHD in their birth cohort. Although we are unable to make a statement on the effectiveness of ADHD treatment in general population, our sample represents a large fraction of the state population, and even a higher fraction of diagnosed children. Since children on Medicaid are disproportionately diagnosed with ADHD and their incentives are distorted in the absence of a drug price tag, this population should be of primary focus.

Our panel data set includes all South Carolina Medicaid claims between 2003 and 2013. To overcome potential endogeneity of treatment takeup, we use variation in physician

Table 10: Robustness: Alternative Instrumental Variable and Treatment Definition

Treatment definition		STD		\mathbf{S}	${ m STD+test}$		Su	Subst. abuse	Se
	Baseline	$1^{ m st}$ provider	School PTP	Baseline	1 st Scho provider PTP	School	Baseline	$1^{\rm st}$ provider	School PTP
Baseline: Ever treated									
First Stage	0.472^a	0.122^a	0.085^a	0.472^a	0.122^a	0.083^a	0.472^a	0.122^a	0.088^a
ADHD Treatment	(0.013) -0.036^{c}	(0.016) -0.042	(0.014) -0.098	(0.013) -0.077^a	(0.016) -0.127	(0.014) -0.210	(0.013) -0.125^a	(0.016) -0.046	(0.014) -0.087
	(0.022)	(0.038)	(0.125)	(0.026)	(0.111)	(9.158)	(0.045)	(0.150)	(0.155)
1+ Rx within the 1st year									
First Stage	0.512^{a}	0.123^{a}	0.092^{a}	0.512^{a}	0.123^{a}	0.089^{a}	0.512^{a}	0.126^{a}	0.093^{a}
000	(0.014)	(0.018)	(0.014)	(0.014)	(0.018)	(0.015)	(0.014)	(0.018)	(0.015)
ADHD Treetment	-0.025	-0.041	-0.091	-0.052^{b}	-0.126	-0.195	-0.076^{c}	-0.046	-0.082
	(0.020)	(0.099)	(0.116)	(0.023)	(0.110)	(0.146)	(0.040)	(0.149)	(0.147)
$6+~\mathrm{Rx}~\mathrm{ever}~\mathrm{(Dalsgaard}$ et al. (2014)									
7 Ot	0.209^{a}	0.071^{a}		0.209^{a}	0.071^{a}		0.209^{a}	0.071^{a}	
riist Stage	(0.013)	(0.017)		(0.013)	(0.017)		(0.013)	(0.017)	
ADHD Treatment	-0.061	-0.072		-0.127^{b}	-0.218		-0.187^{c}	-0.079	
	(0.050)	(0.172)		(0.057)	(0.202)		(0.099)	(0.256)	
N obs.	14,736	7,338	12,299	14,736	7,338	12,183	14,736	7,338	12,178

Notes: "Baseline" column contains estimates for our preferred instrument – diagnosing provider propensity to prescribe. First provider IV uses prescribing preferences of the first-in-data provider. Coefficient estimates that are significant at 1%, 5%, and 10% level are denoted with a, b, and c respectively. Standard errors are in parentheses. Standard errors are clustered by diagnosing provider for specification using diagnosing provider propensity to prescribe; standard errors are clustered by first provider for specification using first-in-data provider propensity to prescribe.

prescribing preferences for ADHD. Our findings suggest that ADHD medication is effective in reducing the probability of the negative health and behavioral outcomes that we are able to identify in administrative data. Based on our preferred specification, over the course of teenage years the probability of contracting an STD decreases by 3.6 percentage points; and individual is 7.7 percentage points less likely to be screened for an STD, and 12.5 percentage points less likely to receive medical attention related to a substance abuse disorder if treated with ADHD medication. The point estimate on the probability of teenage pregnancy is also negative (-3.7 percentage points) but not statistically significant.

In per year terms and controlling for time-varying characteristics, these findings translate into a 1.2 percentage point decrease in the probability of contracting an STD, a 2.1 percentage point decrease in the probability of being screened for an STD, a 2.0 percentage point decrease in the probability of abusing substances, and a 3.1 percentage point decrease in the probability of being injured, or 0.109 reduction in the number of injury-related medical procedures in a given year.

These results generally agree with the findings of Dalsgaard et al. (2014), who find that medication is effective in reducing the number of hospital contacts and the likelihood of criminal activity. However, Currie et al. (2014) find that an increase in medication use is associated with negative effects on children's educational outcomes, deterioration in relationships with parents, and increase in the probability of depression. These differences are suggestive of ADHD medication having varying effects on noncognitive outcomes in comparison to cognitive abilities.

