Nicklisch, Andreas; Köke, Sonja; Lange, Andreas

Conference Paper

Is Adversity a School of Wisdom? Experimental Evidence on Cooperative Protection Against Stochastic Losses

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2016: Demographischer Wandel - Session: Consumer Behavior, No. F06-V3

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: Nicklisch, Andreas; Köke, Sonja; Lange, Andreas (2016) : Is Adversity a School of Wisdom? Experimental Evidence on Cooperative Protection Against Stochastic Losses, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2016: Demographischer Wandel - Session: Consumer Behavior, No. F06-V3, ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft, Kiel und Hamburg

This Version is available at:
http://hdl.handle.net/10419/145716

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Is Adversity a School of Wisdom?
Experimental Evidence on Cooperative Protection Against Stochastic Losses*

Sonja Köke§ Andreas Lange‡ Andreas Nicklisch¶

January 5, 2016

Abstract
We investigate the dynamics of voluntary cooperation to either reduce the size or the probability of stochastic losses. For variants of a repeated four-person prisoner’s dilemma game, we show that cooperation is larger and more stable when it affects the probability rather than the size of the adverse event. We provide crucial insights on behavioral adaptation: defecting players are more likely to switch to cooperation after experiencing an adverse event, while existing cooperation is reinforced when the losses do not occur. This behavior is consistent with simple learning dynamics based on ex post evaluations of the chosen strategy.

Keywords: ex post rationality, experiment, cooperation, repeated prisoner’s dilemma, regret learning, stochastic damages
JEL codes: C92, H41, Q54

*The authors thank participants of several conferences and seminars at several universities for useful comments.
§Department of Economics, University of Hamburg, e-mail: sonja.koeke@wiso.unihamburg.de
‡Department of Economics, University of Hamburg, e-mail: andreas.lange@wiso.unihamburg.de
¶Department of Economics, University of Hamburg, Von-Melle-Park 5, 20146 Hamburg, Germany, e-mail: andreas.nicklisch@wiso.uni-hamburg.de
1 Introduction

Protection against common stochastic losses is an apparent challenge for societies. The fight against extreme events triggered by climate change, hurricane prevention, protecting public security against terror, international health cooperation against pandemic diseases, or simply forest fire prevention are important contemporary examples. The way how societies deal with such stochastic damages changes over time. Importantly, the experience of an actual damage event may trigger behavioral responses. Birkland (2006), for example, investigates determinants of policy changes in diverse policy fields from aviation security and terrorism to preparedness to earthquakes or hurricanes. He interprets accidents, naturally occurring disasters or deliberately caused catastrophes as “focussing events” (see Kingdon, 1995) that may induce increased attention to a policy problem and thereby possibly trigger policy changes. At the individual level, the occurrence of a damage also appears to increase protective actions (e.g., Meyer, 2012).

When facing stochastic damages, it is important to distinguish two qualitatively different channels through which actions may impact future damage events: they may impact the size of damages while potentially leaving the probability of an adverse event unaffected (e.g., preparing for earthquakes, adaptation for climate change) or they may change the probability that adverse events occur and thereby may fully prevent a damage event from happening (e.g., aviation security, terrorism, mitigation of climate change). In this paper we investigate how the availability of these two channels affect voluntary cooperation on the protection against stochastic losses.\footnote{We concentrate on a voluntary cooperation setting as protective actions against probabilistic losses often require the cooperation of members of a community. Similar incentive structures can be found in many different settings, from team production settings, where possible payoffs depend on the group performance, to problems of non-point source pollution, where fines can only be triggered based on ambient, rather than individual pollution levels.} We are particularly interested in the evolution of behavior over time, that is, how experiencing adverse events affects subsequent decisions. Although problems of repeated cooperation to reduce probabilistic losses are common place, there is surprisingly little known about how people actually behave when facing this type of challenges.

For these purposes, we provide experimental evidence within variants of a repeated n-person prisoner dilemma game with stochastic payoffs: people may (indefinitely) repeatedly choose to invest in protective actions which benefit the entire group. In the short run (one-shot), players have incentives to free-ride on the investments of others, while the (indefinitely) repeated interaction will allow for positive cooperation levels sustained in subgame-perfect equilibria. Specifically, we compare a setting where individual cooperation reduces the damage size in cases of certain damages (CertDam) with stochastic settings in which
cooperation affects expected damages through reducing either the damage size \((\text{DamRed})\) or the probability of damages of fixed size \((\text{ProbRed})\). Expected pay-offs conditional on the number of cooperators in the group are held constant across treatments. We compare individual behavior between treatments and the determinants of its evolution over time. With this, our analysis enriches existing literature on cooperation in infinitely repeated (two-person) prisoner dilemmas (e.g., Blonski et al., 2011; Breitmoser, 2015): by introducing a stochastic environment, subjects may condition their decision on whether to cooperate or defect not only on the decisions of other players in the previous period (e.g., by playing tit-for-tat), but also on the occurrence or the size of the damage.

Our experimental results show significant differences between cooperation rates in \(\text{CertDam}\) and \(\text{DamRed}\) versus \(\text{ProbRed}\): subjects are more likely to cooperate to reduce the probability of the all-or-nothing damage, rather than to marginally reduce the size of a certain or stochastic damage. These differences between treatments get more pronounced over time. When cooperation reduces the probability of an adverse event, cooperation remains rather stable over the series of interactions. In sharp contrast, cooperation rates decline over time when cooperation reduces the size of a certain damage or a stochastic damage which occurs with fixed probability.

In line with our motivating examples and the (German) proverb which inspired the title of our paper, we demonstrate that experiencing adverse events in treatments with stochastic damages is of particular importance for the dynamics of individual behavior: (i) non-cooperating players are more likely to switch to cooperation following a damage event. This tendency is particularly strong in \(\text{ProbRed}\). (ii) The occurrence of damages makes it less likely for cooperating players to continue cooperation. In other words, the absence of the damage reinforces existing individual cooperation. Players therefore appear to assess their actions from an ex post perspective when deciding about future actions. As such, we demonstrate that our findings on cooperation rates and their dynamics deviate from predictions based on expected utility maximization in conventional game theoretic equilibrium concepts. Rather, the treatment differences and the dynamics of decisions are largely consistent with combinations of behavioral motives of anticipated regret (e.g., Loomes and Sugden, 1988; Zehlenberg, 1999; Filiz-Ozbay and Ozbay, 2007) and simple learning dynamics which also link back to notions of ex post regret (e.g., Selten and Chmura, 2008; Chmura et al., 2012). With our findings, we thereby both identify differences in voluntary cooperation on damage reduction versus probability reduction, but also contribute to the understanding of cooperation decisions in a dynamic context. We show a differentiated behavioral response to damage events, even when their occurrence does not reveal any further information on the future likelihood of adverse events.

The remainder of the paper is structured as follows: section 2 gives an
overview of the related literature. Section 3 describes the experimental setting: after describing the game in section 3.1, we derive predictions in section 3.2, before detailing the experimental design in section 3.3. Our experimental results are presented and discussed in section 4. Section 5 concludes.

