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1 Introduction

Sound decision making requires good information. The success of organizations depends

crucially on the quality of information their decision-makers have and on the alignment of

interests within the organization. Most of the time, organizations do not have automatic

access to information but must actively acquire it prior to decision-making. The search for

information is subject to choices and must be considered as part of the decision-making

process. How and where the information enters the organization is by and large determined

by the organization’s existing structure. Inside the organization the information needs to be

communicated to the decision-maker. Such communication is prone to strategic manipula-

tion; on the way towards the decision-maker, inferences are drawn, details can be dropped,

things can be swept under the rug. The present paper tries to shed light on how organiza-

tions with given communication channels can cope with such problems. We show that an

appropriate acquisition of information can ensure sound decision-making despite strategic

communication, provided that a priori known conflicts are eliminated.

Our way to demonstrate this result builds on the following insights. Conflicts within the

organization depend critically on the information available. As a result of this, feeding better

information into the organization does not necessarily imply better decision-making; it may

instead result in more relevant things being swept under the rug. Due to their ability to with-

hold information, those who can filter information along its way have a significant influence

on the decisions that are made. Rational information acquisition by the organization takes

all these factors into account and eliminates conflicts to the point where this is possible. As

a consequence, based on the information that reaches the decision-maker, all parties would

make the same decision; communication and delegation are outcome equivalent. In other

words, everything is as if the informed party were formally legitimized to make choices.

Our conclusions stem from an analysis of a stylized model of a multidivisional organization

with a common headquarters. For concreteness, we have in mind a car manufacturer with a

European and a US-American division. The firm wishes to build a new model that will be sold
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on both markets. To learn about customers’ tastes, the firm launches a market study. Due

to economies of scale, market research is directed by the US division, production is directed

by the European division. The tastes of Europeans and US-Americans are positively but not

perfectly correlated. No systematic taste differences between the continents are expected;

prior conflicts are absent. But, depending on the results of the study, different designs could

turn out to be optimal for each market and conflicts could arise between the divisions ex

post. Hence, communication is strategic and prone to manipulation.

We show that at most the inferences from the study, the optimal design from the US-

division’s perspective, but not the observed results themselves can be communicated in

equilibrium. What inferences the European receiver infers from the US sender’s inference

depends critically on the nature of information that enters the organization. Headquarters

shapes the communication process with a view to reaching the highest feasible joint surplus

for the two divisions. Its only influence is through the attention devoted to the two mar-

kets in the study. The optimal way to do this is to equalize the residual uncertainty that

remains for each division when information is used optimally from the receiver’s point of

view. Communication is not completely honest, as details are dropped, but unbiased: based

on the optimal information, the sender’s recommendation is an unbiased estimate of the

receiver’s preferred course of action. To achieve this unbiasedness, the market study devotes

relatively more attention to the receiver’s market. The sender needs to be forced to base

his inference more heavily on receiver relevant facts and so sender relevant facts need to be

observed with noise. Since optimal information eliminates biases, it does not matter where

the decision is taken; it is always the same. Moreover, as the sender transmits the maximal

amount of information he is willing to provide, the mechanism reaches the highest payoff for

the organization among all direct communication protocols where the sender gets to see the

information first. Hence, decision-making is arguably sound, as claimed.

Several lines of thought in our theory appear already, without a formal model, in March

and Simon (1958). In their description of problem-solving, the authors note that: “The

design of the search process is itself often an object of rational decision.” (p.140). In their

discussion of communication processes inside an organization, the authors coin the term

uncertainty absorption and describe its consequences as follows:

“Uncertainty absorption takes place when inferences are drawn from a body
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of evidence and the inferences, instead of the evidence itself, are then communi-

cated. [. . . ] Both the amount and the locus of uncertainty absorption affect the

influence structure of the organization. Because of this, uncertainty absorption

is frequently used, consciously or unconsciously, as a technique for acquiring and

exercising power. [. . . ] Whatever may be the position in the organization hold-

ing the formal authority to legitimize the decision, to a considerable extent the

effective discretion is exercised at the points of uncertainty absorption.”

(March and Simon (1958), pp 165–167, emphasis in original)

In our model, uncertainty absorption corresponds to the sender drawing a unidimen-

sional inference - a conditional expectation - from multiple signals. And indeed, although

the receiver is formally legitimized to make the decision, the effective discretion is in fact ex-

ercised by the sender. This goes so far that communication and delegation become outcome

equivalent. Given optimal information, allocating formal authority to the informed sender

or bringing the information to the receiver are two ways to reach exactly the same outcome.

Our opening lines are inspired by the picture of organizations drawn by Cyert and March

(1963), in particular their insightful discussion of communication and information acqui-

sition (chapter 4). The ideas that information needs to be acquired, that the search for

information is endogenous, and that the communication system influences the information

that is acquired, all appear in their work. Our contribution is to offer a formal model that

puts these elements together and hopefully advances our understanding of them. Our main

result is that decisions can be steered indirectly by choosing what issues to look into and

how deeply to probe into them. While it may be surprising how well this works in principle,

it seems obvious that it does work in practice. Indeed, Cyert et al. (1958) offer case study

evidence consistent with our theory. The authors followed a medium-large manufacturing

concern in the 1950s in the process of installing an electronic data-processing system. It

was quickly decided that an outside consulting firm was needed. An offer was obtained

from a consulting firm named Alpha in the study. There was an important person in the

manufacturing concern, named the controller. After Alpha had made its offer, the controller

decided that a competing offer should be requested from another firm; he selected a firm

Beta out of a list of candidates that had been prepared beforehand. Beta delivered its offer.

A memorandum was prepared at the request of the controller that listed the criteria that
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should be looked at to compare the offers and reach a decision. The final staff memorandum

on the decision clearly recommended to hire Beta, a recommendation that the controller

accepted. The controller is cited with the words: “I asked the boys to set down the pros and

cons. The decision was Beta. It was entirely their decision.”(Cyert et al. (1958), p.332)

Of course, we will never know why the boys favored Beta over Alpha; it could be that

they wanted to please the controller or that Beta made the better offer. However, there is

no account of explicit manipulation in the study. The point is that the controller can steer

the decision indirectly to the point that it doesn’t really matter who takes the decision. Our

paper shows that this is precisely how a benevolent controller should act.

We are not the first to take up Simon’s concept of authority. Aghion and Tirole (1997)

distinguish formal from real authority. The allocation of formal authority has important ef-

fects on initiative and participation when there are private costs of information acquisition.

In contrast, we abstract from such costs and information is acquired by the organization

itself. On top of this, our concept of real authority is different, allowing the receiver to

amend proposals as in Crawford and Sobel (1982), the seminal paper on strategic informa-

tion transmission between a sender and a receiver. Dessein (2002) studies the allocation of

formal authority in the Crawford-Sobel model and shows that delegating decision rights to

the informed sender is always better than communicating whenever meaningful communi-

cation is possible at all. The essential differences to the present paper are the nature of

biases and information. In the Crawford-Sobel model, the sender wishes to induce an action

that exceeds the ideal action of the receiver in each state of the world by some constant.

Moreover, the sender’s information is exogenously given. In our model, the information is

endogenously determined by the organization and influences the magnitude and direction of

biases, which both depend on the realized state of the world. If the organization can adapt

to the situation along the informational margin, then delegation and communication become

perfect substitutes.

