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Coevolution of Cooperation, Preferences and

Cooperative Signals in Social Dilemmas

February 2016

Abstract

We study the coevolution of cooperation, preferences and cooperative signals in an
environment where individuals engage in a signaling-extended Prisoner’s Dilemma.
We identify a new type of evolutionary equilibrium — a transitional equilibrium —
which is constituted and stabilized by the dynamic interaction of multiple Bayesian
equilibria. A transitional equilibrium: (1) exists under mild conditions and (2) can
stabilize a population that is characterized by the heterogeneity of behavior, pref-
erences, and signaling. We thereby offer an explanation for persistent regularities
observed in laboratory and field data on cooperative behavior. Furthermore, this
type of equilibria is least demanding with respect to differences in signaling cost be-
tween ‘conditional cooperators’ and ‘opportunists’. Indeed and quite surprisingly, a
transitional equilibrium is consistent with ‘conditional cooperators’ bearing higher

signaling cost in terms of fitness than ‘opportunists’.
JEL Classification numbers: C73, D64, D82.

Keywords: Evolutionary Game Theory, Cooperation, Signaling.



1 Introduction

Several theories have been proposed to explain the evolution of cooperation among hu-
mans when cooperation generates a public benefit at a private cost. In this research, the
Prisoners dilemma game (henceforth PD) serves commonly as a metaphor for the problem
of cooperation. Since natural selection favors defection in this game, any extension that
allows for the emergence of cooperation represents a mechanism to promote cooperation.
It has been argued, that the essential feature of any mechanism to foster cooperation is
that cooperative acts must occur more often between cooperators than expected based on
population averages. In other words, the mechanism must induce a positive assortment
between cooperative types (Queller, 1985; Fletcher and Zwick 2004).!

The mechanisms proffered in the literature may vary substantially to how they induce
this assortment. Positive assortment can for instance arise because of direct reciprocity
in repeated interactions (Trivers, 1971; Axelrod, 1984; Fudenberg and Maskin, 1986),
indirect reciprocity based on image scores (Alexander, 1987; Nowak and Sigmund, 1998;
Wedekind and Milinski, 2000; Panchanathan and Boyd, 2004), or network reciprocity,
where players interact only with their neighbors (Nowak and May, 1992; Hubermann and
Glance, 1993; Nowak et al., 1994; Killingback et al., 1999). Another mechanism involves
cooperators signaling their type and the play of signal-contingent strategies.

In solving the puzzle of cooperation in social dilemmas the literature so far primarily
focused on providing mechanisms that supports the existence of a cooperative equilibrium.
We extend this literature by providing an explanation for the following conspicuous regu-
larities of this puzzle. First, there is a persistent pattern, that cooperation is only partial,
i.e. only a fraction of the population plays cooperatively when individual rationality calls
for defective behavior.? Second, the elicitation of preferences in the laboratory and in
the field as well as studies on revealed preferences show that individuals substantially
differ in their cooperative attitudes (e.g., Andreoni and Miller, 1993; Cooper et al., 1996;
Ockenfels and Weimann, 1999, Fischbacher and Géchter, 2010). Thus, the heterogeneity
in behavior seems not to result from mixed strategy play, but appears to be a conse-
quence of differences in preferences. Third, it is rather the rule than the exception that

human interactions are accompanied by communication, in particular if the interaction is

Indeed, many models of the evolution of altruism share an underlying mathematical structure- that
of Hamilton’s Price equation formulation of inclusive fitness theory (Hamilton, 1964a,b). Hamilton’s
relatedness coefficient can be interpreted as the degree of positive assortment of types and need make no
reference to common descent (McElreath and Boyd, 2007).

2See Rapaport and Chammah, 1965 and Dawes, 1980 for reviews of these experiments in sociology
and psychology. For a survey of some of the studies by economists, see Roth, 1988.



of strategic nature. Humans also differ in this respect and show different ways and inten-
sity of preplay-communication in laboratory and field studies. Importantly, it has been
shown that communication influences cooperative behavior (Dawes et al., 1977; Ostrom
and Walker, 1991; Brosig, 2002).3

All three phenomena take place at a population level, we therefore take an evolution-
ary perspective to study these related dimensions of heterogeneity. As a stylized social
dilemma, the action set of the PD incorporates the two diametrically opposed behaviors
of defection and cooperation. To account for the potential heterogeneity of preferences
in equilibrium, we consider an evolutionary model with two types of individuals ‘oppor-
tunists’, maximizing individual fitness, and ‘conditional cooperators’, having a preference
for joint cooperation.* To emphasis the necessity of communication about preferences, we
study the evolution of cooperation in social dilemmas without social information such as
reputation in one-shot interactions, which puts other mechanisms like direct or indirect
reciprocity out of operation. Any mode of communication comes hardly without any cost,
may it be material cost because of effort exerted, resources spent, or forgone opportunities.
On the other hand compliance to some code of conduct as a signal for cooperativeness
may cause internal cost if it contradicts an individual’s preferences. To account for these
aspects, we incorporate communication of types via costly signaling.?

We apply the ‘indirect’ evolutionary approach pioneered by Giith and Yaari (1992)° to
study the dynamics of the type composition in the population. In that approach players
are assumed to be rational, and the evolutionary mechanism shapes the composition of
players with different preferences in the population. Recent criticism of this approach
(Dekel, Ely, and Yilankaya, 2007) has focused on its assumption that players’ preferences
are observable by their opponents, which is not an issue in our signaling framework. We
depart from standard applications of this approach in one important manner. Instead
of applying the static notion of evolutionary stable strategies (Maynard Smith, 1973) as
a stability concept, we explicitly study the dynamic stability of the Bayesian equilibria
of the signaling-extended PD. Importantly, considering the full set of Bayesian equilibria

and their dynamic stability, puts us in the position to study the transition across different

3Tt is a stylized fact in experimental research that the opportunity of communication has a robust and
strong positive impact on cooperation, for an overview see Sally, 1995.

4There is evidence from laboratory and field experiments, that the majority of individuals can be
assigned to one of these two classes: Keser and van Winden, 2000; Fischbacher et al., 2001; Frey and
Meier, 2004; Fischbacher and Géachter, 2010.

5Costly signaling is present in many species, including humans (Zahavi, 1977; Grafen, 1990; Maynard
Smith, 1991; Johnstone, 1995; Wright, 1999).

6For recent applications see e.g. Warneryd, 2002; Guttman, 2003; Alger and Weibull, 2013; Hopkins,
2014.



equilibria.

We identify a new type of evolutionary equilibrium which we term transitional equilib-
rium. In our model under mild conditions on signaling cost and other model parameters
a transitional equilibrium exists and is constituted by the dynamic interplay of separat-
ing, semi-pooling, and pooling equilibria of the signaling extended PD. This evolutionary
equilibrium is characterized by heterogeneity with respect to preferences, behavior, and
signaling. Furthermore, it turns out that this type of equilibrium is least demanding
with respect to the difference in signaling costs between ‘opportunists’ and ‘conditional
cooperators’.

The remainder of the paper is organized as follows. The following section 2 discusses
the related theoretical literature in more detail. Our model is presented in section 3. Sec-
tion 4 presents the set of stable Perfect Bayesian Equilibria (PBE) for a given composition
of preferences. This share of cooperative players is endogenized in section 5. Before we

conclude in section 7, we discuss our findings in the penultimate section 6.

2 Related Theoretical Literature

In this section we focus on literature which considers the problem of cooperation in social
dilemmas under incomplete information regarding the opponent’s type. Most closely
related to our approach are the papers of Guttman (2003, 2013), Gintis et al. (2001), and
Panchanathan and Boyd (2004). Guttman (2003) is motivated by the seminal paper of
Kreps et al. (1982). Therein the authors showed that if one of two players assigns a small
probability that the opponent plays the ‘tit-for-tat’ strategy, then, in a finitely repeated
Prisoner’s Dilemma (PD), cooperation can be an equilibrium outcome for at least some of
the stages. In an ‘indirect’” evolutionary framework Guttman endogenizes the uncertainty
assumed by Kreps et al. (1982) regarding the opponent’s preferences. More precisely,
the model considers a community consisting of ‘opportunists’ and ‘reciprocators’, who
have a preference for mutual cooperation. Furthermore, agents send a costless, random
signal that has some informational value for the receiver with respect to the recognition
of the opponent’s type. Players are randomly matched to play a finitely repeated PD.
In the unique evolutionary equilibrium, both reciprocators and opportunists coexist.”
Although the evolutionary equilibrium is characterized by a heteromorphic population, the

equilibrium behavior of reciprocators and opportunists differs only in the last round, i.e.

"The survival of reciprocators hinges on the assumption that the costless signal emitted by all subjects
has some small, but positive correlation with the actual type.



both types show almost identical behavior in equilibrium. Furthermore, if the likelihood
of emitting the cooperative signal is independent of the taste parameter measuring the
preference for mutual cooperation, then the endogenization of the taste parameter leads
to an all-replicator equilibrium, and thereby to full cooperation. Thus, the model is less
suitable to explain the regularities of heterogeneous preferences and behavior, in particular
in environments with very few repetitions.

Guttman (2013) studies the evolution of an inherited preference to match other agents’
contribution to the provision of public goods. Under complete information and randomly
matched groups, the unique evolutionary stable matching rate equals one. The model
provides a potential explanation for the existence of conditional cooperation, which does
not rely on reputation or group selection. However, the informational assumptions are
rather strict, which we circumvent by considering a signaling environment, where types
are only revealed by equilibrium play. Further, the model predicts a unique preference
value and therefore cannot account for the heterogeneity in preferences and behavior,
which is the focus of our paper.

Contrary to Guttman (2003), Gintis et al. (2001) consider an environment with no
repeated or assortative matching. Furthermore, the signaling in their model is costly. In
a multi-player public good game individuals can signal their type by providing a group
benefit at a personal cost. These signals may in turn influence a partner’s acceptance or
rejection of potentially profitable allies. They show, that honest signaling of underlying
quality can be evolutionary stable. Necessary conditions for the existence are that sig-
naling is more costly to so called high-quality types and that partners prefer to ally with
high-quality types. They show that the payoff difference between high- and low types is
positive. As a consequence, the frequency of high types would increase over time. This
eventually undermines the separating equilibrium, since it has only limited support.® More
precisely, once the share of high types exceeds a certain threshold, high type no longer
find it a best response to signal their quality. As a consequence, cooperation could break
down. Without an exhaustive search for Nash equilibria and analyzing their dynamic
stability which is part of our approach, we just don’t know. In the model of Gintis et al.
(2001), the monotonic increase in the share of high-quality types is stabilized by the ad
hoc introduction (see p.112; eq.(12)) of other forces on the population dynamics. Indeed,
without the exogenous frequency dependency introduced no heteromorphic population
could be stabilized.

The general theme of this strand of literature (see also Lotem et al. 2003, Pan-

8That is, the range for the share of high-quality types, such that the conditions for the existence of
the honest signaling equilibrium are met, is a open interval with measure less than one.
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chanathan and Boyd 2004, Macfarlan et al. 2013) is that costly forms of generosity (like
contributions to public goods) serves as a signal to be trustworthy, facilitating the for-
mation of cooperative partnerships in the future. A general problem with the signaling
hypotheses is, that it does not explain why quality is signaled by doing good (noted by
Gintis et al. 2001 themselves).? Indeed, quality could be signaled by other costly activity
like conspicuous consumption.'® In contrast, in our approach the nature of the signaling
technology is not limited to forms of generosity.

Another paper related to our approach is Janssen (2008) which studies the evolution
of cooperation in a one-shot PD environment based on the recognition of the opponent’s
trustworthiness. Agents costlessly display symbols and they learn which symbols are im-
portant to estimate an opponents’ trustworthiness. The simulation based results show
both cooperative and defective behavior. In contrast, the evolution of agents’ taste pa-
rameters shows the tendency toward homogeneity, since almost all agents in the long run
value cooperation over defection (see statistics of parameter «v in table 4). Since the result
hinges on the assumption that agents can withdraw from playing the game, it does not
apply to our idea of random interaction in an unstructured population that cannot be

circumvented.

3 Model

The classical Prisoner’s Dilemma is the most prominent and best-studied example of a
social dilemma and serves as the basis for our analysis. In this game players can either
cooperate (C) or defect (D). The one-shot PD is played recurrently by randomly matched
pairs of individuals of a large population. Agents are assumed to process only information
on outcomes of their own past interactions. In particular, they process no information on
the opponent’s identity or on outcomes in games in which they were not involved.
Similar to Guttman (2003) we focus on the case of a preference for joint cooperation.
Players carrying such a preference gain an additional internal payoff m if the outcome of
the stage game is mutual cooperation, i.e., (C, C). In other words, we consider preferences,
which induce conditional cooperation.'! We will refer to these players as high types. For

low types, i.e., individuals without this preference utility is identical to material payoffs.

9Hopkins (2014) provides a potential solution to the problem. If the ability to reason about others’
mental state, i.e., having a “theory of mind”, is associated with empathy, then humans possessing these
attributes can signal their capability by pro-social acts.

10 After all, the prominent example for costly signaling in the context of sexual selection is the peacock’s
tail.

HGee footnote 4.



Figure 1 presents the payoffs of the PD for the row player. The left table represents mate-
rial payoffs, which will be decisive for the evolutionary success of different behaviors. The
right table represents utility payoffs incorporating the preference for mutual cooperation,
which will determine the best response of players. To be of any behavioral significance,

we assume m > «, such that mutual cooperation becomes a Nash equilibrium if two high

types interact.'?
C D C D
Cl 1 | =p Clitm| -5
D|1+a] O D| 1+« 0

Figure 1: Material (left table) and utility payoff (right table) in the PD, «, 8 > 0 and
148> a.

The preference for joint cooperation is assumed to be private information of the agent.
In the tradition of Harsanyi (1967, 1968a, 1968b), beliefs about the opponent’s type are
common knowledge. Like Guttman (2003) and Giith and Ockenfels (2005), we adopt the
natural assumption that beliefs correspond to actual frequencies of types.

We employ the indirect evolutionary approach, pioneered by Giith and Yaari (1992)13,
in which all players are assumed to be rational, and the evolutionary forces determine
population’s composition of players with different preferences. In other words, preferences
determine behavior and behavior in turn determines fitness. Recent criticism of this
approach (Dekel et al, 2007) is concerned with the assumption of the observability of
agents’ preferences. However, in our model preferences are not observable, we only assume
that agents have correct beliefs about the distribution of types in the population.

Note that without communication, the impossibility result of Kandori (1992, Propo-
sition 3) applies to such an environment, which states that the unique equilibrium is
characterized by full defection, i.e. everybody always defects. We model communication
as an additional stage prior to the play of the PD. In that stage, agents can simultane-
ously send one message concerning their inner motive. As in the standard signaling model
(Spence, 1973) we assume the existence of a social technology which enables individuals
to signal their positive attitude towards cooperation by incurring some costs. Research

on many species including humans (Zahavi, 1977; Grafen, 1990; Maynard Smith, 1991;

12As Giith et al. (2000) noted in a different setting, the precise level of m is behaviorally irrelevant.
All m-types for whom the same inequality with respect to « holds, form an equivalence class concerning
the implied behavior.

13The indirect evolutionary approach has also been applied in different strategic settings (ultimatum
game, Huck and Oechssler, 1999) or to analyze the evolutionary stability of altruistic preferences (Bester
and Giith, 1998), of altruistic and spiteful preferences (Possajennikov, 2000), or of risk preferences (Wéarn-
eryd, 2002).



Johnstone, 1995; Wright 1999) supports this assumption. Signaling cost may occur in
terms of utility or fitness. Let ky, kr denote the signaling cost in terms of utility for high
types and low types, respectively. We assume, agents who have a preference for joint
cooperation are supposed to bear lower costs for sending the signal, i.e, kg < kr. Our
results suggest that this assumption is not needed. However, it simplifies the analysis of
the existence and the stability of the numerous equiliria. Importantly, we make no such
assumption on the relationship of the corresponding fitness cost, k:j; and k{ We refer the
reader to our discussion of signaling costs in section 6.

In the current setup, a strategy is a type-continent and signal-contingent plan. Given
the two actions C' and D, the two different types, and the two possible signals, there are
64 pure strategies in the signaling extended PD. Since defection is the dominant strategy
for low types, we can eliminate all strategies which for the contingency of being a low
types specify a cooperative behavior for some signal received. For the remaining 16 pure
strategies we will apply the following notation. The first three entries specify the actions
and signaling behavior for the high type, the last entry the signaling behavior for the
low type. For example C'Ds,ns denotes the strategy “if high type: cooperate if signal
is received, deviate if no signal is received and send signal; if low type: do not signal”.
Thus, pepsns, L (CDs,ns) and Iy (CDs,ns), for example, denote the probability of this
strategy being played by a randomly selected individual and her expected payoff if she
happens to be of the low or of the high type, respectively. Probabilities and expected
payoffs for other strategies are defined accordingly.

To study the stability of the Bayesian equilibria of the signaling-extended PD we ex-
plicitly account for the dynamic adjustment of the distribution of types in the population.
Both for the set of probabilities by which the strategies are chosen within types and for
the shares of types we consider the class of gradual payoff-monotone dynamics (see e.g.
Bendor and Swistak, 1998 for definitions), which includes the well known replicator dy-
namics. Compared to the static approach of evolutionary stable stragies (Maynard Smith
and Price, 1973), this dynamic approach allows us to study the dynamic properties not
only for one particular equilibrium but also the dynamics across different equilibria. We
assume that the dynamic accommodation within the population shares playing the var-
ious strategies is fast compared to the dynamics of the population share of high types.
This assumption will simplify analysis of the dynamics and is considered adequate since
behavior will adapt faster to differences in payoffs than socially and culturally transmitted

cooperative preferences.



4 Stable Perfect Bayesian Equilibria with Exogenous

Proportions of Conditional Cooperators

In this section we present stable PBE for a given share of high types, which we denote
by A. In our signaling extended PD, there exist one stable separating and three stable
pooling equilibria. There are also stable semi-pooling equilibria, however, only one of
them is relevant for our subsequent analysis. The others are characterized by strictly
negative fitness differentials between high and low types or have a narrow A-support!4.
The following Proposition 1 reports the stable signaling equilibrium, the stable pooling

equilibria and the relevant stable semi-pooling equilibrium.

Proposition 1 In the signaling extended Prisoner’s Dilemma exist the following stable

Perfect Bayesian Equilibria:
(1) Cooperative Separating Equilibrium (CSE): popsns = 1

(11) Semi-Pooling Equilibrium (SPE): pcpsns = 1 — Dops.s < ’X”f;)aﬁ)

(111) Cooperative High Pooling Equilibrium (CHPE): pcpss = 1 — pocs.s > (lf—g))\

(iv) Cooperative Low Pooling Equilibrium (CLPE): pocnsns + Ppcnsns = 1

(v) Defective Low Pooling Equilibrium (DLPE): pppnsns = 1=PcDsns < %min { 1137;?57 lliL—Ha}

Table 1 presents the conditions for existence and the \-support of these equilibria.

For a list of the stable semi-pooling equilibria not mentioned in this proposition we

refer the reader to Appendix C.

Proof. We leave the derivation and the analysis of stability to the Appendices. See Ap-
pendix B for existence and stability of separating and pooling equilibria, and Appendix

D for semi-pooling equilibria. [

4Here, the A-support of an equilibrium corresponds to the set of all A such that the equilibrium under
consideration exists.



Strategies A-support Payoff Differences
Condition for Existence
Cooperative Separating Equilibrium

CDs,ns T <\ < My — 1, = X1+ m) — kg
ky <1l4m (Mg — M) =X =k,

Semi-Pooling Equilibrium

CDs,ns A= My — T, = A1 +m) — kg — B(1— N)ps
CDs, s My — 1) = (A= kL) (1 — po)+
kr <1+a (ki — kL — a+ (1= XN)B))ps

Cooperative High Pooling Equilibrium

CCs,s | A>max{t 5V I Ty —T; =k, —ky — (Ma—m)+ (1= N)p)

1+a’ f+m—a
CDs, s kp <1+« My — T =kl —kf, — Qa+(1-X)3)

Cooperative Low Pooling Equilibrium

CCns,ns A> L Iy — 1 = —(AMa —m) + (1 = A)j)

= [B+m—a

DCns,ns (g — 1) = —Na+(1-X)B) <0

Defective High Pooling Equilibrium

CDns,ns O< A<l g —1I; =0
DDns,ns (Mg —HL)f —

Table 1: Separating, pooling equilibria, and one semi-pooling equilibrium (see Table 2 in
Appendix C for other stable semi-pooling equilibria). Note that equilibria are only stable
in the interior of their support. ps; denotes the probability to send the signal conditional
on being a low type.



In the cooperative separating equilibrium, players apply the strategy C'Ds,ns. Thus,
high types recognize each other and cooperate only among themselves. The intuition
behind the fact that the support of this equilibrium has both a lower and an upper is as
follows: If there are too few high types, then the cooperative outcome among them cannot
compensate for the signaling costs. If on the other hand, there are too many high types,
signaling becomes sufficiently profitable for low types. The thresholds for the share of
high types have a precise economic interpretation. For high types, the cost-benefit ratio
from signaling (ﬁ—Hm) must be smaller than the probability to gain the benefit (A). The
reverse holds true for low types, i.e. their cost-benefit ratio from signaling must exceed
(lli—La), the likelihood of gaining the benefit.

In the cooperative low pooling equilibrium, nobody signals and high types cooperate.
This equilibrium exists if there are sufficiently many high types. Only then high types can
be compensated for the loss from being cooperative against low types by the cooperative
outcome among each other. In other words, if the share of high types falls below a certain
threshold, then they will start to prefer defecting when receiving the low signal. Note that
this equilibrium is indeed an equilibrium set, since the strategies CCns, ns and DCns, ns
are alternative best responses in equilibrium. The share of high types required for this
to be an equilibrium decreases in the sucker’s payoff, since cooperative behavior becomes
more disadvantageous with decreasing sucker’s payoffs (—f). This threshold, too, has an

intuitive meaning. Note that m — « () measures the incentive to reciprocate cooperative

B
B+m—a

A(m—a) > (1—X)[3, states that the expected gain from reciprocating cooperative behavior

(defective) behavior. In essence, the condition < A, which can be rewritten as
must exceed the expected gain from reciprocating defective behavior.

In the defective low pooling equilibrium, nobody sends the cooperative signal and ev-
erybody defects earning a payoff of zero. Again, because of the lack of distinguishability
in equilibrium, this equilibrium is indeed a set where C'Dns, ns and DDns,ns might be
played. This equilibrium set reflects the benchmark solution in the PD without commu-
nication and exists for all population compositions between high types and low types.

In the cooperative high pooling equilibrium, everybody signals and high types cooperate.
This equilibrium exists if there are sufficiently many high types. If the latter’s proportion
is large enough, they can compensate for the loss from being cooperative against low
types by the cooperative outcome among each other. Contrary to the cooperative low
pooling equilibrium, an additional restriction with respect to the share of high types arises,
reflecting the incentive compatibility for low types to signal. Note that this equilibrium

is again an equilibrium set, since the strategies C'Cs,s and CDs, s are alternative best

10



responses in equilibrium. In this equilibrium, for low types the reverse logic applies
in comparison to the cooperative separating equilibrium, i.e. for low types to find it
worthwhile to signal, their cost-benefit ratio (lli—La) must be smaller than the likelihood to
profit from signaling (\). The lower bound stemming from the incentive constraint for

high types bears the same logic as in the cooperative low pooling equilibrium.

5 Endogenous Proportion of Conditional Coopera-

tors

We now analyze the dynamics of the share of high types () in the population for which
we assume that the dynamics have reached a stable equilibrium, as we assumed that
inner motives evolve far more slowly than behavioral frequencies. For the sake of a
more convenient presentation, we will assume that k, kg < 1 4+ « which is sufficient for
existences of all equilibria presented in Table 1. In other words, we restrict to signaling
devices which are less costly than the maximum material payoff in the PD.

The evolution of the proportion of norm bearers is determined by their relative fitness.
Fitness is measured by the material payoffs as presented in Figure 1. Analogous to the
derivation of the PBE, the differentials in these fitness payoffs among high and low types
are the driving force for the evolution of their respective shares. To ease the understanding
of the differentials of fitness payoff differentials, we provide some intuition for their size
in the relevant PBEs.

In the cooperative separating equilibrium, both types defect in all interactions, except
when two individuals of the high type encounter each other. In this case, they cooperate.
The low type will thus always earn a fitness payoff of zero, and the high type will earn a
fitness payoff of one with probability A, i.e., the probability that two high types interact.
Since high types unconditionally bear the material signaling cost kﬁ, their expected payoff
in the cooperative separating equilibrium is A — k:};, which is also the expected difference
of fitness payoffs: (IIy(C'Ds,ns) — II(CDs,ns))f = XA — kl,. Obviously, this fitness
advantage of the high type grows in the share of high types in the population.

In the cooperative low pooling and in the cooperative high pooling, individuals of the
high type cooperate in reaction to the signal they send, and all individuals of the low type
copy this signal but still defect. Leaving aside signaling costs for a moment, differences
in material payoffs then reflect payoffs of unconditional cooperators and defectors in the
underlying PD. More precisely, with probability A, high types meet their own type and

realize the cooperative outcome, earning a payoff of one. With the residual probability,

11



they meet a low type and lose 8. Low types always defect and only earn positive payoffs
when matched with high types, which happens with probability A and earns them 1 +
a. A fitness differential to the advantage of the high types thus cannot result from
playing the game itself, but only from sufficiently large differences in signaling cost (see
Table 1). Obviously, if no signal is sent, as is the case in the cooperative low pooling
equilibrium, the fitness payoff of the high type can only be smaller than that of the low
type, (g (CCns,ns) — I (CCns,ns))) = —(Aa+ (1 —\)3) < 0.

Only in the cooperative high pooling equilibrium, a signaling cost disadvantage of the
low type may outweigh the disadvantage of the high type from playing cooperatively in the
game, so that the high type earns a higher fitness payoff than the low type, (Il (CCs, s)—
1,(CCs,s)) =kl —kl, — (A + (1 — A\)B). Thus, the fitness payoff difference increases
(declines) in the share of the high types if defection is more (less) tempting against
defection than against cooperation, i.e., if 8 is larger (smaller) than a. If the proportion
of the high type in the population is too small, it is either not worthwhile to mimic the
other type, or the chances to meet another high-type individual are so low that cooperation
ceases to be the best reaction to the signal sent by all individuals. For these small shares
of the high type in the population, the cooperative pooling equilibria break down just
like the cooperative separating equilibrium discussed earlier breaks down for shares of the
high type that are too large. Finally, in the defective low pooling equilibrium, both types
always defect without sending signals and thus all earn the same fitness (and behavioral)
payoff of zero.