2 Related Literature

Our experiment relates to several different strands of theoretical and experimental literature. First, when considering the two channels of collective protection against probabilistic losses we extend the literature on “self-insurance” and “self-protection.” Following the seminal article by Ehrlich and Becker (1972), the function of protective and preventive actions as complements or substitutes for market insurance are analyzed at the individual level for purely private goods (Dionne and Eeckehoudt, 1985; Jullien et al., 1999; Briys and Schlesinger, 1990)\(^2\) or related to some forms of externalities (Muermann and Kunreuther, 2008). Lohse et al. (2012) continue this discussion by including a public good structure of the risky event: they consider separately actions that reduce the size or the probability of a loss for all members in the group, while they do not provide predictions on how behavior in the two cases may differ.\(^3\)

Focusing completely on loss prevention, Keser and Montmarquette (2008) analyze individual contributions that reduce the risk of correlated public losses. They compare risky decisions with decisions under ambiguity varying initial probabilities and initial endowments. They show that contributions decrease in initial loss probability and with ambiguity (in comparison to risk), while they increase with endowment. Likewise, Dickinson (1998) compares public good games with probabilistic and certain gains from contributions and finds that risk decreases contributions. However, none of these paper provides a comparison of protective

\(^2\)For a setting of a single decision maker, Friesen (2012) shows by building on Becker’s (1968) theory of crime that risk-averse participants are deterred more by an increase in fine than by an increase in the probability of being caught which leads to an identical expected fine. When translating the model to our setting, one would expect that cooperation is highest in the damage size reduction setting and lower in the probability reduction, exactly the opposite of our findings.

\(^3\)Most of the papers use independent risks (uncorrelated realization of the loss), which makes sense when assuming an insurance market in the private good case and represents examples like public security and cancer research in the public good setting. Muermann and Kunreuther (2008) have started to analyze partly correlated risks. In our setting, we are interested in fully correlated risks, which do rather capture the case of natural catastrophes, epidemics and wars. The impact of risk aversion on the efficient level as compared to the individual choice of self-insurance, self-protection and market insurance has been analyzed by Dionne and Eeckehoudt (1985), Jullien et al. (1999) and Briys and Schlesinger (1990). The choice of insurance types when both self-insurance and self-protection are available but no market insurance have been analyzed by Ihori and McGuire (2010).
and preventive behavior in group settings.

Our study relates also to studies on the influence of group liability on individual behavior as we analyze probabilistic losses. For example, the environmental economics literature studies policy instruments for dealing with non-point source pollution (e.g., Segerson, 1988; Miceli and Segerson, 2007; Barrett, 2011), that is, where fines can only be put on ambient pollution levels. Similarly, incentives for cooperative behavior in groups have been discussed in the context of industrial organization and team production (e.g., Holmstrom, 1982; Rasmussen, 1987; Varian, 1990). This mostly theoretical literature considers typically the threat of group penalties to prevent shirking of group members in one-shot rather than repeated settings, whereas participants in our setting may choose to cooperate to avoid being potentially penalized by increased free-riding of other group members in the consecutive periods. Also inspired by environmental problems is recent experimental research on threshold public good games (e.g., Milinski et al., 2008; Tavoni et al., 2011). These papers are related to our investigation as in our ProbRed treatment, damages are avoided if an ex ante unknown threshold of cooperating players is reached. Dannenberg et al. (2014) consider settings with commonly known horizons but unknown thresholds which differ from our study as we consider indefinitely repeated games in which cooperation could be sustained as an equilibrium.

Finally, our repeated game structure with random termination rule relates to studies on sequences of prisoners’ dilemma games with probabilistic termination (e.g., Fudenberg et al., 2010). This literature discusses theoretically as well as experimentally cooperative equilibria underpinned by grim-trigger and ‘win-stay-lose-shift’ (also denoted as perfect grim-trigger strategies, e.g., Nowak and Sigmund, 1993; Imhof et al., 2007), or semi-grim strategies (e.g., Blonski et al., 2011; Breitmoser, 2015) in settings with positive deterministic payoffs. However, Bò and Fréchette (2011) provide evidence suggesting that the existence of a cooperative equilibrium may be a necessary (but not sufficient) condition for persistent cooperation or even cooperation levels which increase with experience. Rather, their results demonstrate that individual learning paths matter crucially for the occurrence of joint cooperation.

For our analysis of individual decision dynamics, we apply learning dynamics following ex post rationality (e.g., Selten and Chmura, 2008; Chmura et al., 2012; Selten and Stoecker, 1986; Roth and Erev, 1995; Camerer and Ho, 1999; Beggs, 2005). All these models can explain that cooperation is declining for CertDam and DamRed while being more stable in ProbRed, decision dynamics at the individual level can be best explained by models where the ex post optimal individual action receives a positive reinforcement (e.g., Selten and Chmura, 2008; Chmura et al., 2012). As such, our article complements Bereby-Meyer and Roth

4An earlier experimental study by Aoyagi and Fréchette (2009) finds for sequences of prison-
(2006) who relate individual learning patterns for stochastic or certain payoffs to the frequency of payoffs: their results suggest that subjects learn faster to defect in a two-player prisoners’ dilemma game when payoffs are certain rather than probabilistic.5 Based on their finding that the frequency of the payoff is more important than the payoff size for learning to defect, we can expect cooperation to deteriorate faster under certain losses than when losses are stochastic.

\section{Game and Predictions}

\subsection{Experimental Treatments}

The starting point of our setting is a repeatedly played simultaneous move four-person prisoners’ dilemma (\(n = 4\)). At the beginning of each period, each player is endowed with \(E\) tokens. At the end of each period, a damage of \(D\) tokens occurs with probability \(p\) and reduces the endowment of each player. Damages are fully correlated across the four players; that is, either all players or no player within a group incur the damage in a given period and damages are independent over time6. With their decisions, players may reduce either the size or the probability of the damage, depending on the treatment.

For this purpose, each player is asked before the damage realizes, whether she wants to cooperate or defect.7 The action of individual \(i\) in period \(t\) is, therefore, the binary contribution choice \(q^t_i \in \{0, 1\}\) with \(q^t_i = 1\) being cooperation and \(q^t_i = 0\) defection. Cooperation costs the individual player \(c\) tokens. The sum of cooperators in a group and period is denoted by \(Q^t = \sum_{j=1}^{n} q^t_j = q^t_i + Q^t_{-i}\). The potential damage, \(D^{\text{Treat}}(Q^t)\), and the probability of its occurrence, \(p^{\text{Treat}}(Q^t)\), depend on the total cooperation level and differ between treatments (\text{Treat}). With this, the general payoff structure of individual \(i\) in period \(t\) for a certain treatment condition is given by

\[
\pi_{i,t}(q^t_i, Q^t_{-i}, s^t) = E - cq^t_i - s^t D^{\text{Treat}}(Q^t) \tag{1}
\]

where \(s^t \in \{0, 1\}\) reflects the state of nature where the damage has \((s^t = 1)\) or has not \((s^t = 0)\) occurred.

5Unlike our setting, Bereby-Meyer and Roth consider in their stochastic treatment only cooperation influencing the probability but not the payoffs: cooperation impacts the probability of gaining 1 token instead of 0 tokens in the range of 0.5\% to 17.5\%.

6For simplicity reasons in the experiment, we do not introduce the structure of a stock pollutant in this paper.

7In the experiment, we use neutral wording; the exact wording is “take/not take an action”.
In the experiment, we differentiate between three treatments which are calibrated to guarantee equivalence in expected damages, that is, $p^{\text{Treat}}(Q^t)D^{\text{Treat}}(Q^t)$ is equivalent for all treatments.

In the first treatment, hereafter denoted as DamRed, each player’s cooperation leads to a reduction of the initial damage D_0 by the amount d, while the initial probability is kept constant at p_0. That is, we have $D^{\text{DamRed}}(Q^t) = D_0 - dQ^t$ and $p^{\text{DamRed}}(Q^t) \equiv p_0$. In the second treatment, hereafter denoted as ProbRed, cooperation leads to a reduction of the initial probability of the damage p_0 by the amount x for each cooperation decision ($p^{\text{ProbRed}}(Q^t) = p_0 - xQ^t$) while its level is fixed at $D^{\text{ProbRed}}(Q^t) \equiv D_0$. Equivalence of the expected payoffs is guaranteed by setting $dp_0 = xD_0$ which leads to expected damages in both treatments being given by $p_0(D_0 - dQ^t) = (p_0 - xQ^t)D_0$. In the third treatment, denoted as CertDam, expected damages occur with certainty: $D^{\text{CertDam}}(Q^t) = p_0D_0 - p_0dQ^t$ and $p^{\text{CertDam}}(Q^t) = 1$.