Alonso et al. (2008) study the allocation of formal authority in an organization where

two divisions interact with a headquarters. Both divisions have some information and need

to make choices, preferably in a coordinated way. The organization can choose between

vertical communication where all information flows upwards to a headquarters or horizontal

communication where one division communicates with the other and the latter is in charge
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of decision making for both divisions. Depending on the relative importance of coordi-

nating actions and of adapting choices to local conditions either one or the other form of

communication is optimal.1 We study the same organization, however, in a quite different

situation where the form of the organization is exogenously given and information instead is

endogenous. Allowing the firm to choose the information that enters the organization makes

different allocations of formal authority perfect substitutes in our model.

Communication works so well in our model, because the organization acquires information

that eliminates conflicts to the point where this is possible. Although communication is not

completely honest about the observed evidence, it is honest about the inference drawn from

the evidence. Following the sender’s advice one-for-one is optimal for the receiver, because

remaining conflicts are orthogonal to the sender’s recommendation. Battaglini (2002) studies

a multi-sender multidimensional cheap talk problem and uses an orthogonal construction to

elicit perfect information from the senders. Although we rely on orthogonality as Battaglini

does, we cannot apply his construction because there is only one sender in our model and

a unidimensional choice needs to be made. Instead, we need to adjust the information that

the sender obtains to ensure orthogonality.2 Preferences over information are not studied in

Battaglini (2002).3

Controlling the access to information in a communication game is first studied in Ivanov

(2010), showing that communicating with an expert who has partial information is better

for the receiver than talking to a an expert who is perfectly informed whenever meaningful

communication is possible. Moreover, communication with controlled information can even

1An important difference between Dessein (2002) and Alonso et al. (2008) and the current paper are that

biases are state dependent in the latter. Such biases have also been analyzed, e.g., by Stein (1989), Ottaviani

and Sørensen (2006a), Ottaviani and Sørensen (2006b), Kawamura (2015), and in the most general model

by Gordon (2010).
2In a model with a privately known bias, Li and Madarász (2008) remark that communication works

well if the bias is independent of the state and symmetrically distributed around zero. However, these

authors study mandatory disclosure of given biases, whereas biases arise from information in our model. For

further analyses of privately known unidirectional biases, see Morgan and Stocken (2003) and Dimitrakas

and Sarafidis (2005).
3For other approaches to multidimensional cheap talk, see Meyer et al. (2013), Chakraborty and Harbaugh

(2007), Chakraborty and Harbaugh (2010), and Levy and Razin (2007). These papers are not concerned

with the impact of the quality of multidimensional information on communication.
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outperform optimal delegation to a perfectly informed expert from the receiver’s point of

view. The common ground with the present paper is the comparison of institutions, one of

which involves controlling the quality of information, broadly speaking.4 However, there are

substantial differences, the most important one is that Ivanov (2010) analyzes senders who

are systematically biased in one direction. Moreover, we study noisy information structures

within a class that induces smooth posteriors whereas Ivanov (2010) investigates partitional

information structures. Our main result is the outcome equivalence of optimal delegation

and communication, which does not arise in Ivanov’s model.5

The optimal information structure is noisy in our model, in order to make the sender

willing to share his information and the receiver willing to use it; so, noise helps to facilitate

communication as in Blume et al. (2007) or Goltsman et al. (2009). However, in Blume

et al. (2007), the sender has perfect information and noise is added to the sender’s mes-

sage, while our sender is endowed with noisy information but communicates without further

noise. Goltsman et al. (2009) compare the outcomes of different decision protocols and show,

among other results, that the noise-mechanism of Blume et al. (2007) is an optimal mediation

mechanism. Moscarini (2007) assumes Gaussian noisy information and noiseless communi-

cation to study central bank competence. Communication equilibria are partitional in his

analysis and information is exogenously given in his approach; our comparative statics pre-

dictions are similar. Gordon and Nöldeke (2013) combine Gaussian noise in information and

communication. Similar to our paper, the communication equilibria are in linear strategies.

However, Gordon and Nöldeke (2013) restrict attention to the class of equilibria in linear

strategies a priori and use the resulting equilibrium strategies to explain figures of speech,

such as exaggeration, understatement, and irony. The existence of these equilibria depends

on the noise that is added exogenously to the sender’s message. In contrast, communication

is noiseless in our model and we are interested in an unrestricted optimum of our game.

4Argenziano et al. (2013) compare delegation and communication when the sender has a one-sided bias

and acquires costly information.
5A further difference is that Ivanov (2010) studies information structures that are optimal for the receiver

whereas we study optimality from the perspective of joint surplus. For an analysis of sender optimal informa-

tion structures, see, e.g., Szalay (2005) and Eső and Szalay (2015). Kamenica and Gentzkow (2011) analyze

sender optimal persuasion rules; the difference to the present problem is the commitment to information

that reaches the decision-maker.
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Preferences over information in markets have been studied extensively. Vives (1999)

surveys the literature on product market competition with information frictions, Vives (2008)

the literature on financial markets. A more recent overview is given in Pavan and Vives

(2015). Angeletos and Pavan (2007) investigate the social value of information in large

markets with strategic complementarity or substitutability, externalities, and heterogeneous

information. This literature relies on Gaussian noise and, depending on the context, either

CARA preferences or quadratic payoffs, to find equilibria in linear strategies. Nöldeke and

Tröger (2006) prove the existence of linear strategy equilibria in a market microstructure

model for the wider class of elliptical distributions, which contains the Normal distribution

as a special case. We allow at the same time for general payoff functions and elliptical

distributions. We are not aware of any other contribution that does so too. Note also that in

the literature on strategic market interactions, agents observe information and choose actions

directly. Cheap talk communication of unverifiable information followed by a common action

that affects the payoffs of a sender and a receiver is not analyzed in this literature.

The remainder of the paper is organized as follows. In section two, we present the model.

In section three, we analyze communication and derive an upper bound on the amount of

information that can be transmitted in any equilibrium. In section four, we analyze optimal

information acquisition from the organization’s perspective. A final section concludes and

discusses extensions. Lengthy proofs are gathered in the appendix.

2 Model

We consider a firm, comprised of two divisions with a common headquarters. A decision

x ∈ R needs to be taken that affects the payoffs of all three parties. Division one has

preferences described by

uS (x, η) = −` (x− η) ;

division two has preferences

uR (x, ω) = −` (x− ω) .

The loss function ` (q) is symmetric around its minimizer, q = 0, twice differentiable, and

at least as convex as the quadratic function. More precisely, we assume that the Arrow-
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Pratt measure of relative curvature of the loss function satisfies q`′′(q)
`′(q)

≥ 1 for all q 6= 0.6 In

addition, ` rises sufficiently slowly to make expected utility well-defined. η and ω are random

variables - the tastes of consumers that are served by the two divisions - whose realizations

describe the ideal policies from each division’s point of view. These ideal policies are given

by xR(ω) = ω and xS(η) = η, respectively. The realizations of ω and η are unknown at the

outset. Headquarters is interested in joint surplus7

uH (x, η, ω) = −` (x− η)− ` (x− ω) .

The decision process in the firm is organized as follows. Division one, henceforth the

sender, gets to observe noisy signals

sω = ω + εω and sη = η + εη,

where εω and εη are uncorrelated noise terms. Division two, henceforth the receiver, is in

charge of making the decision. Headquarters shapes the communication between the divisions

by controlling the research that division one conducts. Formally, headquarters chooses the

amount of noise in the sender’s signals, that is the variances σ2
εω and σ2

εη of the noise terms

εω and εη. This choice is publicly observable. However, the realizations of signals sω and

sη are privately observed by the sender. The sender communicates with the receiver, who

finally chooses x. There is no cost of sending messages and the receiver is unable to commit

to the action x as a function of the information he receives, so communication is modeled as

cheap talk in the sense of Crawford and Sobel (1982).