A stable inner equilibrium, i.e., an equilibrium where both high types and low types
coexist may be realized around one stable PBE or by the interplay of several PBEs.
We first concentrate on the first case (Proposition 1), and then turn to the second case
(Proposition 2). In the first case, the difference in fitness payoffs between high and low
types must vanish to constitute a stationary point at this particular value of the share
of high types, A\*. For stability, in the neighborhood of an equilibrium A*, high types
must earn strictly more than low types for A < A* and strictly less for A > A\*. The
only candidate, where a stable heteromorphic population is supported by a single PBE
is one associated with the high pooling cooperative equilibrium at 1 — %}ké) This is
illustrated in Figure 2. All other equilibria are characterized by either strictly negative
or strictly increasing payoff differentials. The high pooling cooperative equilibrium exists
and is stable if 1 — %}ﬁz)
differential decreases in A, which is the case if « — 8 > 0 (see Table 1). Taking these

is inside the A-support of this equilibrium and the fitness

conditions together yields:
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(kf it
Proposition 2 There is a stable inner equilibrium at 1 — %f’{) if and only if

max{f + ﬁ—La(a - p), M%m} < k:{ — k:}c[ < «. In this equilibrium both types send the

signal and high types cooperate.

Proof. All proofs are given in Appendix A. O
m, -11,)’
( H L)
L kB
1+m l+a f+m-a 1
"""" — = s
e sy ~ ﬂ/
. = ~—a+k -k
-l

— — cooperative high pooling ~ =«resreese cooperative separating
equilibrium equilibrium

= - = . cooperative low pooling = ===== defective low pooling
equilibrium equilibrium

Figure 2: Differences in material payoffs under the conditions of Proposition 2.

The conditions in Proposition 2 reveal that the existence of inner stable equilibria requires
that the material signaling costs for high types must exceed the corresponding costs for low
types. The spread in signaling cost, however, does not have to compensate for the entire
incentive to defect on cooperative behavior («) for partial cooperation to be supported by
the CHPE. Note that the necessary difference in material signaling cost increases in a and
B. In other words, the higher the temptation to defect and the higher the loss from being
defected against, the higher the required disadvantage in terms of material signaling cost
for low types will be. Interestingly, although the precise level of m is not decisive with
respect to its behavioural consequence, its level plays a role for partial cooperation induced
by the CHPE. The needed spread in signaling cost weakly decreases in the strength of
the preference for conditional cooperation m. That is, if high types are more inclined to
conditionally cooperate, the signaling device needs to be materially less disadvantageous
for low types.

The equilibrium supported by the CHPE is characterized by partial cooperation and

the heterogeneity of preferences. However, the equilibrium only exists if we assume that

13



low types need to bear higher material signaling cost. Moreover, the CHPE as any pooling
equilibrium, cannot account for heterogeneity regarding communication. Both limitations
will be overcome by the transitional equilibrium, which we will introduce next.

We will now turn to the second case, i.e., whether there is an population equilibrium
constituted by the interplay of several stable PBEs. We will refer to such an equilibrium
as an transitional equilibrium. To give a precise definition we make use of the following
notation. Consider a dynamic system (p(t),A(t)) with p € A, where A denotes the
(n — 1)-simplex and X € [0, 1].

Definition The triple (\*, P,()\), P.(\)) of a scalar \* and two distinct equilibrium sets
of the fast variable, P(\) and P,()), is called a transitional equilibrium if there exists an
e > 0 such that

1. after the system has come close enough to \*(t) and one of the equilibrium sets at
some t = t,, A(t) fluctuates in the interval (\* — e, \* + €) and p(t) will alternate
between the regions of attraction of the two fast-variable equilibria, Pi(\) and P,(\),
for allt > t, except for a countable number of t,, at which A(t,) = A* and p(t,) is
not in the region of attraction of either of the equilibria P/(\) and P,(\) if P(\*)
and P.(\*) do not ezist, and

2. € may become smaller and eventually approach zero when p(t) becomes faster relative
to ().

In other words, \*, P, and P, constitute a transitional equilibrium if the dynamic

system is always attracted by an equilibrium in the fast variable at which sign(\) =
sign(A* — A) so that A is driven from the support of the currently attracting fast-variable

equilibrium into the support of the other fast-variable equilibrium. In our case, we may

have such an equilibrium only at A = 1’1—2 where two equilibria interplay: the cooperative

separating equilibrium and the cooperative high pooling equilibrium (see Figure 3). Note
that at A = lli—La a semi-pooling cooperative equilibrium exists.
Proposition 3 states the conditions under which such an stable inner equilibrium may

exist as well as its properties.
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Figure 3: Differences in material payoffs under the conditions of Proposition 3 for ki > kf,.

Proposition 3 If (1) lli—La > max{ 5+5¢—a’ ki } and

(2a) B+KL(a—p) <k -kl < B+ li—La(oz — ), there is a stable semi-pooling equilibrium
N k],

N —k] £ A (1-2%)8’

x* kg, . * _ * _
at \* = 1+a with pCDs,s =1- pCDs,ns -

(2b) k}-j — k:}c[ < B+ k:f;(a — B), there is a transitional equilibrium at \* = lli—La, P\ =

{p|pC'Ds,ns - 1} (OSE), and PT()\) = {p|pC’Ds,s =1 — PCCs,s Z (H]f—g))\} (CHPE)

Before we have a closer look at the conditions of Proposition 3, the following Corol-
lary characterizes the transitional equilibrium in terms of type-contingent behavior and

signaling.

Corollary 1 In the transitional equilibrium of Proposition 8 (1) high-type individuals
cooperate among each other but also with those low-type individuals who signal to be of
the high type, (2) the proportion of low-type individuals who signal to be of the high
type fluctuates, and (3) the share of high-type individuals is proportional to the material
signaling cost for low types and fluctuates slightly.

Note that the conditions in Proposition 2 and Proposition 3 are mutually exclusive,
i.e. there is at most one stable inner equilibrium. The conditions for the transitional
equilibrium (see (2b) in Proposition 3) appear less demanding than those in Proposition 2
and those for the semi-pooling equilibrium (see (2a) in Proposition 3), because they do not

state a lower bound for the difference between material signaling cost across types, k}}—k’g
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Indeed, quite surprisingly the transitional equilibrium is consistent with high types bearing
higher signaling cost in terms of fitness than low types (see discussion for details). Thus,
contrary to previuos results in the literature, to sustain cooperation in a transitional
equilibrium does not hinge on the assumption of some cost advantage for cooperative
types. This is because, the material gain in the CSE for high types is determined by their
own frequency in the transitional equilibrium lli—La, which is independent of kg and k}}
The conditions in Proposition 3 reveal the importance of the strength of the cooperative
preference, measured by m also for the existence of a transitional equilibrium. More
precisely, the higher m the more likely a transitional equilibrium exists. Furthermore, if
the material cost of signaling for both types are small then likely inequalities (1) and (2b)

in Proposition 3 will be satisfied. The following corollary summarizes these insights.

Corollary 2 (1) If the cooperative preference is sufficiently strong and material signaling
cost are sufficiently low then a transitional equilibrium exists.  (2) If the cooperative
preference is sufficiently strong, and the material signaling cost are sufficiently low for

high types and do not differ to much across types, then a transitional equilibrium exists.

These rather mild conditions, in particular if compared to those of Proposition 2, and
the property of heterogeneity in all dimensions, i.e., behavior, preferences, and signaling,
underline the appeal of the transitional equilibrium. Interestingly, since the long run
equilibrium may be characterized by limit cycles, a transitional equilibrium also offers
an potential explanation for fluctuations in signaling behavior and therefor the degree of

cooperation, without referring to some kind of stochastic shocks.

6 Discussion

Since we place our analysis of the emergence of cooperation in social dilemmas in an
environment which can not rely on direct or indirect reciprocity, communication and the
implied potential for cooperators to recognize each other are necessary for cooperation to
evolve. Thus, we will focus on discussing the nature of signaling cost and their relation

15

across types.”> We end this section with a brief comment on the endogeneity of the

strength of the cooperative preference.

15The literature also discusses alternative modes of communication: There are models (e.g. Giith, 1995
; Sethi, 1996) which assume that cooperators can simply recognize each other. There is, however, mixed
evidence to what extend humans can unveil incomplete information about cooperative preferences (see
Frank et al., 1993; Ockenfels and Selten, 2000; Brosig, 2002). Other models make use of an unsubverted
signal like in Arthur Robson’s ‘secret handshake’ model (Robson, 1990). This type of models are prone
to what Ken Binmore calls the ‘transparent disposition fallacy’ (Binmore, 1994).
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Let us consider the relation of signaling cost first. The transitional equilibrium is least
restrictive regarding the difference in material signaling cost, it even allows for higher
fitness cost for high types. Thus, with respect to the relation of signaling cost across
types only the assumption k; > ky might be considered to be a restriction. If we look at
the conditions for existence and the payoff differences in Table 1 of the involved equilibria,
we observe that this condition is not needed. That is, the existence of the transitional
equilibrium seems to be consistent with both k;, < kg, and k’{ < k};, which we find
quite striking. However, to prove the existence of a transitional equilibrium we have to
keep track of all stable equilibria at ﬁ—ﬁx and their basins of attraction. Since we made
use of the assumption k; > ky when deriving the set of stable separating, semi-pooling,
and pooling equilibria, we can only conjecture, that our results carry over to the case of
kr < kg. Since there are 19 semi-pooling equilibria to be considered in terms of existence
and stability we leave this for future research. However, we will try to give the intuition
behind this surprising property.

In standard application of signaling theory it is necessary for a separating equilibrium
to exist, that types with higher quality bear lower signaling cost. This is not true in
our signaling-extended PD. To see why, consider first the case where material cost of
signaling and cost in utility terms would coincide. Intuitively, for a separating equilibrium
to exist incentive compatibility has to be ensured. In this respect, for high types the cost-
benefit ratio of signaling is decisive, which is influenced by the strength of the cooperative
preference m. The support of the CSE is given by f%m <A< 1’1—La Thus, the divergence
between fitness and utility in the PD governed by m allows signaling cost for low types
to fall short of those for high types in a separating equilibrium. However, if kp < kp,
high types would face an evolutionary disadvantage even in the separating equilibrium
(see (TIT — M)/ for the CSE in Table 1). Hence, for an transitional equilibrium to exist,
it is also required that k; > kgy. If we, however, distinguish between material and non-
material signaling cost as for the payoffs in the PD, then this implication is not true.
This is because, the fitness payoff in the CSE for a high type depends on two things, the
frequency of interaction with another high type in the transitional equilibrium lli—La, and
the material signaling cost k}; The former does not depend on material signaling cost,
the latter is independent of the non-material signaling cost. That a distinction between
material and non-material signaling cost is highly reasonable will become apparent when
we turn to the question regarding the nature of such a signaling device next.

Regarding the nature of a signaling device we will give two illustrative examples. A

signal which has no or negligible material cost might consist in sending a smile or some

17



other positive gesture, or a brief chat at the beginning of a pairwise encounter. According
to Frank (1988), cooperators are endowed with an advanced emotional system. This
system not only provides the motivation for the cooperative behavior, but also enables
them to signal their cooperative attitude.!® Thus, if it is at all possible for opportunists
to send the signal, they would have much higher non-material signaling cost. This would
warrant the assumption of k; > ky.

To give an illustrative example for material signaling cost, consider a situation where
individuals elbow their way through a rummage sale. There is a table with one good
offered as two variants, goods A and B. There are also two individuals, one preferring
good A, the other preferring good B. However getting both goods is the first best outcome
for both individuals. They can behave cooperatively, allowing the other to select their
preferred good; or they can try to queue-jump and grab both goods, in which case, the
other gets none. If both individuals chose not to cooperate, they will grab one of the goods
by chance, leaving them in expectation with a lower utility than in the cooperative state.
Hence, this example is structurally equivalent to a PD. In this scenario, the signal often
used is to make room for the other person. Such a signal is costly in terms of time, which
usually has some monetary equivalent. If this gesture is received by both individuals, this
might lead to mutual cooperation. Similar to this example, many acts of courtesy may
indeed be understood as a signal for a cooperative attitude. Very often, such acts imply
foregoing some advantages for the benefit of others. In this example it is a priori not clear
which type bears higher opportunity cost, leaving the relation of k£ and /{;I’; ambiguous.

More general, our model can capture any kind of costly behavior prior to the PD, which
is socially accepted as the appropriate signaling device. The selection of any particular
device appears to be a problem of coordination and is beyond the scope of this paper.
However, apparently such devices are used.

Finally, in our model the size of the parameter m measuring the strength of the coop-
erative preference is not driven by evolutionary forces, since no fitness payoff difference
depends on it. However, the size of the parameter does determine the range in which
cooperative equilibria exist. Hence, if two separate populations with different levels of m
are considered, the one with the higher value is more likely to evolve towards a cooper-

ative state. Thus, the population with the stronger cooperative preference would have

16Tn a laboratory experiment Brosig (2002) finds that cooperative individuals are somewhat better
at predicting their partner’s decisions in one-shot prisoner’s dilemma games than are the individualistic
ones. This, of course, is also consistent with a better ability to signal. Scharleman et al. (2001), and
Eckel and Wilson (2003), for example, explored the reaction of individuals to seeing the faces with whom
they were supposedly interacting. Their results support the potential of smiles as a mechanism to allow
subjects to read the intentions of others.
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an evolutionary edge over the other. Further, if in the course of time, both populations
start interacting with each other, a cooperative population might induce cooperation in
a defective population and vice versa. To analyze such an environment may be relevant

for studying migrational effects on cooperation.

7 Conclusion

This paper tries to shed light on three persistent patterns attributed to cooperative be-
havior in social dilemmas: (1) heterogeneity in preferences (coexistence of opportunists
and conditional cooperators); (2) heterogeneity in behavior (presence of cooperation and
defection); and (3) heterogeneity in communication. We study an evolutionary model
where individuals are able to signal their preference for joint cooperation before engag-
ing in a one shot Prisoners Dilemma. We derive the full set of Bayesian equilibria in the
signaling-extended Prisoner’s Dilemma and study their dynamic stability. This exhaustive
search puts us in the position to study the transition across different equilibria.

The main insight of our paper is that under mild conditions a new type of evolutionary
equilibrium (transitional equilibrium) exists, which is based on the dynamic interplay of
separating, semi-pooling, and pooling equilibria. Only this type of equilibrium can stabi-
lize a population state characterized by heterogeneity with respect to all three dimensions:
preferences, behavior, and signaling. More precisely, in the transitional equilibrium con-
ditional cooperators cooperate among each other but also with those opportunists who
signal to be a cooperator, and the proportion of opportunists who signal to be a coopera-
tor may fluctuate. The transitional equilibrium also provides an explanation for cycles in
behavior, preferences and signaling in equilibrium which do not require mutational forces
or individual errors in terms of execution of strategies, or perception of cooperative sig-
nals. Importantly and quite surprisingly, the transitional equilibrium is consistent with
conditional cooperators bearing higher signaling cost in terms of fitness than opportunists.
For a transitional equilibrium to exist it suffices that the cooperative preference is suffi-
ciently strong and the material signaling cost for both types of individuals are sufficiently
low. As a subsidiary results this solves the problem regarding the instability of separating

equilibria on the population level, immanent to costly signaling models of cooperation.

19



References

1]

2]

3]

[10]

Alexander, R. D. (1987). The Biology of Moral Systems. New York: Aldine de
Gruyter.

Alger, 1., J. W. Weibull. (2013). “Homo moralis — preference evolution under incom-

plete information and assortative matching.” Econometrica, 81(6), 2269-2302.

Andreoni, J., J. H. Miller. (1993). “Rational cooperation in the finitely repeated

prisoner’s dilemma: Experimental evidence.” Economic Journal, 103(418), 570-585.
Axelrod, R. (1984). The Evolution of Cooperation. New York, NY.: Basic Book. Inc.

Bendor, J., P. Swistak. (1998). “Evolutionary equilibria: Characterization theorems
and their implications.” Theory and Decision, 45(2), 99-159.

Bester, H., W. Giith. (1998). “Is altruism evolutionarily stable?” Journal of Economic
Behavior & Organization, 34(2), 193-209.

Binmore, K. (1994). Game Theory and the social contract I: Playing fair. Cambridge:
MIT Press.

Brosig, J. (2002). “Identifying cooperative behavior: some experimental results in
a prisoner’s dilemma game.” Journal of Economic Behavior & Organization, 47(3),
275-290.

Cooper, R., D. V. DeJong, R. Forsythe, T. W. Ross. (1996). “Cooperation with-
out reputation: experimental evidence from prisoner’s dilemma games.” Games and
Economic Behavior, 12(2), 187-218.

Dawes, R. M., J. McTavish, H. Shaklee. (1977). “Behavior, communication, and
assumptions about other people’s behavior in a commons dilemma situation.” Journal

of Personality and Social Psychology, 35(1), 1.

Dawes, R. M. (1980). “Social Dilemmas.” Annual Review of Psychology, 31(1), 169-
193.

Dekel, E., J. C. Ely, O. Yilankaya. (2007). “Evolution of preferences.” Review of
Economic Studies, 74(3), 685-704.

20



[13]

[18]

[19]

[20]

[21]

[22]

[23]

Eckel, C. C., R. K. Wilson. (2003). “The human face of game theory: Trust and
reciprocity in sequential games.” Trust and reciprocity: Interdisciplinary lessons from

experimental research, 245-274.

Fischbacher, U., S. Géchter, E. Fehr. (2001). “Are people conditionally cooperative?
Evidence from a public goods experiment.” Economics Letters, 71(3), 397-404.

Fischbacher, U., S. Géchter. (2010). “Social Preferences, Beliefs, and the Dynamics
of Free Riding in Public Goods Experiments.” American Economic Review, 100(1),

541-56.

Fletcher, J. A., M. Zwick. (2004). “Strong altruism can evolve in randomly formed
groups.” Journal of Theoretical Biology, 228(3), 303-313.

Frank, R. H., (1988). Passions Within Reason. The Strategic Role of the Emotions.
New York: WW Norton & Co.

Frank, R. H., T. Gilovich, D. T. Regan. (1993). “The evolution of one-shot coopera-
tion: an experiment.” Ethology and Sociobiology 14, 247-256.

Frey, B. S., S. Meier. (2004). “Social comparisons and pro-social behavior: Testing
“conditional cooperation” in a field experiment.” American Economic Review, 94(5),
1717-1722.

Fudenberg, D., E. Maskin. (1986). “The folk theorem in repeated games with dis-

counting or with incomplete information.” Econometrica, 54(3), 533-554.

Gintis, H., E. A. Smith, S. Bowles. (2001). “Costly signaling and cooperation.” Jour-
nal of Theoretical Biology, 213(1), 103-119.

Grafen, A. (1990). “Biological signals as handicaps.” Journal of Theoretical Biology,
144(4), 517-546.

Gith, W. (1995). “An evolutionary approach to explaining cooperative behavior by

reciprocal incentives.” International Journal of Game Theory, 24(4), 323-344.

Giith, W., A. Ockenfels. (2005). “The coevolution of morality and legal institutions:
an indirect evolutionary approach.” Journal of Institutional Economics, 1(2), 155-
174.

21



[25]

[26]

[27]

28]

[29]

[30]

[31]

[33]

[34]

[35]

[36]

Gith, W., M. Yaari. (1992). “An evolutionary approach to explain reciprocal behav-
ior in a simple strategic game.” U. Witt. Explaining Process and Change - Approaches

to Evolutionary Economics. Ann Arbor 23-34.

Giith, W., H. Kliemt, B. Peleg. (2000). “Co-evolution of Preferences and Information

in Simple Games of Trust. German Economic Review, 1(1), 83-110.

Guttman, J.M. (2003). “Repeated Interaction and the Evolution of Preferences For
Reciprocity.” Economic Journal, 113(489), 631-656.

Guttman, J. M. (2013). “On the evolution of conditional cooperation.” European
Journal of Political Economy, 30, 15-34.

Hamilton, W. D. (1964a). The genetical evolution of social behavior. I.” Journal of
Theoretical Biology, 7(1), 1-16.

Hamilton, W. D. (1964b). “The genetical evolution of social behaviour. II.” Journal
of Theoretical Biology, 7(1), 17-52.

Harsanyi, J. C. (1967). “Games with Incomplete Information Played by 'Bayesian’
Players, I-II1. Part 1. The Basic Model.” Management Science, 14(3), 159-182.

Harsanyi, J. C. (1968a). “Games with incomplete information played by Bayesian-
players, part III. The basic probability distribution of the game.” Management Sci-
ence, 14(7), 486-502.

Harsanyi, J. C. (1968b). “Games with Incomplete Information Played by 'Bayesian’
Players Part I1. Bayesian Equilibrium Points.” Management Science, 14(5), 320-334.

Hopkins, E. (2014). “Competitive Altruism, Mentalizing, and Signaling.” American

Economic Journal: Microeconomics, 6(4), 272-92.

Huberman, B. A.; N. S. Glance. (1993). “Evolutionary games and computer simula-
tions.” Proceedings of the National Academy of Sciences, 90(16), 7716-7718.

Huck, S., J. Oechssler. (1999). “The indirect evolutionary approach to explaining fair

allocations.” Games and Economic Behavior, 28(1), 13-24.

Janssen, M. A. (2008). “Evolution of cooperation in a one-shot Prisoner’s Dilemma
based on recognition of trustworthy and untrustworthy agents.” Journal of Economic
Behavior & Organization, 65(3), 458-471.

22



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[49]

Johnstone, R. A. (1995). “Sexual selection, honest advertisement and the handicap

principle.” Biological Reviews, 70(1), 65.

Kandori, M. (1992). “Social norms and community enforcement.” Review of Eco-
nomic Studies, 59(1), 63-80.

Keser, C., F. Van Winden. (2000). “Conditional cooperation and voluntary contri-

butions to public goods.” Scandinavian Journal of Economics, 102(1), 23-39.

Killingback, T., M. Doebeli, N. Knowlton. (1999). “Variable investment, the contin-
uous prisoner’s dilemma, and the origin of cooperation.” Proceedings of the Royal
Society of London B: Biological Sciences, 266(1430), 1723-1728.

Kreps, D. M., P. Milgrom, J. Roberts, R. Wilson. (1982). “Rational cooperation in
the finitely repeated prisoners’ dilemma.” Journal of Economic Theory, 27(2), 245-
252.

Lotem, A.; M. A. Fishman, L. Stone, L. (2003). “From reciprocity to unconditional
altruism through signalling benefits.” Proceedings of the Royal Society of London B:
Biological Sciences, 270(1511), 199-205.

Macfarlan, S. J., R. Quinlan, M. Remiker. (2013). “Cooperative behaviour and proso-
cial reputation dynamics in a Dominican village.” Proceedings of the Royal Society
of London B: Biological Sciences, 280(1761), 20130557.

Maynard Smith, J., G. R. Price. (1973). “The Logic of Animal Conflict.” Nature,
246, 15-18

Maynard Smith, J. (1991). “Honest signalling: the Philip Sidney game.” Animal
Behaviour, 42(6), 1034-1035.
McElreath, R., R. Boyd. (2007). Modeling the Evolution of Social Behavior. Prince-

ton: Princeton University Press.

Nowak, M. A., R. M. May. (1992). “Evolutionary games and spatial chaos.” Nature,
359(6398), 826-829.

Nowak, M. A.; S. Bonhoeffer, R. M. May. (1994). “Spatial games and the maintenance
of cooperation.” Proceedings of the National Academy of Sciences, 91(11), 4877-488]1.

Nowak, M. A., K. Sigmund. (1998). “Evolution of indirect reciprocity by image scor-
ing.” Nature, 393(6685), 573-577.

23



[50] Ockenfels, A., J. Weimann. (1999). “Types and patterns: an experimental East-West-
German comparison of cooperation and solidarity.” Journal of Public Economics,
71(2), 275-287.

[51] Ockenfels, A., R. Selten. (2000). “An experiment on the hypothesis of involuntary

truth-signalling in bargaining.” Games and Economic Behavior, 33, 90-116.

[52] Ostrom, E., J. Walker. (1991). “Communication in a commons: cooperation without

external enforcement.” Laboratory Research in Political Economy, 287-322.

[53] Panchanathan, K., R. Boyd. (2004). “Indirect reciprocity can stabilize cooperation
without the second-order free rider problem.” Nature, 432(7016), 499-502.

[54] Possajennikov, A. (2000). “On the evolutionary stability of altruistic and spiteful

preferences.” Journal of Economic Behavior & Organization, 42(1), 125-129.

[55] Queller, D. C. (1985). “Kinship, reciprocity and synergism in the evolution of social
behaviour.” Nature, 318, 366-367.

[56] Rapaport A, A. M. Chammah. (1965). Prisoner’s Dilemma. Ann Arbor: Univ. of
Michigan Press.

[57] Robson, A.J. (1990). “Efficiency in evolutionary games: Darwin, Nash and the secret
handshake.” Journal of Theoretical Biology, 144, 376-396.

[58] Roth, A. (1988). “Laboratory experimentation in economics: A methodological

overview.” Economic Journal, 98, 974-1031.

[59] Sally, D. (1995). “Conversation and cooperation in social dilemmas a meta-analysis
of experiments from 1958 to 1992.” Rationality and Society, 7(1), 58-92.

[60] Samuelson, L. (1997). Evolutionary games and equilibrium selection. Cambridge:
MIT Press.

[61] Scharlemann, J. P., C. C. Eckel, A. Kacelnik, R. K. Wilson. (2001). “The value of
a smile: Game theory with a human face.” Journal of Economic Psychology, 22(5),
617-640.

[62] Sethi, R. (1996). “Evolutionary stability and social norms.” Journal of Economic
Behavior & Organization, 29(1), 113-140.

24



[63] Spence, M. (1973). “Job market signaling.” Quarterly Journal of Economics, 87(3),
355-374.

[64] Trivers, R. L. (1971). “The evolution of reciprocal altruism.” Quarterly Review of
Biology, 46(1), 35-57.

[65] Warneryd, K. (2002). “Rent, risk, and replication: Preference adaptation in winner-
take-all markets.” Games and Economic Behavior, 41(2), 344-364.

[66] Wedekind, C., M. Milinski. (2000). “Cooperation through image scoring in humans.”
Science, 288(5467), 850-852.

[67] Wright, J. 1999. “Altruism as a signal: Zahavi’s alternative to kin selection and
reciprocity.” Journal of Avian Biology, 30(1), 108-115.

[68] Zahavi, A. (1977). “The cost of honesty: further remarks on the handicap principle.”
Journal of Theoretical Biology, 67(3), 603-605.