In order to guarantee the prisoners’ dilemma structure, we assume $np_0d > c > p_0d$, and $nxD_0 > c > xD_0$. In other words, cooperation is socially beneficial in terms of expected payoffs, but does not pay off individually. Further, we assume that even full cooperation ($Q^t = n$) does not reduce the damage nor its probability to zero ($p_0 - nx > 0$, $D_0 - nd > 0$).

In our experiment, players at the end of each period get information about their own cooperation decision q^t_i, the resulting cost they incurred, and the total level of cooperation Q^t. They also get to know whether the damage event occurred or not and are informed about their individual payoff. With this information, players in CertDam and DamRed can calculate the payoff that they would have received if they had changed their own decision. This is different in ProbRed: for example after observing a damage event, a defecting player cannot know if the damage also would have occurred if she individually had cooperated. Conversely when no damage occurred, a cooperating player does not know if she was pivotal in preventing the damage event. In order to control for the impact of players’ being informed about their marginal impact on the payoff, we introduce a fourth treatment condition ProbRed^+ which is identical with ProbRed in the mapping of cooperation into probability and damage, but gives players additional feedback after each period: players are informed whether the damage would have occurred if zero, one, two, three, or all four players had cooperated. Therefore, ProbRed^+ increases the subjects’ awareness about their decision’s marginal impact on the payoff. Table 1 summarizes the damage and probability functions as well as the resulting expected damages for all treatments.

In all treatment conditions our setting mimics infinite play. For this purpose, we apply the random stopping rule for supergames (e.g., Bò and Fréchette, 2011). In our experiment, the number of supergames is not known to the players. At the beginning of each supergame, players are randomly re-matched into new
groups. Each supergame consists of several periods of the game described above. A supergame has a publicly known termination probability δ after each period. That is, after each period, the supergame terminates with probability δ, and a new supergame starts in new randomly re-matched groups, whereas with probability $1 - \delta$ the supergame continues in the same group constellation. Playing in changing group compositions across supergames allows us to generate more observations per subject to better account for potential learning behavior. While players cannot predict the termination of the specific supergame, the random draws determining the lengths of the supergames are taken once and applied to all sessions and treatments.

We set the parameter values as follows: termination probability $\delta = 0.2$, initial damage probability $p_0 = 0.5$, probability reduction $x = 0.1$, initial damage size $D_0 = 20$, damage reduction $d = 4$, initial endowment $E = 25$ and cost $c = 5$.

3.2 Predictions

To derive predictions about cooperation behavior, we use two conceptually different tools. In a first step, we use the standard equilibrium concept of subgame perfection, which is derived under the assumption of perfect ex ante optimization: individuals define strategies that condition the action in each period on group members’ behavior in the previous period. We predict the number of cooperators that can be supported in equilibrium first for risk-neutral individuals, before generalizing to other risk attitudes. In a second step, we consider impulse balance learning (e.g., Selten and Chmura, 2008; Chmura et al., 2012) where players ex post assess the success of their previously chosen action and adapt their strategy accordingly. Combining this approach with utility functions which incorporate regret aversion (e.g., Loomes and Sugden, 1982) allows us to make predictions regarding the dynamics of individual decisions and the long run convergence of behavior.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>$D^{\text{Treat}}(Q^t)$</th>
<th>$p^{\text{Treat}}(Q^t)$</th>
<th>$D^{\text{Treat}}(Q^t)$</th>
<th>$p^{\text{Treat}}(Q^t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CertDam</td>
<td>$p_0D_0 - p_0dQ^t$</td>
<td>1</td>
<td>$p_0(D_0 - dQ^t)$</td>
<td>$p_0(D_0 - dQ^t)$</td>
</tr>
<tr>
<td>DamRed</td>
<td>$D_0 - dQ^t$</td>
<td>p_0</td>
<td>p_0</td>
<td>$(p_0 - xQ^t)D_0$</td>
</tr>
<tr>
<td>ProbRed</td>
<td>D_0</td>
<td>$p_0 - xQ^t$</td>
<td>$(p_0 - xQ^t)D_0$</td>
<td></td>
</tr>
<tr>
<td>ProbRed$^+$</td>
<td>D_0</td>
<td>$p_0 - xQ^t$</td>
<td>$(p_0 - xQ^t)D_0$</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Summary of damage size $D^{\text{Treat}}(Q^t)$ and damage probability $p^{\text{Treat}}(Q^t)$ for the respective treatments ProbRed, ProbRed$^+$, DamRed, and CertDam.
3.2.1 Ex Ante Optimization

Since all treatments are identical in the mapping of cooperation decisions into expected payoffs, the equilibria for risk neutral players do not differ between treatments. It is obvious that the game has a subgame perfect equilibrium in which all players always defect: as in the one-shot prisoner’s dilemma game, no player individually has an incentive to cooperate. The repeated nature of the game allows, however, for additional subgame perfect equilibria so that there is no unique equilibrium in our game. To demonstrate the possible extent of cooperation in a subgame perfect equilibrium, we assume that a set of $Q \leq n$ players follow a modified grim trigger strategy: they cooperate as long as at least $Q - 1$ other players cooperate, otherwise they defect in all subsequent periods. The remaining $n - Q$ players always defect.\(^8\) This strategy can sustain cooperation as a subgame perfect equilibrium if

\[\sum_{t=0}^{\infty} (1 - \delta)^t [E - c - p_0(D_0 - dQ)] \geq [E - p_0(D_0 - d(Q - 1))] + \sum_{t=1}^{\infty} (1 - \delta)^t (E - p_0D_0) \]

\[\Leftrightarrow \frac{1}{\delta} [E - c - p_0(D_0 - dQ)] \geq [E - p_0(D_0 - d(Q - 1))] + \frac{1 - \delta}{\delta} (E - p_0D_0) \] \hspace{1cm} (2)

Here, the left-hand side states the expected payoff of any cooperating player i if all Q players continue to cooperate forever. The first expression of the right hand side states the payoff of a deviator i in the period in which he deviates, while the second term states the expected continuation payoff if all players play defect, starting in the next period. Note that given the defection of other players, the deviating player does not have an incentive to return to cooperation. Therefore, if condition (2) is satisfied, Q players playing the modified grim trigger strategy and $n - Q$ players always defecting establishes a subgame perfect equilibrium.

Condition (2) can be rewritten as

\[Q \geq Q^{\text{min}} = \frac{c}{p_0d(1 - \delta)} + \frac{\delta}{1 - \delta} \] \hspace{1cm} (3)

\(^8\)An alternative strategy underpinning cooperation – among others – could be win-stay-lose-shift where players cooperate as long as none or at least $Q - 1$ other players cooperate, otherwise they defect in all subsequent periods (see Nowak and Sigmund, 1993). However, since grim-trigger calls for infinite punishment following a unilateral defection, it introduces the highest costs possible for the deviation. As a consequence, the analysis of grim-trigger will show us the the least restrictive condition for cooperative equilibria to exist.
which – given our parameter choice – leads to equilibria of $Q \geq 3$ cooperating players which are supported by the modified grim trigger strategy ($Q^{\text{min}} = 2.875$).\(^9\)

While this analysis suggests that zero or at least three (risk-neutral) players cooperate, it does not generate any predictions on treatment differences as those are identical in expected payoffs. Differences may occur if subjects are risk-averse or risk-loving. Intuitively, one may expect levels of cooperation to be higher in DamRed than in ProbRed for risk-averse subjects: while the expected utility of a player for $Q = 0$ is identical in the two treatments ($p = p_0, D = D_0$), it is larger in DamRed than in ProbRed and ProbRed\(^+\) if $Q > 0$, suggesting that the willingness to cooperate among risk-averse players is higher in DamRed than in ProbRed and ProbRed\(^+\).\(^10\) For risk-lovers, the opposite relationship would hold.