To make the updating about the underlying states tractable we place restrictions on

the joint distribution of ω, η, εω and εη. We focus on an environment where conditional

means are linear functions of the observed information. Moreover, linear transformations

of the underlying random variables follow the same class of distribution as the underlying

random variables do. As is well known, these assumptions are satisfied, e.g., if ω, η, εω and

εη are jointly normally distributed. However, these assumptions are generally fulfilled by all

members of the class of elliptical distributions, which includes the Normal distribution as a

6Examples include ` (q) = q2n for n ∈ N.
7As shown by Alonso et al. (2008), profit sharing between headquarters and the divisions gives rise to

such headquarters preferences.
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special case. In what follows, we term the joint distribution of ω, η, sω and sη the information

structure. An information structure is feasible if it belongs to the elliptical class, has a density

function, finite first and second moments, and if the marginal joint distribution of ω and η

equals the prior distribution. Given these assumptions, the joint density of a random vector

Y of dimension n can be written as fY (y) = cn |Σ|−
1
2 φ
(
(y − µ)′Σ−1 (y − µ)

)
, where µ is

the mean vector, Σ is up to a constant factor equal to the covariance matrix, φ (·) is a given

function, and cn a scale factor, which we simply denote c = c1 in the one-dimensional case.8

We assume that all the differences in preferences are unsystematic and random. Formally,

we assume that E [ω] = E [η] . This amounts to saying that systematic differences in prefer-

ences - where one division wishes to push the decision in a particular direction relative to the

other division’s preferred choice - have been eliminated prior to the current interaction. This

does not imply that preferences are aligned. It only implies that based on prior information

no differences of opinions are expected. In addition, we impose the innocuous normalization

that E [ω] = E [η] = E [εω] = E [εη] = 0. The covariance matrix is described by σ2
ω ≡ V ar (ω),

σ2
η ≡ V ar (η) , σ2

εi
≡ V ar (εi) for i = ω, η, and σωη ≡ Cov (ω, η) . The covariances involving

the noise terms are zero by assumption. The coefficient of correlation between ω and η is

defined as

ρ ≡ σωη
σωση

.

To complete the description of the model, consider the ideal policies from each division’s

perspective if each of them had access to the information sω and sη.

Lemma 1 As functions of the underlying signal realizations, sω, sη, the ideal choice func-

tions of the receiver and the sender are

xR (sω, sη) ≡ arg max
x

E
[
uR (x, ω)

∣∣ sω, sη] = E [ω| sω, sη] = αRsω + βRsη

and

xS (sω, sη) ≡ arg max
x

E
[
uS (x, η)

∣∣ sω, sη] = E [η| sω, sη] = αSsω + βSsη,

8The Normal distribution corresponds to the case φ (u) = e−
u
2 and Σ identically equal to the covariance

matrix. The factor cn depends on n to make f a density. Other members of the elliptical class include, e.g.,

the exponential power distribution (and as a special case the Laplace) or the logistic distribution. For more

details on elliptical distributions see, e.g., Fang et al. (1990).
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where αi, βi for i = R, S are weights, independent of sω, sη.

Unless σ2
ω = σ2

η = σωη, x
R (sω, sη) 6= xS (sω, sη) for all sω, sη 6= 0.

The optimal choice functions correspond to the conditional expectations and conditional

expectations are linear in our statistical framework. The intuition is familiar from the Nor-

mal distribution-quadratic loss case; we state the result as a lemma, because we prove the

generalization both with respect to a wider class of distributions and loss functions.

The divisions disagree on the optimal course of action for almost all signal realizations

unless the tastes of their customers are perfectly correlated with identical marginal distribu-

tions, in which case their customers are essentially identical. The coefficient of correlation

captures the alignment of interests in an intuitive way. It is easy to show that no meaning-

ful communication is possible if ρ ≤ 0.9 To focus on the interesting case, we assume that

0 < ρ < 1.

It is worth pausing for a minute to discuss the crucial assumptions and differences to other

approaches in the literature. The main difference is the way we capture conflicts of interests.

We assume identical loss functions for sender and receiver and capture all the differences

between them by the random variables ω and η and their distributions. The first moments

describe ideal policies, the second moments shape expected utilities. Assuming equal prior

expectations amounts to saying that differences of opinion prior to the current interaction

have been eliminated. The remaining conflicts are random and unsystematic, in the sense

that their expected value is zero. We make these assumptions, because it is by now well

known that communication does not work well with systematic differences of opinions. In

contrast, it is not yet known how well communication can work with unsystematic differences

of opinions.

We analyze the game proceeding backwards, starting with the inference that the sender

draws from observing facts and the ensuing communication continuation games. We then

reduce the model to one where communication is about inferences instead of facts and discuss

the receiver’s inferences drawn from the sender’s inference. Building on this analysis, we

discuss the optimal organizational response to filtering information this way, the optimal

amount and kind of information that the organization acquires.

9A formal proof of this statement is available from the authors upon request.
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3 The sender as a strategic information channel

Suppose that headquarters has chosen a research policy - formally, an information structure

- and the sender gets to observe the results of the research. What part of the observed

information is the sender willing to share with the receiver at all?

3.1 Limits to communication

We focus on Bayesian equilibria in the communication game. After observing signal real-

izations sω, sη, the sender sends a message m ∈ M to the receiver. The message space is

sufficiently rich; we do not impose any restrictions on M. It is enough to consider pure

message strategies for the sender.10 A pure sender strategy maps the sender’s information

into messages M : R2 → M, (sω, sη) 7→ m. A pure receiver strategy maps messages into

actions, X : M → R, m 7→ x. The receiver updates his belief about the sender’s type after

observing the sender’s message and acts optimally against this belief. The following lemma

derives an upper bound on the information that can be communicated in any equilibrium of

the communication game. In particular, the sender is willing to share his inference but not

the underlying facts.

Lemma 2 In any equilibrium, all sender types sω, sη such that αSsω + βSsη = constant

induce the same action.

Define the statistic

θ ≡ αSsω + βSsη.

All sender types with signal realizations sω, sη adding up to θ share the same ideal policy,

θ. Moreover, with symmetric loss functions, the sender’s preferences over distinct actions

depend only on the distance of these actions to θ. Hence, the set of types who share the

same θ induce at most two distinct actions, and these actions need to be equidistant from θ

in any equilibrium. However, any attempt to separate sender types whose signals aggregate

to θ into subsets that induce distinct actions gives some other types, whose signals aggregate

10More specifically, it is standard in the literature to look at the most informative equilibria and these

equilibria involve pure strategies in our game. Therefore, we abstain from introducing the notational clutter

to deal formally with mixed strategies.
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to some value close to θ, a strict incentive to lie. Hence, no such equilibrium can exist.

Obviously, the lemma also implies that it is impossible to elicit the information sω, sη from

the sender, unless the ideal policies of sender and receiver coincide altogether.

Corollary 1 Truthful communication of the underlying information, sω, sη, is an equilibrium

if and only if σ2
ω = σ2

η = σωη.