25



A  Proofs

Proof of Proposition 2. Stability requires a negative slope of the fitness difference func-

tion, i.e., a — [ > 0. Let us first consider 1kTL < ﬁ+5_ In this case, the within-
support condition amounts to 5 Jﬂi - <1- % < 1, rearranging yields %m <

kf kf < «. If on the other hand 1’1La >3 Hi —, the within-support condition amounts
fopf
to 1+a —(zﬁﬁk”) < 1, rearranging yields £ + lﬁ—La(oz —B) < ki =k, < a. Note

that the first pair of inequalities implies that a« — 3 > 0, because Trma < o =

m(f —a) < a(f —a) <= [ — a < 0. Thus, the two pairs of inequalities are necessary
and sufficient. O

<1-

Proof of Proposition 3. In the proof of proposition 3 we will recurrently make use of the

following

kg(l+e)  ky (m—a+5 _ ﬁ) 1}
72

Definition Dcps = Mmax {—kL(H.m_;_g)’ k I+a kr

Note that our simplifying assumption kg < kp is a sufficient but not a necessary
condition for pops < 1.

We observe that for pcps = 1 — pccs > peps and A(t) = A* = 1+a we have:

I;(CDs) == (1+m) — (1 — £)p,8 — kn

(A1)
> (Lt m) — (1= $5)8 — ky = (CCs)

and

M(CDs) = (14 m) — (1 — £2)p,3 — ky

A2
>max gy (z), =€ {CCns,CDns, DCns, DDns, DCs, DDs} , (A.2)

where the first inequality is strict if p; < 1 and the second inequality follows from 1Ii_La >
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m%, because for Peps = 1 — pocs > pPops:

My(DDs) = £h(1+a)— ky = f20im _ (’“L%;jﬁ) Ha)ﬁ ky < Iy (CCs)
Iy(DCs) = (14 a)— (1—£2)(1—p)B — ky < Uy (DDs)
Iy (CCns) = kT((l_pCDs)(l m) — pepsf) — (1—1+a)5

< (1 4m) = (1— £5)8 — (1 4+ m+ B) e = 11,4 (CCs)
Iy (CDns) = £((1— peps)(1+m) — pepsf) — (1 — £ )psf3

< B m) = (- E)pyf — Ea (14 m+ B) e 11, (CDs)
HH<DDTLS) = kT(l CDs)(l —|—Oé> < k?L(l - (lz_ - (m;fiﬁ - %))) = HH(CCS)
Iy (DCns) = (1 —peps)(1+a) — (1 — £4)(1 —p,)B < g (DDns)

Hence, continuity of the payoffs and Lipschitz-continuity of the dynamics implies that
there exists some € € (0,\* — kJ,) and some p € (0,1 — peps) such that for all A €
(AN — €, \* +¢€) and all pcps > 1 — p we have peps + pocs > 0 and, due to pops > pecs,
payoff monotonicity also implies pcps > 0. Hence, in every sufficiently small neighborhood
of \*, peps will always grow if it has surpassed some threshold level.

This allows us to prove the proposition under condition (8a): Inserting \*, p¢p, ., and
Pépsns into the second line of Table 1 yields (ITy — II5)Y = 0 and thus A = 0. Since
Peps.s T PEDsns = 1 and thus pip,  +Popsns = 0, the equation I (s) = A*(1+a) — kg, =
0 = I (ns) implies p = 0. \*, PCps,s» Popsns 18 thus a fix point. To prove stability,
we recall that pops = 1 excludes that any other strategy enters the dynamics. We can
thus concentrate our analysis to the variables A\(¢) and ps(t) = peps,s(t). We rewrite this

dynamic system as

A = h((Iy — 11,)) ()\ kL)( 1—ps)+(k{—k§—(Aa+(1—A)5))), B> 0
ps = §((s) —g(ns)) = gA\1+a)—kr), ¢ >0

Linearizing the system at the fix point and noting that g—iz = ( yields

: NG :
10X 1 [{oA Ops OX
dilo===~E+|= | 5% A.
2T oaA T2 (ax) oA ops (A-3)
ko~
as eigenvalues of the characteristic matrix. Since we can write 2 g’\ = —(14+a)7 ()2 pkH () <

0 and due to the larger velocity of ps, §'(-) is large enough to turn the term in the
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root negative. Thus the sign of the real parts of the eigenvalues is given by the sign of
o
condition (8a) is satisfied. Thus, the fix point is stable if and only if this condition is
satisfied.

We now turn to the case of condition (3b), i.e. we assume that the fix point is not
stable.

First assume that the system has reached such a state in which A € (A* —€, A* +¢) and
peps > 1 — p and that A(t) < A*. Then I (s) = A(1 — &) (pocs + pops + Pocns + Popns) —
kr ~ A1 — «) — kg, will become smaller than 11 (ns) = (1 + a)(pccos + Ppes + Pocns +

= (1 = ptps (1 +a— B))h! which can easily be shown to be negative if and only if

Ppcns) = 0 because of the growth of pops. Thus, ps will decline towards zero before A(t)
has declined to A* — € if the dynamics of p is fast enough relative to the dynamics of .
As a consequence, popsns — 1, i.e. the system is attracted by P;(\). The fitness payoff
difference (I — I1;)” will thus approach A(t) — kJ, > 0 so that A will eventually become
positive before A(t) < \* —e.

Next, assume that the system has reached a state in which A € (A* — ¢, \* 4 ¢) and
peps > 1 — p, but, contrary to the previous paragraph, A(t) > A*. Then Il (s) =
M1 — a)(pecs + Peps + peons + Popns) — kr =~ AM(1 — a) — ki, will become larger than
[y (ns) = (14 a)(pecs + Ppes + Peons + Poens) =~ 0 and thus p, will grow towards one
before A(t) has grown to A* + € if the dynamics of p is fast enough. As a consequence,
Pepss — 1, i.e. the system is attracted by an element of P.(\). The fitness payoff
difference (ITy; — I1)’ will thus approach kf — kf, — (\(H)ar + (1 — A(£))B) < 0 so that A
will eventually become negative before A(t) > A\* + e.

Finally, assume that the system has reached a state in which A = A* and peps > 1—p.
Then either # 0 so that the system will be driven into one of the states discussed in
the two previous paragraphs or A = 0. But then the fitness payoft difference and thus A
will quickly become either positive or negative since pops > 0 still holds true. The only
exception is the fix point we discussed earlier. Due to condition (3b) it is not stable. As a
consequence, the slightest disturbance will drive the system away from the fix point and
into the fluctuation described in the two previous paragraphs.

At A*, P()), and P,(\) the system thus satisfies part 1 of the definition af a transitional

equilibrium. Part 2 is obvious from the line of argument in the proof of part 1. n
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B Separating and Pooling Equilibria - Existence and
Stability

In this section we derive the separating and the pooling equilibria of the signaling-extended
PD for a given share of high types A € (0,1). Further, we will consider the stability
properties of these equilibria. We apply the notion of asymptotical stability as a stability
concept. An equilibrium point is a fix point p of the dynamical system p(t) = F(p(t))
and is said to be asymptotically stable if it meets two conditions. First it needs to be
Lyapunow-stable, i.e. Ve > 0,30 > 0 : ||p(0) — p¥|| < 0 = ||p(t) — Prl| < €, Vt > 0,Vp(t)
being a trajectory, second it needs to be an attractor, i.e. 30 > 0 : any trajectory p(t)
with ||p(0) — p’|| < & then ||p(t) — || — 0. The definitions for an equilibrium set are
accordingly (see e.g., Samuelson, 1997).

To proof stability or instability of an equilibrium we will rely on phase diagrams. We
will proof instability by arguing that the system cannot be Lyapunow-stable. In case
of an equilibrium point in the interior of the support of the equilibrium the involved
strategies earn strictly higher payoffs then non-equilibrium strategies. Small perturbation
will not alter this property. Payoff monotone dynamics will decrease the share of the non-
equilibrium strategies. Hence for analyzing the stability properties in that case it suffices
to consider the involved equilibrium strategies and whether the dynamics will reestablish
the equilibrium values given a small perturbation. At the boundaries of the support of an
equilibrium point a non-equilibrium strategy will earn the same profits as the equilibrium
strategies. In that case these strategies needs to be included in the analysis. However
with respect to all other strategies the previous argument still applies.

Note that the expected payoff for each type-contingent strategy is additively separable
in the payoffs for the two types. We will make use of this property when discussing the
stability of equilibria. That is, to proof the (in)stability of a certain equilibrium (set)
we will consider contingent-wise changes of behavior. For this purpose, we introduce the
following notation. Consider the strategy C'Ds,ns, then pops denotes the probability
to play C'Ds, conditional on being a high type, and p,s the probability not to signal,
conditional on being a low type. The definition applies accordingly for any other strat-
egy. Further, we will write expected payoff as linear combination of type-specific payofts
Hepsns = Al (CDs)+ (1 — A1 (ns). Finally, in the phase diagrams thick solid lines or
points correspond to equilibrium sets or points, respectively. Iso-profit lines are depicted
by thick dotted lines.
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B.1 Separating Equilibria
B.1.1 High types signal, low types do not signal
Existence

That is, we look for an equilibrium, such that pccsns + Pepsns + PoCsns + PDDsns = 1.

Hecsns = A[APccsns + Pepsms)(1+m+ B) — B — ki | + (1 = X) [A(pccsns + Pocsns) (1 + @) (B.1)
Iepsns = AMA(Pecsns + Pepsms) (1 +m) = (DDCsns + Popsns) Bl — ku] + (1 = A) [Mpecsns + Pocsns) (1 + a)] (B.2)
U pcsns = AMPccsns + Pepsms) (1 +a) — (1= X)B — kg | + (1 = N) [Mpecsns + Ppocsns) (14 a)] (B.3)
Ippsns = AADccsns + Pepsns) (1 + @) — k] + (1 = N [A(pccsns + Ppesms) (1 + )] (B.4)
Hecnsns = MA(Pecsns + Ppesms)(1+m+ B)] = 8] + (1 = X) [AM(pecsns + Poosns) (1 + a)] (B.5)
Iepnsms = A[A(Pccsns + Pocsns) (1 +m) = (pepsms + Popsns)B]] + (1 = A) [ADccsns + Pocsas) (1 + @)] (B.6)
M pcnsms = AMA(Pocsns + Ppesns) (1 + )] = (1= X)B] + (1 = X) [Mpocsns + Ppesns) (1 + @)] (B.7)
I pDnsns = AADccsns + Pocsns) (1 + )] + (1= X) [M(pecsns + Poosns) (1 + a)] (B.8)

Note that for A € (071) and PcCsnsy PCDsnsy PDCsnsy PDDs,ns > Oa it follows that HCCS,TLS < HC’Ds,ns> HDCs,ns < HDDs,nsa
Heensns < Hepnsms, and HUpesns < Hppsns. After deletion of these strictly dominated strategies, payoffs of the remaining

strategies are given by:

HC’Ds,ns = )\[)\[pC’Ds,ns(l + m) - pDDs,nsﬁ] - kH] ) HDDs,ns = )\[)\<pC’Ds,ns)(1 + O{) - kH] (Bg)
HCDns,nS = )\|: - (pCDs,ns +pDDs,ns>ﬁ:| 5 HDDns,ns =0 (BlO)

For a separating equilibrium where high types send the signal and low types don’t, only two not dominated strategies are left,

CDs,ns and DDs,ns , i.e. pcpsns + Popsns = 1. Thus, CDns, ns would earn strictly less than DDns, ns (see B.10).
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1. Let us first analyze the case pcpsns = 1. In that case the following three conditions are necessary and sufficient for this

to constitute an equilibrium:

(1) Hepsns > Hppsns, which is always satisfied, because of m > a.

( ) HCDsns ZHDDnsns@)\_ 1+m

(111) HCDs,ns Z HCDss S A S 1+a

Thus, the three conditions are equivalent to 1+_m <A< 1’1—La Note that since k;, > kg, and m > « the A-support for

this equilibrium is not empty.

2. Let us now analyze the case pppsns = 1. In that case DDns,ns would earn strictly higher payoffs, hence such an

equilibrium cannot exist.

3. Finally, let us consider a mixed equilibrium, i.e. pcpsns + Pppsns = 1. In that case the following three conditions are

necessary and sufficient for this to constitute an equilibrium:

(1) HCDs,ns - HDDs,ns < PcDsns = ,3-1—%'

.. A\B+k
(11> HDDs,ns Z HDDns,ns < PcDsns Z ﬁ

(ili) Hepsms > Hepss € Popsns < ity

At popsns = o 51 the last two conditions are equivalent to 5 *m al{:H <\ < +m O‘k:L
Stability
1. Let us first analyze the stability of pcpsns = 1. This equilibrium is certamly stable in the interior range L < A <

1+a
1+ , the strategies C'Ds, ns and C’DS s earn the

same profits, i.e. low types are indifferent between signaling and not sending the signal. Consider a small perturbation

since all payoff inequalities hold strictly. At the upper boundary \ =

such that C'Ds, s is played with a small positive probability. To reestablish pcps s = 1, the share of high types playing
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C'Ds must decrease, because Il (s) — Il (ns) = Apeps(l + «) — kr. However, for small perturbations C'Ds is still
dominant for high types. Hence, C' Ds persists as part of the equilibrium strategy and there is no force reestablishing the
non-signaling contingency for low types. Thus, the separating equilibrium is not stable at the upper bound. A similar
argument establishes, that it is also not stable at the lower bound. At the lower bound ﬁim, the strategies C'Ds, ns and
DDns,ns earn the same profits, i.e. high types are indifferent between cooperating and incurring the cost of the signal
on the one hand, and defecting and no signaling on the other. Consider a random drift, such that ppppsns > 0, this
will lower profits for CDs,ns and leaves profits for D Dns, ns unchanged. Hence, the equilibrium will not be restored.

In other words, this equilibrium is not stable at A = ﬁ—Hm

. Let us next consider the equilibrium with peps s = ML_OC, PDDsns = G

B+m—a”

Given the following differences in type-specific payoffs:

pCDs
/6 — (1 - A)Bpns
[1(CDs) —y(DDs) > 0 < peps >
H( ) H( )_ Pcps = )\(m—a—ﬁ) ﬂ
(ns) — T, (5 b e [ T e
I (ns) =1l (s) > 0< pops < ————— L
)\(1 + Oé) k. TS~ol M (ns)-TI,(s)=0
Al+a) [TT7TTTTTTOOT \‘::\—\————T—_:—
, we obtain the following phase diagram. Note that for the sup- Pk )
port of that equilibrium )\(f-];-a) > kH+AA(,tjn—_(i—_Aﬁ))Bpns holds. Note fur- l(lki;fﬂ) __________ - TFma)
ther that the upper bound of the support A\ < m—gc+,8 _1’era implies T1,,(CDS) 1, (DDne) 0~~~ ===~ _ | /1(111 mﬁﬁ)
8 k iy ey , ;

et S sntey- Additionally, RS < St & it <
m_i T35 As the diagram clearly indicates, this equilibrium is unsta- p..

ble for all X\ in the support.
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B.1.2 High types do not signal, low types signal
Existence

That is, we look for an equilibrium, such that pcons,s + Popns,s + Ppcns,s + Pppns,s = 1. Let us again first study the signaling
contingency for high types.

Hecss = A[APccns,s + Pepnss)(L+m+ B8) — B — ky] + (1 = X) [A(pccns,s + Popns,s) (1 + a) — ki ] (B.11)
epss = AA(Pccns,s + Pepnss) (1 + )] — (1= N)B — ki | 4+ (1 = X) [Mpccns,s + Pepnss) (1 + ) — ki (B.12)
Ipess = AA(Pecns,s + Pepns,s) (L +m+ B) — B] — ku] + (1 — X) [M(pccns,s + Pepnss) (1 + a) — ki ] (B.13)
ppss = AA(Pecns,s + Pepnss) (L + )] — ki | + (1 = A) [MPccns,s + Popns,s) (1 + @) — ki (B.14)
Meenss = AAPecns,s + Poenss) (L +m+B8) = B — kg | + (1= N [Mpcens,s + Popns,s) (14 @) — kL] (B.15)
¢ pns,s = AMA(Pocns,s + Poenss)(1+ a)] = (1= XN)8 — kg + (1 = A) [A(Pccns,s + Pepns,s) (1 + @) — kL] (B.16)
Mpenss = AA(Pocns,s + Poens,s)(1+m+ B) — 8] — ku] 4+ (1 = A) [A(Pocns,s + Popns,s) (1 + a) — ki ] (B.17)
I ponss = AA(Pecns,s + Poons,s) (14 )] — ki + (1 = X) [MDccns,s + Popns,s) (1 + ) — ki ] (B.18)

Note that for A € (Oa 1) and Pccns,s; PCDns,ss PDCns,ss PDDns,s > 07 it follows that HCC&S < HDCS,S7 HCDS,S < HDDs,sa HC’C’ns,s <
Upens,s, and Hepps s < Hppnss. After deletion of these strictly dominated strategies, payoffs for low types to signal is —kp,
whereas signaling yields an expected payoff of Appens.s(1+«). Thus, strategies that imply no signaling for low types generate

strictly higher payoffs. Hence, such an equilibrium cannot exist.
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B.2 Pooling Equilibria
B.2.1 High types and low types do not signal
Existence

That is, we look for an equilibrium, such that pccnsns + Pepnsns + Pocnsns + Popnsns = 1. Let us again first study the

signaling contingency for high types.

Mocsns = A[A(Pocnsns + Pepnsns)(L+m + 8) = B —ku| + (1 = A) [APocnsns + Poensns) (1 + a)] (B.19)
Iepsns = AA(Pccnsms + Popnsns) (1 + )] = ki | + (1 = A) [MPccnsns + Pocnsns) (1 + a)] (B.20)
M pcsmns = AA(Pecnsns + PeDnsps)(L+m + ) — B = ky] + (1 — A) [AMpccnsns + Pocnsns) (1 + @)] (B.21)
I ppsns = AA(Pccnsmns + Pepnsns) (1 + @) — ki | + (1 = X [A(pccnsns + Pponsas) (1 + @)] (B.22)
ecnsns = AA(Pccnsns + Pepnsns) (1 +m 4+ 8) = B] + (1 = N [A(Pccnsns + Pocnsns) (1 + a)] (B.23)
epnsms = A[APccnsmns + Pepnsns) (1 + )] + (1 = X) [Mpecnsns + Poonsms) (1 + )] (B.24)
U pcnsms = AA[(Pecnsns + Pepnsms)(1+m+ 8) — B] 4+ (1 = X) [Mpccnsms + Pocnsms) (1 + )] (B.25)
U ppnsms = AADccnsns + Pepnsns)(1+ @)] + (1 = X [MPccnsns + PCnsps) (14 a)] (B.26)

Note that in a pooling equilibrium where nobody sends the signal, CCns,ns and DCns,ns (C'Dns,ns and DDns,ns) will
always earn the same profits irrespective of the chosen signal and the particular composition. We will denote profits by

Hconsns/Densms, a0d Il ppsns/DDnsns- Since those pairs are indistinguishable we only have to consider the following cases:

1. Consider first the case poonsns + Pocnsns = 1.

(1) In that case HC’Cns,ns/DCns,ns > HCCS,ns/DCS,nS7 HCDns,ns/DDns,ns > HCDs,ns/DDs,nsa and HCCns,ns/DCns,ns > HCCns,s/DCns,sa

because pcpnsns = 0.
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.. 8
(11) HCC'ns,ns/DCns,ns > HCDns,ns/DDns,ns S A > Btm—a" Because of HCCns,ns/DCns,ns > HC’Dns,ns/DDns,ns > HCDS,nS/DDS,nSa

the condition \ > 3 +51 — is necessary and sufficient.

2. Consider next the case pcpnsns + PoDnsns = 1.

(1 In that case HCCns,ns/DC’ns,ns < HC’Dns,ns/DDns,nsa because Pccns,ns +pCDns,ns =0.
(ii

(i

k
HCDns,ns/DDns,ns Z HCDs,ns/DDs,ns < ApC’Dns,ns S lfa'

< B+ky

HCDns,ns/DDns,ns > HCCs,ns/DCs,ns g )\pCDns,ns 1+mi8"

: k
(1V) HC’Dns,ns/DDns,ns Z HCDns,s/DDns,s = )‘pCDns,ns S H_La-
Note that, lli—La > ﬁ—Ha Thus, (ii) and (iii) are necessary and sufficient.

3. FinaHY7 consider the case PcDnsns + PDDns,ns + Pccnsns + PbDCnsns = 1.

(i) In that case all no-signaling strategies earn the same payoff: )\[)‘[(pCCns,ns + Pepnsns) (1 +m + ) — B} + (1 —

)‘) [)‘(pCCns,ns + pDCns,ns>(1 + Oé)] - A[)\(pCCns,ns + pCDns,ns)<1 + Oé)} + (1 - )\) [)\(pCCns,ns + pDCns,ns>(1 + O{)] =
/\(pCCns,ns + pDC’ns,ns) = B—l—mL—a'

.. k
(H) HCC’ns,ns/DCns,ns > HCCs,ns/DCs,ns g )\(pCDns,ns _pDCns,ns) < m

(111) HC’Dns,ns/DDns,ns Z HCDs,ns/DDs,ns < )‘(pCDnsms - pDCns,ns) S 1+Hoz‘
: k
(IV) HCDns,ns/DDns,ns/CC’ns,ns/DCns,ns > HC’Dns,s/DDns,s/CCns,s/DCns,s < A(pC’Dns,ns - pDC’ns,ns) < 1_:04'

Note that, because of k;, > ky and m > «, (ii) implies (iii) and (iv). Thus, such an equilibrium exists if and only if

)\(pCCns,ns +pDCns,ns) = ,B—I—mL—a and )\(pCDns,ns - pDCns,ns) S l—ﬁ-ljn—H-l—ﬁ
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Stability

1. This equilibrium set is stable for A > m_ﬁ 5 since all inequalities hold strictly, i.e. for any small perturbation the

equilibrium strategies earn strictly more than any other strategy. Note that not necessarily the pre-perturbation shares
are reestablished, but that the sum of their shares equals unity. At the boundary A = meomB there are too few high
types and the agents become indifferent between cooperation and defection, i.e. Ilccnsmns/Donsns = LleDnsns/DDnsns-
Note that it is still a strictly best response not to signal contingent on being a low type. Given the following differences

in type-specific payoffs:

B

11 —1II Dns) > ns = N5 — ns
u(CCns) u(CDns) > 0 < pco =)+ 5 PpC

, we obtain the following phase diagram.
pCCns

Note that at A = m—fwﬁ a perturbation from CCns,ns to-
wards DDns,ns decreases the payoffs for the equilibrium strate-
gies strictly more than for DDns, ns and decreases profits for all
other strategies weakly more, i.e. those strategies still earn strictly
less than DDns,ns, and the share of DDns, ns increases. Hence,

there is no force reestablishing the equilibrium set. Note that the

iso-profit line is shifted towards the boundary as A approaches the

N

lower limit of the support —2—. As the diagram clearly indicates, I, (CCns/DCns) v
m-a+h —HH(CDns/DDns):O\\

5 in the support. .

m—a+p8 1 Pocns

this equilibrium is stable for all A >

2. This set of equilibria is stable for peppsns < %min{ll_ﬁj f 5 ﬁ—Ha

perturbation the equilibrium strategies earn strictly more than any other strategy.

} since all inequalities hold strictly, i.e. for any small
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Given the following differences in type-specific payoffs:

Iy (CDns) —lg(DDns) = —B(1 — AN)ps <0

k
HL<n5) — HL(S) = k’L — )\(1 + Oé)pC’Dns 2 0 < DPCDns S /\(]_—jiOé)

, we obtain the following phase diagram. As the diagram clearly

indicates, this equilibrium set is stable for all A in the support.

Given the following differences in type-specific payoffs:

p

II —1II D > <— —
H(CC?’LS) H(C ns) >0 ppons < )\(m _ Of‘i‘ﬁ) PccCns

, we obtain the following phase diagram. All other payoff differences

of equilibrium strategies vanish. The figure incorporates the two

conditions for existence, i.e., A(Pccnsns + PDOnsns) = ﬁ and
APcDnsns — PDCnsms) < 1+’fn—H+B As the diagram clearly indicates,

this equilibrium set is unstable.

pCDns

r)
ky
Al+a)
N mm{ kot ke
a A(l+m+ ) 2(1+a)

~

pDCns

I, (CDns)-I1,, (DDns) =0

Ps

. Observe that the payoffs for the equilibrium strategies can be written as linear functions in pcconsns + Pocnsns-

N

I, (CCns/DCns)
N
~I1,, (CDns / DDns) =0 \\

A

Peons —

A(l+m+p)

1 pCCns

}
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B.2.2 High types and low types signal

Existence

That is, we look for an equilibrium, such that pccss + Peps,s + Ppes,s + Pops,s = 1. Let us again first study the signaling

contingency for high types.

Heocss = A[Apcess + Pepss) (1 +m+ B) — B — ki) + (1 = X) [AMpccs,s + peps,s) (1 + a) — ki ]
Hepss = A[Mpecs,s + Pepss)(L+m+ ) — 8 — kH] + (1 = M) [Mpcess + pepss) (14 a) — ki ]
Ipess = AMAPocs,s + peps,s)(1+a) — k| + (1 = N [A(pecs,s + pepss) (1 + ) — ki ]
Mppss = A[APccoss + pepss) (L + a) — ki) + (1= X) [Mpecs,s + pops,s) (1 + @) — ki

Mecnss = AA(Pees,s + Popss) (1 +m+ ) = 8] + (1= N [AMpees,s + pops,s) (1 + @) — kL]
epns,s = AMMPocs,s + Pepss)(L+m+ 3) — 8] + (1 = A) [M(pecs,s + Pops,s) (1 + ) — ki
M pems,s = AMMPocs,s + Peps,s) (1 + @) + (1= X) P\ PeCss + Peps,s) (1 + a) — k]
I ppnss = AMADccss + pepss) (L4 a)] + (1= X [A(pces,s + Peps,s) (1 + @) — ki ]

Note that in a pooling equilibrium where everybody sends the signal, CC's, s and CDs, s (DC's, s and DDs, s) will always

earn the same profits irrespective of the chosen signal and the particular composition. We will denote profits by Ilccs,s/cps,s»

and IIpcg s/pps,s- Since those pairs are indistinguishable we only have to consider the following cases:

1. Consider first the case pccss + Pops,s = 1.

. k
(1) HCC’S,S/CDS,S Z HCCns,s/CDns,s = APCDS,S Z m

( ) HC’CS ,8/CDs,s > HDCS ,8/DDs,s S A> m%

+k
(111) HCCS ,§/CDs,s > HDCns ,s/DDns,s S A> B+m— af_pcgs S(1+a)
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(iv) Hecs,siopss 2 Hocsms/cpsms < A 2 5.

