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Coevolution of Cooperation, Preferences and

Cooperative Signals in Social Dilemmas

February 2016

Abstract

We study the coevolution of cooperation, preferences and cooperative signals in an

environment where individuals engage in a signaling-extended Prisoner’s Dilemma.

We identify a new type of evolutionary equilibrium – a transitional equilibrium –

which is constituted and stabilized by the dynamic interaction of multiple Bayesian

equilibria. A transitional equilibrium: (1) exists under mild conditions and (2) can

stabilize a population that is characterized by the heterogeneity of behavior, pref-

erences, and signaling. We thereby offer an explanation for persistent regularities

observed in laboratory and field data on cooperative behavior. Furthermore, this

type of equilibria is least demanding with respect to differences in signaling cost be-

tween ‘conditional cooperators’ and ‘opportunists’. Indeed and quite surprisingly, a

transitional equilibrium is consistent with ‘conditional cooperators’ bearing higher

signaling cost in terms of fitness than ‘opportunists’.

JEL Classification numbers: C73, D64, D82.

Keywords: Evolutionary Game Theory, Cooperation, Signaling.



1 Introduction

Several theories have been proposed to explain the evolution of cooperation among hu-

mans when cooperation generates a public benefit at a private cost. In this research, the

Prisoners dilemma game (henceforth PD) serves commonly as a metaphor for the problem

of cooperation. Since natural selection favors defection in this game, any extension that

allows for the emergence of cooperation represents a mechanism to promote cooperation.

It has been argued, that the essential feature of any mechanism to foster cooperation is

that cooperative acts must occur more often between cooperators than expected based on

population averages. In other words, the mechanism must induce a positive assortment

between cooperative types (Queller, 1985; Fletcher and Zwick 2004).1

The mechanisms proffered in the literature may vary substantially to how they induce

this assortment. Positive assortment can for instance arise because of direct reciprocity

in repeated interactions (Trivers, 1971; Axelrod, 1984; Fudenberg and Maskin, 1986),

indirect reciprocity based on image scores (Alexander, 1987; Nowak and Sigmund, 1998;

Wedekind and Milinski, 2000; Panchanathan and Boyd, 2004), or network reciprocity,

where players interact only with their neighbors (Nowak and May, 1992; Hubermann and

Glance, 1993; Nowak et al., 1994; Killingback et al., 1999). Another mechanism involves

cooperators signaling their type and the play of signal-contingent strategies.

In solving the puzzle of cooperation in social dilemmas the literature so far primarily

focused on providing mechanisms that supports the existence of a cooperative equilibrium.

We extend this literature by providing an explanation for the following conspicuous regu-

larities of this puzzle. First, there is a persistent pattern, that cooperation is only partial,

i.e. only a fraction of the population plays cooperatively when individual rationality calls

for defective behavior.2 Second, the elicitation of preferences in the laboratory and in

the field as well as studies on revealed preferences show that individuals substantially

differ in their cooperative attitudes (e.g., Andreoni and Miller, 1993; Cooper et al., 1996;

Ockenfels and Weimann, 1999, Fischbacher and Gächter, 2010). Thus, the heterogeneity

in behavior seems not to result from mixed strategy play, but appears to be a conse-

quence of differences in preferences. Third, it is rather the rule than the exception that

human interactions are accompanied by communication, in particular if the interaction is

1Indeed, many models of the evolution of altruism share an underlying mathematical structure- that
of Hamilton’s Price equation formulation of inclusive fitness theory (Hamilton, 1964a,b). Hamilton’s
relatedness coefficient can be interpreted as the degree of positive assortment of types and need make no
reference to common descent (McElreath and Boyd, 2007).

2See Rapaport and Chammah, 1965 and Dawes, 1980 for reviews of these experiments in sociology
and psychology. For a survey of some of the studies by economists, see Roth, 1988.
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of strategic nature. Humans also differ in this respect and show different ways and inten-

sity of preplay-communication in laboratory and field studies. Importantly, it has been

shown that communication influences cooperative behavior (Dawes et al., 1977; Ostrom

and Walker, 1991; Brosig, 2002).3

All three phenomena take place at a population level, we therefore take an evolution-

ary perspective to study these related dimensions of heterogeneity. As a stylized social

dilemma, the action set of the PD incorporates the two diametrically opposed behaviors

of defection and cooperation. To account for the potential heterogeneity of preferences

in equilibrium, we consider an evolutionary model with two types of individuals ‘oppor-

tunists’, maximizing individual fitness, and ‘conditional cooperators’, having a preference

for joint cooperation.4 To emphasis the necessity of communication about preferences, we

study the evolution of cooperation in social dilemmas without social information such as

reputation in one-shot interactions, which puts other mechanisms like direct or indirect

reciprocity out of operation. Any mode of communication comes hardly without any cost,

may it be material cost because of effort exerted, resources spent, or forgone opportunities.

On the other hand compliance to some code of conduct as a signal for cooperativeness

may cause internal cost if it contradicts an individual’s preferences. To account for these

aspects, we incorporate communication of types via costly signaling.5

We apply the ‘indirect’ evolutionary approach pioneered by Güth and Yaari (1992)6 to

study the dynamics of the type composition in the population. In that approach players

are assumed to be rational, and the evolutionary mechanism shapes the composition of

players with different preferences in the population. Recent criticism of this approach

(Dekel, Ely, and Yilankaya, 2007) has focused on its assumption that players’ preferences

are observable by their opponents, which is not an issue in our signaling framework. We

depart from standard applications of this approach in one important manner. Instead

of applying the static notion of evolutionary stable strategies (Maynard Smith, 1973) as

a stability concept, we explicitly study the dynamic stability of the Bayesian equilibria

of the signaling-extended PD. Importantly, considering the full set of Bayesian equilibria

and their dynamic stability, puts us in the position to study the transition across different

3It is a stylized fact in experimental research that the opportunity of communication has a robust and
strong positive impact on cooperation, for an overview see Sally, 1995.

4There is evidence from laboratory and field experiments, that the majority of individuals can be
assigned to one of these two classes: Keser and van Winden, 2000; Fischbacher et al., 2001; Frey and
Meier, 2004; Fischbacher and Gächter, 2010.

5Costly signaling is present in many species, including humans (Zahavi, 1977; Grafen, 1990; Maynard
Smith, 1991; Johnstone, 1995; Wright, 1999).

6For recent applications see e.g. Wärneryd, 2002; Guttman, 2003; Alger and Weibull, 2013; Hopkins,
2014.
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equilibria.

We identify a new type of evolutionary equilibrium which we term transitional equilib-

rium. In our model under mild conditions on signaling cost and other model parameters

a transitional equilibrium exists and is constituted by the dynamic interplay of separat-

ing, semi-pooling, and pooling equilibria of the signaling extended PD. This evolutionary

equilibrium is characterized by heterogeneity with respect to preferences, behavior, and

signaling. Furthermore, it turns out that this type of equilibrium is least demanding

with respect to the difference in signaling costs between ‘opportunists’ and ‘conditional

cooperators’.

The remainder of the paper is organized as follows. The following section 2 discusses

the related theoretical literature in more detail. Our model is presented in section 3. Sec-

tion 4 presents the set of stable Perfect Bayesian Equilibria (PBE) for a given composition

of preferences. This share of cooperative players is endogenized in section 5. Before we

conclude in section 7, we discuss our findings in the penultimate section 6.

2 Related Theoretical Literature

In this section we focus on literature which considers the problem of cooperation in social

dilemmas under incomplete information regarding the opponent’s type. Most closely

related to our approach are the papers of Guttman (2003, 2013), Gintis et al. (2001), and

Panchanathan and Boyd (2004). Guttman (2003) is motivated by the seminal paper of

Kreps et al. (1982). Therein the authors showed that if one of two players assigns a small

probability that the opponent plays the ‘tit-for-tat’ strategy, then, in a finitely repeated

Prisoner’s Dilemma (PD), cooperation can be an equilibrium outcome for at least some of

the stages. In an ‘indirect’ evolutionary framework Guttman endogenizes the uncertainty

assumed by Kreps et al. (1982) regarding the opponent’s preferences. More precisely,

the model considers a community consisting of ‘opportunists’ and ‘reciprocators’, who

have a preference for mutual cooperation. Furthermore, agents send a costless, random

signal that has some informational value for the receiver with respect to the recognition

of the opponent’s type. Players are randomly matched to play a finitely repeated PD.

In the unique evolutionary equilibrium, both reciprocators and opportunists coexist.7

Although the evolutionary equilibrium is characterized by a heteromorphic population, the

equilibrium behavior of reciprocators and opportunists differs only in the last round, i.e.

7The survival of reciprocators hinges on the assumption that the costless signal emitted by all subjects
has some small, but positive correlation with the actual type.
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both types show almost identical behavior in equilibrium. Furthermore, if the likelihood

of emitting the cooperative signal is independent of the taste parameter measuring the

preference for mutual cooperation, then the endogenization of the taste parameter leads

to an all-replicator equilibrium, and thereby to full cooperation. Thus, the model is less

suitable to explain the regularities of heterogeneous preferences and behavior, in particular

in environments with very few repetitions.

Guttman (2013) studies the evolution of an inherited preference to match other agents’

contribution to the provision of public goods. Under complete information and randomly

matched groups, the unique evolutionary stable matching rate equals one. The model

provides a potential explanation for the existence of conditional cooperation, which does

not rely on reputation or group selection. However, the informational assumptions are

rather strict, which we circumvent by considering a signaling environment, where types

are only revealed by equilibrium play. Further, the model predicts a unique preference

value and therefore cannot account for the heterogeneity in preferences and behavior,

which is the focus of our paper.

Contrary to Guttman (2003), Gintis et al. (2001) consider an environment with no

repeated or assortative matching. Furthermore, the signaling in their model is costly. In

a multi-player public good game individuals can signal their type by providing a group

benefit at a personal cost. These signals may in turn influence a partner’s acceptance or

rejection of potentially profitable allies. They show, that honest signaling of underlying

quality can be evolutionary stable. Necessary conditions for the existence are that sig-

naling is more costly to so called high-quality types and that partners prefer to ally with

high-quality types. They show that the payoff difference between high- and low types is

positive. As a consequence, the frequency of high types would increase over time. This

eventually undermines the separating equilibrium, since it has only limited support.8 More

precisely, once the share of high types exceeds a certain threshold, high type no longer

find it a best response to signal their quality. As a consequence, cooperation could break

down. Without an exhaustive search for Nash equilibria and analyzing their dynamic

stability which is part of our approach, we just don’t know. In the model of Gintis et al.

(2001), the monotonic increase in the share of high-quality types is stabilized by the ad

hoc introduction (see p.112, eq.(12)) of other forces on the population dynamics. Indeed,

without the exogenous frequency dependency introduced no heteromorphic population

could be stabilized.

The general theme of this strand of literature (see also Lotem et al. 2003, Pan-

8That is, the range for the share of high-quality types, such that the conditions for the existence of
the honest signaling equilibrium are met, is a open interval with measure less than one.
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chanathan and Boyd 2004, Macfarlan et al. 2013) is that costly forms of generosity (like

contributions to public goods) serves as a signal to be trustworthy, facilitating the for-

mation of cooperative partnerships in the future. A general problem with the signaling

hypotheses is, that it does not explain why quality is signaled by doing good (noted by

Gintis et al. 2001 themselves).9 Indeed, quality could be signaled by other costly activity

like conspicuous consumption.10 In contrast, in our approach the nature of the signaling

technology is not limited to forms of generosity.

Another paper related to our approach is Janssen (2008) which studies the evolution

of cooperation in a one-shot PD environment based on the recognition of the opponent’s

trustworthiness. Agents costlessly display symbols and they learn which symbols are im-

portant to estimate an opponents’ trustworthiness. The simulation based results show

both cooperative and defective behavior. In contrast, the evolution of agents’ taste pa-

rameters shows the tendency toward homogeneity, since almost all agents in the long run

value cooperation over defection (see statistics of parameter α in table 4). Since the result

hinges on the assumption that agents can withdraw from playing the game, it does not

apply to our idea of random interaction in an unstructured population that cannot be

circumvented.

3 Model

The classical Prisoner’s Dilemma is the most prominent and best-studied example of a

social dilemma and serves as the basis for our analysis. In this game players can either

cooperate (C) or defect (D). The one-shot PD is played recurrently by randomly matched

pairs of individuals of a large population. Agents are assumed to process only information

on outcomes of their own past interactions. In particular, they process no information on

the opponent’s identity or on outcomes in games in which they were not involved.