Since induced actions depend only on the realization of θ, the sender is willing to reveal at

most the inference he draws from the facts, that is θ, but never the underlying facts. Hence,

we can characterize any equilibrium of the communication game in terms of communication

about the sender’s inference, θ, only.11

3.2 Inference from inference and conflicts

¿From the ex ante perspective, before the signals are realized, the sender’s inference is

random itself. Any given choice of information structure gives rise to a joint distribution

of ω, η, and θ. Given that ω, η, εω and εη follow a joint elliptical (Normal) distribution, the

random variables ω, η, and θ follow a joint elliptical (Normal) distribution as well.12 One

can show that the moments involving θ are given by E [θ] = 0 as well as

V ar (θ) = σ2
η

σ2
εω

σ2
ω

+
σ2
εη

σ2
η
ρ2 + 1− ρ2(

1 +
σ2
εω

σ2
ω

)(
1 +

σ2
εη

σ2
η

)
− ρ2

, (1)

Cov (ω, θ) = σωη

σ2
εη

σ2
η

+
σ2
εω

σ2
ω

+ 1− ρ2(
1 +

σ2
εω

σ2
ω

)(
1 +

σ2
εη

σ2
η

)
− ρ2

, (2)

and

Cov (η, θ) = V ar (θ) . (3)

Equations (1) and (2) depend crucially on the normalized noise variances,
σ2
εω

σ2
ω

and
σ2
εη

σ2
η
. By

construction of θ, only covariance matrices with Cov (η, θ) = V ar (θ) are possible. For all

11Note the close connection between this result and the process of uncertainty absorption described in

March and Simon (1958).
12The proof of this statement follows from Fang et al. (1990) Theorem 2.16.
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that matters in terms of induced choices and payoffs, we can analyze our model in terms of

this reduced form joint distribution of inference and underlying states.

What inference would the receiver draw if the sender communicated his inference? Since

the joint distribution of ω, η, and θ is firmly within the class that has linear conditional

means, the receiver’s ideal policy conditional on observing θ is

E [ω| θ] =
Cov (ω, θ)

V ar (θ)
· θ. (4)

The conditional expectation corresponds to the linear regression of the unknown state on the

observed information. To understand the slope of the regression, note that the regression of

η on θ is simply

E [η| θ] =
Cov (η, θ)

V ar (θ)
· θ = θ. (5)

Clearly, given that θ is the conditional expectation of η given the underlying facts, the sender

does not revise his conditional expectation if shown θ again. In contrast, the receiver’s

inference corrects for the relative informational content of the sender’s inference, θ, with

respect to the underlying states ω and η: by equation (3), the slope Cov(ω,θ)
V ar(θ)

corresponds to
Cov(ω,θ)
Cov(η,θ)

. If the sender gets to observe information that is relatively more informative about

ω than about η, then Cov (ω, θ) > Cov (η, θ) and the receiver’s ideal policy attaches a higher

weight to the information θ than the sender’s ideal policy. The situation is reversed if the

sender gets to see information that is relatively more useful to the sender. The regressions

have identical slopes if the sender’s inference is equally informative about ω and η.

xR(θ) > θ

xR(θ) = θ

xS(θ) = θ

xR(θ) < θ

xR(θ)

xS(θ)

θ

Figure 1: Conflicts with respect to θ between sender and receiver.
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The difference θ−E [ω| θ] describes the bias of the sender relative to the receiver. If the

sender observes information that is relatively more informative about η, then the sender has

incentives to exaggerate. If the sender’s information is relatively more informative about ω,

then the sender has incentives to downplay. Finally, there is no bias when communicating

about the sender’s inference when the sender’s inference θ is equally informative about ω

and η. For convenience, the three cases are depicted in Figure 1.

4 Optimal information structures

We now address headquarters’ problem of choosing an optimal information structure. What

information should the sender get to observe about each of the underlying taste parameters, ω

and η? The sender’s information impacts on payoffs through two channels. Firstly, assuming

honest transmission of the sender’s inference, the relative informational content of θ impacts

directly on the sender’s and the receiver’s expected payoff from making a receiver-optimal

decision based on θ. Secondly, the relative informational content determines the sender’s

bias in the communication game and thus impacts on the amount of information that is

transmitted through communication. It is helpful to look at the two margins separately.

Therefore, we begin our analysis with the clearly unrealistic case where the sender’s inference

θ becomes publicly available.13 In a second step, in section 4.2, we look at the case of main

interest, where θ is private information.

To streamline the exposition, we present our analysis first assuming that marginals are

identical. That is, we assume σ2
ω = σ2

η. We discuss the role of this assumption and abandon

it in section 4.4 below.

4.1 Public inferences

4.1.1 Headquarters problem

If the receiver observes the sender’s inference θ, then he follows the policy xR (θ) = E [ω| θ] =
Cov(ω,θ)
V ar(θ)

·θ, resulting in a loss of `
(
Cov(ω,θ)
V ar(θ)

θ − ω
)

for the receiver and a loss of `
(
Cov(ω,θ)
V ar(θ)

θ − η
)

13We can think of this as some form of mediated information transmission; the sender’s information sω, sη

is aggregated to αSsω + βSsη = θ and then mechanically transmitted to the receiver.
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for the sender. Both losses depend only on sums of the underlying random variables, ζ ≡
Cov(ω,θ)
V ar(θ)

θ−ω and τ ≡ Cov(ω,θ)
V ar(θ)

θ−η, which are again elliptical (Normal). Let σ2
ζ and σ2

τ denote

the variances of ζ and τ and let z ≡ ζ
σζ

and t ≡ τ
στ

denote the standardized arguments of

the loss functions. As demonstrated formally in the appendix, we can write headquarters’

problem as

max
Cov(ω,θ),V ar(θ)

−
∫
` (σζz) cφ (z) dz −

∫
` (στ t) cφ (t) dt

s.t. Cov (ω, θ) , V ar (θ) feasible.

where z and t follow a spherical (Standard Normal) distribution with density cφ (·) .
Each division’s expected utility depends negatively on a residual variance that measures

the residual uncertainty after using θ optimally from the receiver’s perspective. Naturally,

the residual uncertainty for the receiver is

σ2
ζ = σ2

ω −
Cov (ω, θ)2

V ar (θ)
= V ar (ω| θ) , (6)

where the second equality holds because θ is used optimally from the receiver’s perspective.14

In contrast, θ is in general not used optimally from the sender’s perspective. The residual

uncertainty that the sender faces when θ is used according to the policy xR (θ) is

σ2
τ = σ2

η −

(
2Cov (ω, θ)− Cov (ω, θ)2

V ar (θ)

)
, (7)

which differs from V ar (η| θ) = σ2
η − V ar (θ) unless (5) and (4) are identically equal to each

other.

Consider now the feasible set of information structures. Not any joint distribution of

ω, η, θ is a feasible reduced form information structure, because θ must be derived from

Bayesian updating by the sender about η, conditioning on the information that the sender

gets to see. Thus, a joint distribution of ω, η and θ is feasible only if there are noise variances

σ2
εω and σ2

εη that, together with the prior distribution, induce the joint distribution. The

following lemma makes the restrictions from Bayesian updating explicit.

14For the derivation of the conditional second moments see Lemma A.1 in the appendix.
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Lemma 3 A joint distribution of ω, η, θ can be generated through Bayesian updating if and

only if Cov (ω, θ) ∈ [0, σωη] and for any given Cov (ω, θ) = C, V ar (θ) ∈
[
ση
σω
ρC, ση

σω
1
ρ
C
]
.

σωη

σ2
ηρ2σ2

η

Cov(ω, θ)

V ar(θ)

Figure 2: The feasible set of information structures, Γ.