In order to study the stability of cooperation under risk aversion, we again concentrate on modified grim trigger strategies that have been introduced above. Based on CRRA preferences described by $\sum t E[\pi_t^i]$ where $u(\pi) = \pi^{1-\sigma}/(1-\sigma)$ and the parameters used in our experiment, Figure 1 depicts the minimal cooperation level Q^{min} needed in the respective treatments to make cooperation attractive for a subject of a given level of risk aversion σ. We see that all of the curves collapse for risk-neutral players ($\sigma = 0$) for which we again obtain the level given in equation (3) of $Q^{\text{min}} = 2.875$. It can be seen that for risk-averse decision-makers ($\sigma > 0$) the threshold Q^{min} is lowest for DamRed, while for risk-lovers ($\sigma < 0$) CertDam mostly leads to the smallest Q^{min}.

For DamRed, the threshold Q^{min} is decreasing in σ. Thus, only players with a level of risk aversion above a particular threshold may belong to a potentially existing subset of Q cooperating players. That is, more risk-averse players are more likely to cooperate. For CertDam, we observe that cooperation is rather insensitive to risk attitudes. For ProbRed, we obtain a U-shaped relationship between Q^{min} and σ in Figure 1. Intuitively, neither highly risk-averse nor highly risk-loving subjects are predicted to cooperate: if a subject is extremely risk-averse, she concentrates on the minimum payoff. As cooperation can not prevent the damage for sure, cooperation this minimum payoff is larger if the subject defects as then cooperation costs are saved. Conversely, an extremely risk-loving

\(^9\)Naturally, the multiplicity of equilibria may motivate further discussions on equilibrium selection. While not being the focus of the paper, we note that the equilibrium which supports $Q = 4$ is not “renegotiation proof” as – following the defection of one player – the remaining three players collectively would not have an incentive to follow through with the punishment as it lowers their payoffs, while the cooperation of these three players can still be supported by the modified grim trigger strategies.

\(^10\)Note that $(p_0 - xQ)u(E - D_0 - cq_i) + (1 - p_0 + xQ)u(E - cq_i) \geq p_0 u(E - D_0 + dQ - cq_i) + (1 - p_0) u(E - cq_i)$ due to the concavity of $u(\cdot)$ for risk-averse players such that (collective) cooperation is more beneficial. This argument follows an analysis of individual decision making by Friesen (2012).
subject essentially only counts with the maximum payoff (i.e., the damage not occurring), and again has no incentives to spend the costs of cooperation. As such, only players with intermediate levels of risk aversion may cooperate for any given threshold level Q^{min}. Note that for $Q^{\text{min}} = 2$ this set is empty, while for $Q^{\text{min}} = 3$ it is fully contained in the set of potentially cooperating players under CertDam. As such, we predict cooperation rates to be lower in ProbRed than in CertDam if players behave as expected utility maximizers. Cooperative equilibria with 2 players cooperating may only exist for DamRed.

Prediction 1. (Equilibrium Prediction)

(a) The likelihood to cooperate increases with players’ degree of risk aversion in DamRed, it is relatively insensitive to risk aversion in CertDam. In ProbRed, only players with intermediate levels of risk aversion may choose to cooperate.

(b) Sustained cooperation of 2 players is most likely in DamRed. Cooperation of 3 or 4 players is most likely in CertDam.

![Figure 1](image-url)
Figure 1: Minimal cooperation level Q^{min} required to stabilize cooperation as a function of risk aversion σ for CRRA preferences ($u(\pi) = \pi^{1-\sigma}/(1-\sigma)$). Parameters as used in experiment ($\delta = 0.2$, $p_0 = 0.5$, $x = 0.1$, $D_0 = 20$, $d = 4$, $E = 25$, $c = 5$).
3.2.2 Ex Post Adaptation of Behavior

The analysis of equilibria in the previous sections relied on strategies of players which are chosen exclusively by considering future (expected) payoffs. That is, the past is only relevant to the extent that it gives players information about the strategies of other players such that they can condition their own actions, for example, on the number of cooperating players. Thereby, no prediction on how damage events affect future actions can be made. In this section, we assume that players apply ex post rationality (cf. Selten and Stoecker, 1986). Players assess the success of their previously chosen action ex post and adapt the strategy accordingly. There are several theoretical approaches following the general idea of the Law of Effect stating that actions that (would) have been successful in the past will be reinforced and dissatisfying actions will be weakened (see Herrnstein, 1970): reinforcement learning (e.g., Roth and Erev, 1995; Erev and Roth, 1998), experience-weighted attraction learning (e.g., Camerer et al., 1999; Ho et al., 2008), and impulse balance learning (e.g., Selten and Chmura, 2008; Chmura et al., 2012). In the following, we will concentrate on the latter as it incorporates the idea of regret avoidance and is therefore able to provide predictions about how subjects react to a damage.

Formally, there is an initial attraction $A_{i,0}(q)$ of player i to play action $q \in \{0, 1\}$. Selten and Chmura (2008) assume that the attraction of action q evolves according to

$$A_{i,t+1}(q) = A_{i,t}(q) + \max\{0, \pi_{i,t}(q, Q_{t-1}^i, s_t) - \pi_{i,t}(1-q, Q_{t-1}^i, s_t(1-q))\}, \quad (4)$$

where $s_t(q)$ ($s_t(1-q)$) denotes the state of the damage event if action q ($1-q$) was chosen. That is, an action is reinforced if it would have been the better strategy. The probability of action q being played in period $t+1$ is simply its attraction relative to the sum of the attractions of both actions available to individual i:

$$P_{i,t+1}(q) = \frac{A_{i,t}(q)}{A_{i,t}(0) + A_{i,t}(1)}. \quad (5)$$

Note that the extent of reinforcement in (4) equals the obtained payoff difference. In CertDam and DamRed, defection is a dominant strategy: the payoff difference to cooperation is 3 in CertDam, and 1 if a damage occurs or 5 if it does not (i.e., in expectations 3) in DamRed. As such, only defection is reinforced in CertDam and DamRed (on average by 3 per period). We therefore expect cooperation to be phased out over time at a similar rate in CertDam and
$\text{DamRed}:^{11}$

$$\mathbb{E}[P_{i,t+1}(1)] = \frac{A_{i,0}(1)}{A_{i,0}(0) + 3t + A_{i,0}(1)} \to_{t \to \infty} 0. \quad (6)$$

In ProbRed and ProbRed^+, however, player i may be pivotal in triggering the damage event. This happens with 10% probability12 and would lead to cooperation being the superior action (payoff difference $D_0 - c = 20 - 5 = 15$). With 90% probability, the player cannot affect the damage event in which case defection ex post would have been the better choice (payoff difference $c = 5$). If players behave according to the correct probability of having been pivotal, cooperation is therefore reinforced in 10% of the periods with a payoff difference of 15, while in the remaining 90% of the cases defection is reinforced by 5. Per period within a supergame, in expectation $A_{i,t}(0)$ grows by 4.5 and $A_{i,t}(1)$ by 1.5, such that the expected probability of cooperation after t periods is

$$\mathbb{E}[P_{i,t+1}(1)] = \frac{A_{i,0}(1) + 1.5t}{A_{i,0}(0) + A_{i,0}(1) + 6t} \to_{t \to \infty} 0.25. \quad (7)$$

Thus, we would not expect cooperation to be phased out in the long run. Instead the likelihood of cooperation converges towards 25%. Note if a damage event occurs, cooperating players have (ex post) obviously chosen the wrong action, while they may have been right if no damage event occurs. They should thus be more likely to switch towards defection after a damage event. Conversely, defecting players may have been wrong in their choice if a damage occurs, while the absence of the damage event proves that their defection was right. They can therefore be predicted to be more likely to cooperate following a damage event. As such, the adaptation of individual behavior is predicted to crucially depend on the occurrence of the damage, but only indirectly on the strategies of other players (as they influence the occurrence of the damage).