Similar to Guttman (2003) we focus on the case of a preference for joint cooperation.

Players carrying such a preference gain an additional internal payoff m if the outcome of

the stage game is mutual cooperation, i.e., (C,C). In other words, we consider preferences,

which induce conditional cooperation.11 We will refer to these players as high types. For

low types, i.e., individuals without this preference utility is identical to material payoffs.

9Hopkins (2014) provides a potential solution to the problem. If the ability to reason about others’
mental state, i.e., having a “theory of mind”, is associated with empathy, then humans possessing these
attributes can signal their capability by pro-social acts.

10After all, the prominent example for costly signaling in the context of sexual selection is the peacock’s
tail.

11See footnote 4.
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Figure 1 presents the payoffs of the PD for the row player. The left table represents mate-

rial payoffs, which will be decisive for the evolutionary success of different behaviors. The

right table represents utility payoffs incorporating the preference for mutual cooperation,

which will determine the best response of players. To be of any behavioral significance,

we assume m > α, such that mutual cooperation becomes a Nash equilibrium if two high

types interact.12

C D C D
C 1 −β C 1 +m −β
D 1 + α 0 D 1 + α 0

Figure 1: Material (left table) and utility payoff (right table) in the PD, α, β > 0 and
1 + β > α.

The preference for joint cooperation is assumed to be private information of the agent.

In the tradition of Harsanyi (1967, 1968a, 1968b), beliefs about the opponent’s type are

common knowledge. Like Guttman (2003) and Güth and Ockenfels (2005), we adopt the

natural assumption that beliefs correspond to actual frequencies of types.

We employ the indirect evolutionary approach, pioneered by Güth and Yaari (1992)13,

in which all players are assumed to be rational, and the evolutionary forces determine

population’s composition of players with different preferences. In other words, preferences

determine behavior and behavior in turn determines fitness. Recent criticism of this

approach (Dekel et al, 2007) is concerned with the assumption of the observability of

agents’ preferences. However, in our model preferences are not observable, we only assume

that agents have correct beliefs about the distribution of types in the population.

Note that without communication, the impossibility result of Kandori (1992, Propo-

sition 3) applies to such an environment, which states that the unique equilibrium is

characterized by full defection, i.e. everybody always defects. We model communication

as an additional stage prior to the play of the PD. In that stage, agents can simultane-

ously send one message concerning their inner motive. As in the standard signaling model

(Spence, 1973) we assume the existence of a social technology which enables individuals

to signal their positive attitude towards cooperation by incurring some costs. Research

on many species including humans (Zahavi, 1977; Grafen, 1990; Maynard Smith, 1991;

12As Güth et al. (2000) noted in a different setting, the precise level of m is behaviorally irrelevant.
All m-types for whom the same inequality with respect to α holds, form an equivalence class concerning
the implied behavior.

13The indirect evolutionary approach has also been applied in different strategic settings (ultimatum
game, Huck and Oechssler, 1999) or to analyze the evolutionary stability of altruistic preferences (Bester
and Güth, 1998), of altruistic and spiteful preferences (Possajennikov, 2000), or of risk preferences (Wärn-
eryd, 2002).
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Johnstone, 1995; Wright 1999) supports this assumption. Signaling cost may occur in

terms of utility or fitness. Let kH , kL denote the signaling cost in terms of utility for high

types and low types, respectively. We assume, agents who have a preference for joint

cooperation are supposed to bear lower costs for sending the signal, i.e, kH < kL. Our

results suggest that this assumption is not needed. However, it simplifies the analysis of

the existence and the stability of the numerous equiliria. Importantly, we make no such

assumption on the relationship of the corresponding fitness cost, kfH and kfL. We refer the

reader to our discussion of signaling costs in section 6.

In the current setup, a strategy is a type-continent and signal-contingent plan. Given

the two actions C and D, the two different types, and the two possible signals, there are

64 pure strategies in the signaling extended PD. Since defection is the dominant strategy

for low types, we can eliminate all strategies which for the contingency of being a low

types specify a cooperative behavior for some signal received. For the remaining 16 pure

strategies we will apply the following notation. The first three entries specify the actions

and signaling behavior for the high type, the last entry the signaling behavior for the

low type. For example CDs, ns denotes the strategy “if high type: cooperate if signal

is received, deviate if no signal is received and send signal; if low type: do not signal”.

Thus, pCDs,ns, ΠL(CDs, ns) and ΠH(CDs, ns), for example, denote the probability of this

strategy being played by a randomly selected individual and her expected payoff if she

happens to be of the low or of the high type, respectively. Probabilities and expected

payoffs for other strategies are defined accordingly.

To study the stability of the Bayesian equilibria of the signaling-extended PD we ex-

plicitly account for the dynamic adjustment of the distribution of types in the population.

Both for the set of probabilities by which the strategies are chosen within types and for

the shares of types we consider the class of gradual payoff-monotone dynamics (see e.g.

Bendor and Swistak, 1998 for definitions), which includes the well known replicator dy-

namics. Compared to the static approach of evolutionary stable stragies (Maynard Smith

and Price, 1973), this dynamic approach allows us to study the dynamic properties not

only for one particular equilibrium but also the dynamics across different equilibria. We

assume that the dynamic accommodation within the population shares playing the var-

ious strategies is fast compared to the dynamics of the population share of high types.

This assumption will simplify analysis of the dynamics and is considered adequate since

behavior will adapt faster to differences in payoffs than socially and culturally transmitted

cooperative preferences.
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4 Stable Perfect Bayesian Equilibria with Exogenous

Proportions of Conditional Cooperators

In this section we present stable PBE for a given share of high types, which we denote

by λ. In our signaling extended PD, there exist one stable separating and three stable

pooling equilibria. There are also stable semi-pooling equilibria, however, only one of

them is relevant for our subsequent analysis. The others are characterized by strictly

negative fitness differentials between high and low types or have a narrow λ-support14.

The following Proposition 1 reports the stable signaling equilibrium, the stable pooling

equilibria and the relevant stable semi-pooling equilibrium.

Proposition 1 In the signaling extended Prisoner’s Dilemma exist the following stable

Perfect Bayesian Equilibria:

(i) Cooperative Separating Equilibrium (CSE): pCDs,ns = 1

(ii) Semi-Pooling Equilibrium (SPE): pCDs,ns = 1− pCDs,s ≤ λ(m−a)
(1−λ)β

(iii) Cooperative High Pooling Equilibrium (CHPE): pCDs,s = 1− pCCs,s ≥ kL
(1+α)λ

(iv) Cooperative Low Pooling Equilibrium (CLPE): pCCns,ns + pDCns,ns = 1

(v) Defective Low Pooling Equilibrium (DLPE): pDDns,ns = 1−pCDs,ns ≤ 1
λ

min
{

kH+β
1+m+β

, kH
1+α

}
Table 1 presents the conditions for existence and the λ-support of these equilibria.

For a list of the stable semi-pooling equilibria not mentioned in this proposition we

refer the reader to Appendix C.

Proof. We leave the derivation and the analysis of stability to the Appendices. See Ap-

pendix B for existence and stability of separating and pooling equilibria, and Appendix

D for semi-pooling equilibria.

14Here, the λ-support of an equilibrium corresponds to the set of all λ such that the equilibrium under
consideration exists.
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Strategies λ-support Payoff Differences
Condition for Existence

Cooperative Separating Equilibrium

CDs, ns kH
1+m
≤ λ ≤ kL

1+α
ΠH − ΠL = λ(1 +m)− kH

kH < 1 +m (ΠH − ΠL)f = λ− kfH

Semi-Pooling Equilibrium

CDs, ns λ = kL
1+α

ΠH − ΠL = λ(1 +m)− kH − β(1− λ)ps
CDs, s (ΠH − ΠL)f = (λ− kfH)(1− ps)+

kL < 1 + α (kfL − k
f
H − (λα + (1− λ)β))ps

Cooperative High Pooling Equilibrium

CCs, s λ ≥ max{ kL
1+α

, β
β+m−α} ΠH − ΠL = kL − kH − (λ(α−m) + (1− λ)β)

CDs, s kL < 1 + α (ΠH − ΠL)f = kfL − k
f
H − (λα + (1− λ)β)

Cooperative Low Pooling Equilibrium

CCns, ns λ ≥ β
β+m−α ΠH − ΠL = −(λ(α−m) + (1− λ)β)

DCns, ns (ΠH − ΠL)f = −(λα + (1− λ)β) < 0

Defective High Pooling Equilibrium

CDns, ns 0 < λ < 1 ΠH − ΠL = 0
DDns, ns (ΠH − ΠL)f = 0

Table 1: Separating, pooling equilibria, and one semi-pooling equilibrium (see Table 2 in
Appendix C for other stable semi-pooling equilibria). Note that equilibria are only stable
in the interior of their support. ps denotes the probability to send the signal conditional
on being a low type.
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In the cooperative separating equilibrium, players apply the strategy CDs, ns. Thus,

high types recognize each other and cooperate only among themselves. The intuition

behind the fact that the support of this equilibrium has both a lower and an upper is as

follows: If there are too few high types, then the cooperative outcome among them cannot

compensate for the signaling costs. If on the other hand, there are too many high types,

signaling becomes sufficiently profitable for low types. The thresholds for the share of

high types have a precise economic interpretation. For high types, the cost-benefit ratio

from signaling ( kH
1+m

) must be smaller than the probability to gain the benefit (λ). The

reverse holds true for low types, i.e. their cost-benefit ratio from signaling must exceed

( kL
1+α

), the likelihood of gaining the benefit.

In the cooperative low pooling equilibrium, nobody signals and high types cooperate.

This equilibrium exists if there are sufficiently many high types. Only then high types can

be compensated for the loss from being cooperative against low types by the cooperative

outcome among each other. In other words, if the share of high types falls below a certain

threshold, then they will start to prefer defecting when receiving the low signal. Note that

this equilibrium is indeed an equilibrium set, since the strategies CCns, ns and DCns, ns

are alternative best responses in equilibrium. The share of high types required for this

to be an equilibrium decreases in the sucker’s payoff, since cooperative behavior becomes

more disadvantageous with decreasing sucker’s payoffs (−β). This threshold, too, has an

intuitive meaning. Note that m−α (β) measures the incentive to reciprocate cooperative

(defective) behavior. In essence, the condition β
β+m−α < λ, which can be rewritten as

λ(m−α) > (1−λ)β, states that the expected gain from reciprocating cooperative behavior

must exceed the expected gain from reciprocating defective behavior.

In the defective low pooling equilibrium, nobody sends the cooperative signal and ev-

erybody defects earning a payoff of zero. Again, because of the lack of distinguishability

in equilibrium, this equilibrium is indeed a set where CDns, ns and DDns, ns might be

played. This equilibrium set reflects the benchmark solution in the PD without commu-

nication and exists for all population compositions between high types and low types.

In the cooperative high pooling equilibrium, everybody signals and high types cooperate.

This equilibrium exists if there are sufficiently many high types. If the latter’s proportion

is large enough, they can compensate for the loss from being cooperative against low

types by the cooperative outcome among each other. Contrary to the cooperative low

pooling equilibrium, an additional restriction with respect to the share of high types arises,

reflecting the incentive compatibility for low types to signal. Note that this equilibrium

is again an equilibrium set, since the strategies CCs, s and CDs, s are alternative best

10



responses in equilibrium. In this equilibrium, for low types the reverse logic applies

in comparison to the cooperative separating equilibrium, i.e. for low types to find it

worthwhile to signal, their cost-benefit ratio ( kL
1+α

) must be smaller than the likelihood to

profit from signaling (λ). The lower bound stemming from the incentive constraint for

high types bears the same logic as in the cooperative low pooling equilibrium.

5 Endogenous Proportion of Conditional Coopera-

tors

We now analyze the dynamics of the share of high types (λ) in the population for which

we assume that the dynamics have reached a stable equilibrium, as we assumed that

inner motives evolve far more slowly than behavioral frequencies. For the sake of a

more convenient presentation, we will assume that kL, kH < 1 + α which is sufficient for

existences of all equilibria presented in Table 1. In other words, we restrict to signaling

devices which are less costly than the maximum material payoff in the PD.

The evolution of the proportion of norm bearers is determined by their relative fitness.

Fitness is measured by the material payoffs as presented in Figure 1. Analogous to the

derivation of the PBE, the differentials in these fitness payoffs among high and low types

are the driving force for the evolution of their respective shares. To ease the understanding

of the differentials of fitness payoff differentials, we provide some intuition for their size

in the relevant PBEs.