V ar (θ) and Cov (ω, θ) are jointly constrained to lie in the triangle described in Figure 2.

We call the feasible set Γ. To understand the shape of Γ, note that any pair of normalized

noise variances,
σ2
εη

σ2
η
,
σ2
εω

σ2
ω
≥ 0, results in a Cov (ω, θ) ≤ σωη. The covariance is maximal if at

least one of the signals is perfectly precise. In the limiting case of infinitely noisy signals,

the sender does not revise his prior at all and so both V ar (θ) and Cov (ω, θ) are zero. If

the sender observes a signal sη without noise, σ2
εη = 0, then his posterior mean becomes

identically equal to η and the resulting variance is V ar (θ) = σ2
η. If the sender observes sω

without noise, σ2
εω = 0, and the signal sη is infinitely noisy, σ2

εη →∞, then V ar (θ) = ρ2σ2
η,

because the sender’s posterior mean rises less than one for one with the sender’s observation.

By continuity, any pair of covariance and variance in the interior of the triangle can be

generated by some pair of noise variances. Finally, Γ is always nonempty, because the lowest

feasible V ar (θ) for any given Cov (ω, θ) is below the highest feasible V ar (θ) by the Cauchy-

Schwarz inequality, σ2
ωη ≤ σ2

ησ
2
ω.

15

15We include edges and vertices in the feasible set that result from taking limits. The limiting posterior

distributions and moments when one noise variance goes out of bounds converge to the distribution when

only one signal is received; the limiting case when both noise variances go out of bounds converges to the

distribution when no signal at all is received, the prior.
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4.1.2 Equalizing residual uncertainty

We can now restate headquarters’ problem as

max
Cov(ω,θ),V ar(θ)

−
∫
` (σζz) cφ (z) dz −

∫
` (στ t) cφ (t) dt

s.t. Cov (ω, θ) , V ar (θ) ∈ Γ,

where σζ and στ are defined in (6) and (7). Headquarters maximizes a continuous objective

function on a compact domain, so the problem is well defined and a solution exists. The

solution takes the following form:

Theorem 1 Suppose that the sender and the receiver are equally uncertain ex ante, σ2
ω =

σ2
η. If the loss function satisfies q`′′(q)

`′(q)
> 1 for all q 6= 0, then headquarters’ problem of

choosing an optimal information structure has a unique solution, which is given by V ar (θ)∗ =

Cov (ω, θ)∗ = σωη. If the loss function satisfies q`′′(q)
`′(q)

= 1 for all q 6= 0 (corresponding to the

quadratic case), then any information structure satisfying Cov (ω, θ) = σωη is optimal.

We solve the problem by maximizing sequentially with respect to V ar (θ) and Cov (ω, θ).

For a given level of Cov (ω, θ), headquarters’ problem resembles a risk sharing problem.

Both divisions dislike higher residual uncertainty and an increase of V ar (θ) increases (6),

the residual uncertainty the receiver faces, and decreases (7), the residual uncertainty the

sender faces. For a sufficiently convex loss function, the problem is single-peaked in V ar (θ)

and has a unique maximum at the point where the residual uncertainty for both divisions is

equalized. Equating (6) and (7) and solving for V ar (θ), we obtain

V ar (θ)∗ = Cov (ω, θ) .

The residual uncertainty for both divisions is then equal to the residual uncertainty that the

receiver faces, V ar (ω| θ) = σ2
ω−Cov (ω, θ). Since this is a decreasing function of Cov (ω, θ),

it is optimal to choose Cov (ω, θ) as high as possible,

Cov (ω, θ)∗ = σωη.

The unique optimum corresponds to the intersection of the dashed and the solid line

in Figure 3. The role of the curvature condition is to guarantee uniqueness of the optimal
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V ar (θ). For the quadratic loss function, headquarters’ payoff becomes linear in the residual

variances, which implies that the receiver’s loss from increasing V ar (θ) just offsets the

sender’s gain and thus the sum of their payoffs becomes independent of V ar (θ). Hence, any

information structure with the highest feasible Cov (ω, θ), depicted as the solid line in the

figure, is optimal.

σωη

σ2
ηρ2σ2

η

Cov(ω, θ) = V ar(θ)Cov(ω, θ)

V ar(θ)

Figure 3: The optimal information structure maximizes Cov(ω, θ). For sufficiently convex

loss functions it is unique and satisfies Cov(ω, θ) = V ar(θ).

The optimum can be understood by decomposing information into its common and id-

iosyncratic content. Since Cov (ω, η| θ) = σωη −Cov (ω, θ) , Cov (ω, θ) measures the amount

of common information. Naturally, the optimal information structure contains all the com-

mon information there is,

Cov (ω, η| θ)∗ = σωη − Cov (ω, θ)∗ = 0,

implying that conditional on θ, the taste parameters become uncorrelated. V ar (θ) measures

the amount of idiosyncratic information. Since there is only one signal, θ, idiosyncratic infor-

mation necessarily involves a trade-off: V ar (ω| θ) is increasing in V ar (θ) , while V ar (η| θ)
is decreasing in V ar (θ) .

In terms of the underlying signals, headquarters allows the sender to observe ω without

noise, σ2
εω = 0, but adds noise σ2

εη = 1−ρ2
ρ
σ2
η to the signal about η. If the signal sη were

perfectly precise, then the sender would not pay any attention to the signal sω. While θ

would still contain the maximum amount of common information, θ would not be informative

enough about ω and so the receiver would face too much residual uncertainty. Hence, noise

is needed to keep the sender from using the signal that is of primary importance to him

exclusively.
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4.2 Private inferences

We now consider the case of main interest where the sender has private information about

θ and thus is free to make up any statement he likes. As is standard in the literature, we

assume that the sender and the receiver are able to coordinate on the ex ante Pareto opti-

mal equilibrium in the communication game. The optimal information structure eliminates

conflicts in a certain, well defined sense:

Theorem 2 Let the sender and the receiver face equal prior uncertainty, σ2
ω = σ2

η. Then, the

unique optimal information structure chosen by headquarters satisfies V ar (θ)∗ = Cov (ω, θ)∗ =

σωη. The Pareto best equilibrium of the ensuing continuation game involves smooth strategies;

the sender truthfully announces θ, m∗ (θ) = θ ∀θ, and the receiver takes the sender’s advice

at face value, x∗(m) = m ∀m. All parties’ payoffs are the same as if the sender were given

the right to choose the action x directly.

The theorem is a straightforward implication of our preceding results in conjunction with

a verification that the described strategies constitute an equilibrium of the communication

game. Since headquarters cannot improve upon its payoff compared to the case where θ

is public information, the situation corresponds to an optimum if this payoff is reached.

Suppose the receiver believes that the sender plays the message strategy m (θ) = θ for all

θ. Then, his best reply is the action strategy x∗ (m) = Cov(ω,θ)∗

V ar(θ)∗
· m = m for all m. The

sender, who anticipates this policy, induces his ideal policy by being truthful about θ, so the

construction is indeed an equilibrium. Note that in this equilibrium the strategies of both

players are smooth - in fact, linear - functions.

Since x∗ (m∗ (θ)) = θ for all θ, the sender’s optimal policy is implemented for all θ.