Prediction 2 summarizes our predictions about immediate reaction to damage events (a) and levels of cooperation in the long run (b):

Prediction 2. (Dynamics of behavior)

(a) Players learn to defect faster within supergames in CertDam and in DamRed.

11The alternative learning dynamics (e.g., Erev and Roth, 1995) lead to similar insights for CertDam and DamRed as Beggs (2005) shows that weakly dominated strategies (as cooperation in our case) are phased out over time. In ProbRed and ProbRed^+, however, the likelihood of cooperation would also be predicted to converge to zero as defection is still dominant in expected payoff terms.

12Imagine the damage occurs when a random draw between 0 and 1 is smaller than $p(Q)$. The impact of one more individual cooperating on $p(Q)$ is -0.1. The random draw determining the damage occurrence lies in this impact range with probability of 0.1. So the probability of the individual being pivotal in preventing the damage is 10%.
Red than in ProbRed and ProbRed$. When comparing behavior following a damage event versus no damages in DamRed, ProbRed and ProbRed$, (i) defecting players are more likely to switch to cooperation and (ii) cooperating players more likely to switch to defection after experiencing damages.

(b) For CertDam and DamRed we expect cooperation to be phased out in the long run, while cooperation can be sustained in ProbRed and ProbRed$^+$. While the described model of ex post rationality gives predictions on changes in behavior over time, it is silent about the initial strategies (i.e. the initial attraction levels $A_0^q(q)$). The same logic of looking back to identify ex post regret, however, can also be applied ex ante, that is, when players anticipate regret (e.g., Loomes and Sugden, 1982; Zehlenberg, 1999; Filiz-Ozbay and Ozbay, 2007). Again, defection is a dominant strategy in CertDam and in DamRed, while players in the probability reduction treatments must anticipate to regret having defected with 10% probability and a payoff difference of 15. As such, we may predict that individuals who apply ex post logic, will also anticipate such potential regret when making their first period choice. We would thus expect the frequency of cooperation to be larger in ProbRed and ProbRed$^+$ than in CertDam and in DamRed.

3.3 Experimental Design

In total, we ran 12 experimental sessions between January and March 2014 at the Experimental Laboratory of the School of Business, Economics and Social Sciences at the University of Hamburg. Three sessions were conducted for each of the treatment conditions that we described in Section 3.1. A total of 280 students from the University of Hamburg participated in the experiment, with a maximum of 24 and a minimum of 16 subjects per session. Median age was 24 years, 53% were female participants.

We applied the same sequence of periods and supergames across all sessions and treatments which we randomly determined by the computer prior to the first experimental session. Overall, all participants played seven supergames (participants did not know the total number of supergames beforehand), the supergames consisted of 5, 3, 7, 4, 7, 3 and 5 periods, respectively. We organized the rematch- ing at the end of each supergame such that two new groups were randomly formed from a matching unit of 8 participants which remained constant for the entire duration of the session. This gave us 9 independent observations in ProbRed, DamRed, and CertDam, as well as 8 independent observations in ProbRed$^+$. After the main experiment, we assessed participants’ risk preferences following Eckel and Grossman (2008) and Dave et al. (2010) with an average payoff of 38
Cent (minimum 2 Cent, maximum 70 Cent), before adding some brief questions regarding the socio-demographic of our participants (e.g., gender, age, and years of study).

During the experiment, participants played for Taler, at the end of the experiment, the sum of the payoffs in all rounds were converted into Euros at an exchange rate of 1 Taler for 1 Euro-Cent and paid out privately. Subjects earned an average of 10.50 Euro in the repeated prisoners’ dilemma part, with a maximum of 12.70 Euro and a minimum of 8.25 Euro. Each session lasted for about 60 minutes. The experiment was programmed and conducted with the software z-Tree (Fischbacher, 2007), recruitment took place with hroot (Bock et al., 2014). The instructions (translated from German to English) can be found in the Appendix; the decision screen (including instructions) for the risk assessment task is shown in Figure 5 at the end of Appendix.

4 Results

We structure our discussion of the results by first considering average treatment differences, before explicitly exploring the individual adaptation dynamics after damage events.

4.1 Average Treatment Differences

<table>
<thead>
<tr>
<th></th>
<th>all periods</th>
<th>first periods</th>
<th>last periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) CertDam</td>
<td>.26</td>
<td>.43</td>
<td>.20</td>
</tr>
<tr>
<td>(2) DamRed</td>
<td>.38</td>
<td>.47</td>
<td>.36</td>
</tr>
<tr>
<td>(3) ProbRed</td>
<td>.59</td>
<td>.66</td>
<td>.57</td>
</tr>
<tr>
<td>(4) ProbRed+</td>
<td>.54</td>
<td>.60</td>
<td>.51</td>
</tr>
</tbody>
</table>

Table 2: Average cooperation rates by treatments over the entire experiment (left panel), over the first periods of all supergames (middle panel), and over the last periods of all supergames (right panel), tests refer to two-sided Wilcoxon Mann-Whitney rank sum tests, *** indicates significance at a $p < 0.01$ level, ** at a $p < 0.05$ level and * at a $p < 0.1$ level.

Figure 2 shows the mean cooperation rates per period and treatment. Table 2 summarizes the average cooperation rates across all periods as well as for the
first and last periods of the supergames. It is immediately seen that cooperation rates in \textit{ProbRed} and \textit{ProbRed}+ are substantially higher than in \textit{DamRed} and \textit{CertDam}. Overall, cooperation rates across all periods are 59% in \textit{ProbRed}, 54% in \textit{ProbRed}+, 38% in \textit{DamRed}, and 26% in \textit{CertDam}. More specifically, cooperation rates in \textit{ProbRed} and \textit{ProbRed}+ are significantly larger than in \textit{CertDam} ($p < 0.01$)\footnote{Throughout the paper and unless specified otherwise, statistical significance is assessed by two-sided Wilcoxon Mann-Whitney rank sum tests relying on matching unit averages.} and \textit{DamRed} ($p < 0.05$). No significant difference exists between \textit{ProbRed} and \textit{ProbRed}+. These results are largely robust to concentrating on the first or the last periods of supergames as is displayed in Table 2. We therefore formulate our first result:

\textbf{Result 1.} Cooperation rates are larger when cooperation affects the probability of a damage event (\textit{ProbRed} and \textit{ProbRed}+) rather than affecting the size of a stochastic damage (\textit{DamRed}) or when it leads to a certain damage reduction (\textit{CertDam}).