It is plausible to suggest that ADHD medication has an effect not only on the incidence of negative health outcomes but also on their severity. We go beyond the existing literature and address this question by looking at the direct cost to Medicaid of all outcomes that we observe in the data (except for pregnancy). We posit that the more visits are needed and the more costly they are, the more severe is the patient's condition. For every patient treated for ADHD, each year of eligibility would cost Medicaid an estimated \$11.74 (\$23.45) less in STD-related expenses (if we include STD tests); \$106.45 less in substance abuse-related costs and \$122.16 in injury spending. In per year terms, when we control for patient age and other time-varying characteristics, the results tell the same story and are very similar in magnitude.

The limitations of this study that we hope to address in future research include the scope of the effects of interest and external validity. First, our results reflect the effect of treatment of a marginal patient and do not attempt to measure the benefit of pharmaceutical treatment for children with ADHD that will inevitably be treated. Second, although our sample of Medicaid children makes up a large proportion of the population diagnosed with

ADHD, the results are not necessarily generalizable to the non-Medicaid population. At the same time, the population in our study is the most affected by the negative health outcomes that children with ADHD are prone to, which makes our findings even more policy-relevant.

On average, SC Medicaid spent \$347 for prescription medication and \$562 on ADHD-related physician visits, including behavioral therapy, while the total savings across all negative health outcomes summed up to \$379 on average per teenage per year. However, these "savings" do not include the costs associated with a teenage pregnancy, any indirect benefits that stem from preventing negative health and behavioral outcomes, or any indirect benefits of the individual's peers. We are also not able to estimate costs in terms side effects of the medication. With the increasing rates of ADHD diagnosis and respective government spending on programs like Medicaid as well as Medicaid expansion, comparison of treatment costs and benefits deserve special investigation in future work.

References

- Anna Aizer. Peer effects and human capital accumulation: The externalities of add. Technical report, 2008.
- L Eugene Arnold. Sex differences in ADHD: conference summary. *Journal of abnormal child* psychology, 24(5):555–569, 1996.
- Russell A Barkley. Attention-deficit hyperactivity disorder: A handbook for diagnosis and treatment. Guilford Press, 2006.
- Ellen Bouchery, Rick Harwood, Rosalie Malsberger, Emily Caffery, Jessica Nysenbaum, and Kerianne Hourihan. Developing Medicare and Medicaid substance abuse treatment spending estimates. Technical report, Mathematica Policy Research, 2012.
- Sanni Nørgaard Breining. The presence of adhd: Spillovers between siblings. *Economics Letters*, 124(3):469–473, 2014.
- Anna Chorniy. Essays on the health economics of pharmaceuticals. *All Dissertations*, Paper 1474, 2015.
- Gabriella Conti and James J Heckman. Economics of Child Well-Being. Springer, 2014.
- Gregory S Crawford and Matthew Shum. Uncertainty and learning in pharmaceutical demand. *Econometrica*, 73(4):1137–1173, 2005.
- Janet Currie, Mark Stabile, and Lauren Jones. Do stimulant medications improve educational and behavioral outcomes for children with ADHD? *Journal of Health Economics*, 37:58 69, 2014.
- Soren Dalsgaard, Helena Skyt Nielsen, and Marianne Simonsen. Consequences of adhed medication use for children's outcomes. *Journal of Health Economics*, 37:137 151, 2014.
- Søren Dalsgaard, James F Leckman, Preben Bo Mortensen, Helena Skyt Nielsen, and Marianne Simonsen. Effect of drugs on the risk of injuries in children with attention deficit hyperactivity disorder: a prospective cohort study. *The Lancet Psychiatry*, 2(8):702–709, 2015.
- Michael Dickstein. Efficient provision of experience goods: Evidence from antidepressant choice. *Manuscript*, 2014.