Consequently, whether the sender communicates with the receiver or whether the sender

is given the right to choose the policy, the payoffs of all parties involved are exactly the

same.16 The intuition is that, for equal marginals, an information structure that equalizes

residual uncertainty automatically eliminates any bias in the use of information. Formally,

16Note that the problem of multiple solutions for the quadratic loss case if θ is public information is

eliminated, because truthful communication now requires that Cov(ω,θ)∗

V ar(θ)∗ = 1.
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Cov (ω, θ)∗ = V ar (θ)∗ implies

xR (θ)− xS (θ) =

(
Cov (ω, θ)∗

V ar (θ)∗
− 1

)
· θ = 0 ∀θ.

Note that there remains a conflict between sender and receiver with respect to using the

underlying signals, sω and sη. However, the receiver simply cannot do better than follow

the sender’s advice, because based on observing the sender’s inference θ, a garbled piece

of information, the receiver’s ideal choice coincides with the sender’s ideal choice based

on observing the underlying signals. The sender is willing to share his inference despite

disagreement too. The sender knows that the receiver would ideally like to choose an action

that matches the state ω, not θ. However, under the optimal information structure, the

sender’s recommendation θ and the difference ω − θ become uncorrelated. Put differently,

the optimal information structure orthogonalizes the conflict between the divisions and the

recommendation and hence removes any impediments to communication.

Communication is in fact unsurpassed by any form of delegation, even optimal delegation.

Even if headquarters or the receiver had the right to constrain the sender’s discretion under

delegation, they would not want to make use of this right. The sender’s optimal choice is

necessarily a function of his inference θ only, and the sender uses this inference in the re-

ceiver’s best interest. Hence, constraining the sender’s discretion under delegation decreases

the receiver’s payoff and joint surplus.

4.3 The quality of decision making

Under the optimal information structure information is lost because only inferences are

transmitted. How much is lost by such garbling and how does this depend on the underlying

conflicts?

We can measure the amount of information transmitted in equilibrium by the variance of

induced choices; the higher this variance, the more information is transmitted. Headquarters

throws in just enough noise to ensure that V ar (θ) = σωη. For identical priors, the variance

of the induced choice is thus

V ar (θ) = ρσ2
η.

The higher is ρ, the more variable the induced choice. In the limit as ρ → 1, the sender

truthfully announces η and the variance of choices approaches σ2
η. There are two reasons why
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increasing ρ results in an improvement of information transmission. Recall that the sender

always observes ω without noise. The higher is ρ, the higher the attention the sender pays

to this signal and the more this signal is reflected in the sender’s preferred choice. Moreover,

the sender observes η with an amount of noise equal to σ2
εη = 1−ρ2

ρ
σ2
η, a decreasing function

of ρ. The higher is ρ, the more precise the sender’s signal about the sender-relevant random

variable η. So, senders with better aligned interests are more trustworthy to begin with and

get endowed with more precise information, rendering their advice even more valuable.17

4.4 Extensions: unequal priors

We now drop the assumption of equal prior uncertainty and allow for σ2
ω 6= σ2

η. For quadratic

loss functions, the canonical case studied in the literature, our result generalizes to asym-

metric priors.

Proposition 1 Assume quadratic loss functions and suppose that min
{
σ2
ω, σ

2
η

}
≥ σωη.

Then, headquarters’ optimal choice of information structure is unique and given by V ar (θ)∗ =

Cov (ω, θ)∗ = σωη. All parties receive the same expected payoff, regardless of who has the right

to choose x.

Recall that by Theorem 1 any information structure satisfying Cov (ω, θ) = σωη is optimal

for quadratic losses if θ is public. Hence, to show that headquarters can reach the same

expected payoff under communication of unverifiable information - and under delegation -

it suffices to show that the admissible set of information structures contains the element

V ar (θ) = Cov (ω, θ) = σωη. The condition in the proposition is equivalent to

ση
σω
ρ ≤ 1 ≤ ση

σω

1

ρ
,

which guarantees that the 45◦ line is an element of the feasible set, Γ. We need to rule

out very asymmetric priors where σ2
ω > σωη > σ2

η or σ2
η > σωη > σ2

ω that would render the

17In the limit, the feasible set of information structures converges to the 45◦ line and any piece of infor-

mation is equally informative about ω and η. Hence endowing the sender with perfect information becomes

optimal. At the same time the underlying interests of sender and receiver become perfectly correlated.
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solution V ar (θ)∗ = Cov (ω, θ)∗ = σωη infeasible. By Cauchy-Schwarz, it is impossible that

both prior variances exceed the covariance, so the restriction is quite mild.

Note that nonverifiability makes the solution unique. While the sum of residual variances

is constant for all information structures with the highest feasible Cov (ω, θ) , there is only

one information structure among them that makes the signal θ equally useful for both sender

and receiver and thus ensures that truthful communication about θ is an equilibrium.

5 Conclusions

Two divisions, overarched by a headquarters, need to reach a decision that affects the payoffs

of all parties involved. Division one privately gets to observe information about ideal policies

from both divisions’ perspectives. Division one draws inferences from the information and

communicates them to division two. Division two, who retains the right to make the decision,

draws its own inferences from division one’s inferences. Anticipating the chain of inferences

within the organization, headquarters chooses what information to acquire at the outset.

Choosing what to look into is a powerful tool. When properly done, conflicts within the

organization are diminished, making it less important who has the right to make decisions:

communication and delegation become outcome equivalent.

Almost by definition, an equivalence result raises nearly as many questions as it answers.

In particular, one may wonder what happens if not headquarters but the sender has discretion

over the acquisition of information. Quite clearly, it seems, that the benchmark of no loss

through communication cannot be reached. Much to our surprise, we show in companion

work that this conclusion is unwarranted. For a special case of the current environment, we

are able to show that the sender acquiring orthogonalized information remains an equilibrium

of the game. There are also other equilibria, but the sender cannot gain from making

the information more useful to himself - precisely, because its usefulness would be lost in

communication. Many other interesting questions can be pursued in our environment. We

leave these for future work.
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A Appendix

Lemma A.1 Let Y follow an elliptical distribution, Y ∼ ECn(µ,Σ, φ). Further let

Y = (Y1, Y2) , µ = (µ1, µ2) , Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where the dimensions of Y1, µ1 and Σ11 are m, m, and m×m.

i) The elliptical distribution is symmetric about µ.

ii) Linear combinations of elliptically distributed random variables are again elliptical.

iii) The conditional distribution of (Y1|Y2 = y2) is elliptical, with conditional mean vector

E [Y1|Y2 = y2] = µ1 + (y2 − µ2) Σ−122 Σ21 (A1)

and conditional covariance matrix satisfying

Σ∗ = Σ11 − Σ12Σ
−1
22 Σ21. (A2)

Proof of Lemma A.1. i) by definition, ii) Fang et al. (1990) Theorem 2.16, iii) Fang

et al. (1990) Theorem 2.18.

Proof of Lemma 1. Let u ≡ uR = uS and z = ω, η. Consider the problem

max
x

∞∫
−∞

u (x− z) f (z| sω, sη) dz,

where f (z| sω, sη) is the conditional density of z = ω, η given the signals. Since the utility

depends only on the distance between x and z we have u′ (x− z) > 0 for z < x, u′ (x− z) = 0

for x = z, and u′ (x− z) < 0 for z > x.

Consider the candidate solution x∗ = µz ≡ E [z| sω, sη] . The first-order condition can be

written as
∞∫

−∞

u′ (x∗ − z) f (z| sω, sη) dz =

∞∫
−∞

u′ (µz − z) f (z| sω, sη) dz = 0.