In the cooperative separating equilibrium, both types defect in all interactions, except

when two individuals of the high type encounter each other. In this case, they cooperate.

The low type will thus always earn a fitness payoff of zero, and the high type will earn a

fitness payoff of one with probability λ, i.e., the probability that two high types interact.

Since high types unconditionally bear the material signaling cost kfH , their expected payoff

in the cooperative separating equilibrium is λ− kfH , which is also the expected difference

of fitness payoffs: (ΠH(CDs, ns) − ΠL(CDs, ns))f = λ − kfH . Obviously, this fitness

advantage of the high type grows in the share of high types in the population.

In the cooperative low pooling and in the cooperative high pooling, individuals of the

high type cooperate in reaction to the signal they send, and all individuals of the low type

copy this signal but still defect. Leaving aside signaling costs for a moment, differences

in material payoffs then reflect payoffs of unconditional cooperators and defectors in the

underlying PD. More precisely, with probability λ, high types meet their own type and

realize the cooperative outcome, earning a payoff of one. With the residual probability,
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they meet a low type and lose β. Low types always defect and only earn positive payoffs

when matched with high types, which happens with probability λ and earns them 1 +

α. A fitness differential to the advantage of the high types thus cannot result from

playing the game itself, but only from sufficiently large differences in signaling cost (see

Table 1). Obviously, if no signal is sent, as is the case in the cooperative low pooling

equilibrium, the fitness payoff of the high type can only be smaller than that of the low

type, (ΠH(CCns, ns)− ΠL(CCns, ns))f = −(λα + (1− λ)β) < 0.

Only in the cooperative high pooling equilibrium, a signaling cost disadvantage of the

low type may outweigh the disadvantage of the high type from playing cooperatively in the

game, so that the high type earns a higher fitness payoff than the low type, (ΠH(CCs, s)−
ΠL(CCs, s))f = kfL − k

f
H − (λα + (1− λ)β). Thus, the fitness payoff difference increases

(declines) in the share of the high types if defection is more (less) tempting against

defection than against cooperation, i.e., if β is larger (smaller) than α. If the proportion

of the high type in the population is too small, it is either not worthwhile to mimic the

other type, or the chances to meet another high-type individual are so low that cooperation

ceases to be the best reaction to the signal sent by all individuals. For these small shares

of the high type in the population, the cooperative pooling equilibria break down just

like the cooperative separating equilibrium discussed earlier breaks down for shares of the

high type that are too large. Finally, in the defective low pooling equilibrium, both types

always defect without sending signals and thus all earn the same fitness (and behavioral)

payoff of zero.

A stable inner equilibrium, i.e., an equilibrium where both high types and low types

coexist may be realized around one stable PBE or by the interplay of several PBEs.

We first concentrate on the first case (Proposition 1), and then turn to the second case

(Proposition 2). In the first case, the difference in fitness payoffs between high and low

types must vanish to constitute a stationary point at this particular value of the share

of high types, λ∗. For stability, in the neighborhood of an equilibrium λ∗, high types

must earn strictly more than low types for λ < λ∗ and strictly less for λ > λ∗. The

only candidate, where a stable heteromorphic population is supported by a single PBE

is one associated with the high pooling cooperative equilibrium at 1− α−(kfL−k
f
H)

α−β . This is

illustrated in Figure 2. All other equilibria are characterized by either strictly negative

or strictly increasing payoff differentials. The high pooling cooperative equilibrium exists

and is stable if 1 − α−(kfL−k
f
H)

α−β is inside the λ-support of this equilibrium and the fitness

differential decreases in λ, which is the case if α − β > 0 (see Table 1). Taking these

conditions together yields:
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Proposition 2 There is a stable inner equilibrium at 1 − α−(kfL−k
f
H)

α−β if and only if

max{β + kL
1+α

(α − β), β
β+m−αm} < kfL − k

f
H < α. In this equilibrium both types send the

signal and high types cooperate.

Proof. All proofs are given in Appendix A.
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Figure 2: Differences in material payoffs under the conditions of Proposition 2.

The conditions in Proposition 2 reveal that the existence of inner stable equilibria requires

that the material signaling costs for high types must exceed the corresponding costs for low

types. The spread in signaling cost, however, does not have to compensate for the entire

incentive to defect on cooperative behavior (α) for partial cooperation to be supported by

the CHPE. Note that the necessary difference in material signaling cost increases in α and

β. In other words, the higher the temptation to defect and the higher the loss from being

defected against, the higher the required disadvantage in terms of material signaling cost

for low types will be. Interestingly, although the precise level of m is not decisive with

respect to its behavioural consequence, its level plays a role for partial cooperation induced

by the CHPE. The needed spread in signaling cost weakly decreases in the strength of

the preference for conditional cooperation m. That is, if high types are more inclined to

conditionally cooperate, the signaling device needs to be materially less disadvantageous

for low types.

The equilibrium supported by the CHPE is characterized by partial cooperation and

the heterogeneity of preferences. However, the equilibrium only exists if we assume that

13



low types need to bear higher material signaling cost. Moreover, the CHPE as any pooling

equilibrium, cannot account for heterogeneity regarding communication. Both limitations

will be overcome by the transitional equilibrium, which we will introduce next.

We will now turn to the second case, i.e., whether there is an population equilibrium

constituted by the interplay of several stable PBEs. We will refer to such an equilibrium

as an transitional equilibrium. To give a precise definition we make use of the following

notation. Consider a dynamic system (p(t), λ(t)) with p ∈ ∆, where ∆ denotes the

(n− 1)-simplex and λ ∈ [0, 1].

Definition The triple (λ∗, Pl(λ), Pr(λ)) of a scalar λ∗ and two distinct equilibrium sets

of the fast variable, Pl(λ) and Pr(λ), is called a transitional equilibrium if there exists an

ε > 0 such that

1. after the system has come close enough to λ∗(t) and one of the equilibrium sets at

some t = to, λ(t) fluctuates in the interval (λ∗ − ε, λ∗ + ε) and p(t) will alternate

between the regions of attraction of the two fast-variable equilibria, Pl(λ) and Pr(λ),

for all t > to except for a countable number of tn at which λ(tn) = λ∗ and p(tn) is

not in the region of attraction of either of the equilibria Pl(λ) and Pr(λ) if Pl(λ
∗)

and Pr(λ
∗) do not exist, and

2. ε may become smaller and eventually approach zero when p(t) becomes faster relative

to λ(t).

In other words, λ∗, Pl, and Pr constitute a transitional equilibrium if the dynamic

system is always attracted by an equilibrium in the fast variable at which sign(λ̇) =

sign(λ∗− λ) so that λ is driven from the support of the currently attracting fast-variable

equilibrium into the support of the other fast-variable equilibrium. In our case, we may

have such an equilibrium only at λ = kL
1+α

where two equilibria interplay: the cooperative

separating equilibrium and the cooperative high pooling equilibrium (see Figure 3). Note

that at λ = kL
1+α

a semi-pooling cooperative equilibrium exists.

Proposition 3 states the conditions under which such an stable inner equilibrium may

exist as well as its properties.
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Figure 3: Differences in material payoffs under the conditions of Proposition 3 for kfL > kfH .

Proposition 3 If (1) kL
1+α

> max{ β
β+m−α , k

f
H} and

(2a) β+kfH(α−β) < kfL−k
f
H < β+ kL

1+α
(α−β), there is a stable semi-pooling equilibrium

at λ∗ = kL
1+α

with p∗CDs,s = 1− p∗CDs,ns =
λ∗−kfH

λ∗−kfL+λ∗α+(1−λ∗)β
;

(2b) kfL − k
f
H ≤ β + kfH(α − β), there is a transitional equilibrium at λ∗ = kL

1+α
, Pl(λ) =

{p|pCDs,ns = 1} (CSE), and Pr(λ) = {p|pCDs,s = 1− pCCs,s ≥ kL
(1+α)λ

} (CHPE).

Before we have a closer look at the conditions of Proposition 3, the following Corol-

lary characterizes the transitional equilibrium in terms of type-contingent behavior and

signaling.

Corollary 1 In the transitional equilibrium of Proposition 3 (1) high-type individuals

cooperate among each other but also with those low-type individuals who signal to be of

the high type, (2) the proportion of low-type individuals who signal to be of the high

type fluctuates, and (3) the share of high-type individuals is proportional to the material

signaling cost for low types and fluctuates slightly.

Note that the conditions in Proposition 2 and Proposition 3 are mutually exclusive,

i.e. there is at most one stable inner equilibrium. The conditions for the transitional

equilibrium (see (2b) in Proposition 3) appear less demanding than those in Proposition 2

and those for the semi-pooling equilibrium (see (2a) in Proposition 3), because they do not

state a lower bound for the difference between material signaling cost across types, kfH−k
f
L.
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Indeed, quite surprisingly the transitional equilibrium is consistent with high types bearing

higher signaling cost in terms of fitness than low types (see discussion for details). Thus,

contrary to previuos results in the literature, to sustain cooperation in a transitional

equilibrium does not hinge on the assumption of some cost advantage for cooperative

types. This is because, the material gain in the CSE for high types is determined by their

own frequency in the transitional equilibrium kL
1+α

, which is independent of kH and kfH .

The conditions in Proposition 3 reveal the importance of the strength of the cooperative

preference, measured by m also for the existence of a transitional equilibrium. More

precisely, the higher m the more likely a transitional equilibrium exists. Furthermore, if

the material cost of signaling for both types are small then likely inequalities (1) and (2b)

in Proposition 3 will be satisfied. The following corollary summarizes these insights.

Corollary 2 (1) If the cooperative preference is sufficiently strong and material signaling

cost are sufficiently low then a transitional equilibrium exists. (2) If the cooperative

preference is sufficiently strong, and the material signaling cost are sufficiently low for

high types and do not differ to much across types, then a transitional equilibrium exists.

These rather mild conditions, in particular if compared to those of Proposition 2, and

the property of heterogeneity in all dimensions, i.e., behavior, preferences, and signaling,

underline the appeal of the transitional equilibrium. Interestingly, since the long run

equilibrium may be characterized by limit cycles, a transitional equilibrium also offers

an potential explanation for fluctuations in signaling behavior and therefor the degree of

cooperation, without referring to some kind of stochastic shocks.

6 Discussion

Since we place our analysis of the emergence of cooperation in social dilemmas in an

environment which can not rely on direct or indirect reciprocity, communication and the

implied potential for cooperators to recognize each other are necessary for cooperation to

evolve. Thus, we will focus on discussing the nature of signaling cost and their relation

across types.15 We end this section with a brief comment on the endogeneity of the

strength of the cooperative preference.

15The literature also discusses alternative modes of communication: There are models (e.g. Güth, 1995
; Sethi, 1996) which assume that cooperators can simply recognize each other. There is, however, mixed
evidence to what extend humans can unveil incomplete information about cooperative preferences (see
Frank et al., 1993; Ockenfels and Selten, 2000; Brosig, 2002). Other models make use of an unsubverted
signal like in Arthur Robson’s ‘secret handshake’ model (Robson, 1990). This type of models are prone
to what Ken Binmore calls the ‘transparent disposition fallacy’ (Binmore, 1994).

16



Let us consider the relation of signaling cost first. The transitional equilibrium is least

restrictive regarding the difference in material signaling cost, it even allows for higher

fitness cost for high types. Thus, with respect to the relation of signaling cost across

types only the assumption kL > kH might be considered to be a restriction. If we look at

the conditions for existence and the payoff differences in Table 1 of the involved equilibria,

we observe that this condition is not needed. That is, the existence of the transitional

equilibrium seems to be consistent with both kL < kH , and kfL < kfH , which we find

quite striking. However, to prove the existence of a transitional equilibrium we have to

keep track of all stable equilibria at kL
1+α

and their basins of attraction. Since we made

use of the assumption kL > kH when deriving the set of stable separating, semi-pooling,

and pooling equilibria, we can only conjecture, that our results carry over to the case of

kL < kH . Since there are 19 semi-pooling equilibria to be considered in terms of existence

and stability we leave this for future research. However, we will try to give the intuition

behind this surprising property.

In standard application of signaling theory it is necessary for a separating equilibrium

to exist, that types with higher quality bear lower signaling cost. This is not true in

our signaling-extended PD. To see why, consider first the case where material cost of

signaling and cost in utility terms would coincide. Intuitively, for a separating equilibrium

to exist incentive compatibility has to be ensured. In this respect, for high types the cost-

benefit ratio of signaling is decisive, which is influenced by the strength of the cooperative

preference m. The support of the CSE is given by kH
1+m
≤ λ ≤ kL

1+α
. Thus, the divergence

between fitness and utility in the PD governed by m allows signaling cost for low types

to fall short of those for high types in a separating equilibrium. However, if kL < kH ,

high types would face an evolutionary disadvantage even in the separating equilibrium

(see (ΠH −ΠL)f for the CSE in Table 1). Hence, for an transitional equilibrium to exist,

it is also required that kL > kH . If we, however, distinguish between material and non-

material signaling cost as for the payoffs in the PD, then this implication is not true.