- Mark Duggan. Do new prescription drugs pay for themselves?: The case of second-generation antipsychotics. Journal of Health Economics, 24(1):1-31, 2005.
- Todd E Elder. The importance of relative standards in ADHD diagnoses: evidence based on exact birth dates. *Journal of health economics*, 29(5):641–656, 2010.
- William N Evans, Melinda S Morrill, and Stephen T Parente. Measuring inappropriate medical diagnosis and treatment in survey data: The case of ADHD among school-age children. *Journal of health economics*, 29(5):657–673, 2010.
- Jason Fletcher and Barbara Wolfe. Long-term consequences of childhood adhd on criminal activities. The Journal of Mental Health Policy and Economics, 12(3):119, 2009.
- Richard G Frank, Ernst R Berndt, Alisa B Busch, and Anthony F Lehman. Quality-constant "prices" for the ongoing treatment of schizophrenia: an exploratory study. *The Quarterly Review of Economics and Finance*, 44(3):390–409, 2004.
- James J. Heckman, Jora Stixrud, and Sergio Urzua. The effects of cognitive and noncognitive abilities on labor market outcomes and social behavior. *Journal of Labor Economics*, 24 (3):411–482, 2006.
- Judith K Hellerstein. The importance of the physician in the generic versus trade-name prescription decision. The Rand journal of economics, pages 108–136, 1998.
- Ronald C Kessler, Patricia A Berglund, Cindy L Foster, William B Saunders, Paul E Stang, and Ellen E Walters. Social consequences of psychiatric disorders, II: Teenage parenthood. American Journal of Psychiatry, 154(10):1405–1411, 1997.
- Anette Primdal Kvist, Helena Skyt Nielsen, and Marianne Simonsen. The importance of children's {ADHD} for parents' relationship stability and labor supply. Social Science & Medicine, 88:30 38, 2013.
- Alison Looby. Childhood attention deficit hyperactivity disorder and the development of substance use disorders: valid concern or exaggeration? *Addictive behaviors*, 33(3):451–463, 2008.
- Steven C Marcus, George J Wan, Huabin F Zhang, and Mark Olfson. Injury among stimulant-treated youth with ADHD. *Journal of attention disorders*, 12(1):64–69, 2008.
- Brooke S.G. Molina, Stephen P. Hinshaw, James M. Swanson, L. Eugene Arnold, Benedetto Vitiello, Peter S. Jensen, Jeffery N. Epstein, Betsy Hoza, Lily Hechtman, Howard B.

- Abikoff, Glen R. Elliott, Laurence L. Greenhill, Jeffrey H. Newcorn, Karen C. Wells, Timothy Wigal, Robert D. Gibbons, Kwan Hur, and Patricia R. Houck. The MTA at 8 years: Prospective follow-up of children treated for combined-type ADHD in a multisite study. *Journal of the American Academy of Child and Adolescent Psychiatry*, 48(5):484 500, 2009.
- Monica Payne. High school girls with adhd. 2014. Accessed on May 16th, 2014.
- Robert J Resnick. Attention deficit hyperactivity disorder in teens and adults: They don't all outgrow it. *Journal of clinical psychology*, 61(5):529–533, 2005.
- Dustin E. Sarver, Michael R. McCart, Ashli J. Sheidow, and Elizabeth J. Letourneau. Adhd and risky sexual behavior in adolescents: Conduct problems and substance use as mediators of risk. *Journal of Child Psychology and Psychiatry*, 55(12):1345–1353, 2014. ISSN 1469-7610.
- Hannes Schwandt and Amelie Wuppermann. The youngest get the pill: ADHD misdiagnosis and the production of education in germany. Working paper, 2015.
- Karen M Stockl, Tom E Hughes, Manal A Jarrar, Kristina Secnik, and Amy R Perwien. Physician perceptions of the use of medications for attention deficit hyperactivity disorder. Journal of managed care pharmacy: JMCP, 9(5):416–423, 2002.
- Andrine Swensen, Howard G Birnbaum, Rym Ben Hamadi, Paul Greenberg, Pierre-Yves Cremieux, and Kristina Secnik. Incidence and costs of accidents among attention-deficit/hyperactivity disorder patients. *Journal of Adolescent Health*, 35(4):346–e1, 2004.
- Susanna N. Visser, Melissa L. Danielson, Rebecca H. Bitsko, Joseph R. Holbrook, Michael D. Kogan, Reem M. Ghandour, Ruth Perou, and Stephen J. Blumberg. Trends in the parent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United states, 2003–2011. *Journal of the American Academy of Child & Adolescent Psychiatry*, 53(1):34–46, 2014.
- Gabrielle Weiss and Lily Trokenberg Hechtman. Hyperactive children grown up: ADHD in children, adolescents, and adults. Guilford Press, 1993.
- Timothy E. Wilens, Stephen V. Faraone, Joseph Biederman, and Samantha Gunawardene. Does stimulant therapy of attention-deficit/hyperactivity disorder beget later substance abuse? a meta-analytic review of the literature. *Pediatrics*, 111(1):179, 2003.