Consider two points z1 = µz −∆ and z2 = µz + ∆ for arbitrary ∆ > 0. By symmetry of

u around its bliss point and symmetry of the distribution around µz, we have

u′ (∆) f (µz −∆| sω, sη) = −u′ (−∆) f (µz + ∆| sω, sη) .

24



Since this holds point-wise for each ∆, it also holds if we integrate over ∆. Thus, the first-

order condition is satisfied at x∗ = µz. By concavity of u in x, only one value of x satisfies

the first-order condition.

Applying equation (A1), the conditional expectations are

E [η|sω, sη] = αSsω + βSsη (A3)

and

E [ω| sω, sη] = αRsω + βRsη, (A4)

where the weights in the sender’s ideal choice are

αS = σ2
εη

ρσωση
(σ2

ω + σ2
εω)(σ2

η + σ2
εη)− (ρσωση)2

and

βS = σ2
η

σ2
εω − σ

2
ωρ

2 + σ2
ω

(σ2
ω + σ2

εω)(σ2
η + σ2

εη)− (ρσωση)2

and the weights in the receiver’s ideal choice are

αR = σ2
ω

σ2
εη + σ2

η − σ2
ηρ

2(
σ2
ω + σ2

εω

) (
σ2
η + σ2

εη

)
− (ρσωση)

2

and

βR = σ2
εω

σησωρ(
σ2
ω + σ2

εω

) (
σ2
η + σ2

εη

)
− (ρσωση)

2
.

First, suppose σ2
εη and σ2

εω are both positive and finite. Equations (A3) and (A4) are

identical for all sω and sη if and only if

σ2
εηρσωση = σ2

ω

(
σ2
εη + σ2

η − σ2
ηρ

2
)

and

σ2
η

(
σ2
εω − σ

2
ωρ

2 + σ2
ω

)
= σησωρσ

2
εω .

This requires that

σ2
η

(
1− ρ2

)
=

(
ρση
σω
− 1

)
σ2
εη
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and

σ2
ω

(
1− ρ2

)
=

(
σωρ

ση
− 1

)
σ2
εω .

A necessary and sufficient condition for these two conditions to hold simultaneously is σωη =

σ2
η = σ2

ω.

Consider now the limiting cases where one of the variances goes out of bounds. Applying

l’Hôpital’s rule to (A3) and (A4) , we get in the limit as σ2
εη →∞

E [ω|sω] =
σ2
ω

σ2
ω + σ2

εω

sω and E [η|sω] =
ρωησωση
σ2
ω + σ2

εω

sω,

so that

E [ω|sω] ≡ E [η|sω] ⇔ ρση = σω.

Likewise, for the case where σ2
εω →∞, we get

E [ω|sη] =
ρσωση
σ2
η + σ2

εη

sη and E [η|sη] =
σ2
η

σ2
η + σ2

εη

sη,

so

E [ω|sη] ≡ E [η|sη] ⇔ ρσω = ση.

Proof of Lemma 2. Let u ≡ uR = uS. Recall from Lemmas 1 and A.1 that θ = E [η|sω, sη]
and that the conditional distribution of η given sω, sη is symmetric about θ. We first show

that the sender’s preferences over messages depend only on the distance between induced

actions and θ. Let x′ − E [η| sω, sη] = E [η| sω, sη]− x′′ ≡ z > 0, then∫
u (x′ − η) f (η| sω, sη) dη =

∫
u (z − (η − E [η| sω, sη])) f (η| sω, sη) dη.

The random variable η̂ ≡ η−E [η| sω, sη] has mean zero and follows a symmetric distribution.

Let f̂ ( η̂| sω, sη) denote the standardized distribution (with mean zero). Then, we have

f (η| sω, sη) = f̂ (η − E [η| sω, sη]| sω, sη) = f̂ ( η̂| sω, sη) .

Take two realizations η̂′ and η̂′′ = −η̂′ of η̂. By construction, we have |z − η̂′| = |−z − η̂′′|
and hence by symmetry of u around 0, u (z − η̂′) = u (−z − η̂′′) . Symmetry of the distribu-

tion around zero is equivalent to f̂ ( η̂′| sω, sη) = f̂ ( η̂′′| sω, sη) . Therefore, for all η̂′ we have
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u (z − η̂′) f̂ ( η̂′| sω, sη) = u (η̂′ − z) f̂ ( η̂′| sω, sη) , implying that∫
u (z − η̂) f̂ ( η̂| sω, sη) dη̂ =

∫
u (η̂ − z) f̂ ( η̂| sω, sη) dη̂.

By symmetry of the distribution, η̂ and −η̂ follow the exact same distribution, and we can

write ∫
u (η̂ − z) f̂ ( η̂| sω, sη) dη̂ =

∫
u (−z − η̂) f̂ ( η̂| sω, sη) dη̂.

Hence, ∫
u (z − η̂) f̂ ( η̂| sω, sη) dη̂ =

∫
u (−z − η̂) f̂ ( η̂| sω, sη) dη̂

=

∫
u (−z − (η − E [η| sω, sη])) f (η| sω, sη) dη

=

∫
u (x′′ − η) f (η| sω, sη) dη,

that is, the sender is indifferent between actions that are equidistant from θ. By concavity

of the sender’s payoff, the sender prefers action x′ over x′′ if and only if x′ is closer to θ.

Suppose now that an equilibrium transmits more information to the receiver than θ.

Then it must be that the sender is indifferent between the induced actions, x′, x′′, that is

they must satisfy |θ − x′| = |x′′ − θ| .
Suppose for sender type θ, the equilibrium induces two actions, equidistant from θ, with

some distance ε > 0. Now take a type θ̃ = θ+ δ for some δ > 0. We distinguish three cases.

Suppose first type θ̃ induces one action x(θ̃) ≥ θ̃. Then, to discourage any deviation, we need

to have

x (θ) < θ < x (θ) ≤ θ̃ ≤ x(θ̃). (A5)

However, for all δ < ε we have x (θ) = θ + ε > θ + δ = θ̃ contradicting condition (A5) and

implying that some types have a strict incentive to lie. If type θ̃ induces one action x(θ̃) ≤ θ̃,

or two actions that are equidistant from θ̃ and satisfy x(θ̃) ≤ θ̃ ≤ x(θ̃), then condition (A5)

needs to be amended to

x (θ) < θ < x (θ) ≤ x(θ̃) ≤ θ̃
(
≤ x(θ̃)

)
,

where the last inequality is absent if type θ̃ induces only one action x(θ̃) ≤ θ̃. Since the new

condition is even more difficult to satisfy than (A5), the same reasoning applies.
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Proof of Lemma 3. Letting a ≡ σ2
εω

σ2
ω

and b ≡ σ2
εη

σ2
η

we can rewrite Cov (ω, θ) and V ar (θ)

as

Cov (ω, θ) = σωη
a+ b+ 1− ρ2

(1 + a) (1 + b)− ρ2
,

and

V ar (θ) = σ2
η

a+ bρ2 + 1− ρ2

(1 + a) (1 + b)− ρ2
.

Consider first the set of feasible levels of Cov (ω, θ) = C. Note that for a = 0 or b = 0,

the covariance is constant and equal to σωη. Moreover, the covariance is decreasing in a for

given b and decreasing in b for given a. By l’Hôpital’s rule, we have

lim
b→∞

a+ b+ 1− ρ2

(1 + a) (1 + b)− ρ2
=

1

1 + a
,

and

lim
a→∞

a+ b+ 1− ρ2

(1 + a) (1 + b)− ρ2
=

1

1 + b
.