Note that (iv) implies (i), for (iv) to be satisﬁed a strictly positive share needs to play C'Ds, s. Furthermore, (ii) and

(iv) imply (iii). Hence, for A > max{ } such an equilibrium exists.

pcpss(1+oc) /3+m a

2. Consider next the case ppcss + Pppss = 1. This cannot constitute an equilibrium, because not sending the signal

contingent on being a low types yields strictly higher payoffs.

3. Finally, consider the case pcpss + Ppps,s + Pocs,s + Ppes,s = 1.

In that case all signaling strategies earn the same payoff: \ [/\(pccs,s +pepss)(L+m+5)— 5 — kH} +(1-=2X) [)\(pCCs,s +

peps,s)(1 + ) — k] = AMApccs,s + pepss)(1+m + 8) — B — ky] + (1 — X) [A(pccs,s + pepss) (1 + ) — k] <

ANpcess + Dopss) = ML—a The following condition are necessary and sufficient for existence.

: k
<1> HCCS,S/CDS,S > HCCns,s/CDns,s g /\<pCDs,s - pDCs,s) > m

(11) HDCS,S/DDS,S Z HDCns,s/DDns,s < )\(pC’Ds,s - pDC's,s) Z 1k_~__Ha-
(111) HCDs,s/DDs,s/CCs,s/DCs s Z HCDs ,ns/DDs,ns/CCs,ns/DCs,ns <~ )\(pCDS s pDCs,s) > 113__La~
Note that (ii) implies (i), and (iii) implies (ii). Hence, such an equilibrium exists if and only if A(pccs.s + Popss) =

k
/3+§1_Oé7and )‘(pCDs,s _pDCs,s) > 1—|-_La'

Stability

1. Note that at pcps = % low types are indifferent between signaling and no signaling. As soon as low types start not

to signal, C'Ds earns strictly higher payoffs than C'C's such that the incentive for low types to signal will be restored.
However, at A= /\(fia) pCDS equals 1 an therefor can not increase. Thus, this equilibrium is unstable at the upper
bound 1 + YR If A= —Jrﬁ, then high types given a received signal are indifferent between cooperative and defective

play. For a small increase in the share ppcss + Ppps.s, the profits for the equilibrium strategies will decline more than



0¥

the profits for DC's,s/DDs,s. Since the equilibrium strategies and DC's,s/DDs, s will still earn higher profits than

any other, there is no force bringing back the system to pccss + pepss = 1. Hence, the equilibrium is unstable at

__ B
A= ais
Given the following differences in type-specific payofts: Peos
g (CCs) —=p(CDs) = =B(1 = A)pns <0 4
kr
Iy (ns) —IIz(s) > 0 & ns < ke

L(ns) L(s) > Pcp ML+ ) pri
, we obtain the following phase diagram. b
As the diagram clearly indicates, this equilibrium set is stable for

k B
A > max{ s ey Frma

T Prs

I, (CCs)-TI1, (CDs)=0

. Let Pccs +Pcps = T and Ppcs + Ppps = Y- Note that Yy = 1 —u, because of Pccs +Pcps +Ppcs + Ppps = L. ThUS, we

can write payoffs for high types as: IIy(CCs) = Iy (CDs) = Ax(1 +m+ ) — 5 — kg, and 15 (DCs) = Iy (DDs) =
Az(1+a)—ky. Given any perturbation that violates the equilibrium condition A\(pccos+peps) = m_LW the equilibrium

set will not be restored because I1y(CCs/CDs) — Iy (DCs/DDs) = x(m—a+5)—>0< Az > m_i%. Thus, an

increase in x is self enforcing.
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C Stable Semi-Pooling Equilibria

strat. eq. shares conditions for existence support payoff differences
_ kr+(1-N)8 . B k 1+m km+8 _
COS,HS pccs’"s_l_kw (1) Frm—a < 1+_Hoc < 1—:—_(1 1_5_’1—_’_/3)\< 1 Iy — 11 =
CDTZS, ns pCDns,ns = b;\—(i_l(T:n))B (m — CY))\(l — W) >0
@ < b | 1-mel << (I —T1,)/
kL +(1-0)8
—a(1 — ) < g
DCS,'I?,S pDCs:%(l_@) 6(1+C¥) > ¢ %—?T_—]ZI<>\ Iy —1I; =
DCs, s PCDns = %(1+A(1—ia)) < 1—%(%&—1{}1) (m — o) \ppes — B(1 — A)ps < 0
CDns,ns | pns = 5(1+ (17&)/@)(%/{;,; —kn) (Mg — 11, =
CDns,s | ps= %(1 — m)(%l@ — kp) —aAppes — B(1 = AN)ps <0
DC's,ns PpCsms = 3(1 — W) A > maX{llﬁjfB,Q, U} | Ty — 1 = (m — @) A\ppesns > 0
CDns, ns PcDnsns = %(1 + W) (HH - HL)f = _aApDCs,ns <0

O = B (1 4k, — (14 a)ky) +

m—«

B(l+a

MG+ a) 0 = 1— g (L m)ky — (14 a)ky) , ¥ =1 -

Table 2: Additional Stable Semi-Pooling Equilibria

(m—a)(1+m-+kg)
(B+m—a)(1+m)+(1+a)B




D Semi-Pooling Equilibria — Existence and Stability

1. Existence
We will turn to the analysis of equilibria where only parts of high types or low types signal.

Before we start we will have a closer look on the payoffs for various strategies and their differences. This will significantly simplify the analysis. The
following table gives the payoffs for each strategy:

CC, M) = 2] ( Pecn + Peon + Pecn + Peo ) (L+M) + (pDCm + Poon + Pocn + Poon )(~B) |+ (1= 2)[ P,
D,m) = 2[ (Pecn *+ Peon ) (1+ M)+ Pecy + Peon ) (1+ @) + ( Pocs + Poom ) (=) |+ (1= 4) [ Py (- )
DC, M) = [ ( Pecn + Peon ) (L+ M)+ ( Pocs + Peon ) (1+ ) (pDCm + Poog ) (=B) |+ (1= 2)

D, M) = [ (Peos + Peon + Pocn + Poon ) (1+ @) |-k

Hm (m) = l[( Peem * Pocn pccm + pDCm)(1+ 0!):|
I1

m (m)= /1[( Pecs * Peom + Pecn pCDm)(1+a)J_K

It will be useful to calculate differences among strategies with different behavior but the same signal and among strategies with different signals.



(1) Within-differences:
1, (CC.M) 11, (CD.M) = 2| (Pecn + Peom ) (M=) +( Poca + Poon ) (=) |+ (1= 2)[ Pu (=)
I, (CC,M) =TT, (DC,M) = A[( Pecn + Peon ) (M=) +( Pocn + Poon ) (=) ]+ (1= 2) [ Pa (-8)]
T, (CC, M)~ (DD, M) = [ ( Peen + Peon + Pecn + Peon ) (M=) +( Pocs + Poon + Pocn + Poon ) (=8) |+ (1= 2)[ Pa (=8)+ Py (-8) ]
M, (CD, M)~ I, (DC,M) = A[ (Pecn + Peom ~ Pecn — Peom ) (M=) +(Pocn + Poom ~ Poca — Povn ) (~B) |+ (1= 24)[ P (~8) ~ Py (-8)]
1, (CD, M)~ 11, (DD, M) = A[ ( Pecn * Peon ) (M=a) +(Poc + Popn ) (=5) ]+ (1= 2) [ Pw (-5) ]
Hm(DC,nﬁ)—Hm(DD,nﬁ):/l[(pcc + Peom ) (M=) +(Pocy + Poon ) (- )] +(1-2) Py (-8)]
M, (CC,m) -1, (CD,m) = 4| ( Pecy + Poca ) (M=) +( Peon + Poon ) (—B) |+ (1= 2)[ pu (-8) ]
1, (CC,m)~TI1, (DC,m) = A[ (Pecn + Pocn ) (M=) +(Peom + Poon ) (=) ]+ (1= 2)[ Pa (=) ]
M, (CC,m)~T1,, (DD, m) = A[ (Pecn + Pocn + Pecn * Poca ) (M=) + ( Peon + Poon + Peom + Poom ) (=) |+ (1= A)] Pn (=8)+ Py () ]
I, (CD,m) =TT, (DC,m) = A[ (Pecn + Pocn = Pecn = Pocn ) (M=) +( Peon + Poon = Peon = Poon ) (<) |+ (1= 2)[ P (<) = P (-5) ]
Hm(CD,m)—Hm(DD,m)zﬂ[(pCC + Poc )(rﬁ— )+( Peom *+ Poom ) (= ):l (1- )[p (—,B):l
I, (DC,m)~I1,; (DD, m) = [ ( Pecn + Pocn ) (M=) +( Peom + Poon ) (=) |+ (1=2)[ Pu (~5)]

(2) Cross-differences:

M, (M) =TT, (M) = 2] ( Peon * Peon — Pocs ~ Poca )(1+@) |-k

M, (CC,m)-T1, (CC,m) = A(1+ M+ B)[ ( Pcon + Peon — Pocn — Poca ) |- K

I, (CD, M)~ I, (CD,m) = [ ( Peon — Pocn ) (1+ M+ )+ ( Peon — Pocn ) (1+ @) |-k
I1,, (DC, M) 1, (DC,m) = 2 (Peon — Pocn )L+ @)+ ( Peom — Pocy ) (1+ M+ )|~k

I1,, (DD, M)~ 1, (DD, m) = £(L+ @)[ ( Peon + Peon ~ Pocn ~ Pocw) |-k

All other differences can be expressed by the within-differences and the four cross differences above.



Observation 1:

@

@) I,

A consequence of (ii) of observation 1 is that whenever low types are indifferent in an equilibrium between signaling and not signaling, high types strictly
prefer to signal over not to signal given unconditional defective behavior. Put differently, if unconditional defection with and without signal is part of an

equilibrium, then low types will prefer not to signal in such an equilibrium.

Observation 2:

@) IT, (CC, rﬁ) —I1,, (CD, rﬁ) =11, (DC, rﬁ) —-1IT,, (DD, rﬁ) note that differences depend only on non-signaling shares
@  M,(CC,m)-I1,(CD,m)=11,(DC,m)-T1,(DD,m)
(iii)y ~ Corollary: IT; (CC,m)+TI1,(DD,m)=1II,(CD,m)+I1_(DC,m) ; I, (CC,m)+II,(DD,m)=1II_(CD,m)+I1,(DC,m)

Implication:

If within the 4 signal or 4 non-signal behaviors 3 strategies earn the same profit then all 4 strategies earn the same profit. Hence, as a first consequence,
there are for each of the cases signal/ no signal only three possibilities: either all 4 strategies earn the same payoff, 2 equal profitable strategies earn strictly
more than 2 others, or a single strategy earns more than all others.

If we look at the corollary of observation 2 that the sum of profits for unconditional strategies must equal the sum of profits for conditional strategies, then
both conditional can only earn the same profits in equilibrium if the two unconditional strategies earn the same profits too, i.e. all 4 strategies earn the same,
otherwise the two unconditional (conditional) strategies must be dominated by one conditional (unconditional) strategy. Furthermore this dominating

strategy dominates the second condition (unconditional) strategy. Hence either all strategies earn the same profits or a conditional an unconditional strategy

earn the same (highest) payoffs or a single conditional/unconditional strategy earns the highest payoff. The following Lemma summarizes.



Lemma: For each signaling strategy (signal/ no-signal) the table below gives all possible behavioral combinations that could be part of an equiilbrium.

unconditional versus conditional

1. CC=CD ; DC=DD 1.1. CC=CD=DC=DD
1.2. CC=CD>DC=DD
1.3. CC=CD<DC=DD

2. CC>CD ; DC>DD 2.1. CC=DC
2.2. CC>DC
2.3. CC<DC

3. CC<CD ; DC<DD 3.1. CD=DD
3.2. CD>DD
3.3. CD<DD

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument.-1: possible cases for signaling / no signaling

Proof: whenever CC and CD have a strict payoff relation, so do DC and DD, hence either CC/DC and CD/DD have a strict payoff relation or all four
strategies earn the same profit. In the former case there are three possible relations among the dominating pair: either the relation is strict, then we have the
situation of an unique behavior or they could earn the same payoff. Hence either all behavior earns the same payoff, a pair of conditional and unconditional
behavior (CC/DC or CD/DD) earn the highest payoff or any unique behavior earns highest payoff.

If we neglect for a moment that for a given signal all 4 behaviors are part of a semi pooling equilibrium then following the lemma above, the table below
gives all possible combinations of strategies in a semipooling equilibrium.

CC,m DC,m CC,m/DC,m CD,m DD,m CD,m/DD,m
CcC,m N (2) N (2)
DC,m N (7) N (3. N (3.
CC,m/DC,m N (@2) N 3) N @) N (6,
CD,m N (4) N (4) N (5. N (5)
DD,m N (4. N (4) N (5. N (1) N (5)
CD,m/DD,m N #) N #) N(G) N@G)

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument.-2: N — cannot exist; for colored cells low types don’t signal, because either CD,m and

CD,m are not played (blue) or DD, M earns highest payoffs (gray) (see 8.-9.)

However, if we have a closer look at the respective differences we can significantly reduce the number of possible combinations.



DD, m) = ’1(1"'“)[( Pcom * Peom ~ Poca — Poc )]_ k=—k <0
CC,I’_TI) ﬂ(l"'m‘*‘ﬂ)[( Pcom + Peom — Pocm — pDcm)]_k =—k <0
311, (DC,m) -1 (DC,m) = A[ ( Peon ~ Pocn )1+ @) +( Peon — Pocg )1+ M+ B) | =K = 2| (~Pocn ) (1+ @) +(~Pocy ) (L+ M+ B) | -k <0

Pecrm+ Pocm=0

411, (CC,m)—T1, (DC,m) = [ (Peen + Pocn ) (M=) +( Pepm + Poom ) (—B) [ +(1-2)[ Pn(-B8)] < 0O
DC,m)20=> Py + Pocy > 0

Pccm+ Pocm=0

5.1, (CD,m)—T1,, (DD, m) = A[ ( Pecn + Pocn ) (M=) +( Peom + Poon ) (—B) [+(1=2)[ P (-8)] < 0O
DD,m)20= Pecy + Pocn >0

8.I1,, (m)—I1

9.I1, (m) -1, (m) = /1|:( Peom + Peom — Pocm — Pocn )(1+ 0!)] —K , hence if neither CD, M nor CD, M is played then low types strictly prefer not

to signal, i.e. Py, = 1.

Observation 3:



M, (XY,m) =TT, (XZ,M) = f ( Pec: Peom: Pocms Poom) ~~~ X,Y,Z €{C, D}, me{m,m},Y #2Z and

I, (YX,m)—TI1,(ZX,m)= f ( Pcem: Peom: Pocm: Poom) X,Y,Ze{C,D},me{m,m},Y #Z

Before we turn to the 14 remaining cases of table 2, we check for semi-pooling equilibria that contain all 4 behaviors for at least one signal.

1. All 8 strategies are played by high types (4 vs. 4)

I, (DD, M)-I1,, (DD, m) = A(1+a)| ( Pcon + Poon ~ Pocn — Poca ) |~

Due to _ there cannot be an equilibrium such that both equations
M, (CC,m)-I1, (CC,m)=A(1+M-+ B)[ ( Peon + Peom ~ Pocn — Poca ) |~

are satisfied, required for an equilibrium where all strategies earn the same profits.
2. All four signaling strategies earn same profit, i.e. IT_ (CC, rﬁ) =11, (CD, rﬁ) =11, (DC, n‘1) =11, (DD, rﬁ) (4 versus 2/1)

2.1. CC,m/DC,m/CD,m/DD,m vs. CC,m/DC,m,ie. IT,(CC,m)-II,(CD,m)=1II,(DC,m)-II,(DD,m)>0 (%
2.1.1. T1,, (CC,m) > 1 (DC,m)(> I1,, (DD, m))

Hrﬁ (CC,m)—Hm (CC,m):/l(1+n_1+ﬂ)[( Pcom + pcom — Pocn — pDCm)j|_k =0=
Hm(DD’m)_Hm (DD,m)=/1(1+05)[( Peom + pCDm ~ Pocn — pDcm)i'_E<o

cannot be part of the equilibrium, cannot earn the same profits as CC, M. Therefor such an equilibrium cannot exist.

CC,m/CC,m carn same profits, i.c. Hence DD, M

2.1.2. T, (CC,m) <I1,(DC,m), ie. Pecp = Peom = Poom =0

I, (CC,m)~T1, (CD, m) =TT, (DC,m)~IT, (DD, M) = A (Pocy ) (=) |+ (1= A)[ P (=8) | = 0 is violated if Pocy >0

which is necessary for a semi-pooling equilibrium.



Therefor such an equilibrium cannot exist.

2.2. CC,m/DC,m/CD,m/DD,m vs. CD,m/DD,m,ie. I1,(CC,m)-II,(CD,m)=II,(DC,m)-II (DD,m)<0

pCCm = pDCm = 0

D,m)=A1 pCCm + pCDm) Ot)+( pDCm + pDDm)(_ﬂ)
m 7)

)=2[(
)=A[(Pecn + Peon
)=2[(

)_Hm(D
I1,,(CC,m)-II, (DC,m)=1I1,(CD,m)-II_ (D
)_Hrﬁ(D A pCCm+pDCm)

I, (CD,m)~I1,, (DD, m) = A[ ( Pecn + Pocn ) (M=) +( Peom + Poon ) (=) |+(1-2)[ Py (=5) |20

I1,, (CD,m)-I1,, (CD _) + (DD, M) =TI, (DD, M)+ A( Pepn — Pocn ) (M- + )

=11, (CC,m)-11, (CC,m)~A( ey — pDc)rﬁ a+f)

= [ (Peom = Pocn ) (1+ M+ B) +( Peon — Pocn ) (1+ @) |-k

The last equation implies that ( Pepn — Pocn ) <0 and (pCDm pDCm)

Pecn = Poop =0 2

Hm(CC’m)_Hm(CD’m):Hm(DC’m)_Hm(DD’m):’I[(pCDm (rﬁ—a)+(pDDm)( )} ( )[p( )]
I, (CC,m)-TI, (DC,m) =TI, (CD,m)~TI,, (DD, M) = 4| ( Pecn + Peom ) (M=) +(Pocn + Poom ) (=) |+(1
I, (CC,m)~TT,,(CD,m) =TT, (DC,m)~TT, (DD, m) = 2| (Peon + Poon ) () |+ (1= 2)[ Pa (=8) ] <0

M, (CD,m)~TT, (DD,m) = A[ ( Pecn + Pocn ) (M=) +( Peon + Poon ) (=B) |+ (1= 2)[ Pn (-5) | >0

(m- ]
(rﬁ—a)+( Pocm + pDDm)(_,B)]"‘(l_
(m- ]

) pn (-8

(iv)
v)

@
(i)
(iv)



11, (CD,m)-II,, (CD,m) =11, (DD, m)-II, (DD,m)+ A( Peon — Pocn ) (M—ar + B) )
I, (CC,m)~I1, (CC,m) - A( Pepy, ) (M—cr + )
k

:ﬂ[( Pcom — pDCm)(1+m+lB)+<pcDm)(l"'a)]_ =0

(iti) 1s always satisfied in a semi-pooling equilibrium

2211, Eq.for T1,, (DD, m) =TI, (CD,m) = p, =

I, (CC,m)~T1,, (CD,m) =TT, (DC,M)~IT, (DD, M) = 4| ( Poon ) (M) +( Popn ) () |+ (1~ 2)[ Pa(-8)]=0 ®
I, (Cc’m)_nrﬁ (DC,I’T’\)=Hm (CD’m)_Hm (DD!m):ﬂl:( Peem * pCDm)(m_ ) (pDCm + pDDrﬁ)( ﬁ):|+(1_/1)|:pm (_ﬂ)] ®
M,,(CD,m)—T1,, (DD, m) = A ( Pecm + Pocm ) (M=) +( Peom + Poom ) (~8) ]+ (1= 2)[ P (~8)]=0 &
1, (CD,m)~I1, (CD,m) =I1,, (DD, M)~ I, (DD, m)+ A( Pepp — pDCm)(m—a+/3) 2
=T1,,(CC,m) -1, (CC,m)-A( Pepy, ) (M—a + B)

= k

m—a_l—ﬂ
/1(l+a) p

given that ( Pcom — Pocm ) =0 (ii) and (iv) are equivalent., i.e. those two equation amount to one further condition on the shares among

(v) implies ( Pepp — Ppen ) =0 then Pepy, ] by (), Ppon = by (i) and so (ii), (iv) are remaining:

ko
l@+a

high types.



(pccm’ Pcoms Pocms Pooms Peom: Poom: P :1)‘
k Jij B
z@+aYﬂum—a+ﬂ) Pocn

Peem =—

Pcom = Pocm:

In summary the equilibrium set is given by: Poom = — K m-a 14 + i ~ Pocn
" ﬂ(l—lra) p ﬂ(rﬁ—a%—ﬂ) A "

Poon = D 0va) B 4
k m-a 1-1 k m-
Note that the condition Ppp,, =0 < “_ >0 A21- m-a . On the other hand in a semi-pooling
" Al+a) B A (1+a) p
equilibrium where high apply both types of signals we must have:
k Mm-a+ 1-4 k mM-a+
Pcom + Popn <1< P <le 'B<1

Al+va) B A (I+a) B



All conditions of the type

pe [0,1] ,Z p<1 reduce to:

k m-a 1-4 k M-«
1): >0 — >0 A121-
(1): Poon <:>/1(1+a) B A = (1+a) B
(2): Pepm 20 true
k

(3):pDDm+pCDm<1<:>1+a<m_§+ﬂ

1( B K m %(m . ﬂ‘lk ] B<(m-a)

. m-o —a+ +a

(4): Pecm» Poom: Pepm 20 0< Py < —| — - min 1= _ =

AlM-a+p l+a p 1m-«a B _k ﬂ>(m—a)

A B \M-a+f l+a
Note:
a) — Bk g K rT]_0(:—_m_0[ LS Lt 2 A, DL S - ﬂm—_a > — P
m-—a+pf l+a (1+a) p Mm—a+f (1+a) p (1+a) (m—a+ﬂ) m—a—ﬁ) M-—a+f
which violates (3), hence i(_ p __K Jis binding, 1.e. <1.
AlM-a+f 1+«
ﬂ(m_a) < K < s false, since M >1ie
(rﬁ—a+ﬂ)(rﬁ—a—ﬂ) (l+a) m-a+f (m—a—)
b)rﬁ—a - B _ kK ) g, K rT]_05=_m_0[ _1<0= 1M=a - r__ is binding, i.c. <1.
g \M-a+pf l+a (1+a) p m-a+f A p (Mm-a+pf l+a

Conditions for existence:



2./121—(1+a) 5 (>0,by 1.)
3,
1 k
p<(m-a) pDCmSz{m_§+ﬁ—l+aj(>0,by1.)
_ _ 1M-a B k
B=(M-a): Pocn <~ 3 ( oy 1+aj(>0,byl.)

2.2.1.2. Eq. for I1,(DD,m)<I1(CD,m): Py, =0 plugged into

I, (CC, )T, (CD, M) =T, (DC, ) ~ITy (DD, ) = A ( Peog ) (M~ @) +(Boon ) () [+ (1= 2) Py ()] =0 0
I, (CC.M)~I1,(DC, M) =TI, (CD, M)~I1,,(DD.M) = 2 Pecn + Peon)(M—a )* (Pocn + Poon )(=8)J+(1=2) Py (-B)]= @
I,, (CD, )~ I, (DD, m) = A[ ( Pocn + Pocw ) (M=) +(Peon + Poom ) (=) |+ (1= 2)| P (=8) ]> 0 )
1, (CD,m)-I1, (CD,m)=I1,, (DD, M)-I1,, (DD, m)+A( Pepy — pDCm)(rﬁ—a+ﬂ) )
=T1,,(CC,m) -1, (CC,m)-A( Pepy, ) (M—a + B)

k

:i(1+a)[(pCDm+pCDm_pDCm)] k+/1(pcom pDCm)(m 0H—ﬂ)=

(i) gives us l[( Pcom )(m - a)] + (1— /I)I: Pr (—ﬂ)] =0 which for a semi-pooling equilibrium ( Pcom > 0) requires P > 0 hence

Hm (m) _Hm (m) = ﬂ(l+ a)[( Peom T Peom — Pocm — Poem ):| —k <0 Note that with Pn > 0 (ii) will always be satisfied.