Result 1 is consistent with our predictions our prediction (b) based on ex post regret in prediction 2. They could not be explained based on SPNE predictions as derived for expected utility maximizers in section 3.2.1. In fact, we find no significant impact of risk aversion on cooperation decisions in any of the treatments: Table 3 reports results from both a regression analyzing decisions in the
first period of the first supergame (left panel) as well as a random effect regression (errors are clustered at the matching group level) analyzing decisions in all periods and all supergames. Estimated coefficients suggest that the behavior is not driven by the individual’s risk aversion.\(^{14}\)

<table>
<thead>
<tr>
<th></th>
<th>dependent variable: (q_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>only first period</td>
</tr>
<tr>
<td>(DamRed)</td>
<td>.251 (.206)</td>
</tr>
<tr>
<td>(ProbRed)</td>
<td>.256 (.19)</td>
</tr>
<tr>
<td>(ProbRed^+)</td>
<td>.272 (.189)</td>
</tr>
<tr>
<td>(risk)</td>
<td>.04 (.033)</td>
</tr>
<tr>
<td>(risk \times DamRed)</td>
<td>-.053 (.048)</td>
</tr>
<tr>
<td>(risk \times ProbRed)</td>
<td>-.029 (.048)</td>
</tr>
<tr>
<td>(risk \times ProbRed^+)</td>
<td>-.036 (.047)</td>
</tr>
<tr>
<td>(constant)</td>
<td>.386*** (.13)</td>
</tr>
<tr>
<td>(obs)</td>
<td>280</td>
</tr>
<tr>
<td>(n)</td>
<td>280</td>
</tr>
<tr>
<td>F-test/Wald-Chi(^2)-test</td>
<td>.92</td>
</tr>
</tbody>
</table>

Table 3: Left panel: linear regression of cooperation behavior in the first period, right panel: random effects regression of cooperation behavior in all periods of the experiment; coefficients are reported along standard errors in parenthesis (errors are clustered at the matching group level); *** indicates significance at a \(p < 0.01\) level, ** at a \(p < 0.05\) level and * at a \(p < 0.1\) level. obs reports the number of observations while \(n\) reports the number of subjects; models’ fitness are assessed by F-test and Wald-Chi\(^2\)-tests.

The treatment differences reported in Result 1 qualitatively occur already in the very first period of the experiment: while 68% cooperate in \(ProbRed\), 67% in \(ProbRed^+\), only 58% cooperate in \(DamRed\) and 53% in \(CertDam\). At the individual level (since each subject provides an independent observation in the first period of the first supergame), the differences between \(CertDam\) and \(ProbRed\) \((p = 0.06)\) and \(ProbRed^+\) \((p = 0.09)\) are weakly significant based on two-sided Wilcoxon Mann-Whitney rank sum tests.\(^{15}\)

The treatment differences are further strengthened over time as can be seen in Figure 3 which shows cooperation rates in the first period of the respective supergames. In contrast to our prediction 1(b), we find a negative trend of cooperation rates in the first periods of supergames in \(DamRed\) and \(CertDam\)

\(^{14}\)Risk attitudes are measured by the lottery choice in the second part of the experiment (the variable \(risk\), ranges from one to six, such that the lottery choice with larger numbers indicates more risk tolerance).

\(^{15}\)No significant differences occur when controlling for risk aversion (see Table 3).
(both $p = 0.05$, based on Cuzick’s non-parametric test for trends), while the negative trend is not significant for the probability reduction treatments ($p = 0.19$ and $p = 0.13$, respectively).

![Figure 3](Image)

Figure 3: *Mean cooperation in the first period of all supergames across treatment conditions*

Table 4 reports further evidence for the cooperation trends based on a random-effects regression of the individual cooperation decision on the supergame (supergame, ranging form 1 to 7) and the period within a supergame (period in supergame, ranging from 1 to 7) as well as on dummies for the treatments and the corresponding interaction terms. We find negative time trends across supergames in **DamRed** and **CertDam**, and a significantly less negative trend in **ProbRed**+, while there is no significant trend in **ProbRed**. Negative time trends also occur within supergames in all treatments.\(^{16}\) The downward trend within supergames is largest in **CertDam**, significantly smaller in both **DamRed** and **ProbRed** and weakest in **ProbRed**+.

Result 2. Cooperation rates follow different time trends: the downward trend is strongest in **CertDam**, less strong in **DamRed** and least in **ProbRed**+ and **ProbRed**, both within and across supergames.

\(^{16}\)According to F-Tests, testing that superg × treatment + supergame is statistically different from zero for all treatments at $p < 0.05$ except **ProbRed** ($p = 0.146$).

\(^{17}\)According to F-Tests, testing that period in supergame × treatment + period in supergame is statistically different from zero for all treatments at $p < 0.05$.

18
Table 4: Random-effects linear regression of time trends for individual cooperation decision q_{ti}; coefficients are reported along standard errors in parenthesis (errors are clustered at the matching group level); *** indicates significance at a $p < 0.01$ level, ** at a $p < 0.05$ level and * at a $p < 0.1$ level. obs reports the number of observation while n report the number of subjects; model’s fitness is assessed by a Wald-\textit{Chi}²-test.

<table>
<thead>
<tr>
<th>Term</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$DamRed$</td>
<td>0.06</td>
<td>(0.071)</td>
</tr>
<tr>
<td>$ProbRed$</td>
<td>0.147</td>
<td>(0.078)</td>
</tr>
<tr>
<td>$ProbRed^+$</td>
<td>0.099</td>
<td>(0.080)</td>
</tr>
<tr>
<td>$supergame$</td>
<td>-0.031</td>
<td>*** (0.006)</td>
</tr>
<tr>
<td>$supergame \timesDamRed$</td>
<td>-0.004</td>
<td>(0.010)</td>
</tr>
<tr>
<td>$supergame \timesProbRed$</td>
<td>0.02</td>
<td>** (0.009)</td>
</tr>
<tr>
<td>$supergame \timesProbRed^+$</td>
<td>0.01</td>
<td>(0.008)</td>
</tr>
<tr>
<td>$period in supergame$</td>
<td>-0.055</td>
<td>*** (0.007)</td>
</tr>
<tr>
<td>$period in supergame \timesDamRed$</td>
<td>0.025</td>
<td>*** (0.009)</td>
</tr>
<tr>
<td>$period in supergame \timesProbRed$</td>
<td>0.033</td>
<td>*** (0.010)</td>
</tr>
<tr>
<td>$period in supergame \timesProbRed^+$</td>
<td>0.043</td>
<td>*** (0.008)</td>
</tr>
<tr>
<td>$constant$</td>
<td>0.558</td>
<td>*** (0.057)</td>
</tr>
</tbody>
</table>

obs	9520
n	280
Wald-\textit{Chi}²-test	173***
The slower average learning of defection in *ProbRed* and *ProbRed* + than in *DamRed* and *CertDam* are consistent with our Prediction 2, but not with our Prediction 1. They therefore support the the importance of subjects’ ex post adaptation based on forgone payoffs.

4.2 Dynamics of Individual Behavior

To gain further insights into the different time trends, we now investigate determinants of behavioral adjustments at the individual level. Given Prediction 1, we expect no systematic time trend within supergames, but a clearly negative effect of individual risk aversion on the initial decision to cooperate within supergames. Given Prediction 2, we particularly expect the occurrence of a damage event to be important in determining future choices in *ProbRed* and *ProbRed* + when the player was or believes to have been pivotal. For both *DamRed* and *CertDam*, the learning rules would always predict a move towards defection which in *CertDam* is less strong following a damage event.

In a first step, we consider the conditional frequencies of $q_{i}^{t+1} = 1$ given q_{i}^{t} and the occurrence of the damage s^{t}. Table 5 summarizes the frequencies by treatment conditions as well as the significant differences based on nonparametric Mann-Whitney tests.