This is because, the fitness payoff in the CSE for a high type depends on two things, the

frequency of interaction with another high type in the transitional equilibrium kL
1+α

, and

the material signaling cost kfH . The former does not depend on material signaling cost,

the latter is independent of the non-material signaling cost. That a distinction between

material and non-material signaling cost is highly reasonable will become apparent when

we turn to the question regarding the nature of such a signaling device next.

Regarding the nature of a signaling device we will give two illustrative examples. A

signal which has no or negligible material cost might consist in sending a smile or some
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other positive gesture, or a brief chat at the beginning of a pairwise encounter. According

to Frank (1988), cooperators are endowed with an advanced emotional system. This

system not only provides the motivation for the cooperative behavior, but also enables

them to signal their cooperative attitude.16 Thus, if it is at all possible for opportunists

to send the signal, they would have much higher non-material signaling cost. This would

warrant the assumption of kL > kH .

To give an illustrative example for material signaling cost, consider a situation where

individuals elbow their way through a rummage sale. There is a table with one good

offered as two variants, goods A and B. There are also two individuals, one preferring

good A, the other preferring good B. However getting both goods is the first best outcome

for both individuals. They can behave cooperatively, allowing the other to select their

preferred good; or they can try to queue-jump and grab both goods, in which case, the

other gets none. If both individuals chose not to cooperate, they will grab one of the goods

by chance, leaving them in expectation with a lower utility than in the cooperative state.

Hence, this example is structurally equivalent to a PD. In this scenario, the signal often

used is to make room for the other person. Such a signal is costly in terms of time, which

usually has some monetary equivalent. If this gesture is received by both individuals, this

might lead to mutual cooperation. Similar to this example, many acts of courtesy may

indeed be understood as a signal for a cooperative attitude. Very often, such acts imply

foregoing some advantages for the benefit of others. In this example it is a priori not clear

which type bears higher opportunity cost, leaving the relation of kfL and kfH ambiguous.

More general, our model can capture any kind of costly behavior prior to the PD, which

is socially accepted as the appropriate signaling device. The selection of any particular

device appears to be a problem of coordination and is beyond the scope of this paper.

However, apparently such devices are used.

Finally, in our model the size of the parameter m measuring the strength of the coop-

erative preference is not driven by evolutionary forces, since no fitness payoff difference

depends on it. However, the size of the parameter does determine the range in which

cooperative equilibria exist. Hence, if two separate populations with different levels of m

are considered, the one with the higher value is more likely to evolve towards a cooper-

ative state. Thus, the population with the stronger cooperative preference would have

16In a laboratory experiment Brosig (2002) finds that cooperative individuals are somewhat better
at predicting their partner’s decisions in one-shot prisoner’s dilemma games than are the individualistic
ones. This, of course, is also consistent with a better ability to signal. Scharleman et al. (2001), and
Eckel and Wilson (2003), for example, explored the reaction of individuals to seeing the faces with whom
they were supposedly interacting. Their results support the potential of smiles as a mechanism to allow
subjects to read the intentions of others.
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an evolutionary edge over the other. Further, if in the course of time, both populations

start interacting with each other, a cooperative population might induce cooperation in

a defective population and vice versa. To analyze such an environment may be relevant

for studying migrational effects on cooperation.

7 Conclusion

This paper tries to shed light on three persistent patterns attributed to cooperative be-

havior in social dilemmas: (1) heterogeneity in preferences (coexistence of opportunists

and conditional cooperators); (2) heterogeneity in behavior (presence of cooperation and

defection); and (3) heterogeneity in communication. We study an evolutionary model

where individuals are able to signal their preference for joint cooperation before engag-

ing in a one shot Prisoners Dilemma. We derive the full set of Bayesian equilibria in the

signaling-extended Prisoner’s Dilemma and study their dynamic stability. This exhaustive

search puts us in the position to study the transition across different equilibria.

The main insight of our paper is that under mild conditions a new type of evolutionary

equilibrium (transitional equilibrium) exists, which is based on the dynamic interplay of

separating, semi-pooling, and pooling equilibria. Only this type of equilibrium can stabi-

lize a population state characterized by heterogeneity with respect to all three dimensions:

preferences, behavior, and signaling. More precisely, in the transitional equilibrium con-

ditional cooperators cooperate among each other but also with those opportunists who

signal to be a cooperator, and the proportion of opportunists who signal to be a coopera-

tor may fluctuate. The transitional equilibrium also provides an explanation for cycles in

behavior, preferences and signaling in equilibrium which do not require mutational forces

or individual errors in terms of execution of strategies, or perception of cooperative sig-

nals. Importantly and quite surprisingly, the transitional equilibrium is consistent with

conditional cooperators bearing higher signaling cost in terms of fitness than opportunists.

For a transitional equilibrium to exist it suffices that the cooperative preference is suffi-

ciently strong and the material signaling cost for both types of individuals are sufficiently

low. As a subsidiary results this solves the problem regarding the instability of separating

equilibria on the population level, immanent to costly signaling models of cooperation.
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A Proofs

Proof of Proposition 2. Stability requires a negative slope of the fitness difference func-

tion, i.e., α − β > 0. Let us first consider kL
1+α
≤ β

β+m−α . In this case, the within-

support condition amounts to β
β+m−α < 1− α−(kfL−k

f
H)

α−β < 1, rearranging yields β
β+m−αm <

kfL − k
f
H < α. If on the other hand kL

1+α
> β

β+m−α , the within-support condition amounts

to kL
1+α

< 1 − α−(kfL−k
f
H)

α−β < 1, rearranging yields β + kL
1+α

(α − β) < kfL − k
f
H < α. Note

that the first pair of inequalities implies that α − β > 0, because β
β+m−αm < α ⇐⇒

m(β − α) < α(β − α) ⇐⇒ β − α < 0. Thus, the two pairs of inequalities are necessary

and sufficient.

Proof of Proposition 3. In the proof of proposition 3 we will recurrently make use of the

following

Definition pCDs ≡ max
{

kH(1+α)
kL(1+m+β)

, kH
kL
−
(
m−α+β
1+α

− β
kL

)
, 1
2

}
Note that our simplifying assumption kH < kL is a sufficient but not a necessary

condition for pCDs < 1.

We observe that for pCDs = 1− pCCs > pCDs and λ(t) = λ∗ = kL
1+α

we have:

ΠH(CDs) = kL
1+α

(1 +m)− (1− kL
1+α

)psβ − kH
≥ kL

1+α
(1 +m)− (1− kL

1+α
)β − kH = ΠH(CCs)

(A.1)

and

ΠH(CDs) = kL
1+α

(1 +m)− (1− kL
1+α

)psβ − kH
>max

x
ΠH(x), x ∈ {CCns,CDns,DCns,DDns,DCs,DDs} ,

(A.2)

where the first inequality is strict if ps < 1 and the second inequality follows from kL
1+α

>
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β
β+m−α , because for pCDs = 1− pCCs > pCDs:

ΠH(DDs) = kL
1+α

(1 + α)− kH = kL(1+m)
1+α

−
(
kL(m−α+β)
β(1+α)

− kL
1+α

)
β − kH < ΠH(CCs)

ΠH(DCs) = kL
1+α

(1 + α)− (1− kL
1+α

)(1− ps)β − kH < ΠH(DDs)

ΠH(CCns) = kL
1+α

((1− pCDs)(1 +m)− pCDsβ)− (1− kL
1+α

)β

< kL
1+α

(1 +m)− (1− kL
1+α

)β − kL
1+α

(1 +m+ β) kH(1+α)
kL(1+m+β)

= ΠH(CCs)

ΠH(CDns) = kL
1+α

((1− pCDs)(1 +m)− pCDsβ)− (1− kL
1+α

)psβ

< kL
1+α

(1 +m)− (1− kL
1+α

)psβ − kL
1+α

(1 +m+ β) kH(1+α)
kL(1+m+β)

= ΠH(CDs)

ΠH(DDns) = kL
1+α

(1− pCDs)(1 + α) < kL

(
1−

(
kH
kL
−
(
m−α+β
1+α

− β
kL

)))
= ΠH(CCs)

ΠH(DCns) = kL
1+α

(1− pCDs)(1 + α)− (1− kL
1+α

)(1− ps)β < ΠH(DDns)

Hence, continuity of the payoffs and Lipschitz-continuity of the dynamics implies that

there exists some ε ∈ (0, λ∗ − kfH) and some µ ∈ (0, 1 − pCDs) such that for all λ ∈
(λ∗ − ε, λ∗ + ε) and all pCDs > 1− µ we have ṗCDs + ṗCCs > 0 and, due to pCDs > pCCs,

payoff monotonicity also implies ṗCDs > 0. Hence, in every sufficiently small neighborhood

of λ∗, pCDs will always grow if it has surpassed some threshold level.

This allows us to prove the proposition under condition (3a): Inserting λ∗, p∗CDs,s, and

p∗CDs,ns into the second line of Table 1 yields (ΠH − ΠL)f = 0 and thus λ̇ = 0. Since

p∗CDs,s+p∗CDs,ns = 1 and thus ṗ∗CDs,s+ ṗ∗CDs,ns = 0, the equation ΠL(s) = λ∗(1 +α)−kL =

0 = ΠL(ns) implies ṗ = 0. λ∗, p∗CDs,s, p
∗
CDs,ns is thus a fix point. To prove stability,

we recall that pCDs = 1 excludes that any other strategy enters the dynamics. We can

thus concentrate our analysis to the variables λ(t) and ps(t) = pCDs,s(t). We rewrite this

dynamic system as

λ̇ = h̃
(
(ΠH − ΠL)f

)
= h̃

(
(λ− kfH)(1− ps) + (kfL − k

f
H − (λα + (1− λ)β))

)
, h̃′ > 0

ṗs = g̃(ΠL(s)− ΠL(ns)) = g̃(λ(1 + α)− kL) , g̃′ > 0

Linearizing the system at the fix point and noting that ∂ṗs
∂ps

= 0 yields

δ1,2 =
1

2

∂λ̇

∂λ
±

√√√√1

2

(
∂λ̇

∂λ

)2

+
∂ṗs
∂λ

∂λ̇

∂ps
(A.3)

as eigenvalues of the characteristic matrix. Since we can write ∂ṗs
∂λ

∂λ̇
∂ps

= −(1+α)g̃′(·)λ−k
f
H

ps
h̃(·) <

0 and due to the larger velocity of ps, g̃
′(·) is large enough to turn the term in the
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root negative. Thus the sign of the real parts of the eigenvalues is given by the sign of
∂λ̇
∂λ

= (1 − p∗CDs,s(1 + α − β))h̃′ which can easily be shown to be negative if and only if

condition (3a) is satisfied. Thus, the fix point is stable if and only if this condition is

satisfied.

We now turn to the case of condition (3b), i.e. we assume that the fix point is not

stable.

First assume that the system has reached such a state in which λ ∈ (λ∗−ε, λ∗+ε) and

pCDs > 1−µ and that λ(t) < λ∗. Then ΠL(s) = λ(1−α)(pCCs + pCDs + pCCns + pCDns)−
kL ≈ λ(1 − α) − kL will become smaller than ΠL(ns) = (1 + α)(pCCs + pDCs + pCCns +

pDCns) ≈ 0 because of the growth of pCDs. Thus, ps will decline towards zero before λ(t)

has declined to λ∗ − ε if the dynamics of p is fast enough relative to the dynamics of λ.

As a consequence, pCDs,ns → 1, i.e. the system is attracted by Pl(λ). The fitness payoff

difference (ΠH − ΠL)f will thus approach λ(t)− kfH > 0 so that λ̇ will eventually become

positive before λ(t) ≤ λ∗ − ε.
Next, assume that the system has reached a state in which λ ∈ (λ∗ − ε, λ∗ + ε) and

pCDs > 1 − µ, but, contrary to the previous paragraph, λ(t) > λ∗. Then ΠL(s) =

λ(1 − α)(pCCs + pCDs + pCCns + pCDns) − kL ≈ λ(1 − α) − kL will become larger than

ΠL(ns) = (1 + α)(pCCs + pDCs + pCCns + pDCns) ≈ 0 and thus ps will grow towards one

before λ(t) has grown to λ∗ + ε if the dynamics of p is fast enough. As a consequence,

pCDs,s → 1, i.e. the system is attracted by an element of Pr(λ). The fitness payoff

difference (ΠH − ΠL)f will thus approach kfL − k
f
H − (λ(t)α + (1− λ(t))β) < 0 so that λ̇

will eventually become negative before λ(t) ≥ λ∗ + ε.