1.2.1.21. I, (M)-TI1,(m)=0



I, (m)_nm (m) :ﬂ(l"‘a)[( Pcom * Peom — Pocm — pDCm):|_K =0

/1(14'0‘)[( Peom pCDm - pDCm)]_K =0<:>2,(1+0{) pcom =K—/1(1+Ol)( Peom — pDcm)

A (Peon )(M=a) [+(1-2) o (-5)] =0

AL (Pecm + Peom ) (M=) +(Poce + Poom ) (—8) |+ (1= 2)[ P (-8)]=0
A (Pecm + Pocn ) (M=) +( Peon + Poom ) (—B) |+ (1= 2)[ pn (-8)]>0
A(1+a) Pepy =k = A(1+M+ B)( Peon — Pocn)

m by (*) and (v) and therefor

Hence Ppcy = Pepm =

A(1+a) Pepp =K =2 (1+@)(Peom — Pocn ) =k + A (1+a)

- k —K
l(m—a+ﬁ) = Peow = /1(1+a)+/1(n_1—a+ﬁ) b

3

and by () P, = —al k. k-k _ 1l meaf k k -k
U1 B (atra) a(m-a+p)) -4 B \(Lva) (M-atp))

Finally, rearrange (i) to: /1( Pcom )(m -« ) - (1— /1) p= (1— /1)[ P (— £ )] and plug it into (ii): or equivalently
B s k-k p—k+k

Peen ™ Poon = m—a+ ) A(Lra) oo Poor :1_l(rﬁ—a+ﬂ)_i(m—a+ﬁ) :1_/1(m—a+ﬂ)

A (Pecn + Pocn ) (M=) +( Peon + Poon ) (=5) ]+ (1= A) Pa (-5) ] =
Note, that these values imply that (iv) is satisfied : J,I:( Peem + Pocm )(rﬁ -a+ ﬂ — B+ BPcom ]+ A pCDm m 0{) (1— ﬂ)ﬂ =
k-

A(Pecn + Pocn + Peon ) (M—a + )= =

k>0

®



In summary equilibrium set is given by

( Pecms Poom» Pocm s Pooms Peom P )
(1+a)(B+k)—(1+B+m)k

Note: Pepy + Pepm = Poem +

Existence:

All conditions of the type

/1(1+ a)

IT, =11, (m):/l[( Pcem + pDCm)(l+a):| < ll:( Pcem t pocm)(l"'a):""K_E:H

Peem = i(1+a)(rﬁ—a+ﬁ) ~ Peom

. kK
pDCrﬁ - pCDm ﬂ(m—a+ﬂ)

. Brk-k
pDDrT] 1 ﬂ(n_”l—a—i—ﬂ) pCDrﬁ

k k-k  (1+p+m)k—-(1+a)k

Poon = Wra) A(m-a+ ) A(l+a)(m-a+p)

1 m-af Kk . k-k | 1 m-a(@+p+m)k-(1+a)k
I8 \Wra) (Moatp)) 14 p (lra)(m-a+p)

m




pe [O,l] ,z p<1 reduce to:

(D: Pepm > 0 true

_ k k—k (1+p+m)k-(1+a)k
(2): Pcom <1<:>1+a+(m_a+ﬁ)</1<:> (rﬁ—a+ﬂ) <
. | frk-k  (I+a)(B+k)-(1+p+m)k
(3) pCCm’pDDmprCmZOQOSpCDmsmm 1 ﬂ(rﬁ—a+ﬂ)’ ﬂ(l+0{)(m—0(+ﬂ)
a)x>0<:>/1>’f)+—H x<1 true
(m—a+ﬂ)
_ (1+p+m)
b)y>0< (1+ +k)=(1+p+m)k >0 1 (ra)(p+k —(1+ﬁ+m)k_ﬂ+ _ (L+a) K<A by 3
y>0e( a)(ﬁ ) (L f+mk> Y=t (l+a)(M-a+p) B (M-a+p) (by 39)
2p Kk
C)Xzydﬂz(rﬁ—a+ﬂ)_1+a
“4):p, 20 true
. m-af k k-k ~ _m—a(1+ﬂ+rﬁ)g— 1+a)k
(5):pp <le A<l 3 [(1+a)+(n_1—a+,8)]_1 5 (ra)(m—atp) (>0, by 3b))
: —(m- k m -k p+k K K k-k i.e is not bindin
note: (1+a) f-(M—a+ B)k >(1+p+m)(k k)>0,by3b):>(m_a ﬂ)>1+a+(rﬁ—a+ﬂ)’l"(2)l t binding,



1L.3)b): (I+a)B>1+p+m)k—(1+a)k
: ﬂ+K_|z_ _Mm-a) K k-k see below
2. (3)21)/\(2)/\(5).0<(m_a+ﬂ)<ﬂ,ﬁl 7 [(1+a)+(m_a+’8)]<1(LHS<RHS,NOTby3b) below )

3. 0< pepy S Mingl-

(1+m)5_(1+a)i<%(1+a)ﬁ@(1+a)ﬁ> "

It turns out that this conditions is stronger than 3b), because
m-a+f
(m-a)

(L+m)k-(1+a)k)-((1+p+m)k—(1+a)k)>0< k-k >0

Hence we are left with the following conditions for existence:



1. (1+a)B> (m—a) (L+m)k—(1+a)k)
prk—k _, _, Mm-af k . k-k ) M- (1+f+mM)k—(1+a)k
> m-arp) g ((1+a) (M-a+p)) " F  (ra)m-a+p)

™

Iy, (M) =TTy, (M) = A(L+@)[ ( Peon + Poom ~ Pocn — Poca) |~k <0

I, (CC,M)~IT,,(CD, M) = I, (DC, M) ~T1, (DD, M) = A[  Peon ) (M ~a) +(Poon ) (43) | + (1= 2) Py (=8) ] =0 !
1, (CC,m)—I1, (DC,m) =11, (CD, M) —IT,, (DD, M) = A[ ( Pegn + Peom ) (M=) +( Pocn + Poon )(=B) |+ (1=2)[ P (-8) = @
I, (CD,m)~TI, (DD, m) = A[ ( Pocn + Pocn ) (M=) +( Peom + Popn ) (—8) |+ (1= 2)[ Pa (-8) ]> 0 )
I, (CD,m)-II, (CD,m) =11, (DD,m)-I1, (DD,m)+A( Pepm — Pocy )(M a+ﬂ) ®)
=11, (Cc,m)-1I1, (CC, m) 2 Peon ) (M—a+ B)

I:( Peom — pDCm)(l ( ) 1+05 ]

21(1"‘ )[(pcom"'pcom pDCm)] k+2 (pCDm pDCm)(m OH'ﬂ):

ﬂ,(l+a)[( Peom + Pcom — Pocm )]_K <0 ™



A (Peon ) (M=) |+(1-2)(-B) =0 <1>
j’I:( Pecm + pCDm)(m —(Z)+( Pocm + Poom )(_ﬁ):l =0 ('11)
/1[( Peem + pDCm)(m_a)"' Peom * Poom )(—ﬂ)]+(1—ﬁ)(—ﬂ) >0 (iv)
A1+ @) Py =k = A(1+M+ B)( Peom — Pocn ) )
Then Pegy, ll(;ﬁl_)f ) by (i) and

k (1+a) k (1-2) B(l+a)

Peon = Poen = 2 0 s B) Wem+ B) " T A(imep) | A (Limep)(m-a)

Furthermore by (ii):

/1[( Peem pCDm)(m_a)+(pDCm + pDDrﬁ)(_ﬁ)]:OQ(pCCrﬁ + pCDm)(m_a_'_ﬂ)_'_(l_ pCDm)(_,B):O<:>

( Peem pCDm) = (1_ Peom ) ( £

m-«
m—a+ﬁ) = Pocm + Poon =1_( Peem + pcom)_ Peom =(1_ DCDm)(

m—a+ﬁ)

In summary the equilibrium set is given by:



(pccmf Pcoms Pocm: Poom: Peoms P =l)‘

Peem = (1_ pcom)ﬁ_ Pcom
~ ~ k .\ (1+a)
pDCm - pCDrﬁ ﬂ(l‘i‘m‘l‘ﬂ) (1+m+ﬂ) pCDm

Poom = (l— pcDm)m_ Pocm

(l—ﬂ),b’
Peon = A(M-a)

(*) and (iv) remain to be checked:

vk (M-a)-(1+a - <<:><_k (m_a)
(iv): k ( )-(1+a)B(l-1)<0=1<1 (l+a) B
*): s _(m_a) (1_{_,84_[‘?])&—(1-}-0!)‘?

():4>1 ( (Lra)(m-a+p) J

note that the lower bound is always smaller than the upper bound due to k >k




All conditions of the type
pe [0,1] ,Z p<1 reduce to:

(1): Pepy >0 true

_ B
(2): pCDm<1c>ﬂ>—(n_1_a+ﬂ)
_ B C1-4 B _(@-4)B

k(M-a)-1+a)B1-1)
A(M-a)1+ S +m)

(1—/1)ﬂJ m-a _ k lta (1-1)B

Pocn =0 Pepr >

pDDm >0: pcom < {1_

A(M-a))(M-a+p) AQ+m+p) L+m+p A(M-a)
k  lva (=B L (=4)8 )i L =AY mee ok lta (122)
A(l+m+B) 1+m+/3,1(m—a)‘pw”’”‘ A(M-a) J(M-a+p)'|" A(M-a)|(M-a+B) A(l+m+p) 1l+m+p A(M-a)
a)X>0C>/1>1—LM2>)X<O
(l+a) B
p

b 0 A>—
)y>0 4> _—a+,6)

(
B(-a(2+a)+p+m 2+rﬁ+ﬂ))

0z>0= 1>




>0 /1—(1:/1)’3 m-a lj __1ta (1:/1)’B>0<:>
(M-a) )(M-a+pB) (1+m+p) 1+m+p (M-a)
i B m-—a k  1+a B va B .
(M-a) (M-a))(M-a+pB) (1+m+p4) 1l+m+pB(M-a) 1l+m+p(M-a)
a1+ l+a B B N k  l+a B S0
1+m+p(M-a)) (M-a+p) (I+mM+p) 1+m+p(M-a)
(1+m)(M-a+p) B l+a B k
A — — >—— + — — - —
(1+m+p)(M-a)) (M-—a+p) l+m+p(M-a) (1+m+p)
I 3b)  (iv) v m—
Note that for K 2 — P the necessary condition _L <A<1l- K ( 0[) gives an nonempty interval if
(1+a) (M-a+p) (M—a+p) (1+a)
ok B k
and only if < - , hence the case > — can be neglected. It turns out that for the necessary
(I+a) (M-a+p) (1+a) (M-a+p)
condition P , the condition 3c) is stronger than 3b)

(l+a) (M-atp)



Conditions for existence:

1. £ < 2

(1+a) (m—a+p)

< < min _(1-2)p B (=B -« . & _ lta (1-4)8
# 0% P = [1 ﬂ(ﬁ—a)](iy—oﬁﬂ)’[l 4(;77-05)](;77-05%) A(1+m+p) 1+m+ B A(i-a)

J k¢

3. max

(1+m)(m—a+p)
>0 ®

Note that the interval defined by 3. is non-empty due to 1.

2.2.2. Hm (DD,m) >Hrﬁ (CD,m) ,i.e. pCCm = pCDm = pDCm :0

I, (DD, M) T, (DD, m) = A (1+)| ( Peon + Peon — Pocn — Pocn ) |~ =0 is violated.

Therefor such an equilibrium cannot exist.

ﬁ(—a(z+a)+,8+;7¢(2+;7z+ﬂ))—£(;77—a)(;7¢—a+,8)1_ (m—a) ((1+;77+ﬂ) k& _EJ< ~
2 ’ ) (in)




3. All four non-signaling strategies earn the same payoffs , i.e. IT (CC,m)=1II(CD,m)=1I1,(DC,m)=1II, (DD, m)

3.1. CC,m/DC,m/CD,m/DD,m vs. CC,m/DC,m ie. IT,(CC,m)-II,(CD,m)=1I1

»(DC,m)-II,(DD,m)>0
Peom = Poom =0

I1, (m)-II, (m)=1I1,(DD,m)-II, (DD,m)+k -k <0= p, =0

il m il m(CD1m)_Hm(DD1m):i[(pCCm+pDcm)(m_a)+(pCDm+pDDm)(_ﬂ)]+(]—_’1)[pm (—ﬂ)]zo

(i) becomes: IT (CC, m)—Hm (DC, m) =11, (CD, m)—Hm (DD, m) = ﬂ,[( Peem + pDcm)(rﬁ—a)] =0 and implies that

( Pcem + pDcm) =0 however a semi-pooling equilibrium requites strict positivity for at least one of the shares.

Therefor such an equilibrium cannot exist.

3.2. CC,m/DC,m/CD,m/DD,m vs. CD,m/DD,m ,ie. I, (CC,m)-II,(CD,m)=II

»(DC,m)-II,(DD,m)<0
Pecm = Pocn =0
3.2.1. I1, (DD,m)>1I1, (CD,M) ,ie. Pecn = Pocm = Peom =0

Then I1,,(CD,m)-I1, (CD,m) =11, (DD,m)-TI1, (DD,m)+A( Peon — Pocn )(M—ar+ ) =0 violates

=0




CD,m)=T1,, (DC,m)~T1,, (DD, m) = A[ ( Pecy + Pocn ) (M=) +( Peon + Poon ) (=B) |+ (1= 2) Py (-8) |= ¥
)=T1,,(CD,m)~T1,, (DD, m) = A[(Peen + Pocn ) (M=) +(Peon + Poon ) (=) |+ (1= 2)[ Pa (-8)]= ©

If (iii) holds with equality then the last equality implies that Pepn — Ppen =0 = Pepm =0 then (i) becomes:
IT, (CC, rll)—l_lm (DC, m) =11, (CD, m)—Hm (DD, m) = l[( pDDm)(—ﬂ)} =0= ppp; =0 Hence such a semi-pooling

N

equilibrium cannot exist.

b) If (ii) holds as a strict inequality then Pppy =0 and (i) becomes IT, (CC,m)—II, (DC,m)= /1[( Peorm )(—ﬂ)} =0 which

holds only for Pepy =0, i.e. in a pooling but not semi-pooling equilibrium.



4. 1-2 strategies versus 1-2 strategies

In general there are 36 possible matchings: CC, DC, CC and DC, CD, DD, CD and DD, six for each signaling strategy, however as summarized in Table
Fehler! Kein Text mit angegebener Formatvorlage im Dokument.-3 we excluded 21 of them,; in the following we consider the remaining 14 cases:

CC,m DC,m CC,m/DC,m CD,m DD, m CD,m/DD,m
CC,m N (2. N (4.1.1) N (2. 4.1.3) N (4.1.2.) N (4.1.2.)
DC,m N (7) N (3) N (3. (423.2./4233) | N @#2.1) N (4.2.2.)
CC,m/DC,m N (2) N (3) N (3. 43.1) N (6. N (4.3.2.)
CD,m N (4.) “4.1) N (4.) N (5. 4.4.2) N (5)
DD, m N (4) N (4.5 N (4) N (5.) N (1) N (5)
CD,m/DD,m N (4. “.6.1) N (4) N (5.) 4.6.2.) N (5)

Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument.-3: Overview of subcases; N: non-existence of the considered equilibrium; number in
parenthesis either refers to the list of payoff differences below Table Fehler! Kein Text mit angegebener Formatvorlage im Dokument.-2 or subsection dealing with

the corresponding case.

41. CC,m

41.1.and DC,m (p, =0)

I, (CC,m)-TI1, (DC,m) =TI, (DC,m)~TI, (DC,m)~[ I, (DC,m)-I1, (CC
/1[( Peom — pDCm)(l+a)+(pCDm - pDCm)(1+m+ﬁ):|_E+ [( Peem + pCDm) m-—
(

= 2] (Peom ) (1+M) = Pocy (1+ @ + B)+(Pecn ) (M=) = PoomB+( Peon pDCm)(l ‘+ﬂ) —k+(1-2)[ pa(-5)]=0
I1,,(CC, M)~ I, (DC, M) = 2[ ( Pecn + Peom ) (M=) +( Poca + Poon ) (=) |+ (1=2) P, (=) |> 0
My, (CC, M) ~T1, (CD, M) = A[ ( Peca + Peon ) (M=) +( Pocy + Poon ) (=) |+ (1= 4) Py (=) ] >0
M, (CC,m)~I1,, (DC,m) = A (Pecn + Pocn ) (M=) +( Peon + Poon ) (=5) ]+ (1= 2)[ Py (=) | <0
I, (DC,m)~TT, (DD, m) = 2| ( Pagy + Pocy ) (M=) +( Peom + Poon ) (=) |+ (1= )] Py (-8) >0



By (iii) such a semi-pooling equilibrium cannot exist.

4.1.2.and DD,m or CD,m/DD,m (p, =0)

I, (CD,m)—T1,, (DD, m) = A[ ( Pecn + Pocn ) (M=) +(Peom + Poom ) (=8) |+ (1= 2)[ pn (-B)]<0
Hm (CC,m)—Hm(DC,m)=,1[( Peem + pcom)(m_a)+( Pocm pDDm)(_IB)]‘F(l_/I)I:pm (_ﬂ) >0
1, (CC,m)-I1, (CD, m):z[( Decm + Peon ) (M= a)+( Py + pDDm)(—,B)]+(1—/1)[pm (-p)]>0
I, (CC,m)~T1,,(CD,m) = /1[( Decn + Pocn ) (M—a)+( Peon + pDDm)(—,B)]+(1—ﬂ)[pm (-B)]<0
M, (CC,m)~IT,, (DD, m) =0

9
IT, (CD,m)—I1,, (DD, m) = A[ (Pecy ) (M—a) | <O
I, (CC,m)~I1, (DC,M) = A[ (pecn ) (M—c) | > 0
I, (CC,m)~T1,, (co,m):z[( pCDm)(m—a)+(pDDm)(—ﬂ)}—ﬁ(l—z)w
T, (CC,m)~TT,, (CD,m) = 4| (Pecn ) (M=) +( Popn ) (=) |- B(1-2) <0
I1.(CC,m)-I1,(DD,m)=0

@
(i)
(i)
(iv)
)

(i)
(i)
(iv)
)

@
(i)
(i)
(iv)
)



By (i) such a semi-pooling equilibrium cannot exist.

4.1.3. and CD,m
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4130 T1,, () ~I1, (M) > 0 & pegy >L)(:> b, =0)

N Al+a
Th k LS a Gy s saitied and P o
n R m—+ nd (1) 1 1 n - 1
€ pCDm 2«(1+n_']) pCCm i(l-i-m) Y(V)a ( ) § saustcd a ﬂ,(rﬁ—a) pCCm Y()
Since ( N m) < ) ( :_ 0() such an equilibrium cannot exist.
_ K
41.3.2. 1 (M)—T1, (M) <0 < pepy, < i(l:ta) (: P, :1)
I, (CC,m)—I1, (CD,m) = ,1[( Peom )(m —a)} +(1_,1)[ o (_ﬁ)] >0 (iid)
Iy, (CC, M)~ Iy, (CD,m) = A[ ( Pepg ) (1+M) [+ (1= 2)[ Py (-8) |-k =0 2
I, ( _)_Hm (m) = ’II:( Pcom * Peom = Poem — pDCm)(1+ a):|_K = APcom (1+ a)_K <0 )
k+(1-2 k+(1-2
Then Pepp /1514_ m))'B s Peem =1 /”LETm))ﬂ by (v) and (ii) is satisfied.

Conditions (iif) and (vi) need to be checked.



k+f
)
(m-a) &k
@ii): A>1 7 (1+a)

. 1fl+m -
(vi): A>1 ﬂ((1+a)K kj

It turns out, that (i) implies (vi), hence we are left with:

N k+p _(m—a) k
(u)A("'>-“max{(umm)’l p (““)}
k+p K > b
| (1+m+p) (1+a) (m-a+p)

- 1_(m_a) 0 k . B

Finally all condition of the type:

pe [O,l] ,z p<1 reduce to:
(1): Pocn <1 true

B+k

1+m+ 3

(2): Pocy >0 A >

L+k

1+m+p

m-— k k _
, hence max{l—( a) K Pk }</1<1,henceweneed <lesk<l+m

B (l+a)'l+m+p



) k+(1-2 p k+(1-4 p
To summarize: {pm =1 Peppy /1§1+ _)) » Peem =1 /1514_ m)) }
1.(1+a) P <k <1+m kf’B <A<l
(M—a+p) (1+m+3)
Conditions for existence: _ _
2.k<(l+a)—P . (M=2) K ;o
(M—a+p) B (1+a)
4.1.3.3. I1 (mM)-T1_(m)=0
(1+m) K
then K 1 K by (vi) and shares for lo es are given by (v) (1+0() _
= P =1— v Wty \Y V):
pCDm ﬂ.(l+a) pCCm 2(1_}_“) y typ g y (l—/l)ﬂ
1- _ 1-1
furthermore by (ii) and (iii): % < Peem < l—%



The last inequality is violated; hence such an equilibrium cannot exist.

4.2. DC,m

4.2.1.and DD,m (p, =0)

®

»(DC, ) (
1, (DD, )= 2] Pe oo ) (M=t} + Py + Pa)(-5) | +(1- ) P (-5)] >0 ®
(

O
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3
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(DC' m)_Hf DD’m) - ﬂ'[( Pecm + pDCm)(m_a)+( Peom + pDDm)(_ﬂ):|+(1_/1)|:pm (—ﬂ)] < ‘(i)ﬁ
( )

Pecn + Pocn ) (M=@) +(Peom + Poon ) (=) |+ (1= 4) P (=) ] <0 Y
=0 )

(i)



BBy (ii) such a semi-pooling equilibrium cannot exist.

4.2.2.and CD,m/DD,m

My, (CC, M) ~I1, (DC, M) = A[ ( Pecn + Peom ) (M=) +(Pocn + Poon ) (=) ]+ (1= 2)[ Pa (-5) ] <0 v

I, (DC,M)~TL, (DD, M) = 2| ( Pecy + Peom ) (M=) +(Pocs + Poon ) () |+ (L= 2)] Py (=) >0 ®

I, (CC,m)~T1,,(CD,m) =I1,, (DC,m) -1, (DD, m) = A[ ( Pocy + Pocs ) (M=) +(Poon + Poon ) (~8) |+(1-2)[ py (=8)] <!

My, (CD,m)~TT;, (DD, m) = A[ ( Pocn + Pocn ) (M=) +( Peom + Poon ) (=/8) |+ (1= 2)| Pa (=) =0 N

1, (DC,m)-I1, (DD, m) =0 ®

I, (CC, M) —I1, (DC, M) = A Ppey (—B8) +(1-2)| Py (-B)] <0

Iy, (DC, M)~IT,, (DD, M) = 2|  Peo ) (M=) +( Poon ) (=8) |+ (L= 2)[ Py (<8)] >0

I, (CC,m)~T1,, (CD,m) =TI, (DC,m)~T1, (DD, m) = A[ ( Peon + Poon ) (=) |+ (1= 2)[ Py (~8) ] <0

IT, (CD,m)—I1, (DD,m) = A ey (M—a)+(1-2)[ py (-B)]=0

M, (DC,m)I1, (DD,m) =11, (DD,m)-II, (DD,m)-[I1, (DD,m) I, (DC,m) = 2(1+&)| ( Peon + Peon = Pocn ~ Poca ) |~ K
[(Pecn + Peom ) (M=) +( Poc + Poon ) (=8) |+ (1= ) P (~8) ] =0

(iv) requires Py >0, ie.

Hm (m)_Hm (r—n) Zﬂ“[( Peom + pcom ~ Poem — pDCm)(1+a):|_K :ﬂv[( pcom - pDcm)(l+0‘):|_K >0 ©

()and (iif) are always satisfied, note that (*) and (v) violate (ii):



2] (Peon = Pocn )(1+@) |2 Kk by ¢ and 4(1+ )] ( Peon — Pocn ) |~k + 2] ( Peon ) (M=) +( Poon )(=8) |+ (1= 2)[ Py (~8) ]=0 by

>0
) hence A| ( Poog ) (M=) +( Popn ) (=) |+ (1= 4)] Py (-)] <0
Hence such a semi-pooling equilibrium cannot exist.

4.2.3.and CD,m

I, (CC,m)—T1,, (DC,m) = A ( Pocn ) ﬁ] (1-2)[ pn(-B)]<0

I, (DC,M)~I1,, (DD, M) = A[ ( Pepn ) (M=) +( Popn ) (=) |+ (1= 2)[ Py (-8) >0

M, (CC,m)~T1,,(CD,m) =I1,,(DC,m) -1, (DD,m) = 2[(Peo ) (~5) |+ (1 2) P ()] <O
11, (CD,m)~I1,, (DD, m) = A[ ( Poc ) (M~a) |+ (1= 2)[ Py (-5)]>0

IT, (DC, m)-I1, (CD,m) =TI, (CD,m)~ I, (CD,m)—[ I1,, (CD,m)~I1, (DC,m) | =0

(
I, ( D
I, (DC, M)~T1,, (CD,m) = 2| ( Peon - pDCm)(1+ )} (1~ %[pm(—ﬂ)—pm(—ﬂ)}o
H( [(pCDm pDCm)(1+a)]_K

(i)
(iii)
(iv)
™

(i)
(iv)
\Y)



| DD, M) = [ ( Pepy ) (M=) | >0
I, ( )=2[(Pocn ) (M—a) |+ (1-2)(-5) > 0
I, (DC, M) ~TT, (CD,m) = 4| ( Peon — Pocn )(1+M) |-k +B(1-2)=0
I, ( (m) =4[ ( Peon — Pocn )1+ @) |-k >0=> p, =1
satisfied; (4

violates (v) because

; 3
m':

atisfied;

(i) i
2] (Peon pDCm) (1+m) |-k + B(1=2) =0=> A[ ( Peon — Pocn )(1+M) |~k <0=> A[ ( Peom — Pocn )(1+@) |-k <0
Hence such a semi-pooling equilibrium cannot exist.

4.2.3.2. 1 (M)—TII, (m)=

D
m)—Hm(m)= [(pCDm pDCm)(l—l_a)] k:OQpCDm pDcm:/l(l%-Ol)

= A A2 H
)
O
3l
|
—
3
O
E
~—
I
Y
—
o
(@)
S |
'CJ
3
3
=
[
+
3l
.
|
~1
|
=
|
—
]
=
o
3
|
)
(et

D p K =p L, Kk p g K by (%), if we plug in these values in (iv) and (ii)
- = — = — y m:— — J , we ug 1n €S¢ values 1n (1v) an
com pem l(1+a) com 9 o be +a) ’ pe

(iv)

(i)

(i)
(iv)
\Y)
)



1

|=
|

=
I

w.r.t. (ii):

1
(1-2)B Py =Py ] b, :E{H (1-2)p




2 2B (+a)” ]Jﬁ(g—_j))%{“ﬂ(fw)}@

“(1—1@/3{8:3&‘?};(Z—_Z;*lﬁ(zj))ufwﬁ

(1—/1),8{81235—?} <A(-a)+(M-a) 1+Ka)@

ﬁ—/l(m—a+ﬁ)<—813&+I¥+(rﬁ—a)<lfa)<:>
peli)

We observe that (ii) is binding.

Finally all condition of the type



pe [0,1] ,z p<1 reduce to:

(1): Pepp >0 true
K

2): <1 —< A

( ) pCDm g (1+a)

(3):p, >0 true

4): Py, <1<:>/1<1—%{(1+m)K—I?:|

1
je. 0< k <}L<1—1 (+
p

(1+a) (1+a
note: K < —i (1+m) —k =
N ﬂ[(l+a)£ "}

To summarize:

—E 1+ i =—
pcom_z 1(14_0{) » Poem =




Conditions:

(1):O<max{(lfa),'fr;_(ilg))}ci<1—%{((111r:))K—E}<1
roe: 2) ¢ fa)< —%{8:3&—?}:(;_(T:aﬁ))g<l+_@(1+a),8>(1+m+,8)K—(1+a)k
e A o B R e s
A pava)< plra)- T @R s o) T aempi (e 1 2 ()
= plaea)> Tt g m ek A5 paea)s (ot e mi-rapi]- £ pava)
_ (m—a+ﬂ2(mlt:;—ﬂ(l+a)K_(ngz(;a)Ez (fﬁ—fﬂ(tr)ﬁ(i;r;‘wﬂ)b(ng_(;a) R (e m Bk - (1+ @)

,L.e. the necessary condition for a non-empty interval a) is weaker than the b)
—(k-k k—k
kAR p(eR)
(1+a) (M-a+p)| (M-a+p)

o (l+a)B>(M-a+p)k+(1+a)(k—k)=(M-a+p)k+(1+a)(k—k)

J@(rﬁ—a+ﬂ)g<(1+a),8—(1+a)(g—|?)