<table>
<thead>
<tr>
<th></th>
<th>damage in t: $s^{t} = 1$</th>
<th>no damage in t: $s^{t} = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$q_{i}^{t} = 0$</td>
<td>$q_{i}^{t} = 1$</td>
</tr>
<tr>
<td>(1) CertDam</td>
<td>.13</td>
<td>.60</td>
</tr>
<tr>
<td>(2) DamRed</td>
<td>.16</td>
<td>.65</td>
</tr>
<tr>
<td>(3) ProbRed</td>
<td>.22</td>
<td>.79</td>
</tr>
<tr>
<td>(4) ProbRed+</td>
<td>.23</td>
<td>.68</td>
</tr>
<tr>
<td>tests</td>
<td>(3),(4)>>**(1)</td>
<td>(3)>>***(1),(2)</td>
</tr>
<tr>
<td></td>
<td>(4)>>**(2)</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Mean q_{i}^{t+1} given q_{i}^{t} and the occurrence of the damage s^{t}; tests refer to two-sided Wilcoxon Mann-Whitney rank sum tests; ** indicates significance at a $p < 0.01$ level, * at a $p < 0.05$ level and * at a $p < 0.1$ level.

Overall, it seems that the effect of probability reduction on cooperation is two-fold: it leads to more stable cooperation of those players who already cooperate (their frequency to choose $q_{i}^{t+1} = 1$ is about 15% higher in *ProbRed*), and it induces non-cooperating players to cooperate after a damage event occurred (the frequency to choose $q_{i}^{t+1} = 1$ is 6-10% higher in *ProbRed* and *ProbRed* +). That is to say, the “all-or-nothing” damage of *ProbRed* and *ProbRed* + prevents players
from choosing defection and additionally leads more defecting players to switch to cooperation.18

For a detailed analysis of individual learning in our game, we estimate a series of Arellano-Bond panel regressions, for each treatment condition separately.19 This allows us to analyze endogenous regressors (see Arellano and Bond, 1991): the dependent variable is \(q_{i+1}^t \) (i.e., the decision whether to cooperate or defect in the consecutive period). As explanatory variables, we use \(Q_{t-i}^t \) (i.e., the number of cooperators except \(i \) in the current period), the occurrence of the damage in \(t \) (i.e., we compute a dummy variable \(s^t \) which is one if the damage occurred in \(t \) and zero otherwise; omitted in \(\text{CertDam} \)), \(q_i^t \) (i.e., the decision whether to cooperate or defect in the current period), and interaction terms \(q_i^t \times s^t \), as well as \(Q_{t-i}^t \times s^t \). Furthermore, we control for the beginning of a new supergame (i.e., the dummy variable \(\text{newsupergame} \) is one in the first period of a new supergame and zero otherwise).

To access the additional information provided in \(\text{ProbRed}^+ \), we additionally introduce a variable measuring the number of cooperators exceeding the necessary number to avoid the realization of the damage. That is, the variable \(\Delta \text{cooperator} \) computes the difference between the actual players cooperating and the cooperators required by nature for the absence of the damage. \(\Delta \text{cooperator} \) is zero if the number of cooperators just coincides with the number required to avoid the damage, it is negative if too few players cooperate to prevent the damage and is positive if even a smaller number of cooperators were necessary to prevent the damage. Hence, we test whether players coordinate their cooperation onto the sufficient number of cooperators in the previous period. Estimations for coefficients along standard errors in parenthesis are reported in Table 6.

18Notice that there is also a surprising effect in \(\text{ProbRed}^+ \) for non-cooperators if the damage did not occur: here, the frequency of cooperation in \(t+1 \) is 14-18\% higher than in the other treatment conditions. While we are lacking a clear explanation, this finding may be driven by the additional information that these players receive relative to \(\text{ProbRed} \). We control for this effect in our following analysis.

19Arellano-Bond is typically applied to continuous rather than discrete dependent variables. However, we are not aware of a fully consistent method which can both incorporate the lagged contribution variable as well as control for the interdependencies at the individual and matching unit level. Our results are, however, robust to alternative specifications like random effects probit model, or OLS regressions with individually clustered errors.
<table>
<thead>
<tr>
<th>dependent variable: q_{t+1}^i</th>
<th>CertDam</th>
<th>DamRed</th>
<th>ProbRed</th>
<th>ProbRed</th>
<th>ProbRed</th>
<th>ProbRed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>q_{t+1}^i</td>
<td>0.29</td>
<td>0.28</td>
<td>0.19</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Q_{t-i}^i</td>
<td>-0.35</td>
<td>-0.36</td>
<td>-0.32</td>
<td>-0.32</td>
<td>-0.32</td>
<td>-0.32</td>
</tr>
<tr>
<td>$Q_{t-i}^i \times s_t^{-i}$</td>
<td>-0.34</td>
<td>-0.36</td>
<td>-0.32</td>
<td>-0.32</td>
<td>-0.32</td>
<td>-0.32</td>
</tr>
<tr>
<td>ncoperaotr</td>
<td>-0.13</td>
<td>0.01</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.06</td>
</tr>
<tr>
<td>n obs</td>
<td>2232</td>
<td>2232</td>
<td>2232</td>
<td>2232</td>
<td>2232</td>
<td>2232</td>
</tr>
<tr>
<td>n obs</td>
<td>191**</td>
<td>191**</td>
<td>191**</td>
<td>191**</td>
<td>191**</td>
<td>191**</td>
</tr>
</tbody>
</table>

Table 6: Estimation results for an Arellano-Bond panel regressions with dependent variable q_{t+1}^i; coefficients are reported along standard errors in parentheses; *** indicates significance at a $p < 0.01$ level, ** at a $p < 0.05$ level and * at a $p < 0.1$ level. Standard errors are clustered at the matching group level. obs reports the number of observation while n reports the number of subjects; models’ fitness are assessed by Wald-Chi² tests.
The estimation results in Table 6 confirm our previous findings in Table 5. They indicate that cooperation is highly path dependent in all treatment conditions: if a player cooperates in period t, it is very likely that she cooperates in period $t + 1$ as well (significant positive marginal effect of q^t_i).

For all treatments, we also find evidence that subjects reciprocate on others’ cooperation (significant positive coefficients for Q_{-i}^t). However, experiencing a damage event triggers also behavioral changes: non-cooperators are more likely to switch to cooperation following a damage event in both ProbRed and DamRed (significant positive coefficients for s^t). This effect seems to be dominated by the coordination of cooperation in ProbRed^+. These results on the impact of damage events are consistent with the learning dynamics in Prediction 2 (a) detailed in section 3.2.2. We further find significant negative coefficients for the interaction $q^t_i \times s^t$: a damage event typically reduces the likelihood for cooperators to continue cooperation (or at least does lead to significantly smaller increases than found for defectors). Again, this is consistent with Prediction 2 for ProbRed and ProbRed^+ where cooperators may regret their action as it did not prevent the damages. The negative coefficient for DamRed cannot be explained by the discussed learning dynamics.\(^{20}\) In addition, we can support our expectation concerning the coordination of behavior in ProbRed^+: the significant negative coefficient of $\Delta\text{cooperator}$ suggests that players condition their cooperativeness on the number of cooperators needed to prevent the damages in the previous period: if there are more (less) players than needed to avoid the damage, the likelihood to cooperate decreases (increases).

Result 3. *In all treatment conditions with stochastic payoffs, the non-occurrence of the damage reinforces existing cooperation while the occurrence of a damage stimulates a strategy switch of players from defection to cooperation and from cooperation to defection.*

Result 3 showcases the importance of experienced damage events for behavioral adjustments: players appear to generally follow a win-stay-lose-shift rational, but – unlike in prisoner dilemmas with deterministic payoffs – they condition their behavior (partly) on the occurrence of the random event: their current strategies are reinforced after experiencing the absence of the damage. It is surprising and not in line with our predictions, though, that cooperators in DamRed are more likely to switch towards defection following a damage event.