Table 11: Summary Statistics: Individual and Family Characteristics; Undiagnosed Children

	N obs.	Mean	Median	SD	Min	Max
Individual characteristics						
Age 1 st in sample	134,075	7.83	8.00	5.02	1	19
Male	134,075	0.45			0	1
Race: White	134,075	0.35			0	1
Black	134,075	0.55			0	1
Hispanic	134,075	0.05			0	1
Family & home environment						
Monthly family net income	134,075	717.06	573.5	660.72	0	6,356
Number of adults	134,075	1.25	1.14	0.58	0	3
Number of children	134,075	2.07	2.00	1.06	0	6
Ever in foster care	134,075	0.04			0	1
Ever had disability	134,075	0.05			0	1
Mother's characteristics						
Age when gave birth	73,923	23.60	22.00	5.62	11	48
Educ: Less than HS	73,923	0.06			0	1
Some HS	73,923	0.33			0	1
HS diploma	73,923	0.42			0	1
Some college	73,923	0.14			0	1
College degree or higher	73,923	0.05			0	1

Notes: The sample includes a random group of SC Medicaid enrollees, who were eligible for Medicaid for at least one year at any age between 3 and 18 years old in 2003-2013 and who did not have an ADHD-related medical history during this time period. Family characteristics are reported on average per patient/eligibility year. Foster care and disability rates are calculated based on the Medicaid enrollment categories. Mother characteristics are reported based on in-state birth certificate information matched to Medicaid records. They are available only for a subsample of the 73,923 patients. Mother's age and educational attainment are recorded at the time of the child's birth. "HS" stands for high school education level.

Table 12: Summary Statistics: Negative Health Outcomes; Undiagnosed Children

	Naba	Magn	Madian	SD	Min	Max
	N obs.	Mean	Median	<u>5D</u>		- Max
Years in sample	134,075	6.72	6.00	3.08	1	11
Outcome: Risky sexual beha	vior					
1. Teen Pregnancy						
Age at 1 st pregnancy	19,750	17.47	18.00	1.42	11	19
Race: White	19,750	0.42			0	1
Black	19,750	0.53			0	1
2. STD						
Age at 1 st STD	14,687	16.02	17.00	2.46	11	19
Age at 1 st STD (incl. screening)	26,334	16.33	17.00	2.21	11	19
Male	$14,\!687$	0.23			0	1
Race: White	14,687	0.38			0	1
Black	14,687	0.56			0	1
Annual cost of STD	14,687	397.61	143.49	1283.26	1	$90,\!461$
Annual cost of STD+test	26,334	341.62	169.70	932.95	1	90,461
Outcome: Substance Abuse						
Age at 1 st substance abuse	15,073	16.53	17.00	1.92	11	19
Male	15,073	0.47			0	1
Race: White	15,073	0.50			0	1
Black	15,073	0.45			0	1
Annual cost of substance abuse	15,073	1501.46	439.32	3736.11	1	109,293
Outcome: Injuries						
Ever injured	134,075	0.86			0	1
Age at injury	$115,\!526$	10.92	11.00	4.41	3	19
Male	$115,\!526$	0.48			0	1
Race: White	$115,\!526$	0.39			0	1
Black	$115,\!526$	0.51			0	1
N of injury claims	134,075	0.36	0.25	0.42	0	11
Annual cost of injuries	115,526	702.09	213.11	3463.53	2	394,516

Notes: The sample includes a random group of SC Medicaid enrollees, who were eligible for Medicaid for at least one year at any age between 3 and 18 years old in 2003-2013 and who did not have an ADHD-related medical history during this time period. Annual costs of negative health outcomes are given in 2013 dollars per patient/year conditional on the occurrence of a negative health outcome. They are based on the Medicaid reimbursement. The out-of-pocket patient costs are nearly zero for our population of interest.

Table 13: Evidence of Treatment Shopping: Predictors of provider switching

Regressors	Coeff	\mathbf{SE}
"Extreme" provider	0.020^{a}	0.004
Race: Black Hispanic Other	-0.001 -0.009 -0.010	0.004 0.012 0.007
Mother's Educ: Some HS HS degree Some college College degree or higher Family net income Number of children	0.010 -0.001 -0.001 0.008 0.0003 -0.006^a -0.006^b	0.008 0.008 0.009 0.010 0.002 0.002
Number of adults N obs. R^2	42,693 0.016	0.003

Notes: The dependent variable is equal to 1 if an individual switches providers; 0 otherwise. The variable "extreme" provider is equal to 1 if the individual's first provider diagnoses all of his patients or none of his patients; 0 otherwise. Coefficient estimates that are significant at 1%, 5%, and 10% level are denoted with a, b, and c respectively.