(1+m+B)k—(1+a)k

_p(kR)
a) (M-a+p)

,L.e. the necessary condition for a non-empty interval a) implies that

Conditions for existence:

(1):0<M<}t<1—%|:

(M-a+b)

m—a+pf)

(2):,8(1+a)>( (m-a)

[(1+ m)g—(1+a)ﬂ+ é:i

B(1+a)



m_Hm(m): [(pCDm pDCm l+0{] k<0:pm_o

N 1|, k+(1-4)p 1|, k+(1-4)p .
(v) is satisfied; Pcom :E{l—i_ /IE].——H’T]))j| » Pocm :El:l—(—m)} by (iv),

1, ( M) = A| (Peon ) (M-a) |- B(1-2) p, >0

I, ( M) = A[(Pocy ) (M—a) |- B(1-2) p, >0

I, (DC, M) ~TT,, (CD,m) = 2| (Poon = Pocn ) (1+M) |~k ~(1=2)[ Py (~=B)— P, (-B)]=0
I,

D
I‘T])—Hm<r_n): [(pCDm pDcm)(l+0()] kZOQpCDm_pDcm:/l(l%-a)

©)
(iv)
)
)

(i)
(iv)
\Y)
)



note:

k+/p ! mk-(1+a)k)>0<
(1+rﬁ+ﬁ’)_l+ﬂ(l+a)((l+ Jk=(Lra)k)>0
(1+m) c_ 1+ m +(+rT1)

1
C(+m+p)g (1+m+p) B(l+a)

1.(iv)—(*):

N—"

2.(3iv) - (ii):

(1

l+a)B-(1+m+ ) (M-a) (1+a)B - Kk B
1+ m







(14 M+ B)k - (1+ ) —(m_“+ﬁz(_l+m;+(l+a)ﬂg+(m_a+ﬂz(_l+a;+(l+a)ﬂ|2
:(1+m+ﬂ)(_—a)—((rﬁ_—a+,3)(l+m)—(l+a)[5’_ (m—05+ﬂ)(1+05)4(-(_1+05))[3—(1+05)(m—05)E
_—2(l+a)ﬂ +2(1+a)ﬁ_:2(1+a),8 C K)<0=

mma) ey T (mea) OO

(I+a)p<(M-—a+ )k :(iv)

(M—a+p)k <(l+a)f<(1+m+ )k —(1+a)k : (ii)
(1+rT1+,B)K—(l+a)E<(1+a),B<(m_a+ﬂ2(_1+m;+(1+a)ﬂK—(m_a+'gz(_l+a;+(l+a)’8E (i)
(rﬁ—a+ﬂ)((_ltr:;+(l+a)ﬂK_(rﬁ—a+ﬂ2(n_i-_+2;+(l+a)ﬁk <(ra)f ™)

Finally all condition of the type

pe [0,1] ,Z p<1 reduce to:
(1): Pepp >0 true

k+p

(2): Peom <ls A> (1+rﬁ+,3)

T'o summarize:



{pcDm =1{1+ h(l_ﬂ)ﬂ} B :1{1_“(1_—{)5} P =0}

2 A (1 + rﬁ)
Conditions for Existence:

max k+p 1 VK (14 @)K 1o m—a Tk
> {(l+m+,8)'1 e L L S e oy v we crwm v ")}

(1rn:fﬂ) (I+a)p<(M-a+p)k
. (M-a) Lk T ot B <(1ia <(rﬁ—a+ﬂ)(1+m)+(1+a)ﬁ _(m—a+ﬁ)(1+a)+(1+a)ﬂ,
= (rﬁ—a+ﬂ)(1+rﬁ)+(1+a)ﬂ(1 <), ( ('B)k (l)( )ﬂ) el (m(—a) ’ k) o) (M-a) “
1 = M-a+pg)(l+m)+(1+a)p M-a+p)(l+a)+(1+a)p -
_ﬂ(lm)((um)g—(lm)k) (m—a) k- (m—e) k<(l+a)p
43. CC,m/DC,m
4.3.1. CD,m
I, (CC,m)~I1, (DC, M) = A[ ( Pecn + Peom ) (M=) +(Pocn + Poom ) (=B) ]+ (1—2)[ Py (-B) =0 ®
I, (DC, M) ~TT,, (DD, M) = A[ ( Pecy + Peom ) (M=) +( Pocy + Poon ) (=) |+ (1= 4)[ Py (-5)]> 0 ()
Hm(CD,m)—Hm(DD,m)=ﬂ[(pccm+pDCm)(rﬁ a)+( CDm+pDDm) ﬂ)]+ 1- i)[p ]>O (i;i
I, (CC,m)-I1,, (CD,m) =I1,,(DC,m)~IT,, (DD,m) = A[ ( Pecn + Pocn ) (M=) +( Poon *+ Poon )(—B) |+ (1= 2) Py (-8) | < (¢
11, (CC,m)-I1,, (CD,m) =11, (CD,m)-II (c ,m)-[I1,, (CD,m)-II, (CC,m) | = )
A (pCDm_pDCm)(1+m+ﬂ) (pCDm_pDCm :| +ﬂ’|:(pCCm+pCDm ( a)+( DCm+pDDm) ):| (1_1)[pm(_ﬂ)}:
Hm(m)_nm(r_n): |:(pCDm+pCDm pDCm pDCm)(1+a):| K (*)



A (pCDm - pDCrﬁ)(1+m)_ pDCmﬁ]_E"‘(l—i)[pm (—ﬁ)} =0

I, (m)_nm (r—n) = /1[( Pcom + Peom — Poem — pDCm)(1+a):|_K

(iv) is always satisfied in a semi-pooling equilibrium, (i) implies (iii) if DC is played by strictly positive share.

4.3.1.1. I (M)—I1_ (m)>0

Hm (m)_Hm (m) :ﬂ[( pCDm - pDcm)(l"‘a)J_K >0= P =1

*)
I, (CC’ m)_nrﬁ (DC’ m) = l[( pccm)(m_a)+( pDcm)(_IB)]_(l_/l)/B =0 0]
I, (DC,M)~TT,, (DD, M) = A| ( Pepy ) (M—er) | >0 (i)
I, (CD,m)~TI,, (DD, m) = A[ ( Pecn + Pocn ) (M—a) |- >0 (i)

I, (CC, M) ~TT,, (CD,m) = 4| ( Peon — Pocn )(1+ M)~ Pon/B |-k =0 )

@

(iii)

(iv)
)

®



(*) and (v) imply : A4

(i) and (v) give:

Given this solution for the respective shares (*) and (iif) need to be checked for.

(A f)-p)-K(n=c)

(iii): (M- + B) B my- ) (1+a)) —A(Mi—a+ ) Pocy <0
. (1+a)(k(2m- 2a+/3 p(A(m /3))>
O e )

=



)>5(2(1+ m)(M-a+p)-B(1+a))-k(2(1+a)(M-a+B)-(1+a)B)
) K(1+a))-(1+a)B(k-k)

Finally all condition of the type

m)+k (M-a)

1+ _
pe[0.]] ,Z p<1 reduce to: ﬂ(](- — <A<l A kK <1+m (detived with mathematica)
+m




Note that: g(k (1+m)—|2j+ IB_(K_E> > 'B+(m_a)(1-%a) since K 1+m+ lta k
BT (1+a) (M-a+p) (M-a+p) (1+a) 2(rﬁ—a+ﬂ)_1
p
) 7_(1+rﬁ)(ﬂ,(rﬁ—a+ )-B)-k(M-a)
T 221+ m)(M-a+ B)-B(l+a))
2(1+m)+B-A(M—a+B)-k)

_k(M-a+p)+(1+m+p)(A(M-a+B)-B)
Poom =7 2(1+m)(M-a+B)-B(1+a))
Condition for existence: %(K (1+m) —Ej+ IB_( _ ) <A<l

®
5 (CC,rﬁ)—Hm (DC’ m) = ﬂ“[( pccm)(m_a)"'( pDCm)(_ﬂ)]"_(l_/I)[prﬁ (_ﬁ)] =0 @

I, (DC,M)~TT,, (DD, M) = [ ( Peoy ) (M—a) |+ (1= 4)[ p, (=) ]> 0 (i)

I, (CD,m)~I1,, (DD, m) = A[ ( Peen + Pocn ) (M—a) ]+(1=A)[ py(-B)]>0 (i)



) (M=) [+(1-2)[ Py (-5)]=

1, (CC,m)-I1,(CD,m)= A[(—pDcm)(1+m+ﬂ)+(pCDm)(1+a)] k+/1[(pwm)(
A (=Pocn ) (1+ M+ B) +( Peoy ) (1+M) |-k +(1-2) p,, (-8) ] = )
[pwm Pocn )(1+ M) = PocnB | =K +(1=2)[ p, (-8) ] =0
To summarize:

( Pecms Pocn+ Peom: Pr)
_1, k—k-p
pDCm_z{l /l(rﬁ—a+,8)J
ﬂ+|2—1+m+'85
Pecm = — =i
A(M-a+p)
(2(m_“+ﬁ)+1jg—lz B
; 1 1 1+
on 2 A(M-a+pB)
1 ((@+m) o) 1 o AlM-a+p)-p
pm_ﬂ(l—l)((lﬂx)K k} 2(1_1)(m_0¢+ﬂ)(K ‘) 2(1-2)(M-a+p)

Given this solution for the respective shares (if) and (iif) need to be checked for

(i): A(M-a+pB)>B+k-k
(i): A(M-a+ p)> f-(k—k) TP



Finally all condition of the type

pe [O,l] ,Z p<1 reduce to:
p+k-k

(hightypes):i>m N (1+a)ﬂ>(l+m+ﬂ)K—(1+a)E A K<l+a
. | p+k-k 2 (1+m) ol | BHk-k 2 (1+m) =
(lthYPeS)./1<m1n{(ma+ﬂ)+ﬂ((l+a)K kJ,Z [—(m—a+ﬂ)+ﬂ[(1+G)K k
note:
(Qﬂ;k) 1 k—K <fi-a
-a
P, >0:
1 (1+m), - 1 oy, AM-a+p)-B
ﬂ(l—ﬁ)((1+a)K_kJ>2(1—/1)(m—a+[3)(k k)+2(l—ﬂ)(rﬁ—a+ﬂ)©







from high types:
(l+a)p>(1+m+p)k—(1+a)k =

(1+m+ )k -(1+a)k <(1+a)f < (L+a) 2 o 2ae M- (ra)k)

(Lems Bk —(Lra)k <(1+a) - LK o(aimk-@ra)k) o

B
c>0<(1+a),8(m_a+ﬂ)+(l+a),8

c+a)p—P (1)
<0<t )'B(rﬁ—a+ﬂ) ( )(m—a+ﬂ)

<:>0<(1+a),8—(1+a)m;a E+(%—ﬂ(1+rﬁ)jk<:>O<(1+a)ﬂ—(1+a) m;“ E{m;“

conditions for existence:




4313, 1, (M)~ T, (m)<0

1. Ty (M) =TT, ()= 2] ( Peon — Pocn ) (1+@) |-k <0= p, =0 )
I, (CC,m)~T1, (DC, M) = A[ (Pecn ) (M=) +( Pocn ) (~5) ] =0 0
I, (DC, m)~I1,, (DD, M) = A[ ( Peoy ) (M—at) |- (1-2) B >0 i)

Hm (CC’ m)—Hm (CD’ m) = ﬂ[( pCDm - pDcm)(l+m+,3)_ pDCmﬁ]_E_(l_;t)IB: 0 (V)

Rewrite (i) and (v) to: Peem =

SR S .

— == = + and plug into: =1~ Pecr = Pocm
ﬁ(m—a) > pCDm ﬂ,(l+m+ﬂ) (1+m+ﬂ)] pDCm and plug into pCDm pCCm pDCm

o —a)((1+m+B)A-p—k)
(( m)(m a+p)-p(1+a))
BQ: p = ( +M+B)A-f- k)
cem ((+ (m a+,8) (1+a))
) :k( +B)+(1+m+B)A(M-a)+ (rﬁ a+p)1-4)8
con A2+ m)(M-a+pB)-B(l+a))

Finally, check for (*) and (ii) given those values:

w.r.t. ()



(1+a) k(2m=2a+ B)+ B((2M-2a + B) - A(M-a + B)) | <(2(1+m)(M-a + )~ A 1+a)
+B

E[2(1+a)(rﬁ—a+,B)—,B(1+a)]—[2(l+rﬁ)(rﬁ—a+,b’) B(l+a) ]k+,8 (1+a) [2

1 (K_E)_%L(hm)k—l?} 2(m—a+ﬂ)—ﬂ:2_£(ﬂ+k k 2(1+m

(m—a+ﬂ) rﬁ—a+ﬂ Bl Q+a)

Peom = A2+ m)(m-a+p)-B(1+a)

Finally all condition of the type

pe [0,1],2 p<1 reduce to: A >

Hence we are left with:

ke

-

|<2(1+a)(M-a+p)e



note:

y>xc>Z{k§%£5%5+%£u+m)K—E1}— b+ 5 >0 (1+a)B>1+m+ )k —(1+a)k A k<l+a

Conditions for existence:

B+k N
(1+m+2) e
note
[ Brk=k 2((@+m) )] p+k _ ~ -
y> X2 &m—a+ﬂ)+ﬂ[@+a)K KD a+m+ﬁ)>0C%LHﬂﬂ>ﬂﬁﬂHjﬂK (1+a)k A k<l+a



4.3.2.and CD,m/DD,m= p =1

Hrﬁ (CC,rﬁ)—Hm (DC’ m) = ﬂ“li( Peem + pCDm)(m_a)"'( Pocm + pDDrﬁ)(_ﬂ)]-'—(l_ﬂ“)I:prﬁ (_ﬂ):' =0
0

I, (DC, M) ~TT,, (DD, M) = A[ ( Pagy + Peon ) (M=) +( Pocy + Poon ) (=8) |+ (1=2)[ Py (-8)]>0
(i)

Hm (CD, m)_Hm (DD’ m) = /1[( Pecm + pDcm)(m_O‘)+( Pcom pDDm)(_ﬂ)]WL(l_/I)[pm (_ﬁ)] =0

I, (CC,m)~IT,, (CD,m) =TT, (DC,m)~IT,, (DD, m) = 4| ( Pocn + Pocn ) (M=) +( Peon + Poon ) (~B) |+ (1= 2) p (-5) ] <0

1, (CC,m)—TII,, (CD,m) =TI, (CD, m)-TII,, (CD,m)—| 1, (CD,m)~II, (CC, m)}:
/1|:( Peom — pDcm)(1+ m"‘ﬂ)"‘( pCDm - pDCm)(l+a)j|_E+ﬂ’|:( pccm + pCDm) ( ocm T pDDm) ﬂ)]"‘(l_l)[pm (_ﬁ)] =0

Hm (m)_nm (m):’IU Pcom + Peom — Poem — pDCm)(1+a):|_K

I (CC,m)—Hm (DC,I‘T]) :ﬂ“li( pccm)(m_a)+( pDcm)(_IB)] =0 @
11, (DC,m)-TI1, (DD, M) =1[( Peom ) (M=) +( pDDm)(—,B)]—(l—/l)ﬂ>O (i)
M, (CD,m)~IT,, (DD, m) = A[ ( Peep + Poca ) (M- ) | =0 @

I, (CC,m)~IT,,(CD,m) =TT, (DC,m)~IT,, (DD, m) = 4| ( Peon + Poon )(~B) |-(1-24) B<0  (v)



11, (CC,m)~TI1,, (CD,m) :/1[(—pDcm)(l+m+,6’)+( pCDm)(1+a)]—E+ﬂ,[( Peom ) (M=) +( pDDm)(—ﬂ)}—(l—z)ﬂ=o

By (iii) such a semi-pooling equilibrium cannot exist.



4.4. CD,m

441 and DC,m
I, (CC,M)~T1, (CD. M) = [ (Pecn + Peom ) (M=) Pocn + Poom ) () | + (1= 2)] P (~)] <O

I, (CD, M)~ I, (DD, M) = A[ (Pecn * Peom ) (M=) +( o + Poon )(=8) ]+ (1= 2) P (~5)] > 0
IT,,(DC,m)~TT,, (DD, m) =4[ ( Pecn + Pocn ) (M=) +( Peon + Poon ) (=B) |+(1=4)[ P, (<B) ] >0

Hm (CC,m)—Hm (DC’ m) = /1[( pccm + pDcm)(m_a)"'( pCDm + pDDm)(_ﬂ):I-'_(l_//t)l:pm (_ﬂ)] <0

1, (CD,m)-TI,, (DC,m) =1, (DC,m)~TI, (DC,m)—| T1,, (DC, m)~I1, (CD,m) |=0

I, (m)_nm (m):/lﬁ Pcom + Peom — Poem — pDCm)(1+a):|_K

1, (CC,m)~TI,, (CD,m) = /1[( pDCm)(—,B)]+(1—2)[ P, (-5)]<0 @
IT, (CD, M) —I1,, (DD, M) = A[ (Pepm ) (M=) [+ (1= 2)[ Py (-B)]>0 G
11, (DC,m)~I1,, (DD, m) = /1[( pDCm)(rT\—a)} +1-A) pa(-B)]>0 G

I, (CC,m)—I1, (DC,m) = A[ ( Pepn )(—B) | +(1-2)[ pPn (-B) | <0 (i)

M

(i)

(iir)

(tv)

)



I, (CD,m)-T1, (DC,m) =1, (DC,m)~IT

A[ (Peom = Poc ) (1+ @) +( Peom — Pocn ) (1+1M ]

+2] ((Poon + Peon = Peca = Peon ) (M=) +( Pocn + Poon — Poc — Poon ) (=) |+(1-
= 2| (Poon ) (1+ @) + (= Pocg ) (1+ M+ B) |~k + A[ (Peon ) (M=) + (= Poca ) (=B) ]+ (1
= [ ( Peon — Pocn 1+m)] B(1=2)[ Pa = Py | =0

I, (m)_Hm (m):/l[( Peom — pDCm)(1+ a)]_K

(and (iv) are always sasisfied.
4411, T, (1)~ T, (m) > 0

I, (M) ~TT, (M) = 4| ( Peom — Pocn )(1+ @) |~k >0=> p, =1

M, (CD, M) ~T1, (DD, M) = A[ (Peon ) (M~ ) |+ (1= 2)[ Py (-5)]>0
M1, (DC,m)~I1, (DD,m) = A[  Pocy )} (M=) | +(1-2)[ P (=5) ] >0
I, (CD, M)~ 1, (DC,m) = A[ (Poom — Pocy )1+ M) |-k = (1~ 2)=0

o1 k+p(-4) 1 k+p(1-2)
EQ: Pocn =7 22(1+m)  Peon =5 F 24(1+m)

(iii) is always satisfied, (ii) and (vi) need to be checked for:

( .m)—[ 1, (DC,m)~I1,, (CD,m)]=0

)I:p ( ﬂ)_pm(_ﬂ)]
I:p (_ﬂ)_pm(_ﬂ)]

(vi)
(ii)
(iii)

\)

(vi)



(vi) /1<1—E(k1+—m—IZ]

1+«
N Lea Lem) K o
(“)'/1>(n‘q—a+ﬁ)(l+n‘1)+(1+a)[)’[ﬂ(1+l+aj 1+oz(rn @)

(Vi)a(i)Ade (0,1):

1. k<l+a

2. e ﬂ)(lltj]) (1+a)ﬂ(ﬂ(1+i—jj—%(m )]dd_ﬁ(

3. (I+a)p>(M-a+pB)k(=1)

) k<( a)(/i‘(m a)+k(m—a+2,8))
T —a(l-p)+2p+m(l+M—a + B)

Finally all conditions of the type

1 |Z+[5’(l—ﬂ)
1 1 =t
e[O, ],Z p<1 reduce to 2+ 2/1(1+m)
Peom > 00 true
ﬂjk Ak <1+m
(1+m+p)

Peom <l A >



Conditions:

1+

(M—a+p)1+m)+(1+a)p

1. max

1+m
('B(lerj

note that 2. implies that X > Y.
(1+ a )(m -a+ ZIZ)

x<z:<=k<
- (2+M+a)

+m+(1+rﬁ)ﬁ+1+a),8 = +m+(1+m)ﬂ+l+a)ﬂ y
: el Bk e )"
b (1+a)(ﬂ(rﬁ—a)+l?(rﬁ—a+2ﬂ)) (1+a)(rﬁ—a+2k):
—a(1-B)+2p+m(1+M—a + B) (2+M+a
(1+a)ﬁ(rﬁ—a) _(1+a)(rﬁ—a)+ (1+a)(rﬁ—a+2,8)lz B (1+a)2lz
1+m)(M-a+B)+(1+a)B (2+M+a) (L+M)(M-a+p)+1+a)f (2+M+a)

<

0, i.e.



To summarize:

' 1 k+pB(1-2) 1
BQ Pocn =5 24(1+m) » Poon =5+

K+pB(1-2)
24 (L+m)

Conditions for existence:

2 1+ 1+m k
b e +,B)(1+rﬁ)+(l+a),b’(ﬂ(l+mj_14r_a(m_

2. (I+a)B>(M-a+p)k

- (+a)(B(M-a)+k(M-a+28))
C T (M-a+p)(1+m)+(1+a)p

4.4.1.2. 1 (mM)—-T1,(m)=0

I, (m)_nm (m) :l[( Peom — pocm)(l"'a)J—K =0 <:>(pCDr,n - pDCm):

Hrﬁ (CD’ m)_nm (DD’ m) = /1[( pcom)(m_a)]"'(l_l)[pm (_
1, (DC,m) -1, (DD.m) = £[ (P ) (M-) [+ (1= ) pu (-

Hm(CD,m)—Hm(DC,mFﬁ«[( Peom — pDCm)(l+rﬁ)J—E—ﬂ(1—l)[pm— pm]:()@

(v) becomes:

3

—~

1+m) 1

& KK = (1-2)[2p, -1 py =

a)J<ﬂ<l—i{k£ﬂﬁ—Ej<l

L\ 1+a

Al+a) )

£)]>0 ()

B)|>0 (iid)

—~

1+a)

2" 2p(1-2)

o

k—k = B(1-2)[ pn— Py |



1 X 1 K by (vi); P 1,1
M= A T A A =———— vi); Py ==
Peon = 2 22 (v a) P T2 2011 a)

2 20 (1—/1)
Given this solution for the respective shares (if) and (iii) need to be checked for.
(ii): A(M-a+pB)>B+k—k
(iii): A(M—a+B)> f—(k—k),ie. (i) implies (ii).
A 6(0,1) addsk -k <m-«a

Finally all conditions of the type

pe [0,1] >Z p<1 reduce to:

L</1<1—£ (1+m)k—|Z (:>nec.: K <1j
1+a Bl (l+a)” 1+a

(1+a)p>(1+m+p)k —(1+a)k

Conditions for existence: 2. (1+ a) B> (m —a+ ,8) k




4.4.13. I1 (m)-TI_(m)<0
IT, (M)-I1,, (m) :/1[( Peom — pDCm)(l+a)]—K <0ep,=1 o
I, (CD, M) ~I1, (DD, M) = A[ (Peom ) (M—-a) | >0 (i)

M, (DC,m)~I1, (DD, m) = 2| ( Pogy )(M-a) |- A(1-2) >0 (i

Hm (CD’ m)_Hm (DC’ m) :ﬂ'[( Peom — pDCm)<1+ m)}_i"'ﬁ(l_ﬂ“) =0 W)

2|7 A(1+m)
e 1(, k-p(1-2)
Pocn E(l_ A(L+m) ]

k(M-a)+B(2+a+m) 3 _

hence adding 4 €(0,1): (1+m)(M—a+p)+p(1+a)




Finally all conditions of the type:

pe [0,1] ,z p<1 reduce to:

k-8(1-2) _ _ _
0<1+m<2<:>—/1(1+m+ﬂ)<k—,B</1(1+m—,8)<:>
T— B>k - Tt B)> k- M- )k _k-p
A1+m=-p)>k-BAi(l+m+p)>k -f < A(l+m-p)>k 'B/\/1>(1+rﬁ+ﬂ)
P psi
adding 4 €(0,1) and k <1+m yields X < A<1, X = 1T<_m_ﬂ
= B>k
1+m+p

however, it turns out that

< A is binding,.

To summarize:

2 A (1+ n_’])
Conditions for existence:

| k(m-a)+B(2+a+m) 3
(1+m)(M-a+ )+ B(1+a)
2. k<(1+m)




442.and DD, = p, =1
I, (CC,M)~T1,,(CD,M) = Z[ (Peon * Peon ) (M=) +( Poca + Poon ) (=) |+ (1= 2)[ Py (=) ] <0

M,,(CD,m)~I1,, (DD, M) = A ( Pecn + Peom ) (M=a)+( Poca + Poom ) (=5) ] +(1=2)[ Py (=) | >0
I, (DC,m)~T1,, (DD, m) = | ( Pecy + Pocn ) (M=) +( Poom + Poon ) () [+ (1= A)] P (~) ] <O

I, (CD, fD)—Hm (DD’ m) = l[( Pcem + pDCm)(m_a)+( Pcom pDDm)(_ﬂ)]+(1_i)[pm (_ﬂ)] <0

IT, (CD,m) 11, (DD, m) =1, (DD, M)~ I, (DD, m)—[ 1, (DD, m)~TI, (CD,m) | =0 ®)

I, (CC,M)~IT,, (CD,M) = A ( Pooy ) (~8) |- B(1-2) <0 )
I, (CD,m)~T1,, (DD, M) = A[ (Pepm ) (M—a) | >0 (i)
11, (DC,m)-I1,(DD,m)= /1[( pDDm)(—,B)J—,B(l—/l) <0 (i)

I (CD1m)_Hm(DD’m):ﬂ’[( pCDrﬁ)(_ﬂ):|<0 (iv)

0

(i)

(iii)

(iv)



k
EQ: Pepnm :m > Poom =1- Peom

(1),(ii),(iii) and (iv) are satisfied

k
(1+m)

Finally all conditions of the type P € [0,1] ,Z p<1 reduce to: 4 >

Condition for existence:

however it turns out that this equilibrium is not stable.
45. DD, M and DC,M = p, =1

IT,,(DC, M)~TT,, (DD, M) = 4| ( ey + Poon ) (M=) +( Pocy + Poon ) (=8) |+(1=4)[ Py (=) ] <0
1, (CD,M)~TI1,, (DD, M) = A[ ( Pecn + Peom ) (M=) +( Pocn + Poon ) (—5) |+ (1=2)[ Py (=) ] <O
I, (DC,m) 1, (DD,m) = Z[ (Pocn + Pocn ) (M=) +(Peon + Poon ) (=) |+ (1= 2) Pa (-5) >0
M, (CC,m)~T1, (DC,m) = [ ( Pecn + Poca ) (M=) +( Peom + Poom ) (=) |+(1=2) Pa (=) ] <0

IT, (DD, m) 11, (DC,m) =11, (DC,m) -I1, (DC,m)—[ T1, (DC,m)-TII,, (DD, m) | =0

0

(1)

(iii)

(iv)

)



I, (DC,M)—T1,, (DD, M) = A[ ( Pocy )(—8) |- A(1-4) <0 0

M1, (CD, ) I, (DD, M) = A[ Poon ) ()] <0 i

3

M, (DC,m)~TT,, (DD, m) = | ( Poey )(M-a) |- B(1-2)>0 iy

M, (CC,m)~TI1, (DC,m) = 2[ (Popn ) (~5) ] <0 (iv)
I, (DD,m)-TI1, (DC,m) =TI, (DC,m)-TII, (DC,m)—[ 1, (DC,m)~II, (DD,m) | =
pDcmﬂ(1+ m)—k +(1—ﬂ)ﬂ =0 ( _é_i_ﬂm_)k Pocm

IT,,(DC, M)~ 1, (DC,m) = 4| (Peon — Pocn )(1+ @)+ ( Peon = Pocy ) (L+ 1+ 8) |-k
M, (DC,M)-I1, (DD, M) = A[ (Pocy )(-B) |- B(1-2) <0

By (v) pDCm =

Hence such a semi-pooling equilibrium cannot exist.