Finally, assume that the system has reached a state in which λ = λ∗ and pCDs > 1−µ.

Then either λ̇ 6= 0 so that the system will be driven into one of the states discussed in

the two previous paragraphs or λ̇ = 0. But then the fitness payoff difference and thus λ̇

will quickly become either positive or negative since ṗCDs > 0 still holds true. The only

exception is the fix point we discussed earlier. Due to condition (3b) it is not stable. As a

consequence, the slightest disturbance will drive the system away from the fix point and

into the fluctuation described in the two previous paragraphs.

At λ∗, Pl(λ), and Pr(λ) the system thus satisfies part 1 of the definition af a transitional

equilibrium. Part 2 is obvious from the line of argument in the proof of part 1.
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B Separating and Pooling Equilibria - Existence and

Stability

In this section we derive the separating and the pooling equilibria of the signaling-extended

PD for a given share of high types λ ∈ (0, 1). Further, we will consider the stability

properties of these equilibria. We apply the notion of asymptotical stability as a stability

concept. An equilibrium point is a fix point ~pf of the dynamical system ṗ(t) = F (~pf (t))

and is said to be asymptotically stable if it meets two conditions. First it needs to be

Lyapunow-stable, i.e. ∀ε > 0,∃δ > 0 : ||~p(0) − ~pf || < δ ⇒ ||~p(t) − ~pf || < ε,∀t ≥ 0,∀~p(t)
being a trajectory, second it needs to be an attractor, i.e. ∃δ > 0 : any trajectory ~p(t)

with ||~p(0)− ~pf || < δ then ||~p(t)− ~pf || −−−→
t→∞

0. The definitions for an equilibrium set are

accordingly (see e.g., Samuelson, 1997).

To proof stability or instability of an equilibrium we will rely on phase diagrams. We

will proof instability by arguing that the system cannot be Lyapunow-stable. In case

of an equilibrium point in the interior of the support of the equilibrium the involved

strategies earn strictly higher payoffs then non-equilibrium strategies. Small perturbation

will not alter this property. Payoff monotone dynamics will decrease the share of the non-

equilibrium strategies. Hence for analyzing the stability properties in that case it suffices

to consider the involved equilibrium strategies and whether the dynamics will reestablish

the equilibrium values given a small perturbation. At the boundaries of the support of an

equilibrium point a non-equilibrium strategy will earn the same profits as the equilibrium

strategies. In that case these strategies needs to be included in the analysis. However

with respect to all other strategies the previous argument still applies.

Note that the expected payoff for each type-contingent strategy is additively separable

in the payoffs for the two types. We will make use of this property when discussing the

stability of equilibria. That is, to proof the (in)stability of a certain equilibrium (set)

we will consider contingent-wise changes of behavior. For this purpose, we introduce the

following notation. Consider the strategy CDs, ns, then pCDs denotes the probability

to play CDs, conditional on being a high type, and pns the probability not to signal,

conditional on being a low type. The definition applies accordingly for any other strat-

egy. Further, we will write expected payoff as linear combination of type-specific payoffs

ΠCDs,ns = λΠH(CDs) + (1−λ)ΠL(ns). Finally, in the phase diagrams thick solid lines or

points correspond to equilibrium sets or points, respectively. Iso-profit lines are depicted

by thick dotted lines.
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B.1 Separating Equilibria

B.1.1 High types signal, low types do not signal

Existence

That is, we look for an equilibrium, such that pCCs,ns + pCDs,ns + pDCs,ns + pDDs,ns = 1.

ΠCCs,ns = λ
[
λ(pCCs,ns + pCDs,ns)(1 +m+ β)− β − kH

]
+ (1− λ)

[
λ(pCCs,ns + pDCs,ns)(1 + α)

]
(B.1)

ΠCDs,ns = λ
[
λ[(pCCs,ns + pCDs,ns)(1 +m)− (pDCs,ns + pDDs,ns)β]− kH

]
+ (1− λ)

[
λ(pCCs,ns + pDCs,ns)(1 + α)

]
(B.2)

ΠDCs,ns = λ
[
λ(pCCs,ns + pCDs,ns)(1 + α)− (1− λ)β − kH

]
+ (1− λ)

[
λ(pCCs,ns + pDCs,ns)(1 + α)

]
(B.3)

ΠDDs,ns = λ
[
λ(pCCs,ns + pCDs,ns)(1 + α)− kH

]
+ (1− λ)

[
λ(pCCs,ns + pDCs,ns)(1 + α)

]
(B.4)

ΠCCns,ns = λ
[
λ[(pCCs,ns + pDCs,ns)(1 +m+ β)]− β

]
+ (1− λ)

[
λ(pCCs,ns + pDCs,ns)(1 + α)

]
(B.5)

ΠCDns,ns = λ
[
λ[(pCCs,ns + pDCs,ns)(1 +m)− (pCDs,ns + pDDs,ns)β]

]
+ (1− λ)

[
λ(pCCs,ns + pDCs,ns)(1 + α)

]
(B.6)

ΠDCns,ns = λ
[
λ[(pCCs,ns + pDCs,ns)(1 + α)]− (1− λ)β

]
+ (1− λ)

[
λ(pCCs,ns + pDCs,ns)(1 + α)

]
(B.7)

ΠDDns,ns = λ
[
λ(pCCs,ns + pDCs,ns)(1 + α)

]
+ (1− λ)

[
λ(pCCs,ns + pDCs,ns)(1 + α)

]
(B.8)

Note that for λ ∈ (0, 1) and pCCs,ns, pCDs,ns, pDCs,ns, pDDs,ns > 0, it follows that ΠCCs,ns < ΠCDs,ns, ΠDCs,ns < ΠDDs,ns,

ΠCCns,ns < ΠCDns,ns, and ΠDCs,ns < ΠDDs,ns. After deletion of these strictly dominated strategies, payoffs of the remaining

strategies are given by:

ΠCDs,ns = λ
[
λ[pCDs,ns(1 +m)− pDDs,nsβ]− kH

]
, ΠDDs,ns = λ

[
λ(pCDs,ns)(1 + α)− kH

]
(B.9)

ΠCDns,ns = λ
[
− (pCDs,ns + pDDs,ns)β

]
, ΠDDns,ns = 0 (B.10)

For a separating equilibrium where high types send the signal and low types don’t, only two not dominated strategies are left,

CDs, ns and DDs, ns , i.e. pCDs,ns + pDDs,ns = 1. Thus, CDns, ns would earn strictly less than DDns, ns (see B.10).

30



1. Let us first analyze the case pCDs,ns = 1. In that case the following three conditions are necessary and sufficient for this

to constitute an equilibrium:

(i) ΠCDs,ns > ΠDDs,ns, which is always satisfied, because of m > α.

(ii) ΠCDs,ns ≥ ΠDDns,ns ⇔ λ ≥ kH
1+m

.

(iii) ΠCDs,ns ≥ ΠCDs,s ⇔ λ ≤ kL
1+α

.

Thus, the three conditions are equivalent to kH
1+m
≤ λ ≤ kL

1+α
. Note that since kL > kH , and m > α the λ-support for

this equilibrium is not empty.

2. Let us now analyze the case pDDs,ns = 1. In that case DDns, ns would earn strictly higher payoffs, hence such an

equilibrium cannot exist.

3. Finally, let us consider a mixed equilibrium, i.e. pCDs,ns + pDDs,ns = 1. In that case the following three conditions are

necessary and sufficient for this to constitute an equilibrium:

(i) ΠCDs,ns = ΠDDs,ns ⇔ pCDs,ns = β
β+m−α .

(ii) ΠDDs,ns ≥ ΠDDns,ns ⇔ pCDs,ns ≥ λβ+kH
λ(1+m+β)

.

(iii) ΠCDs,ns ≥ ΠCDs,s ⇔ pCDs,ns ≤ kL
λ(1+α)

.

At pCDs,ns = β
β+m−α the last two conditions are equivalent to β+m−α

β(1+α)
kH ≤ λ ≤ β+m−α

β(1+α)
kL.

Stability

1. Let us first analyze the stability of pCDs,ns = 1. This equilibrium is certainly stable in the interior range kH
1+m

< λ < kL
1+α

since all payoff inequalities hold strictly. At the upper boundary λ = kL
1+α

, the strategies CDs, ns and CDs, s earn the

same profits, i.e. low types are indifferent between signaling and not sending the signal. Consider a small perturbation

such that CDs, s is played with a small positive probability. To reestablish pCDs,ns = 1, the share of high types playing
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CDs must decrease, because ΠL(s) − ΠL(ns) = λpCDs(1 + α) − kL. However, for small perturbations CDs is still

dominant for high types. Hence, CDs persists as part of the equilibrium strategy and there is no force reestablishing the

non-signaling contingency for low types. Thus, the separating equilibrium is not stable at the upper bound. A similar

argument establishes, that it is also not stable at the lower bound. At the lower bound kH
1+m

, the strategies CDs, ns and

DDns, ns earn the same profits, i.e. high types are indifferent between cooperating and incurring the cost of the signal

on the one hand, and defecting and no signaling on the other. Consider a random drift, such that pDDns,ns > 0, this

will lower profits for CDs, ns and leaves profits for DDns, ns unchanged. Hence, the equilibrium will not be restored.

In other words, this equilibrium is not stable at λ = kH
1+m

.

2. Let us next consider the equilibrium with pCDs,ns = β
β+m−α , pDDs,ns = m−α

β+m−α .

Given the following differences in type-specific payoffs:

ΠH(CDs)− ΠH(DDs) ≥ 0⇔ pCDs ≥
β − (1− λ)βpns
λ(m− α− β)

ΠL(ns)− ΠL(s) ≥ 0⇔ pCDs ≤
kL

λ(1 + α)

, we obtain the following phase diagram. Note that for the sup-

port of that equilibrium kL
λ(1+α)

> kH+λβ−(1−λ)βpns

λ(m−α−β) holds. Note fur-

ther that the upper bound of the support λ ≤ m−α+β
β

kL
1+α

implies
β

m−α+β ≤
kL

λ(1+α)
. Additionally, kH+λβ

λ(1+m+β)
≤ β

m−α+β ⇔
kH

λ(1+α)
≤

β
m−α+β . As the diagram clearly indicates, this equilibrium is unsta-

ble for all λ in the support.
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B.1.2 High types do not signal, low types signal

Existence

That is, we look for an equilibrium, such that pCCns,s + pCDns,s + pDCns,s + pDDns,s = 1. Let us again first study the signaling

contingency for high types.

ΠCCs,s = λ
[
λ(pCCns,s + pCDns,s)(1 +m+ β)− β − kH

]
+ (1− λ)

[
λ(pCCns,s + pCDns,s)(1 + α)− kL

]
(B.11)

ΠCDs,s = λ
[
λ[(pCCns,s + pCDns,s)(1 + α)]− (1− λ)β − kH

]
+ (1− λ)

[
λ(pCCns,s + pCDns,s)(1 + α)− kL

]
(B.12)

ΠDCs,s = λ
[
λ[(pCCns,s + pCDns,s)(1 +m+ β)− β]− kH

]
+ (1− λ)

[
λ(pCCns,s + pCDns,s)(1 + α)− kL

]
(B.13)

ΠDDs,s = λ
[
λ[(pCCns,s + pCDns,s)(1 + α)]− kH

]
+ (1− λ)

[
λ(pCCns,s + pCDns,s)(1 + α)− kL

]
(B.14)

ΠCCns,s = λ
[
λ(pCCns,s + pDCns,s)(1 +m+ β)− β − kH

]
+ (1− λ)

[
λ(pCCns,s + pCDns,s)(1 + α)− kL

]
(B.15)

ΠCDns,s = λ
[
λ[(pCCns,s + pDCns,s)(1 + α)]− (1− λ)β − kH

]
+ (1− λ)

[
λ(pCCns,s + pCDns,s)(1 + α)− kL

]
(B.16)

ΠDCns,s = λ
[
λ[(pCCns,s + pDCns,s)(1 +m+ β)− β]− kH

]
+ (1− λ)

[
λ(pCCns,s + pCDns,s)(1 + α)− kL

]
(B.17)

ΠDDns,s = λ
[
λ[(pCCns,s + pDCns,s)(1 + α)]− kH

]
+ (1− λ)

[
λ(pCCns,s + pCDns,s)(1 + α)− kL

]
(B.18)

Note that for λ ∈ (0, 1) and pCCns,s, pCDns,s, pDCns,s, pDDns,s > 0, it follows that ΠCCs,s < ΠDCs,s, ΠCDs,s < ΠDDs,s, ΠCCns,s <

ΠDCns,s, and ΠCDns,s < ΠDDns,s. After deletion of these strictly dominated strategies, payoffs for low types to signal is −kL,

whereas signaling yields an expected payoff of λpDCns,s(1 +α). Thus, strategies that imply no signaling for low types generate

strictly higher payoffs. Hence, such an equilibrium cannot exist.
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B.2 Pooling Equilibria

B.2.1 High types and low types do not signal

Existence

That is, we look for an equilibrium, such that pCCns,ns + pCDns,ns + pDCns,ns + pDDns,ns = 1. Let us again first study the

signaling contingency for high types.