\(^{20}\)One may argue that the identified impact of damages on behavioral changes for cooperators suggests some sort of gambler’s fallacy: once cooperators experience the damage they may believe that the damage will not occur in the proceeding period (despite that we stress the i.i.d. of damages in the instructions) and stop cooperating. However, contrary to this idea, defectors respond in exactly the opposite direction once they experience the damage: they start cooperating in the consecutive period meaning that they do not fall prey to the gambler’s fallacy. As such, we do not find it plausible to use this behavioral pattern to explain the behavior of only a subset of players.
5 Conclusion

This paper investigates determinants of cooperation in repeated social dilemmas with stochastic damages. Inspired by environmental problems like climate policy, or hurricane prevention, but also other challenges like public security protection against terror, or international health cooperation against pandemic diseases, we study the evolution of cooperation when the entire group benefits from individual cooperation while individual players have incentives to free-ride and may cooperate only due to (indefinitely) repeated interactions. With stochastic damages, players may take actions which either reduce the size of damages or reduce the probability that such adverse events occur.

Our results show that cooperation on probability reduction leads to significantly higher cooperation rates than cooperation on damage reduction. Specifically, the cooperation rates are sustained for probability reduction, whereas they decline for damage reduction as well as in a setting where damages are certain. The difference between the two settings can be explained by a learning dynamics which reinforces the ex post optimal action. Moreover, in line with our introductory discussion of natural disasters or accidents serving as “focussing events” (Kingdon, 1995; Birkland, 2006), we find that experiencing adverse events indeed lead to behavioral changes as players tend to revise their current strategies. However, adversity is not necessarily a school of wisdom: while non-cooperating players are more likely to switch towards cooperation following an adverse event, formerly cooperating players may rather switch towards defection.

Overall, our results may provide some optimistic view on the prospects of voluntary cooperation in dilemma situations: differently from situations where cooperation leads to (continuous) changes in the size of damages (or payoffs), more sustained cooperation can be expected if it may lead to a discrete payoff change as an adverse event may be prevented with some probability. Cautiously interpreting the results from our lab experiment in terms of our introductory examples of climate policy, our findings suggest that shifting the public attention from activities which are likely to reduce the occurrence of extreme negative events (mitigation activities) to measures which reduce their impact (e.g., adaptation) may lead to declining chances for successful voluntary cooperation. More generally, our results may also guide the search for successful incentives schemes for groups as needed, for example, in our examples of team production or non-point source pollution. As such, it is worthwhile to further investigate the robustness of our results in different contexts.
References

Appendix: Experimental Instructions for the DamRed Treatment (English translation)

In the following, we report an English translations of the experimental instructions for the DamRed treatment.

General instructions for the participants

You are now taking part in an economic science experiment. If you carefully read the following instructions, you can - depending on your decisions - earn a not inconsiderable amount of money. Therefore, it is very important that you carefully read the following instructions.

The instructions that we gave you are solely meant for your private information. During the experiment, communication is completely prohibited. If you have any questions, please raise your hand out of the cabin. Someone will then come to you to answer your question. Violation of this rule leads to exclusion from the experiment and from all payments.

During the experiment we do not have Euro but Taler. Your total income will first be computed in Taler. The total amount of Taler that you earned during the experiment will be converted into Euro in the end, such that

\[100 \text{ Taler} = 1 \text{ Euro}. \]

At the end of the experiment you will be paid in cash the total amount of Taler that you earned (converted into Euro) plus 5 Euro for participation. We will conduct the payment such that no other participant will see your payment.

The experiment is divided into two parts. Here, we give the instructions for the 1st part. You will get the instructions for the 2nd part on your computer screen after the 1st part is finished. The two parts are not related with respect to their content.

Explanations for the 1st part of the experiment

The 1st part of the experiment is divided into phases. You do not know, however, how many phases there are in total. Each phase is divided into rounds. The number of rounds in a phase is random. After each round, the phase ends with a probability of 20%.

More concretely, this means that: after the first round there is a second round with a probability of 80% (which is on average in four cases out of five). So,
a probability of 20% (which is on average in one case out of five) the phase ends after the first round. After the second round (if there is one) there is a third one with a probability of 80%. So, with a probability of 20%, the phase ends after the second round and so on...

At the beginning of each phase, participants are randomly assigned into groups of four. Thus, your group has three other members in addition to you. During one phase, the constellation of the group remains unchanged. It only gets randomly rematched at the beginning of a new phase.

Information on the structure of a round

All rounds in all phases are always structured in the exact same way. In the following we describe the structure of one round.

At the beginning of each round, every participant gets an income of 25 Taler.

At the end of each round, a damage might occur, which reduces the income by 20 Taler.

The damage occurs with a probability of 50% (which is on average in one of two rounds). For this, in each round, the computer randomly determines whether the damage occurs. The occurrence of the damage is only valid in the respective round and does not influence the probability of the next rounds. The occurrence of the damage is determined jointly for the whole group, such that either all or no group members suffer the damage.

All group members are able to reduce the potential damage through their decisions. For this, at the beginning of each round, i.e. before the damage occurs, each group member has to decide whether it does or does not carry out a damage-reducing action (see Figure 4 at the end of the instruction).

Each damage-reducing action costs the group member taking the action 5 Taler (independent of whether the damage occurs or not). Each damage-reducing action reduces the personal damage of each group member (not only of the group member taking the action) by 4 Taler. For you, personally, this means that each damage-reducing action that has been carried out in your group reduces your damage (if it occurs) by 4 Taler, independent of whether you have taken such an action yourself. A damage-reducing action which you carry out costs you 5 Taler for sure. In return, you reduce your damage and the damage of each other group member by 4 Taler, if the damage occurs.

The personal damage, if it occurs, amounts to 20 Taler if no one in your group carried out an action, 16 Taler if one person carried out an action, 12 Taler if two persons took the action, 8 Taler if three persons took the action and 4 Taler if all group members took the action.
Your round income (in Taler) is calculated as follows

- If the damage does not occur and you did not take the damage-reducing action:

 25

- If the damage does not occur and you did take the damage-reducing action:

 25 − 5 = 20

- If the damage occurs and you did not take the damage-reducing action:

 25 − 20 + 4* [sum of all damage-reducing actions in the group],

- If the damage occurs and you did take the damage-reducing action:

 25 − 5 − 20 + 4* [sum of all damage-reducing actions in the group],

4 examples:

The damage probability always is 50%.

- You and one other group member take a damage-reducing action in your group, the damage does not occur. Your round income is 25 − 5 = 20 Taler.

- Only you take a damage-reducing action in your group, the damage occurs. Your round income is 25 − 5 − 20 + 4 * 1 = 4 Taler.

- You and two other group members take a damage-reducing action, the damage occurs. Your round income is 25 − 5 − 20 + 4 * 3 = 12 Taler.

- Two other group members take a damage-reducing action, but you do not, the damage occurs. Your round income is 25 − 20 + 4 * 2 = 13 Taler.

At the end of a round, each participant receives information on whether he/she took an action him- or herself, how many other group members took an action, if the damage occurred and what the round income is. Then, a new round starts in the same group constellation or in a new group constellation if a new phase begins.

The sum of all your round incomes will be paid out to you in private at the end of the experiment.

Before the experiment starts, we would like to ask you to answer some control questions on the computer to make sure you understand the rules.
Figure 4: Decision screen for taking the action in a round in Part 1 of the experiment.

Figure 5: Decision screen for the risk-assessment task in Part 2 of the experiment.