4.6. CD,m/DD,m

4.6 and DC,m

1, (DC,m)~T1,, (DD, M) = z[( Pecn + Peom ) (M=) +( Pocy + pDDm)(—,B)]+(1—/1)[ P, (-5)]<0

T (CD, M)~ T, (DD, M) = 2[ (Peen + Peon ) (M=) +(Pocn + Poon)(=8) |+ (1= 2) Pn (-8) =0
I1,,(DC,m)~I1,, (DD, M) = | ( Pegy + Poc ) (M=) +( Peom + Poow ) (=8) |+(1-2) P (~5)] >0

Hm (CC,m)—Hm (DC’ m) = /1[( pccm + pDcm)(m_a)"'( pCDm + pDDm)(_ﬂ):I-'_(l_//t)l:pm (_ﬂ)] <0

IT, (DD, m) 11, (DC,m) =11, (DC,m)-I1, (DC,m)—[ 1, (DC,m)~TI,, (DD, m) | =0

I, (DC, M)~TT,, (DD, M) = [ ( Poy ) (=) |+ (1~ 2) Py (-8) ] <0 0
I (CD’ m)_nm (DD’ m) - ﬂ’[( pCDm)(m_a)"'( pDDm)(_IB):|+(1_ﬂ“)|: Pr (_ﬁ)] =0 (1)
I, (DC,m)~I1,, (DD, m) = /1[( pDCm)(m—a)]Jr(l—z)[ Py (-5)]>0 (i)

IT, (CC,m)-I1,, (DC,m) = A[ (Peom + Poom ) (—B) |+ (1= 2)[ P (-B) | <0 (iv)

M

(i)

(iir)

(tv)

)



I1,,(DD,m)-II, (DC,m)=TI1, (DC,m)-II (
pCDm - pDCm)(1+m+ﬁ):|_lz_2’|:( pccm + pCDm)(m_a)+(pDCm + pDDm)(_ﬂ)]_(l_ﬂ)[pm (_,B)]:

=
3
3
|
=
Ef
5
Il
=
3
3

)_Hm (m):/i[( Peom — pDCm)(1+a):|_K

In a semi-pooling equilibrium (i) and (iv) will always be satisfied.

4.6.1.1. 11 (mM)—-TII, (m)>0

Hm(m)—Hm(m)=ﬂ[( Peom — pDCm)(1+a)J—K>O = p, =0 ™
I, (CD, M) —I1,, (DD, M) = A[ ( Peom ) (M—a)+( Poom ) (-B) |- B(1-2) =0 (i)
I, (DC,m)~I1, (DD, m) = A| ( Pocy )(M—a) | >0 (i)

I, (DD, M)~ TI1,, (DC,m) = A[ (Peom ) (1+ @) = Pocy, (1+M) ]k =0 W)



pDCm -

pDCm -

1 ,B(l+a)—?(_—a+ﬂ) Do =
Al B(l+a)+(1+m)(m—a+p) | "
1] B(l+a)-k(m-a+p) | -
Al B(l+a)+(1+m)(m—a+p) | "

Al Bl+a)+(1+m)(M-a+B)

(iii) is satisfied, (*) needs to be checked for, however this equilibrium is not stable.

(*) reduces to:

.y (1+c (ﬁ(m—a)+12(m—a+2ﬂ))

(1+m)(M-a+B)+p(1+a)
2. ﬂ(1+a)> |Z(n_1—a+ﬁ)
Finally all conditions of the type

pe[0,1],>] p<1and 0< A <1 reduce to:
M-a)+B(2+a+m)
(1+m)(M-a+pB)+B(l+a)
2. B(l+a)>k(m-a+p)

1. <A<l

To summatize

Pocm =

Conditions for existence:

1[ k(
Al B(l+a)+(1+m)(M-a+p) |

}, Poom =1+

1

A

» Poom =1- Pcom — Pocn <

k(m-a)-pB(

2+M+a)

5

(I+a)+(1+

m

J(M—a+f)




2. f(l+a)>k(M-—a+p)
X k<(1+a)(ﬁ(m—a)+12(m—a+2/3))
- (1+m)(M-a+p)+B(l+a)

I, (m)_Hm (m):ﬁ[( Peom — pDCm)(:I""Ol)J_K =0
Hrﬁ (CD’m)_Hrﬁ (DD’ m) = /I[( pcom)(m_a)+( pDDm)(_ﬁ):|+(l_ﬂ')|:pm (_ﬂ)] =0
1, (DC,m)~TI1, (DD, m) =z[( pDCm)(m—a)J+(l—/1)[pm (-B)]>0

I, (DD, M)~ I, (DC,m) = A[ (Peom ) (1+ &) — Ppen (1+M) |-k + B(1-2) p, =0

EQ:

0 :,B(1+a)+(1—rﬁ—ﬂ+2a)5—(1+a)l? ) =ﬂ(1+a)+(1+rﬁ+ﬂ)g—(l+a)l? 5
DCm 2(l+a)(M-a+p) Lreem 2(1+a)(M-a+p) * bbm
pm:_(1+a)(—ﬂ(rﬁ—a)+(a—2/3—rﬁ)lz)+((1+rﬁ)(n‘w—a+ﬂ)+/3(l+a))g’pmzl_pm

2(1+a)(1-2)(M-a+pB)
Note, that for the equilibrium values (iii) is satisfied:

Finally all conditions of the type

©

(i)

(i)

\)

=1

| =

| =BHA(M-a+p)
- A(M—a+p



pe [0,1] ,Z p<1and 0 < A <1 reduce to:
(1+a)(-B(M-a)+(a-28-m)k)+((1+m)(M-a+B)+B(1+a))k .
2(1+a)(1-2)(M—a+pB)

p, <1
(1+a)(-p(M-a)+(a-2p-m)k)+((1+m)(M-a+B)+ B(1+a))k>2(1+a)(l-1)(M-a+B) <
(L+m)(M-a+p)+B(l+a))k-(1+a)(M-a+2B)k >(1+a)B(M-a)+2(l+a)(1-2)(M-a+B) <

4.6.1.3. I1 (mM)-II,(m)<0 )

Hm(m)_nm(m)zi[(pcom)(]'*'a)]_K<0 —p =1

M, (CD, M)~ 11, (DD, M) = A[ ( Peom ) (M =)+ (Poon ) (=5) |+ (1= 2) P (-5)]=0 )

I, (DC,m)~I1,, (DD, m) = ;t[( pDCm)(m—a)]+(l—/1)[ P, (-5)]>0 (i)



I, (DD, M)~ I, (DC,m) = A[ (Peom ) (1+ &)~ Ppen (1+M) |-k + (1= 1) p, =0 ®)

I, (CD, M) —I1,, (DD, M) = A[ ( Pepm ) (M= )+ (Poom ) (-B) | =0 @)
11, (DC,m)-I1,, (DD, m) = /1[( pDCm)(m—a)J—,B(l—i) >0 (i)
I, (DD, M) —TI1, (DC,m) = A[ (Peom ) (1+ @) — Pocy (1+M) |-k + B(1-2) =0 )

(ii) and (v):

ﬂ“[(pCDrﬁ)(m_a+ﬁ pDCmIB ﬁ]

AL (Pepm ) (1+@) = Py (L+M) |-k + B(1-2) =0

ﬂ - pDCmﬂ

Peon = 2 (M—a + §)

/1[( Peom ) (1+a) = Pocy (1+ m)]—E+ﬂ(1—/1) = ,{

( )1 { B(1+a)
B(l+a (e A(M-a+p)
(m-asp) M

= Pocm =

_E+ﬁa_xﬂ




o = (A1+m+B)+k -B) ; Z,B((l—/l)(m—a
com ;L((l+rﬁ m_a+ﬂ)+ﬂ(1+a))' DCm /1((1+rﬁ)

)(
(m—a)(ﬁ(l+rﬁ+ﬁ)+|2_ﬁ)
)(

EQ:

o
)}
O
3
R
—_
|
+
3

)+
- 2(1+a)p(M-a+p)
Finally all conditions of the type
pe [0,1] ,Z p<1and 0< A <1and (iii) reduce to:
(l+a)ﬂ(n_1—a+2ﬂ)+(rﬁ—a)(rﬁ—a+ﬂ)lz
28(1+a)(M-a+p)
2.,6’(1+a)>(rﬁ—a+,8)lz

<A<l

1.0<



adding the upper bound due to (*) we end up with:
. (I+a)p(M-a+2p)+(M-a)(M-a+B)k Yy

(1+a)B(M-a+2p)+((1+m)(M-a+B)+B(l+a) )

~((+a)(M-a+pB)+B(1+a))k

2ﬂ(1+a)(rﬁ—a+ﬂ) 2ﬁ(1+a)(
2. p(1+a)>(M—a+B)k
note that LHS<RHS due to k <k

RHS<1_(1+a),8(rﬁ—a+2/5’)+((1+m)(m a+pB)+p(1+a))k—((1+a)(M-a+B)+B(1+a))k e
' 28(1+a)(M-a+p)
(L+m)(M—a+pB)+B(l+a))k-(1+a)(M-a+p)+B(l+a))k < f(l+a)(M-a) <
(1+m)(M-a+B)+B(L+a))k—((1+a)(Mi-a+B)+B(l+a))k < f(l+a)(M-a) <
(1+m)(m-a+pB)+B(1+a)) _((1+a)(m a+p)+p(l+a))_ < B(lea
(M—a) « (M=a) <plra)e
((1+m)(m—(;igw(lm))K_((lw)(m (;igw(lw))k (m-a+ p)

To summarize:

o p(A(L+m - a
T A((1+m)(m- a+,3)+,8(1+a)) e A((1+m)
- (M—a)(A(1+m+B)+k - B)

T A((1+m)(M-a+ B)+ B(1+a))

+5)



Conditions for existence:

1 (1+a)p(M-a+2p)+ nﬁ—a)(nﬁ—aJrﬁ‘)E</1<(1+a)/3(m—a+2/)’)+((1+m)(m a+p)+p 1+a) (1+a (m- a+ﬂ)+ﬂ(1+a))E
. 28(1+a)(M-a+p) 2B(1+a)(M-a+B)
2 ﬂ(1+a)>((1+m)(m_(::§§+ﬂ(l+a))k_((1+0‘)(m (iiiiﬂg(lﬂx))

462.and DD, = p, =1
IT,,(DC, M) =TT, (DD, M) = 4[ ( Pecy + Peon ) (M=) +( Poca + Poon ) (=8) [+ (1= ) Pu (-B)]<O &)

I, (CD, M) —TI,, (DD, M) = A[ ( Pecy + Poom ) (M=) +(Pocn + Poon ) (=8) |+ (1-2)[ pn (-B)]=0 @
I1,,(DC,m)~I1,, (DD, M) = 2| (Pecy + Poc ) (M=) +( Peow + Poon )(=8) |+ (L= 2) P (-8)] <0 i

I, (CD,m)—I1,, (DD, m) = A ( Pegn + Pocn ) (M—a)+( Peom + Poom ) (=B) |+ (1=2)[ P (-B)]<0 @)

Hm (DD' m)_Hm (DD' m) = /1(1+05)[( Peom + Peom — Poem — Pocm )]_E =0 V)
I, (DC,M)-T1,, (DD, M) = A[ ( Pooy )(~B) |- B(1-2) <0 0
M, (CD,m)~TT, (DD, M) = A ( Peor ) (M—a)+( Poon ) (-B) | =0 ()

I, (DC,m)~TT,, (DD, m) = | ( Pooy ) () |- A(1-1) <0 (i)



Hm (CD’m)_Hm(DD’m):ﬂ[( Pcom pDDrﬁ)(_ﬂ):|<o (iv)

IT, (DD, m)—T1,, (DD,m) = A(1+a)[ ( Pepm ) |-k =0 @)

EQ: Pcpm :m: Poom = 8 /1(14-0()1 Poom =1~ B /1(1—#0()

(@), (iii) and (iv) are satisfied.
Finally all conditions of the type

pe [O,l],z p<1 and 0 < A <1 reduce to:

2.8(1+a)>(M-a+p)k
To summarize:

(M-a)
i /1(1+a)’pDDm=1_ B A(l+a)

Pcom = mf Poom

Conditions for existence:
: E(m—a+ﬁ)
- (I+a)B

2.(1+a)>(M-a+pB)k

<A<l



Finally we consider semi-pooling equilibria with only low types pooling, i.e. Hm (rﬁ) _Hm (r_n) =1 [( Peom + Peom — Pocm — Pocm )(1+ Ol):| —k =0. For

this equality to hold we necessarily need Pepy >0 or Peom > 0 but not both since this would correspond to a pooling among high types.

4.7. Hm (m)_Hm (m) = ﬂ'[( pCDm + pCDm - pDCrﬁ - pDCm)(l+a):|_K =0

4.7.1.  Pcpm >0 ,1.e. Pcem = Peom = Pocm = Poom = 0

P 6(0,1

M, (CC,M)=A[( Pecn + Peon ) (1+ M) +(Pocn + Poon ) (=8) |+ (1= 2)[ Py (=B)+ Pr (=8) |-k <
M (CD,M) = 2| (Pegn + Peom ) (1+ M) +(Poce + Poon ) (—8) |+ (1= 2)| pa (-8) |-k

M, (DC, M) = 2[( Pecn + Peon ) (1+a) | +(1=2)| Py (=5) |-k <

I, (DD, M) = [ (Pecn + Peom ) (1+ @) |-k

11, (CC,m) = 2[(Pecn + Pocn ) (1+ M) +(Peom + Poom ) (=B) |+ (1= A)[ P (=5) + Py (-8) | <
M, (CD,m) = 2] (Pecn + Pocn )(1+M)+(Peom + Poon ) (=8) |+ (1=2)| Pn (=) ]

M, (DC,m) =4[ (Peen + Pocn ) (1+@) |+(1-2)[ Py (-8) ] <

I, (DD, m) = 2[ (Pecn + Pocn ) (1+ ) |

m (m) = /1[( Peem * pDCm)(1+a)
m (m) = /1[( Peem + pcom)(l"'a)

L1 L1

|
|=



Hrﬁ(CD _):ﬂ'l:(pCDm)(1+m)+(pDDnﬁ)(_ﬂ):I—i_(l_l)l:pm (_ﬂ)]_k

1, (DD, M) = A[ (Peon (1) |-k

I, (CD,m)=;t|:( Peom + pDDm)(_IB)i|+(1_;L)[pm (_ﬂ):l <0

M, (DD, m)=0

M, (M) = 0= [ Pepn ) (1+ @) ]~k =TT, (M) & Peop =~~~ = DD,m < DD, m

A(1+a)

Hrﬁ (CD'm):ﬂ“[( pCDm)(1+ rﬁ)"'( pDDm)(_ﬂ)]+(1_/1)[pm (_ﬂ)]_E
I1

I1,(CD,m)-II, (DD,m)>0<

AT+ B) > Af+(1=2) o <> Py <2

To summarize:

Peom = 1



Conditions for existence:
K
(1+a

2.k<(l+a)

A(M-a)

(1—/1)ﬂ

note that 3. is only binding if:
l(rﬁ—a)
(1-2)p

1. A=

N—"

3. Py <

5 k 5
A map) T tra) S(m-asp)

4.71.2. I1,(CD,m)-II

3
)
O
\?l
I
o

I, (CD,m)=II,(DD,m) <

/1[( pcom)(m_a"‘ﬁ):l = 1,3+(1—/1) P < Peom = lﬂ+rr(]1_/1) pm),B

Hm(m)zozﬂ‘[( Pcom)(1+a)}—K=Hm(m)<:> Peom :L

AB+(1-2)pB _ Kk _(M-a+p)k-2(1+a)p
am—a+p)  All+a) " (1-2)(1+a)p

EQ: pCDrﬁzL =1- K _(m—(l+ﬂ)K—/1(l+a)ﬂ

) P T e T ) a8

Conditions for existence:



(1+a) p (1+a)
2. (1+a)p>(M-a+p)k
3. k<(l+a)

4.7.2. Peon >0 ,ie. Pecn = Peom = Pocm = Poom = 0

Py €(0,1):

M, (CC,M) = 2] ( Pecn + Poon ) (14 M)+ (Poca + Poon ) (=) |+ (1= )] P (~B) + P (-B) |-k <
M, (DC,M) = 4| ( Pecg + Peon ) (1+ M)+ ( Pocy + Poon ) (=) |+(1=4)] Py (=8) ]-K

My, (CD, M) = A[ ((Pecn + Poon ) (1+ @) |+ (1= 2)[ pa (-8) |-k <

M, (DD, M) = 4| (Pocy + Peon ) (1+ &) |-k

M, (CC,m) = 2] (Pecn + Pocn ) (1+ M) +( Peom + Poon ) (=8) |+ (1= 2)[ P (~B)+ Pn (-8) | <
Hm(DC,m)zl[( Pecn + Poca ) (1+ M) +( Peon + PDDm)(_ﬂ)]+(l_’1)[pm (_ﬂ)]
Hm(CD,m):ﬂ[( Pecn + pDCm)(1+a)]+(1—/1)[p (-8)]<

M, (DD, m) = 4] ( Peoy + Pocn )(1+@) |

Hm (m) = ﬂ‘[( pCCm + pDCm)(1+a):|
I, (m)= /1[( Pecn + Poom ) (1+ a)]—g

Since CD, M is strictly dominated by unconditional defection such an equilibrium cannot exist.



2. Stability (The denotation of the following equilibria in the first column refers to the corresponding subsection in

App. A)
CCm ___k B _ k m-a Lk B
cDm Pccn ﬂ(l+0!)+/7.(l’ﬁ—a+ﬂ) Pocm 421 (1+O!) B , l+a mM-a+p

DCm Peom = Poc»

B k. m-a )4 +1_
DDm | Poon = /1(1+a) 3 i(rﬁ—a+ﬂ) 1 Pocn
CDm K
DDm | P~ Z(1+a)

m k  mM-a 1-1

Pon = ira) B A

B<(M-a): pmsl(7 B —LJ

AlM-a+p l+a

Note that the payoffs for non-signaling high types is independent of their own share. However 1,(CC.M) = 4] (Pecn + Peon + P )L+ m)+(pm + Poon + Poo)(=B) |- B1-1)—K
payoffs for all other behavioral strategies strictly increase in the share Pcom and weakly 1, (CD,m) = l[(p 7+ Peom ) (L+ M)+ ( Peo ) (1+ @)+ ( Pocs + Poom )(— ﬂ)]—E
decrease in Py, - Hence if the set is perturbed such that the equilibrium level for pep,, is nﬁ(Dc,m)=,1[(pCDm)(1+m) (Pecm + Peom )(1+ ) (Poon )(-B) |- A(1-2) -k
exceeded than there is no force bringing it back to that level. Hence this set of equilibria is 11, (DD, m) = /1[( Pecn + Peom + Peoy ) (1+ @) | =K
unstable.

Hm (CD,m)ﬂ»[( Poem + pDcm)(l+ m)+(pcnm + pDDlﬁ)(_ﬂ):I

Hm(DDvm):l[( Pocm + pDCrﬁ)(1+a)]
CcCm (L+a)(p+k)-(1+p+m)k B+k-k <4 ! -
CDI Peen = A(l+a)(m—a+p) ~ Peom (M—a+p) - (1+a)B> rrEr_ﬁi;;;((1+m)k—(1+0z)?)
DCm 0 . .\ [ = K Sl—i_a (1+1,3+m)K— 1+0!)|< 5

pcm — Mcom — + M—o+
DD A(M-a+p) £ (rafm-ars) pak-tHpEm
B L+k—k 0 < pepm $Min<1 prk-k ) lta
iDm pDDm_l_m_pcDm Peo (M-a+p) A(M-a+p)
= _ _ _ X y
= _ k k-k _(1+/3+m)£—(1+a)k 2 k [ g+k-k
m Peon = + - — X2y A2 —mm - ——| > —————
Al+a) A(M-a+p)  A(l+a)(M-a+p) (M—a+p) 1+a| (m-a+p)




Note that the payoff for non-signaling high types is independent of their own

Hm Ccvm A P m+po+po 1+m+pom+pDDﬁ _ﬁ +(1-41 Pn _ﬂ"'pm _ﬁ _E
share. However payoffs for all other behavioral strategies strictly increase in the . (CD 7) 1[( conn ) con )1+ ) 1( ° 4 )] ( )[1(1 )+ bl )2
m m ccm ‘com m 'CDm pcm oom J\™ - m{™. -
share Pcp, and weakly decrease in Py, - Consider a perturbation such that ol )= A (Pecn *+ Peon)1-+ M)+ Peon (1+ @)+ (Pocn + Poon) ﬁ)]t( [pa(-A)]
I1,(DC,m) = ﬂ[pCDm(lJr M)+ ( Poem + pCDm)(1+a)]+(1—/1)[pm(—ﬂ)]—k
the equilibrium level for pgp,, is exceeded and Py, decreases. Payoffs for 11, (DD,m) - /1[( B + oo + Pcom)(1+a)}—i
signaling high types strictly increase and there is no force bringing P, back 1, (CD,m) = A[ (Pocs + Poc )L+ M)+ (Peom + Poon)(~8) ]+ (1= 2)[ Pa(~A)]
to that level. Hence this set of equilibria is unstable. 11, (M) = A[ (Pecn + Pocn)(1+ @) ]
Hm(rﬁ):ﬂ[( Pcem + Peom + pcom)(l"'a)}_K
— p £ B
CCm | Peen = (1_ pCDm)fi_ Pcom L. ST
_ (m-a+p) B(-a(2+a)+B+m(2+m+pB))-%(a-a)(m—a+p) (1+a) (7-a+f)
CDm I 2 > 2 OSPCDW S
Poen = Doy Ky @) (1) (- + B
DCm DCmi CDm ﬂ(l+nﬁ+,b’) (1+m+ﬂ) CDm max >0 (1_ (1—1),Bj ﬂ ,
DDm m-a 177(7’”_0!) (1+7+5)—5——F A=) (-a+p)
Poom —(1 pCDm)fi_ Pocm B(m-a+p) (1+a) . y
(m a+ﬂ) o min _
com (1-2)B 7 (n-a) / (1 (1‘1)ﬂj moa | £ 1+a (1-2)B
- £ (m-a e — — - -
= 7 <A<1- Am—a) |[(m—a+p) A(l+m+p) l+m+p A (m—«a
L T S g o)) Geh) 3enF) (7-a)

2.2.1.2.2.

Note that the payoffs for non-signaling high types is independent of their own share.

However payoffs for all other behavioral strategies strictly increase in the share Py, - M, (cC,m)= ’1[( Pecn + Peom *+ Peon )(1+ M)+ (Pocn + Ponm)(—ﬁ)]—ﬁ(l—l)—k
. . e . . B nm(CDv ) A[(pcc +pcDm)(1+m)+pCDm(l+a)+(pDC +pDDm)( ﬁ)]_E
Hence if the set is perturbed such that the equilibrium level for p.p,, is exceeded than B ~ _
Dm M, (DC,M) = A[ Peog (14 M)+ ( Pogn + Peon ) (1+ @) |- B(L-2) -~k
;here Ibs .no. HW(DD!m) Z’I:( pCCm+ pCDm+ pCDm)(1+a)j|7k7
m) = m) - (1+m A1)k orce bringing

I, (CC’m) ’1[(1+ m) (1+m+ﬁ)( Pocm + pDDrT!):I ﬂ(l }“) k B it back to that I (CD,m) A‘:( Pecn + pDCM)(1+ m) (pCD,ﬁ + pDDm)(—ﬂ)]

Hm(CDvm):ﬁ[( Peem + pcom) m-a ) (l+a) ( )(pDC + pDDm ]_k level. Hence

M, (DC, M) = A[ (L+ M) ~(Pecy + Pepn ) (M —a) = (1+ )(pDCm +Poon) ] = A(1=2)=K | this set of

M, (DD,m) = A[ (1+ &) — (1+@)( Pocn + Poon) |-k equilibria is unstable.

M, (CD,m) = A (Pecn + Pocr ) (1+ M) +(Peon + Poon)(—4) ]




4.1.3.2.

Iz+(1—l)ﬂ
cCm Peon A(1+m) k+p B k 1+m
1 — <A<1 —
CDm E+(1—i)[)’ (1+m+pB) (M-a+p) (1+a)| (1+a)
m pccm =1 — (m—a) k k ﬂ
2.1- A<1: <
A(L+m) B (1+a)< ) (l+a) (M-a+p)
Pn =1
I, (CC, M) = A( Pecn + Peon ) (1+M) - B(1- 4) -k
M1(CD,m) = A( Pecy )1+ M)+ (1-2)[ P (-5) ]
Hm(m):ipccm(]'*a)
Hm(m):ﬂ(pcchr pcom)(“a)‘h
B B _ 1-2)+K+(1-2)[ pn(-B)] K+ p(1-2)p,
I, (CC, M)~ I (CD,M) 2 0 & Apepy (1+M) = (1= 2) =k = (1= 2)[ Py (-8) ] 20 Pepy 2 . 1fm) =) )
I, (M) =TT, (M) 2 0 APeey (1+ @) = A( Pecn + Peom )(1+ @) +k 20 pepy sﬁ, note that ﬁ >% due to the condition (see support) 4 >1— (/r:(llel; .
Hence we obtain the following phase diagram:
Pcom Note that the lower bound in the support condition implies
k ]k o k+(1-2)8
4—* /I(1+a) /1(1+a) l(l-%— rﬁ)
k I, (m)-TI1, (M) =0

Differences in fitness payoffs:

1y (CD, 1) =TT, (10) = £( Pegy ) (1+ M) ~ 2pecn (14+ @) = £( - @) pm:*(m‘“){l‘%}o

(11, (CD,m) -1, (m)) :“”{1‘%}0

As the diagram clearly indicates this equilibrium is stable.