ΠCCs,ns = λ
[
λ[(pCCns,ns + pCDns,ns)(1 +m+ β)− β − kH

]
+ (1− λ)

[
λ(pCCns,ns + pDCns,ns)(1 + α)

]
(B.19)

ΠCDs,ns = λ
[
λ[(pCCns,ns + pCDns,ns)(1 + α)]− kH

]
+ (1− λ)

[
λ(pCCns,ns + pDCns,ns)(1 + α)

]
(B.20)

ΠDCs,ns = λ
[
λ[(pCCns,ns + pCDns,ns)(1 +m+ β)− β − kH

]
+ (1− λ)

[
λ(pCCns,ns + pDCns,ns)(1 + α)

]
(B.21)

ΠDDs,ns = λ
[
λ[(pCCns,ns + pCDns,ns)(1 + α)]− kH

]
+ (1− λ)

[
λ(pCCns,ns + pDCns,ns)(1 + α)

]
(B.22)

ΠCCns,ns = λ
[
λ[(pCCns,ns + pCDns,ns)(1 +m+ β)− β

]
+ (1− λ)

[
λ(pCCns,ns + pDCns,ns)(1 + α)

]
(B.23)

ΠCDns,ns = λ
[
λ(pCCns,ns + pCDns,ns)(1 + α)

]
+ (1− λ)

[
λ(pCCns,ns + pDCns,ns)(1 + α)

]
(B.24)

ΠDCns,ns = λ
[
λ[(pCCns,ns + pCDns,ns)(1 +m+ β)− β

]
+ (1− λ)

[
λ(pCCns,ns + pDCns,ns)(1 + α)

]
(B.25)

ΠDDns,ns = λ
[
λ(pCCns,ns + pCDns,ns)(1 + α)

]
+ (1− λ)

[
λ(pCCns,ns + pDCns,ns)(1 + α)

]
(B.26)

Note that in a pooling equilibrium where nobody sends the signal, CCns, ns and DCns, ns (CDns, ns and DDns, ns) will

always earn the same profits irrespective of the chosen signal and the particular composition. We will denote profits by

ΠCCns,ns/DCns,ns, and ΠCDns,ns/DDns,ns. Since those pairs are indistinguishable we only have to consider the following cases:

1. Consider first the case pCCns,ns + pDCns,ns = 1.

(i) In that case ΠCCns,ns/DCns,ns > ΠCCs,ns/DCs,ns, ΠCDns,ns/DDns,ns > ΠCDs,ns/DDs,ns, and ΠCCns,ns/DCns,ns > ΠCCns,s/DCns,s,

because pCDns,ns = 0.
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(ii) ΠCCns,ns/DCns,ns ≥ ΠCDns,ns/DDns,ns ⇔ λ ≥ β
β+m−α . Because of ΠCCns,ns/DCns,ns > ΠCDns,ns/DDns,ns > ΠCDs,ns/DDs,ns,

the condition λ ≥ β
β+m−α is necessary and sufficient.

2. Consider next the case pCDns,ns + pDDns,ns = 1.

(i) In that case ΠCCns,ns/DCns,ns < ΠCDns,ns/DDns,ns, because pCCns,ns + pCDns,ns = 0.

(ii) ΠCDns,ns/DDns,ns ≥ ΠCDs,ns/DDs,ns ⇔ λpCDns,ns ≤ kH
1+α

.

(iii) ΠCDns,ns/DDns,ns ≥ ΠCCs,ns/DCs,ns ⇔ λpCDns,ns ≤ β+kH
1+m+β

.

(iv) ΠCDns,ns/DDns,ns ≥ ΠCDns,s/DDns,s ⇔ λpCDns,ns ≤ kL
1+α

.

Note that, kL
1+α

> kH
1+α

. Thus, (ii) and (iii) are necessary and sufficient.

3. Finally, consider the case pCDns,ns + pDDns,ns + pCCns,ns + pDCns,ns = 1.

(i) In that case all no-signaling strategies earn the same payoff: λ
[
λ[(pCCns,ns + pCDns,ns)(1 + m + β) − β

]
+ (1 −

λ)
[
λ(pCCns,ns + pDCns,ns)(1 + α)

]
= λ

[
λ(pCCns,ns + pCDns,ns)(1 + α)

]
+ (1 − λ)

[
λ(pCCns,ns + pDCns,ns)(1 + α)

]
⇔

λ(pCCns,ns + pDCns,ns) = β
β+m−α .

(ii) ΠCCns,ns/DCns,ns ≥ ΠCCs,ns/DCs,ns ⇔ λ(pCDns,ns − pDCns,ns) ≤ kH
1+m+β

.

(iii) ΠCDns,ns/DDns,ns ≥ ΠCDs,ns/DDs,ns ⇔ λ(pCDns,ns − pDCns,ns) ≤ kH
1+α

.

(iv) ΠCDns,ns/DDns,ns/CCns,ns/DCns,ns ≥ ΠCDns,s/DDns,s/CCns,s/DCns,s ⇔ λ(pCDns,ns − pDCns,ns) ≤ kL
1+α

.

Note that, because of kL > kH and m > α, (ii) implies (iii) and (iv). Thus, such an equilibrium exists if and only if

λ(pCCns,ns + pDCns,ns) = β
β+m−α and λ(pCDns,ns − pDCns,ns) ≤ kH

1+m+β
.
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Stability

1. This equilibrium set is stable for λ > β
m−α+β since all inequalities hold strictly, i.e. for any small perturbation the

equilibrium strategies earn strictly more than any other strategy. Note that not necessarily the pre-perturbation shares

are reestablished, but that the sum of their shares equals unity. At the boundary λ = β
m−α+β there are too few high

types and the agents become indifferent between cooperation and defection, i.e. ΠCCns,ns/DCns,ns = ΠCDns,ns/DDns,ns.

Note that it is still a strictly best response not to signal contingent on being a low type. Given the following differences

in type-specific payoffs:

ΠH(CCns)− ΠH(CDns) ≥ 0⇔ pCCns ≥
β

λ(m− α) + β
− pDCns

, we obtain the following phase diagram.

Note that at λ = β
m−α+β a perturbation from CCns, ns to-

wards DDns, ns decreases the payoffs for the equilibrium strate-

gies strictly more than for DDns, ns and decreases profits for all

other strategies weakly more, i.e. those strategies still earn strictly

less than DDns, ns, and the share of DDns, ns increases. Hence,

there is no force reestablishing the equilibrium set. Note that the

iso-profit line is shifted towards the boundary as λ approaches the

lower limit of the support β
m−α+β . As the diagram clearly indicates,

this equilibrium is stable for all λ > β
m−α+β in the support.

CCnsp

DCnsp

 

 

/

/ 0

H

H

CCns DCns

CDns DDns



 

1

1

2. This set of equilibria is stable for pCDns,ns <
1
λ

min{ kH+β
1+m+β

, kH
1+α
} since all inequalities hold strictly, i.e. for any small

perturbation the equilibrium strategies earn strictly more than any other strategy.
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Given the following differences in type-specific payoffs:

ΠH(CDns)− ΠH(DDns) = −β(1− λ)ps ≤ 0

ΠL(ns)− ΠL(s) = kL − λ(1 + α)pCDns ≥ 0⇔ pCDns ≤
kL

λ(1 + α)

, we obtain the following phase diagram. As the diagram clearly

indicates, this equilibrium set is stable for all λ in the support.

CDnsp

sp

 1

Lk

 

   
min ,

1 1

H Hk k

m



   

  
 

    

    0H HCDns DDns  

3. Observe that the payoffs for the equilibrium strategies can be written as linear functions in pCCns,ns + pDCns,ns.

Given the following differences in type-specific payoffs:

ΠH(CCns)− ΠH(CDns) ≥ 0⇔ pDCns ≤
β

λ(m− α + β)
− pCCns

, we obtain the following phase diagram. All other payoff differences

of equilibrium strategies vanish. The figure incorporates the two

conditions for existence, i.e., λ(pCCns,ns + pDCns,ns) = β
β+m−α and

λ(pCDns,ns − pDCns,ns) ≤ kH
1+m+β

. As the diagram clearly indicates,

this equilibrium set is unstable.

DCnsp

CCnsp
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H
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CDns DDns



 

 1

H
CDns

k
p
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 m



   

1
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B.2.2 High types and low types signal

Existence

That is, we look for an equilibrium, such that pCCs,s + pCDs,s + pDCs,s + pDDs,s = 1. Let us again first study the signaling

contingency for high types.

ΠCCs,s = λ
[
λ(pCCs,s + pCDs,s)(1 +m+ β)− β − kH

]
+ (1− λ)

[
λ(pCCs,s + pCDs,s)(1 + α)− kL

]
(B.27)

ΠCDs,s = λ
[
λ(pCCs,s + pCDs,s)(1 +m+ β)− β − kH

]
+ (1− λ)

[
λ(pCCs,s + pCDs,s)(1 + α)− kL

]
(B.28)

ΠDCs,s = λ
[
λ(pCCs,s + pCDs,s)(1 + α)− kH

]
+ (1− λ)

[
λ(pCCs,s + pCDs,s)(1 + α)− kL

]
(B.29)

ΠDDs,s = λ
[
λ(pCCs,s + pCDs,s)(1 + α)− kH

]
+ (1− λ)

[
λ(pCCs,s + pCDs,s)(1 + α)− kL

]
(B.30)

ΠCCns,s = λ
[
λ(pCCs,s + pCDs,s)(1 +m+ β)− β

]
+ (1− λ)

[
λ(pCCs,s + pCDs,s)(1 + α)− kL

]
(B.31)

ΠCDns,s = λ
[
λ(pCCs,s + pCDs,s)(1 +m+ β)− β

]
+ (1− λ)

[
λ(pCCs,s + pCDs,s)(1 + α)− kL

]
(B.32)

ΠDCns,s = λ
[
λ(pCCs,s + pCDs,s)(1 + α)

]
+ (1− λ)

[
λ(pCCs,s + pCDs,s)(1 + α)− kL

]
(B.33)

ΠDDns,s = λ
[
λ(pCCs,s + pCDs,s)(1 + α)

]
+ (1− λ)

[
λ(pCCs,s + pCDs,s)(1 + α)− kL

]
(B.34)

Note that in a pooling equilibrium where everybody sends the signal, CCs, s and CDs, s (DCs, s and DDs, s) will always

earn the same profits irrespective of the chosen signal and the particular composition. We will denote profits by ΠCCs,s/CDs,s,

and ΠDCs,s/DDs,s. Since those pairs are indistinguishable we only have to consider the following cases:

1. Consider first the case pCCs,s + pCDs,s = 1.

(i) ΠCCs,s/CDs,s ≥ ΠCCns,s/CDns,s ⇔ λpCDs,s ≥ kH
1+m+β

.

(ii) ΠCCs,s/CDs,s ≥ ΠDCs,s/DDs,s ⇔ λ ≥ β
β+m−α .

(iii) ΠCCs,s/CDs,s ≥ ΠDCns,s/DDns,s ⇔ λ ≥ β+kH
β+m−α+pCDs,s(1+α)

.
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(iv) ΠCCs,s/CDs,s ≥ ΠCCs,ns/CDs,ns ⇔ λ ≥ kL
pCDs,s(1+α)

.

Note that (iv) implies (i), for (iv) to be satisfied a strictly positive share needs to play CDs, s. Furthermore, (ii) and

(iv) imply (iii). Hence, for λ ≥ max{ kL
pCDs,s(1+α)

, β
β+m−α} such an equilibrium exists.