Table 14: Summary statistics: Switchers

		P	$P_1 > P_1$	\mathbf{PP}_2	$\mathrm{PP}_1 < \mathrm{PP}_2$		
Variable		Mean	SD	N obs.	Mean	SD	N obs.
Mother's Educ:	Less than HS	0.042	0.200	1,635	0.047	0.211	2,486
	Some HS	0.391	0.488	1,635	0.395	0.489	2,486
	HS degree	0.376	0.484	1,635	0.385	0.487	2,486
	Some college	0.125	0.331	1,635	0.125	0.331	2,486
	College degree	0.065	0.246	1,635	0.048	0.214	2,486
Mother's age		23.691	5.614	1,646	23.356	5.409	2,504
Family net inco	ome	0.518	0.756	2,262	0.541	0.778	3,291
Number of child	dren	1.971	1.088	2,262	2.028	1.086	3,291
Number of adu	lts	0.912	0.742	2,262	0.929	0.753	3,291

Notes: This table reports summary statistics for individuals who switch providers. PP_1 stands for the first (diagnosing) provider propensity to prescribe, and PP_2 stands for the individuals' subsequent provider propensity to prescribe.

Table 15: Lifetime Effects of ADHD Treatment on Negative Health and Behavioral Outcomes; with Mother Characteristics

	$ \mathbf{x} $	STD	STD	${ m STD+test}$	Subst.	Subst. abuse	Pregnancy	nancy
	$orderight{O}$	\mathbf{IV}	STO	IV	stortoniant Stor	IV	stockolor Stoc	IV
First stage		0.482^{a}		0.482^{a}		0.482^{a}		0.541^{a}
		(0.020)		(0.020)		(0.020)		(0.031)
ADHD Treatment	-0.012	-0.032	-0.008	-0.061^c	0.013	-0.071	-0.030	-0.007
	(0.009)	(0.029)	(0.011)	(0.034)	(0.012)	(0.049)	(0.018)	(0.052)
Male	-0.125^a	-0.124^a	-0.203^a	-0.200^a	0.056^{a}	0.061^{a}	1	1
	(0.009)	(0.010)	(0.011)	(0.011)	(0.010)	(0.011)		
Race: Black	-0.022^{b}	-0.025^{b}	0.024^{b}	0.017	-0.080^{a}	-0.090^{a}	-0.030^{c}	-0.027
	(0.009)	(0.010)	(0.012)	(0.013)	(0.012)	(0.013)	(0.017)	(0.019)
Hispanic	-0.047	-0.050	-0.059	-0.068	-0.176^{a}	-0.190^{a}	-0.127	-0.118
	(0.035)	(0.033)	(0.046)	(0.046)	(0.054)	(0.054)	(0.097)	(0.097)
Other	-0.029	-0.031^{c}	-0.025	-0.029	-0.096^{a}	-0.103^a	-0.112^a	-0.110^{a}
	(0.018)	(0.018)	(0.023)	(0.023)	(0.025)	(0.025)	(0.040)	(0.039)
Number of adults	-0.007	-0.007	-0.016^{b}	-0.015^{c}	0.003	0.005	-0.007	-0.007
	(0.000)	(0.000)	(0.008)	(0.008)	(0.008)	(0.008)	(0.013)	(0.013)
Number of children	0.001	0.001	0.013^{a}	0.013^{a}	0.011^{b}	0.010^{c}	0.039^{a}	0.040^{a}
	(0.003)	(0.003)	(0.005)	(0.004)	(0.005)	(0.005)	(0.008)	(0.008)
Family net income	-0.001	-0.001	-0.005	-0.005	-0.021^{a}	-0.021^{a}	-0.025^{b}	-0.025^{b}
	(0.005)	(0.005)	(0.007)	(0.007)	(0.000)	(0.007)	(0.011)	(0.011)
Mean outcome	0.	0.124	0.5	0.231	0.5	0.251	0.5	0.224
N obs.	6,6	6,952	9,9	6,952	6,6	6,952	2,2	2,586