4.2.3.2.

L 1+ k

Peon =3 A(l+a)
pcm | 1{_ k } (M—cs.5)

et A _ W@ P14 m)k - K
CDm (1+a) ﬂ"'(K k) (L+m) Bl+a)> (m-a) [(1+m)g (1+a)k]
m 1 1 (1+m), 0<— <A<l-— k-k |<1 B
~ P, ==|1+ k —k m-a+b) (1+a) Kk —k
m "2 1-4)8| (+a) +m_aﬂ(1+a)

1 1 (1+m)

" 2{ ‘(1—z>ﬂ[<1+a>k‘kﬂ
I, (DC,M) = A Peoy (1+ M) + (1= 2)[ p, (-B8) |-k
Hm(CD m)fipocm( m)+(1_ﬂ)[ pm(_ﬂ):l
I, (M) =Appen (1+a)
I, (M) = Apepy (1+a) -k
M, (DC, M) =TT, (CD, M) >0 < Apepy (1+M) +(1- A)| py(

2APepy (1+M)-28(1-2) p,,

—k-2(1+m)+B(1-2)20 pepy 2

ﬂ(l /l)p +k +/1(

24(1+m)

I, (M) —T1, (M) 2 0 < APpey (1+ @) = APepp (1+ @) + k20 = A(1+a) = 24Pgp, (1+ @) +k 20 < pepy, <

Hence we obtain the following phase diagram:

Differences in fitness payoffs:

1, (CD,m) - 11, (m
(11,(cO,m)

)= 2Poon (1+M) + (L= 2)[ Py (
11, (m))" =—ad - A(L-2)p, <O

_ﬂ)]_ﬂpbcm (1+a) =i(I’T’\—(Z) Pocn _'B(l_i) Pr

m)-pU-A) 1 K- p-2)+2p(-2)o,
2 24(1+m)
ﬂ(l+a)+£71+ K Peow
2(1+a) 2 2i(l+a)
-
k 1, (m)-T1, (m)=0
Al +ea)

As the diagram clearly indicates this equilibrium is stable.

] K = APocs (1+ M) = (1= 2)[ P (=8) ]2 0= A peoy (1+ M) — ﬁ(l—i)pm—i—l(l—pCDm)(l+rﬁ)+ﬂ(l—ﬂ,)(1—pm)ZOQ

Tl




4.2.3.3.

1, k+(1-2)8
o =1
DCm Pcom Zl: + /1(1+m) :I i
CDm _ k+p 1 _ — m-—a _
- - 2 : 1+m)k-(1+a)k),1- 1 mek
m Poc : 1—k+(1 ol ’ max{(1+m+ﬁ) ﬂ(1+a)(( Fmk- (b a)k) (rﬁ—a+ﬁ)(1+m)+(l+a)ﬁ< o )}
T2 A(1+m)
P =0
k-B(1-2)+28(1-2
Hm(DC,m)—Hm(CD,m)ZO@ pCszl_F ﬁ( )+ ﬂ7( )pm
as above: -2 24(1+m)
_ A(l+a)+k 1 k
m(m) m(m) < Peom 21(1_%0[) 2+ 21(1+0{)
Note that E+ k >1+E+ﬁ(l_’1) since this is equivalent to the second argument in the support condition.
2 2(1+a) 2 22(1+m)

Hence we obtain the following phase diagram:

pCDm
3
1,k 11, (m)-11, (m) =0
—>
2 24(1+m)

As the diagram clearly indicates this equilibrium is stablerlj
[, (CD,m)—I1, (M) = Appey (1+M) = APpey (1+ @) = A(M— ) Py >0

(11, (CD,m) 11, (m))" = -4 <0

m

Differences in fitness payoffs:

M, (CD,m)—T1, (M) = APpes (1+ M) = Appes (1+ @) = A(M=a) Poey >0
f

(l‘lm(CD,m)—l‘Im (m)) =-ai1<0




_(+m)(A(m-a+p)-B)-k(m-a)

DCm Pocn A(2(1+m)(m-a+B)-B(1+a))

CCm _ _ _ -

CDm pccm_ﬂ(2(1+n2)+,ﬂ_l(m_a+ﬁ)_k) 3 K(l—’_m)—E +ﬂ7_(K_k) <A<l

o A(2(1+m)(M-a+B)-B(1+a)) B\~ (1+a) (M-a+p)

K(M-a+p)+(1+m+p)(A(M-a+pB)-B)
pCDm_ _ _
A(2@+m)(M-a+B)-B(1+a))

We obtain the following phase diagram (derivation below):
= Pecrf]
%

pCDm
As the diagram clearly indicates this equilibrium is unstable
pDCm_;[l_ Kf_E_ﬂ ]
A(M—a+p) prk—k 2((+m) _
DCm A 1+m+ﬂ _ — — K_k ’
Bk - K Bk (M-a+p) Bl (1+a)

CCm Peem — ita 1. —— < A<min B
: A(m-a+f) (M-a+p) B+k—k 2f(+m)
o | CDm (M-a+pB) | (m 8" B k-k
@ | m [2 1k-k-p (M-a+p) Bl (1+a)
< 1+ 1+a K <

m pCDr;n 2 i(m—a+ﬂ) 2. K—K<Mm-«a

3. k<l+a
1 4. (l+a)B>(1+m+B)k—(1+a)k




M1, (CC.M) = 2[ (Pecn + Peog )1+ M)+ Poce (~B) |+ (1= 2)[ Py (<) + Pa(~B) ]~k
I1,(DC,m)= Al:pcnm (2+m) +pCCm(1+a] (1-2 [pm(—ﬂ)]—f
I, (CD,m) = A( Pog + Pocn)(1+ M)+ (1= A)[ P (-5)]
Hm(—) /‘L(pcc + Poca )(1+0{)
I, (M) = A( Pecn + Peon )(1+ @) =k
M1 (CC, M) ~T1,(DC,M)> 0 = A[ (Peen + Peog )L+ M) + Pocs (<) |+ (L= 2)[ Py (=B) + P (=8) =K = [ Pepg (1+ M) + Pecs (1+ @) | (1= 2) py (-8) ] +k 20
/’L[( pccm)(rﬁ—a)+ Pocm (7ﬂ):| Z(l*ﬂ)ﬂpm < Pecn 2 (l;(/r‘tﬁ)_ﬂsm++ﬂ/;ﬂ - (m—£+ﬂ) pcDm
) )[pm< ﬂ)erm ] k- l pCCm+pDCm)(1+m) l—/l)l:pm(fﬂ)]ZO@

(1—2;),Bpm +E_ 2(1+m)
A+m+ ) (1+m+p)

Al ((Peom )@+ M) = (1 Peop — pCCm)(1+m+ﬁ)]+( /1)[pm —ﬂ)}—?zOc%[ (Peon )1+ M)+ pccm(l+rﬁ+ﬁ)}2(l—&)ﬂpm+E+(1+m+ﬂ)ﬂ<: Pecn 21+
)

I, (DC, M) T, (CD,m) > 0 A[ Pepy (1+ M) + Pecy (14 @) |+ (1= 2)] Py (=) | =K = 2(Pecn + Pocn ) (1+ M) = (1= 2)[ pa(-B) |2 0=
AMLem) K+ 20-2)pp, ~(1-2)8 _2(1+m)
A1+a) (1+a) ™

AL 2Peop (1+M)+ Pogn (L+ @) |- A(1+ M) =k +2(1= )] py (=B) |+ (1= 2) B2 0 pecy

I, (M) =T, (M) > 0 = A( Pecn + Poce )(1+ @) = A( Pecn + Peon )1+ @) +k 2 0 A(1- Pepy )1+ @) = A( Pocn + Peom )1+ @) + Kk 2 0 poey <1+ ﬁ72pcam
Note: —2(1+m)<—2< 2(1:rm) <?>—— s
(1+a) (1+m+p) (M—a+pB)




Hence we obtain the following phase diagram:

2(1+m) B _2@sm) B

_(1+m+ﬁ)<_(m—a+ﬁ) (1+rﬁ+ﬁ) (m—a+ﬂ)

CDm

T, (m) =TT, (m)

We saw for the previously analyzed equilibrium with strict inequality with respect to the signaling decision among low types that this equilibrium is unstable. The
question here is whether the indeterminacy of the low types in equilibrium could have a stabilizing effect. It turns out that it doesn’t. The reason is that if p_
decreases the new intersection of the iso-profit lines (not an equilibrium) lies in the fourth quadrant relative to the equilibrium point. We will argue for the most
favorite scenario that an adjustment in p_ will not stabilize the equilibrium. Consider therefor a perturbation of the type indicated by the red arrow. For such an

perturbation equilibrium will not be restored in the absence of an adjusting p,,. What kind of adjustment is most favorable with respect to stabilization? The

instability can only be circumvented if the induced shift of the intersection point of iso-profit lines and thereby a shift of regions with the depicted dynamics would
bring the pertubated point into a region with dynamics point at the equilibrium. Most favorable is a strong and fast movement to right at the boundary of the fourth
quadrant (indicated by the green arrow). It is important to note that even this most favorable movement cannot induce the pertubated point to be pushed into a

region to the left of the dotted line (unaltered by changesin p,, ), because than p_ would start to increase again. And if this is assumed to be fast and strong, than

the iso-profit lines will be shifted back towards its equilibrium locations. In other words the only thing that can happen is that the population state pointed at by the
red arrow is find itself in the area between the Hm(DC,m):Hm(CD,m)-iSOHHE and the dotted line. However this will not lead to a reestablishment of equilibrium

but to further movement away. The same argument applies to the second diagramm.




4.3.1.3.

CCm Lot B k - :
CDm Peem / (,+T+ﬁ) i ) note: k<l+m
0 A(2@+m)(m-a+p)-B(1+a)) _ L _
- ) _k(m-a+p)+@+m+p)A(M-a)+(M-a+p)(1-1)B Y>X©2—[(ﬁj£;;)+;[glizgk—kD—(lJ’erJ:lfﬁrO
o A(2(1+m)(M-a+p)-B(1+a)) - _
< (1+a)B>1+m+ )k —(1+a)k A k<l+a

We obtain the following phase diagram (derivation above):

pCCrﬁ

2

7
~,
%,

As the diagram clearly indicates this equilibrium is unstable.




4.4.1.1.

1 k+B(1-2 2. m K 1. l+a)p>(M-a+p)k
CDm Pocm =5 — ( 7) 0<— 1+Oi (l+l+mj— K (rﬁ—a) <A ( )ﬂ ( ﬁ) _
Sem 2 24(1+m) (M-a+p)(1+m)+1+a)p lta) l+a Ly e (B(m-a)+k(m-a+2p))
_ . k<
_ 1 k+p(1-2) 1(,1+m - T (M—a+p)(1+m)+(l+a)p
m pCDm=7+77 <l-= Ki—k <1
2 22(1+m) B 1+a
as below:
_ 2(1-A)p-+k +A(1+m)-p(1-1) 1 k-B1-1)+28(1-2)p-
1, (OD.1) 11y (D)2 0 ABen (14)+ (1= 2) a (5|~ ~ 2 Pic (1= W) ~(1=) o (-] 205 pe 2 AN BCERI AU 2, KPP P,
_ Al+a)+k 1 k
I, (M) -, (M) 2 0<> APpe, (1+ @) = APepy (1+ @) + k 20 < pepy < 271+ a) 72+21(l+a)
Hence we obtain the following phase diagram:
Pcom
L T 1 k+p(1-1)
— i S —
2 24(1+m)
1.k M1, (m) -1, (M) <0 /l_:
2 22(1+a) T -
-~ v\)(:ﬁ“\/\
QN
(\.\\’“"“\ <—¢ ﬂ
P K+ pl-4 )
k - K — =
As the diagram clearly indicates this equilibrium is unstable. Note 1+L_)>£+ K = +h — )> k <:>ﬂ,<l—i k1+—m—k , what is
2 2A(1+m) 2 2i(1+a) (1+m) (1+a) L1+«

equivalent to the upper bound of the support.




4.4.1.2.

1 Kk
m om =5 T - L
EEE P =2 201w a) 1. (1+a)f>(M-a+p)k
- Doy = ——— X B+k-K <i<1_1((1+m)k_kJ _ra)(pm-a)+k (m-a +2p))
n 2 2Hira) (m-avp) B @) K g )+ Gra)p
- p,:l.:,. 1 (1+m)k_E 3. k<l+a
"T2 7 28(1-2)| (1+a)”
Hrﬁ(CD rﬁ)—Z.pCDm(1+m)-%—(l—ﬂ.)l:pm(—ﬂ)]—E
nﬁ(DC’m) :ﬂ’pDCIII (1+m)+(1_ﬂ’)|:pm (_ﬂ):l
IT, (M) = 2Ppey (1+ @)
I, (M) = Apepm (1+ ) -k
1, (G~ (DC.1) 20 2B (140)+ (1) B ()] ~ 1y (2 M)~ ) pu()] 20 iy 2 2220 SELAEMIZIO) 2 KPR B0
1, ()~ T1, (M) 0 < £Ppog (1+ &)~ A oo (1+ &) + k 20 & pron < ﬂz(izl‘i);)h% 2/1(1K+a)
Hence we obtain the following phase diagram: Peon
T l+‘_*ﬁ“*’~}

Note: ? — 24(1+ )

1 k+p(1-2) 1 k 1+? k

2" 2i(1+m) 2 2i(1+a) 2 2iva)

<:>k+ﬁ(1__/1)> K ®ﬂ<1—i(kﬂ—lzj

(1+m) (1+a) L\ 1+a »

, What is equivalent to the upper bound of the support.
As the diagram clearly indicates this equilibrium is unstable.




4.4.1.3.

CDm _1£ k‘ﬂ(MJ
Pcom = 1+ = k
DCm 2 A(1+m) k(M-a)+p(2+a+m) . 1. k <(1+m)
m 1 K- p(1-2) (1+m)(M-a+B)+B(1l+a)
pDCm _E W
as above:

I, (CD, M)~ T, (DC,m) > 0 < APy (1+M)+(1-2)[
2B(1-2) p,+k +A(1+mM)—-B(1-1) _

< Pepm 2

I, (m)—T1, (M) >0 < APpey (1+ @)= APepn (1+ @) +k 20 pepy, <

Hence we obtain the following phase diagram:

pCDrT'I

22(1+m)

/1(1+a)+g_1+ k
2(1+a) 2 2i(l+a)

1, K
2 22(1+a)
1 k-pQ-2)
2 24(1+m)
Note:1+ ’B(l_i)<1+ k
2 22(1+m) 2 2i(l+a)

As the diagram clearly indicates this equilibrium is unstable.




4.4.2.

cbm Paon = 7o
"oA(l+m k _

DDm (1 _) A> k_ 1.k <(1+m)
m 1 Kk (1+ m)

Poon =2 2 v m)
I, (CD, M) = APeoy (1+ M) + (1= 2)[ pn(-B) |-k
1,(DD,m)=0
Hm(m):O
1, (M) = APeon (1+ @)k
I, (CD,M)—I1, (DD, M) 0 & APepm (1+ M) +(1=2)[ Py (-B8) |-k 20 peom = ﬁ((11+—r%1))pm

_ Kk
I, (M) -1, (M) 20 < —APgpy (1+ @) +k 20 <> pepy < ﬁ(lla)

Hence we obtain the following phase diagram:

pCDrﬁ

P
As the diagram clearly indicates this equilibrium is unstable.




4.6.1.1.

0 _1{ B(l+a)-k(Mm-a+p)
- A B(lta)+(l+m)(M-a+ B
cDm ( i ) _ ~ I p(l+a)>K(m-a+p)
DDm 5 1{ Bl+m+k) } k(M-a)+p(2+a+m) <i<l (L+a)(B(m K( 28))
o +a m-a)+k(M-a+
DCm LT B a)+(1+m)(M-a+ 1+m)(M-a+p)+B(1+ 2. k
- = ﬂ( 7) ( ( ﬂ) ( )( a ﬂ) ﬂ( a) 7< (1+m)(rﬁ—a+ﬂ)+,8(l+a)
m 1| k(M-a)-p(2+m+a)
Poom =1+ -
A ﬂ(1+a) (1+m)(m-a+ pB)
11, (CD, M) ~I1, (DD, M) 2 0 & A[ Pepp (L+ M)+ Poom (—/8) ]+ (1= 2)[ P (=/8) ]~ APeom (1+ ) 20 & APepy (M=) + A(L~ Pepm — Pocn ) (~8) +(1-2)[ P (-5) ]2 0 =
_ S o AB=APPocy +(1=2)BPn _AB+(1-A)BPy B "_1 B ___ B

APeon (M—at+ B) =2+ 2fPocy +(1 A[pm (A)]2 0 peon > = = maef) (e §) ™ = A(moarp) (moarp)
I, (CD, M) - [T (DC,m) 2 0 > A[ Pep (1+ M)+ oo (=) ]+ (1= 2)[ P (=8) ]~ K = 2Pocy (1+M) = (1= 2)[ p (-5) ]2 0 =

[ Peom (14 M)+ (1= Peon = Pocy )(<8) |+ (1= 2)[ P (~B) ]~k = 2Pocy (1+ M)~ (1= 2)  py (- ﬁ)]zwﬂpm(hmﬂ)—zpm(1+m—,8) 2= B(1-2) Py —K+p(1-2)py >0

APpcy (1+M—B)+228+28(1-2) pp+k - _2Up+2B(1-2)py+k-p (1+m-p) ml Bk a+m-p)
< Peom 2 + m ben = m + M Pocn
A(L+m+ ) A(1+m+ ) (1+m+B) A(l+m+B) (1+m+p) Hm(CD,rﬁ)
10001 (002041618201 ) 0= ()20 o= e = S 5o | =2 eon (1) (] -2 ()]
ﬂm(m)—ﬂm(rﬁ)20®/‘{pDc,ﬂ(1+a)—/‘{pCDm(l+a)+K20<:pCWSm-#pDCB I, (DD, M) = Apco (1+ @) =k
B B 1, (Dc, m) APpn (1+)+(1- /1)[ NG )]
Note that — s < (L+m-7) < (Lt m). -
(M-a+p) (1+m+p) = (L+a) 11, (M) = Appe, (1+ @)
Hence we obtain the following phase diagram: I, (M) = Apeps (1+a) -k
Pepm

As the diagram clearly indicates this equilibrium

is unstable. If in the course of the dynamics the
dotted line is crossed, low types start to prefer
not to signal since signaling is not often enough
rewarded by CDM -player and too often punished

_(CD.in) =11, (DD.in)

I, (DD,m) =

by DCm -player. The induced decline in the share ~_
of signaling low types will shift all three constraints k ™
downwards. All+a) ]
1) ]
Al+e)

T, (DC.m)

) =M1, (DC,m)

pf)frﬁ




4.6.1.2.

CcDm _pl+a)+(1-m-B+2a)k—(1+a)k See Appendix Fehler! Verweisquelle konnte

pom | P 21+ a)(M-a+p) nicht gefunden werden.
DCm _BA+a)+(1+m+ Bk —(1+a)k
m Peon = St a) (M= + )
m -B+A(M—a+pB)+k -k

Poon A(M=—a+ )

_ (1+a)(-p(m-a)+(a—2p-m)k)+((1+m)(M-a+B)+B(1+a))k
Pn =" 21+ a)(1-2A)(M-a+ f)
P =1- an

Hence we obtain the following phase diagram:

pCDrT]

A(1+a)

pDCm

We will apply here the same logic as in the case for the equilibrium 4.3.1.2. Consider a perturbation that pushes the population state in the lower triangular region
(red arrow). Given that low types will strictly prefer not to signal, which in turn shifts the intersection point of the iso-profit lines into the first quadrant relative to
the equilibrium. As the picture clearly indicates this will not help to stabilize the equilibrium.




4.6.1.3.

CDm Peon ﬁ(j’(lj7+ﬁ)+g_ﬂ) Bl+a)>
DDm Aemm-aspyepira)) ) ra)p(m-ar2p)s(m-a)(m-a+ R _, _ )
DCm Pocs BA-A)(M-a+p)+4 1+a))—(m—a+/})k 2B8(1+a)(M—a+f) =) Kk
- = A((x+m) m_atﬂ +p(1+a)) (1+a)B(M-a+2p)+((1+m)(Mi-a+B)+ B(1+a))k—((1+a)(M-a+B)+ f(l+a))k (o) (m—a+ p)+ p(1+a)) -
m - (M-a)(A(l+m+B)+k - B) 2B(L+a)(m—a+p) - ) K
pom A((l+ m)(m—a+ﬂ)+ﬁ(1+a))

as above
My (CD.M) =T, (DD.M) 20 < Pepn > M_lf(pr;?;il,;)ﬂ)ﬂpm B iﬁ(ﬁf{_ﬂﬁ?m _(mfﬁw) Poca pﬁ:z(mfim)_(maﬂ) Poce

m > o APocy (LM =B)+ 2B +2B(1-2) Py +k - B _2Ap+2(1-A)py+k-f (1+M=p) ~ *°21-p+k  (1+m-p)
M5 (CD,m) ~T1; (DC,m) > 0 < Peoy > A(L+m+p) a A(L+m+p) (1+m+p) Pocy = A1+m+p) (L+m+p) Poca

E—ﬂ(l—i)per(lHﬁ)p P:”E—ﬂ(l—ﬂ)+(l+rﬁ)p
A1l+a) (1+a) > Al+a)  (+a) o

I, (DD, M) -, (DC,m) >0 & Py >

_ k
Hm(m)_nm(m)zO<:’ﬂpncm(l*'a)_ﬂpcnm(l*'a)‘*KZ0<:> pcorﬁgm*' Pocm

Note that - £ (Axm=4) , _(1+m)
(M-a+p) (+m+p) — (1+a)

In comparison to 4.6.1.1. the three lines corresponding to equal profits among the equilibrium strategies shifts such that the equilibrium lies below the dotted line,
which is constant with respect to changes in the share of signaling low types.
Hence we obtain the following phase diagram:

pCDrT]

A(1+a)

Poc
As the diagram clearly indicates this equilibrium is unstagle. If in the course of the dynamics the dotted line is crossed, low types start to prefer to signal since
signaling is often enough rewarded by CDM -player and not too often punished by DCm -player. The induced incline in the share of signaling low types will shift all

three constraints upwards.




CDm k (= — —
S k(m_a+'8)</l<l Bl+a)>(M-—a+ B)k
DDm ﬂ(l+a) (1+a)ﬂ
Dom | _(M-a) Kk
m pom B Al+a)
A _l_(m—a+ﬂ) k
oem B Al+a)
I, (CD, M) ~T1, (DD, M) > 0 < A[ Pepp (1+ M)+ Popyy (=8) |+ (1= 2)[ Py (~8) |~k = APepp (1+ @) +k 20 = A[pmm (M—a)+(1- Pepn — pDDm)(—,B)Jz(l— 2)Bpy =
L(1=2)Bpo+A(1-Pooy) S _(1-2)BP,+2B A S
een = A(M—a+p) A(M—a+p)  (M-a+p) °™®  (M-a+p) (M-a+p) "
11, (CD, M) -1, (DD, m) > 0 < A[ Pepy (1+ M)+ Popy (=8) | +(1- ) Py (-B) |-k 20 A[pmm (1+M)+ (1= Ppepm — pDDm)(—ﬂ)] >k +(1-2)fp, =
JkKe(-A)pp+2p B P k+if B
Peon = A(l+m+B) (1+m+p) Poon = A(l+m+B) (1+m+pB) Poon B B —
B - c I, (CD, M) = A[ Peom (1+ M) + oo (=B) |+ (1= 2)[ pn (-8) |-k
I, (DD, M)~ (DD,m)>0 < APy, (1+a)-k 20 < pCszm - (DD nﬁ)—ﬂ,p (1+a) ‘
. m ' - CcDm -
% T (1) 11, ()20 2 (L) 205 Pese s I, (DD, m) =0
<
Note: — f) P— B Hm(m)zo
(1+m+p) " (M-a+p) I, (M) = Apepm (1+a)—k
Hence we obtain the following phase diagram: -
pCDrT‘I
%,
. . ﬁ
~{'(’/,1/)7} N x
-,
D[’\f\ 1, (m)=11,(m) I
k ™ 11, (DD,m)=11,(DD,m)
21+ a) —\ K
\ pDDm

Since the phase diagram is ambiguous with respect to stability we will study the Eigenvalues of the linearized system.




ATI, (CD,M) = A(1+ M)z AT, (CD, M) =-2(p)e
ATT, (DD, m) = A(1+a)e All,, (DD, m) =0
AT (DD,m) =0 AIl, (DD, m) =0
payoff monotonicity
hence p.y , Tand ppp , = >0 hence p;, , ¥ oD (6 PED = PoDin T=£7>0

fPofP
hence| » ¢ :(>0 j
fa 13 >0

Hence at least one of the Eigenvalues is strictly positive and therefore this equilibrium is unstable.

4.7.1.1

CDm 1 K<(1+a)
_ k l(m—a) . T
m 1=_2= 2.p, <———=, note that 2. is only binding if:
m Peom =1 = (1+ 0{) (1-2)
B A(m-a) i k B
<l A<— == <—
(1-2) (M-a+p) (1+a) (M-a+p)

I, (CD, M) = A pcoq (1+ M)+ (1= 2)[ pa(-8) |-k
Hm(m):o p(‘Dm
11, () = 2Pean (1) & e =
Hence we obtain the following phase diagram: ’ ‘_T ‘_T

1(€0.1) Ty () = . s(0m) (- 4) a(-5)]

(1a(E0.m) -1y (m) = K -2 o]

As the diagram clearly indicates this equilibrium set is stable. p

Any perturbation induces a drift towards the separating equilibrium P = 1 Pn = 0.

&(ﬁfa')

(T-4)7




4.7.1.2.

Pcom = m

_ P I
DDm | Poon A(1+a) k
m (M-asp-a(ra)p | (Tea) T
m Pn =

(1-2)1+a)B
5 =(l+a)ﬂ—(rﬁ—a+ﬂ)£
" (1-2)1+a)B

(M-a+p) k L (I+a)B>(M-a+p)k

Yij (1+a) 2.k<(1+a)

B =(1-2)Bp,
pCDrﬁ Zﬁi
(M—a+p)
_k
Al+a)
Hence we obtain the following phase diagram:

I, (m) -1, (M)>0 < pepy <

As the diagram clearly indicates this equilibrium is unstable.

piﬁ