2. Consider next the case pDCs,s + pDDs,s = 1. This cannot constitute an equilibrium, because not sending the signal

contingent on being a low types yields strictly higher payoffs.

3. Finally, consider the case pCDs,s + pDDs,s + pCCs,s + pDCs,s = 1.

In that case all signaling strategies earn the same payoff: λ
[
λ(pCCs,s + pCDs,s)(1 +m+β)−β− kH

]
+ (1−λ)

[
λ(pCCs,s +

pCDs,s)(1 + α) − kL
]

= λ
[
λ(pCCs,s + pCDs,s)(1 + m + β) − β − kH

]
+ (1 − λ)

[
λ(pCCs,s + pCDs,s)(1 + α) − kL

]
⇔

λ(pCCs,s + pCDs,s) = β
β+m−α . The following condition are necessary and sufficient for existence.

(i) ΠCCs,s/CDs,s ≥ ΠCCns,s/CDns,s ⇔ λ(pCDs,s − pDCs,s) ≥ kH
1+m+β

.

(ii) ΠDCs,s/DDs,s ≥ ΠDCns,s/DDns,s ⇔ λ(pCDs,s − pDCs,s) ≥ kH
1+α

.

(iii) ΠCDs,s/DDs,s/CCs,s/DCs,s ≥ ΠCDs,ns/DDs,ns/CCs,ns/DCs,ns ⇔ λ(pCDs,s − pDCs,s) ≥ kL
1+α

.

Note that (ii) implies (i), and (iii) implies (ii). Hence, such an equilibrium exists if and only if λ(pCCs,s + pCDs,s) =
β

β+m−α ,and λ(pCDs,s − pDCs,s) ≥ kL
1+α

.

Stability

1. Note that at pCDs = kL
λ(1+α)

low types are indifferent between signaling and no signaling. As soon as low types start not

to signal, CDs earns strictly higher payoffs than CCs such that the incentive for low types to signal will be restored.

However, at λ = kL
λ(1+α)

pCDs equals 1 an therefor can not increase. Thus, this equilibrium is unstable at the upper

bound kL
λ(1+α)

. If λ = β
m−α+β , then high types given a received signal are indifferent between cooperative and defective

play. For a small increase in the share pDCs,s + pDDs,s, the profits for the equilibrium strategies will decline more than
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the profits for DCs, s/DDs, s. Since the equilibrium strategies and DCs, s/DDs, s will still earn higher profits than

any other, there is no force bringing back the system to pCCs,s + pCDs,s = 1. Hence, the equilibrium is unstable at

λ = β
m−α+β .

Given the following differences in type-specific payoffs:

ΠH(CCs)− ΠH(CDs) = −β(1− λ)pns ≤ 0

ΠL(ns)− ΠL(s) ≥ 0⇔ pCDns ≤
kL

λ(1 + α)

, we obtain the following phase diagram.

As the diagram clearly indicates, this equilibrium set is stable for

λ > max{ kL
pCDs,s(1+α)

, β
β+m−α}.

CDsp

nsp

 1

Lk

 

    0H HCCs CDs  

2. Let pCCs + pCDs = x and pDCs + pDDs = y. Note that y = 1− x, because of pCCs + pCDs + pDCs + pDDs = 1. Thus, we

can write payoffs for high types as: ΠH(CCs) = ΠH(CDs) = λx(1 + m + β) − β − kH , and ΠH(DCs) = ΠH(DDs) =

λx(1+α)−kH . Given any perturbation that violates the equilibrium condition λ(pCCs+pCDs) = β
m−α+β the equilibrium

set will not be restored because ΠH(CCs/CDs)−ΠH(DCs/DDs) = λx(m−α+ β)− β ≥ 0⇔ λx ≥ β
m−α+β . Thus, an

increase in x is self enforcing.
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C Stable Semi-Pooling Equilibria

strat. eq. shares conditions for existence support payoff differences

CCs, ns pCCs,ns = 1− kH+(1−λ)β
λ(1+m)

(1): β
β+m−α <

kH
1+α

< 1+m
1+α

kH+β
1+m+β

λ < 1 ΠH − ΠL =

CDns, ns pCDns,ns = kH+(1−λ)β
λ(1+m)

(m− α)λ(1− kH+(1−λ)β
λ(1+m)

) > 0

(2): kH
1+α
≤ β

β+m−α 1− m−α
β

kH
1+α

< λ < 1 (ΠH − ΠL)f =

−αλ(1− kfH+(1−λ)β
λ(1+m)

) < 0

DCs, ns pDCs = 1
2
(1− kL

λ(1+α)
) β(1 + α) > Φ β+kL−kH

β+m−α < λ ΠH − ΠL =

DCs, s pCDns = 1
2
(1 + kL

λ(1+α)
) < 1− 1

β
(1+m
1+α

kL − kH) (m− α)λpDCs − β(1− λ)ps < 0

CDns, ns pns = 1
2
(1 + 1

(1−λ)β )(1+m
1+α

kL − kH) (ΠH − ΠL)f =

CDns, s ps = 1
2
(1− 1

(1−λ)β )(1+m
1+α

kL − kH) −αλpDCs − β(1− λ)ps < 0

DCs, ns pDCs,ns = 1
2
(1− kH+(1−λ)β

λ(1+m)
) λ > max{ kH+β

1+m+β
,Θ,Ψ} ΠH − ΠL = (m− α)λpDCs,ns > 0

CDns, ns pCDns,ns = 1
2
(1 + kH+(1−λ)β

λ(1+m)
) (ΠH − ΠL)f = −αλpDCs,ns < 0

Φ = β+m−α
m−α ((1 +m)kL − (1 + α)kH) + kL−kH

m−α β(1 + α) , Θ = 1− 1
β(1+α

((1 +m)kL − (1 + α)kH) , Ψ = 1− (m−α)(1+m+kH)
(β+m−α)(1+m)+(1+α)β

Table 2: Additional Stable Semi-Pooling Equilibria
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D Semi-Pooling Equilibria – Existence and Stability 

1. Existence 

We will turn to the analysis of equilibria where only parts of high types or low types signal.  

Before we start we will have a closer look on the payoffs for various strategies and their differences. This will significantly simplify the analysis. The 

following table gives the payoffs for each strategy:  

 

It will be useful to calculate differences among strategies with different behavior but the same signal and among strategies with different signals.  
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(1) Within-differences:  

 

(2) Cross-differences:  

 

All other differences can be expressed by the within-differences and the four cross differences above.  
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Observation 1:  

(i)  

(ii)  

A consequence of (ii) of observation 1 is that whenever low types are indifferent in an equilibrium between signaling and not signaling, high types strictly 

prefer to signal over not to signal given unconditional defective behavior. Put differently, if unconditional defection with and without signal is part of an 

equilibrium, then low types will prefer not to signal in such an equilibrium.  

Observation 2:  

(i)    note that differences depend only on non-signaling shares 

(ii)  

(iii) Corollary:   

Implication:  

If within the 4 signal or 4 non-signal behaviors 3 strategies earn the same profit then all 4 strategies earn the same profit. Hence, as a first consequence, 

there are for each of the cases signal/ no signal only three possibilities: either all 4 strategies earn the same payoff, 2 equal profitable strategies earn strictly 

more than 2 others, or a single strategy earns more than all others.  

If we look at the corollary of observation 2 that the sum of profits for unconditional strategies must equal the sum of profits for conditional strategies, then 

both conditional can only earn the same profits in equilibrium if the two unconditional strategies earn the same profits too, i.e. all 4 strategies earn the same, 

otherwise the two unconditional (conditional) strategies must be dominated by one conditional (unconditional) strategy. Furthermore this dominating 

strategy dominates the second condition (unconditional) strategy. Hence either all strategies earn the same profits or a conditional an unconditional strategy 

earn the same (highest) payoffs or a single conditional/unconditional strategy earns the highest payoff. The following Lemma summarizes.  
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Lemma: For each signaling strategy (signal/ no-signal) the table below gives all possible behavioral combinations that could be part of an equiilbrium. 

 unconditional versus conditional    
1. CC=CD ; DC=DD 1.1. CC=CD=DC=DD 

  1.2.  CC=CD>DC=DD 

  1.3.  CC=CD<DC=DD 

2.  CC>CD ; DC>DD 2.1.  CC=DC 

  2.2.  CC>DC 

  2.3. CC<DC 

3.  CC<CD ; DC<DD 3.1. CD=DD 

  3.2. CD>DD 

  3.3. CD<DD 

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument.-1: possible cases for signaling / no signaling 

Proof: whenever CC and CD have a strict payoff relation, so do DC and DD, hence either CC/DC and CD/DD have a strict payoff relation or all four 

strategies earn the same profit. In the former case there are three possible relations among the dominating pair: either the relation is strict, then we have the 

situation of an unique behavior or they could earn the same payoff. Hence either all behavior earns the same payoff, a pair of conditional and unconditional 

behavior (CC/DC or CD/DD) earn the highest payoff or any unique behavior earns highest payoff.  

If we neglect for a moment that for a given signal all 4 behaviors are part of a semi pooling equilibrium then following the lemma above, the table below 

gives all possible combinations of strategies in a semipooling equilibrium.  

 
      

 

N (2.)  N (2.)    

 

N (7.) N (3.) N (3.)    

 

N (2.) N (3.) N (3.)  N (6.)  

 

N (4.)  N (4.) N (5.)  N (5.) 

 

N (4.)  N (4.) N (5.) N (1.) N (5.) 

 

N (4.)  N (4.) N (5.)  N (5.) 

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument.-2: N – cannot exist; for colored cells low types don’t signal, because either  and 

 are not played (blue) or  earns highest payoffs (gray) (see 8.-9.)  

However, if we have a closer look at the respective differences we can significantly reduce the number of possible combinations.  
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, hence if neither  nor  is played then low types strictly prefer not 

to signal, i.e. . 

Observation 3:  
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Before we turn to the 14 remaining cases of table 2, we check for semi-pooling equilibria that contain all 4 behaviors for at least one signal.  

1. All 8 strategies are played by high types (4 vs. 4) 

Due to  there cannot be an equilibrium such that both equations 

are satisfied, required for an equilibrium where all strategies earn the same profits.  

2. All four signaling strategies earn same profit, i.e.  (4 versus 2/1) 

2.1. , i.e.   (*) 

2.1.1.  

 earn same profits, i.e.  Hence  

cannot be part of the equilibrium, cannot earn the same profits as . Therefor such an equilibrium cannot exist. 

2.1.2. , i.e.   

 is violated if  

which is necessary for a semi-pooling equilibrium. 
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Therefor such an equilibrium cannot exist. 
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 (iii) is always satisfied in a semi-pooling equilibrium  
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In summary the equilibrium set is given by:  

Note that the condition . On the other hand in a semi-pooling 

equilibrium where high apply both types of signals we must have: 
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All conditions of the type 

Conditions for existence: 
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2.2.1.2. Eq. for :  plugged into  
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(i) gives us  which for a semi-pooling equilibrium ( ) requires  hence 

 Note that with  (ii) will always be satisfied.  
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In summary equilibrium set is given by   
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Hence we are left with the following conditions for existence:  
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(*) and (iv) remain to be checked: 
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note that the lower bound is always smaller than the upper bound due to



All conditions of the type 

 

 

 
 

 

 

 

 

 

11
1 1

( ) (1 ) (1 )

( )(1

0,1

0

1

0 :

0 :

0 1

)

1
:

CDm

CDm

CCm

DCm

DDm

CDm

CDm

CDm

p p

p

m p
m

p
m

p

p

m m m

k m
p

m m

m
pp

m

   
 

       

   

 




 

  







  
                

   

  





  
 

 

 

  
     

, <1 reduce to:

(1): true

(2): 

(3): 

   

 

 

 

 

 

 

   

 

     

 

 

11

1 1

1 1 1 11 1
min 1 , 1

1 1 1 1
CDm

x y z

k

m m m m

k m k
p

m m m m m m m m m m

 

      

          

                 


 

      


        

                              

 

 

 

       

  

( )

2

0 1 0
1

0

2 2
0

1

ivk

k

m
x x

y
m

m m m m
z

m m




 




 

       


 




 


 
  


     



  
 

         
  

  

a) 

b) 

c) 

 



 

Note that for  the necessary condition  gives an nonempty interval if 
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Conditions for existence:  

 

2.2.2.  , i.e.  
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Therefor such an equilibrium cannot exist. 
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3. All four non-signaling strategies earn the same payoffs , i.e.   

3.1.  i.e.  