Notes: The main coefficient estimates (in bold) in this table can be interpreted as the effect of treatment on the probability of a negative health outcome during an individual's adolescence. All specifications include individual's county of residence and birth year fixed effects. We also control for the individual's age of the first ADHD diagnosis, Medicaid eligibility timing and length, disability and foster care status, mother's educational attainment, and age when she gave birth. First stage coefficients show the relationship between treatment receipt and physician propensity to prescribe medication. All specifications are estimated on a subsample of relevant birth cohorts of SC Medicaid enrollees and include individuals born between 1987 and 1996. Coefficient estimates that are significant at 1%, 5%, and 10% level are denoted with a, b, and c respectively. Standard errors are in parentheses. They are clustered by individual's provider who diagnosed them with ADHD.

Table 16: Lifetime Effects of ADHD Treatment on Outcomes; Children with Mental Health Condition prior to ADHD Diagnosis

		Co	Control			Ex	Exclude	
	STD	$\mathbf{STD} {+} \mathbf{test}$	Subst. abuse	Pregn.	SLD	$\mathrm{STD} + \mathrm{test}$	Subst. abuse	Pregn.
ADHD Treatment	$ extstyle -0.037^c$	-0.079^a	-0.117^a	-0.026	-0.039	$\textbf{-0.102}^a$	-0.074	-0.101^c
	(0.022)	(0.027)	(0.045)	(0.042)	(0.028)	(0.036)	(0.049)	(0.057)
Male	-0.128^a	-0.207^{a}	0.052^a	ı ,	-0.125^a	-0.203^a	0.054^a	ı
	(0.007)	(0.008)	(0.008)	ı	(0.000)	(0.011)	(0.011)	1
Race: Black	-0.015^{b}	0.006	-0.086^{a}	-0.024^{c}	-0.025^a	0.004	-0.072^{a}	-0.039^{b}
	(0.007)	(0.000)	(0.011)	(0.014)	(0.000)	(0.012)	(0.014)	(0.020)
Hispanic	-0.039^{c}	-0.025	-0.128^{a}	-0.065^{c}	-0.039	-0.034	-0.083^{a}	-0.068
	(0.023)	(0.027)	(0.027)	(0.037)	(0.032)	(0.035)	(0.031)	(0.049)
Other	-0.025^{b}	-0.044^{a}	-0.097^{a}	-0.077^{a}	0.006	-0.012	-0.088^{a}	-0.038
	(0.012)	(0.015)	(0.016)	(0.023)	(0.020)	(0.025)	(0.025)	(0.040)
Number of adults	-0.006^{c}	-0.019^{a}	-0.017^{a}	-0.014^{c}	0.001	-0.010	-0.011	-0.010
	(0.004)	(0.005)	(0.006)	(0.008)	(900.0)	(0.007)	(0.007)	(0.012)
Number of children	0.006^{b}	0.012^{a}	0.010^{a}	0.035^{a}	0.005	0.013^{a}	0.004	0.023^{a}
	(0.003)	(0.003)	(0.003)	(0.005)	(0.004)	(0.005)	(0.004)	(0.007)
Family net income	-0.002	-0.008	-0.028^{a}	-0.023^{a}	-0.004	-0.011	-0.027^{a}	-0.013
	(0.004)	(0.005)	(0.005)	(0.007)	(0.005)	(0.000)	(0.006)	(0.010)
Mental health condition	-0.002	-0.007	0.028^{a}	0.035^{a}	1	ı	ı	1
	(0.006)	(0.008)	(0.008)	(0.012)	ı	1	1	1
Mean outcome	0.129	0.229	0.261	0.271	0.125	0.222	0.240	0.258
N obs.	14,736	14,736	14,736	5,570	7,688	7,688	7,688	2,802

Notes: The main coefficient estimates (in bold) in this table can be interpreted as the effect of treatment on the probability of a negative health outcome during an individual's adolescence. All specifications include individual county of residence and birth year fixed effects. We also control for the individual's age and net family income at first ADHD diagnosis, length of Medicaid eligibility, disability, comorbid conditions, and foster care status. First stage coefficients show the relationship between treatment receipt and physician propensity to prescribe medication. All specifications are estimated on a subsample of relevant birth cohorts of SC Medicaid enrollees and include individuals born between 1987 and 1996. Coefficient estimates that are significant at 1%, 5%, and 10% level are denoted with a, b, and c respectively. Standard errors are in parentheses. They are clustered by individual's provider who diagnosed them with ADHD.