 

  

 (i) 

(i) becomes:  and implies that 

 however a semi-pooling equilibrium requires strict positivity for at least one of the shares. 

Therefor such an equilibrium cannot exist. 
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(iv) 

 

(v) 

 

a) If (iii) holds with equality then the last equality implies that  then (ii) becomes: 

 Hence such a semi-pooling 

equilibrium cannot exist.  

b) If (iii) holds as a strict inequality then  and (ii) becomes  which 

holds only for , i.e. in a pooling but not semi-pooling equilibrium. 
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4. 1-2 strategies versus 1-2 strategies 

In general there are 36 possible matchings: CC, DC, CC and DC, CD, DD, CD and DD , six for each signaling strategy, however as summarized in Table 

Fehler! Kein Text mit angegebener Formatvorlage im Dokument.-3 we excluded 21 of them; in the following we consider the remaining 14 cases:  

 
      

 

N (2.) N (4.1.1) N (2.) (4.1.3.) N (4.1.2.) N (4.1.2.) 

 

N (7.) N (3.) N (3.) (4.2.3.2./4.2.3.3.) N (4.2.1.) N (4.2.2.) 

 

N (2.) N (3.) N (3.) (4.3.1.) N (6.) N (4.3.2.) 

 

N (4.) (4.4.1.) N (4.) N (5.) (4.4.2.) N (5.) 

 

N (4.) N (4.5.) N (4.) N (5.) N (1.) N (5.) 

 

N (4.) (4.6.1.) N (4.) N (5.) (4.6.2.) N (5.) 

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument.-3: Overview of subcases; N: non-existence of the considered equilibrium; number in 

parenthesis either refers to the list of payoff differences below Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument.-2 or subsection dealing with 

the corresponding case.  
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The last inequality is violated; hence such an equilibrium cannot exist.  
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, i.e. (ii) implies (iii). 

Finally all conditions of the type  

 

Conditions for existence:    

  

   
1 1

,
2 2 1 2 2 1

CDm DCm

k k
p p

   
   

   

 

 

11 1

2 2 1 1
m k

m
p k

  

 
   

   

 

   
 

( ) :

( ) :

0,1  adds 

ii m k k

iii m k k

k k m

   

   

 

    

    

   

 

 

 

     

0,1

11
1 1

1 1 1

1 1 1

p p

mk k
k k

m k k


   

   



   
           

     

, <1 reduce to: 

< nec.:

 

 

 

   

      
    

11
1

1

1

1 2

1 1

1

mk k
k k

m

m k

m k m
k

m m

k




   

   

    

   



  
       

   

    


    

 

1. <

2.  

3.   

4.  



4.4.1.3.   

  (vi) 

    (ii) 

  (iii) 

 (v) 

EQ:    

(ii) is satisfied, (iii) and (vi) need to be checked for,  

 

  

    0m mm m  

      1 0 1m m CDm DCm mpm m p p k           

      , , 0m m CDmCD m DD m p m       

        , , 1 0m m DCmDC m DD m p m           

        , , 1 1 0m m CDm DCm kCD m DC m p p m           

 

 

 

 

11
1

2 1

11
1

2 1

CDm

DCm

k

k

p
m

p
m

 



 







 
    

 
    

 

 

   

    

 
   

    
 

11
(vi): 1

1

2
(iii):

1 1

2
hence adding 0,1 : 1 1

1 1

m
k k

k m m

m m

k m m
k m

m m


 

  


   

  
 

   

 
     

   


    

   
     

    



Finally all conditions of the type: 

 

To summarize: 

 

Conditions for existence:  

 

  

 

 

 
   

     
 

 

0,1

1
0 1 2 1 1

1

1 1 1
1

1
0,1 1

1

k
k

k
k k k

k
k

k
k

k

p p

m m
m

m m m
m

m
m x x

m

 
    




         







 










  









           



            
 


  

    
 
  

, <1 reduce to: 

, 

adding  and  yields <1, 

, 

however, it turns out that 
   

    

2

1 1

k m m

m m

  


   

   


    
 is binding.

 

 

 

 

1 11 1
1  ,  1

2 1 2 1
CDm DCm

k k
p p

m m

   

 

     
             

   

    

 

2
1.  1

1 1

2.   1

k m m

m m

k m

  


   

   
 

    

 



4.4.2. and   

 (i) 

 (ii) 

 (iii) 

 (iv) 

  (v) 

 

 (i) 

  (ii) 

 (iii) 

   (iv) 

 

, 1mDD m p 

             , , 1 0m m CCm CDm DCm DDm mCC m CD m p p m p p p                    

             , , 1 0m m CCm CDm DCm DDm mCD m DD m p p m p p p                     

             , , 1 0m m CCm DCm CDm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCD m DD m p p m p p p                     

           , , , , , , 0m m m m m mCD m DD m DD m DD m DD m CD m         

        , , 1 0m m DDmCC m CD m p           

      , , 0m m CDmCD m DD m p m       

        , , 1 0m m DDmDC m DD m p           

      , , 0m m CDmCD m DD m p       

           

    
 

, , , , , ,

1 0
1

m m m m m m

CDm CDm CDm

k
k

CD m DD m DD m DD m DD m CD m

p p m p
m

   




          

        



EQ:  ,  

(i),(ii),(iii) and (iv) are satisfied 

Finally all conditions of the type  

Condition for existence:  

 

however it turns out that this equilibrium is not stable.  

4.5.  and   

 (i) 

 (ii) 

 (iii) 

 (iv) 

  (v) 

 

 1
CDm

k
p

m



1 CDm DmDp p 

 
 

0,1
1

k
p p

m
 


, <1 reduce to: 

 

 

1

1

k

m

k m

 


 

1. 

2. 

,DD m ,DC m 1mp 

             , , 1 0m m CCm CDm DCm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm CDm DCm DDm mCD m DD m p p m p p p                     

             , , 1 0m m CCm DCm CDm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCC m DC m p p m p p p                     

           , , , , , , 0m m m m m mDD m DC m DC m DC m DC m DD m         



 (i) 

   (ii) 

 (iii) 

   (iv) 

 

By (v) , however this is incompatible with  by (iii) 

Hence such a semi-pooling equilibrium cannot exist. 

 

  

        , , 1 0m m DCmDC m DD m p           

      , , 0m m DDmCD m DD m p       

        , , 1 0m m DCmDC m DD m p m           

      , , 0m m DDmCC m DC m p       

           

   
 

 

         

        

, , , , , ,

1
1 1 0

1

, , 1 1

, , 1 0

m m m m m m

DCm DCm

m m CDm DCm CDm DCm

m m DCm

k
k

k

DD m DC m DC m DC m DC m DD m

p m p
m

DC m DC m p p p p m

DC m DD m p

 
  



  

   



          

 
       



           

        

 

 

1

1
DCm

k
p

m

 



 




 

 

1
DCmp

m

 

 








4.6.   

4.6.1. and   

 (i) 

 (ii) 

 (iii) 

 (iv) 

  (v) 

 

   (i) 

 (ii) 

   (iii) 

  (iv) 

, / ,CD m DD m

,DC m

             , , 1 0m m CCm CDm DCm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm CDm DCm DDm mCD m DD m p p m p p p                     

             , , 1 0m m CCm DCm CDm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCC m DC m p p m p p p                     

           , , , , , , 0m m m m m mDD m DC m DC m DC m DC m DD m         

          , , 1 0m m DCm mDC m DD m p p               

             , , 1 0m m CDm DDm mCD m DD m p m p p                   

          , , 1 0m m DCm mDC m DD m p m p               

          , , 1 0m m CDm DDm mCC m DC m p p p                 



 

 (v) 

 

In a semi-pooling equilibrium (i) and (iv) will always be satisfied.  

4.6.1.1.   

     (*) 

 
 (ii) 

      (iii) 

   (v) 

 

           

               

          

      

, , , , , ,

1 1 1

1 1 1

1 1 1 0

m m m m m m

CDm DCm CDm DCm CCm CDm DCm DDm m

CDm DCm DCm m

CDm DCm m

k

k

k

DD m DC m DC m DC m DC m DD m

p p p p m p p m p p p

p p m p p

p p m p

       

      

   





          

                        

                

        

          1m m m m CDm DCmm m m m p p k          

    0m mm m  

      1 0m m CDm DCmm m p p k         
0mp 

           , , 1 0m m CDm DDmCD m DD m p m p              

      , , 0m m DCmDC m DD m p m       

        , , 1 1 0m m CDm DCm kDD m DC m p p m          



EQ: 
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Finally we consider semi-pooling equilibria with only low types pooling, i.e. . For 

this equality to hold we necessarily need  or  but not both since this would correspond to a pooling among high types.  
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Note that the payoffs for non-signaling high types is independent of their own share. However 
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Hence we obtain the following phase diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
We saw for the previously analyzed equilibrium with strict inequality with respect to the signaling decision among low types that this equilibrium is unstable. The 

question here is whether the indeterminacy of the low types in equilibrium could have a stabilizing effect. It turns out that it doesn’t. The reason is that if 
mp  

decreases the new intersection of the iso-profit lines (not an equilibrium) lies in the fourth quadrant relative to the equilibrium point. We will argue for the most 

favorite scenario that an adjustment in 
mp  will not stabilize the equilibrium. Consider therefor a perturbation of the type indicated by the red arrow. For such an 

perturbation equilibrium will not be restored in the absence of an adjusting 
mp . What kind of adjustment is most favorable with respect to stabilization? The 

instability can only be circumvented if the induced shift of the intersection point of iso-profit lines and thereby a shift of regions with the depicted dynamics would 
bring the pertubated point into a region with dynamics point at the equilibrium. Most favorable is a strong and fast movement to right at the boundary of the fourth 
quadrant (indicated by the green arrow). It is important to note that even this most favorable movement cannot induce the pertubated point to be pushed into a 

region to the left of the dotted line (unaltered by changes in 
mp ), because than 

mp  would start to increase again. And if this is assumed to be fast and strong, than 

the iso-profit lines will be shifted back towards its equilibrium locations. In other words the only thing that can happen is that the population state pointed at by the 
red arrow is find itself in the area between the    , CD,m mDC m m   -isoline and the dotted line. However this will not lead to a reestablishment of equilibrium 

but to further movement away. The same argument applies to the second diagramm.  
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We obtain the following phase diagram (derivation above):  
 
 
 
 
 
 
 
 
 
 
 
 
 
As the diagram clearly indicates this equilibrium is unstable.  
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As the diagram clearly indicates this equilibrium is unstable.  
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Hence we obtain the following phase diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
As the diagram clearly indicates this equilibrium is unstable.  
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Hence we obtain the following phase diagram:  
 
As the diagram clearly indicates this equilibrium  
is unstable. If in the course of the dynamics the  
dotted line is crossed, low types start to prefer  
not to signal since signaling is not often enough 

rewarded by CDm -player and too often punished 

by DCm -player. The induced decline in the share  

of signaling low types will shift all three constraints  
downwards.  
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See Appendix Fehler! Verweisquelle konnte 
nicht gefunden werden. 

 

Hence we obtain the following phase diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
We will apply here the same logic as in the case for the equilibrium 4.3.1.2. Consider a perturbation that pushes the population state in the lower triangular region 
(red arrow). Given that low types will strictly prefer not to signal, which in turn shifts the intersection point of the iso-profit lines into the first quadrant relative to 
the equilibrium. As the picture clearly indicates this will not help to stabilize the equilibrium.  
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In comparison to 4.6.1.1. the three lines corresponding to equal profits among the equilibrium strategies shifts such that the equilibrium lies below the dotted line, 
which is constant with respect to changes in the share of signaling low types.  
Hence we obtain the following phase diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
As the diagram clearly indicates this equilibrium is unstable. If in the course of the dynamics the dotted line is crossed, low types start to prefer to signal since 

signaling is often enough rewarded by CDm -player and not too often punished by DCm -player. The induced incline in the share of signaling low types will shift all 

three constraints upwards.  
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Hence we obtain the following phase diagram:  
 
  
 
 
 
 
 
 
 
 
 
 
Since the phase diagram is ambiguous with respect to stability we will study the Eigenvalues of the linearized system.  
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Hence at least one of the Eigenvalues is strictly positive and therefore this equilibrium is unstable.  
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Hence we obtain the following phase diagram:  
 

 
 
 
 
 
As the diagram clearly indicates this equilibrium set is stable.  

Any perturbation induces a drift towards the separating equilibrium 1, 0CDm mp p  .  
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Hence we obtain the following phase diagram:  
 
 
 
 
 
As the diagram clearly indicates this equilibrium is unstable.  

 

 

 

 

 

 

  