So, letting both a and b (in whatever order) go to infinity results in a covariance of zero. By

continuity, any C ∈ (0, σωη] can be generated by finite levels a, b. Including the case where

no signal is observed at all, we can generate all C ∈ [0, σωη] .

Consider next the set of feasible V ar (θ) for any given level Cov (ω, θ) = C. Distinguish

two cases, i) C = σωη and ii) C ∈ [0, σωη) .

Case i) requires that a = 0 or b = 0 or both. If b = 0, then a+bρ2+1−ρ2
(1+a)(1+b)−ρ2 = 1 and thus

V ar (θ) = σ2
η for all a. If a = 0, then

V ar (θ) = σ2
η

bρ2 + 1− ρ2

(1 + b)− ρ2

is decreasing in b and attains value V ar (θ) = σ2
η for b = 0. Moreover,

lim
b→∞

bρ2 + 1− ρ2

(1 + b)− ρ2
= ρ2.

Hence, for C = σωη, V ar (θ) ∈
[
ρ2σ2

η, σ
2
η

]
; the lower limit is included because we allow for

the case where only one signal is observed.
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Case ii) C ∈ [0, σωη) requires that a > 0 and b > 0. Let γ ≡ C
σωη
∈ [0, 1) . The

combinations of a and b that generate C satisfy

a+ b+ 1− ρ2

(1 + a) (1 + b)− ρ2
= γ.

Solving for a as a function of b, we obtain

a (b; γ) =
(1− γ) (1 + b− ρ2)

γb− (1− γ)
=

(1 + b− ρ2)
γ

1−γ b− 1
.

The function a (b; γ) is decreasing in b and has the limit

lim
b→∞

1 + b− ρ2
γ

1−γ b− 1
=

1− γ
γ

.

In the limit as b → 1−γ
γ
, we obtain a → ∞. Hence, C can be generated for b > 1−γ

γ
and

a =
(1+b−ρ2)

γ
1−γ b−1

. Substituting for
(1+b−ρ2)

γ
1−γ b−1

into V ar (θ) , we obtain

V ar (θ; b, a (b; γ) , γ) = σ2
η

(1+b−ρ2)
γ

1−γ b−1
+ bρ2 + 1− ρ2(

1 + (1+b−ρ2)
γ

1−γ b−1

)
(1 + b)− ρ2

= σ2
η

bγρ2 + 1− ρ2

1 + b− ρ2
.

The derivative of this expression in b is
(γρ2−1)(1−ρ2)

(1+b−ρ2)2 < 0, so V ar (θ; b, a (b; γ) , γ) is contin-

uous and monotone decreasing in b. In the limit as b tends to infinity, we obtain

lim
b→∞

σ2
η

bγρ2 + 1− ρ2

1 + b− ρ2
= σ2

ηγρ
2 = σ2

η

C

σωη
ρ2 =

ση
σω
ρC.

In the limit as b→ 1−γ
γ
, we obtain

lim
b→ 1−γ

γ

σ2
η

bγρ2 + 1− ρ2

1 + b− ρ2
= σ2

η

1−γ
γ
γρ2 + 1− ρ2

1 + 1−γ
γ
− ρ2

= γσ2
η =

ση
σω

1

ρ
C.

Hence, we have shown that for any given C ∈ [0, σωη) , V ar (θ) ∈
[
ση
σω
ρC, ση

σω
1
ρ
C
]
. We include

the lower limit, because the case where b→∞ is equivalent to the case with one signal only.
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Proof of Theorem 1. Let u ≡ uR = uS, C ≡ Cov(ω, θ), and V ≡ V ar(θ). We prove

the theorem in two steps. In step i) we derive the standardized distributions. In step ii) we

solve the maximization problem.

i) Let fωθ (ω, θ) =
∫
f (ω, η, θ) dη and let fηθ (ω, θ) =

∫
f (ω, η, θ) dω denote the marginal

joint densities of ω, θ and η, θ. Consider first the expected utility of the sender.

Let τ ≡ C
V
θ − η and let g (·) denote the density of τ. The expected utility of the sender

satisfies ∫ ∫
u

(
C

V
θ − η

)
fηθ (η, θ) dηdθ =

∫ ∫
u (τ) fηθ

(
C

V
θ − τ, θ

)
dτdθ

=

∫
u (τ)

∫
fηθ

(
C

V
θ − τ, θ

)
dθdτ =

∫
u (τ) g (τ) dτ =

∫
u (στ t) cφ (t) dt.

For the first equality, substitute τ and apply the switch of variables theorem. For the second,

apply Fubini’s theorem. For the third, note that Pr
[
C
V
θ − η ≤ τ

]
= Pr

[
C
V
θ − τ ≤ η

]
and

that by Leibniz’s rule

g (τ) =
∂

∂τ
Pr

[
C

V
θ − η ≤ τ

]
=

∂

∂τ

∞∫
−∞

∞∫
C
V
θ−τ

fηθ (η, θ) dηdθ =

∞∫
−∞

fηθ

(
C

V
θ − τ, θ

)
dθ.

Since τ is a linear function of θ and η, we can use Fang et al. (1990) Theorem 2.16 to conclude

that g (τ) is the density of an elliptical distribution that has the same characteristic generator,

φ (·) , as f has. The variance of τ is

σ2
τ =

C2

V 2
V ar (θ)− 2

C

V
Cov (θ, η) + V ar (η)

=
C2

V
− 2C + σ2

η.

Standardizing to t = τ
στ
, we transform to a spherical (standardized elliptical) distribution

with density cφ(·).
To derive the receiver’s expected utility, we let ζ ≡ C

V
θ − ω , let h (·) denote the density

of ζ. Going through the exact same steps one finds that h (ζ) =
∫
f
(
C
V
θ − ζ, θ

)
dθ, again an

elliptical density with the same characteristic generator. The variance of ζ is

σ2
ζ = σ2

ω −
C2

V
.
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Hence, with z = ζ
σζ
, we can write∫ ∫

u

(
C

V
θ − ω

)
fωθ (ω, θ) dωdθ =

∫
u
(
zσω|θ

)
cφ (z) dz.

ii) An optimal information structure solves:

max
C,V

∫
u

(
z

(
σ2
ω −

C2

V

) 1
2

)
cφ (z) dz +

∫
u

((
C2

V
− 2C + σ2

η

) 1
2

t

)
cφ (t) dt.

We solve the problem by maximizing sequentially wrt C and V . For given C, the derivative

wrt V is

1

2

C2

V 2

∫
z

(
σ2
ω −

C2

V

)− 1
2

u′

(
z

(
σ2
ω −

C2

V

) 1
2

)
cφ (z) dz

−1

2

C2

V 2

∫ (
C2

V
− 2C + σ2

η

)− 1
2

tu′

((
C2

V
− 2C + σ2

η

) 1
2

t

)
cφ (t) dt. (A6)

Recall that σ2
η = σ2

ω. First, suppose V = C. Then, the derivative wrt V satisfies∫
1

2
z
(
σ2
ω − V

)− 1
2 u′
(
z
(
σ2
ω − V

) 1
2

)
cφ (z) dz

−
∫

1

2

(
−V + σ2

η

)− 1
2 tu′

((
−V + σ2

η

) 1
2 t
)
cφ (t) dt

= 0.

Now suppose V 6= C. Note that both integrands in (A6) have the common representation∫
1

a
ku′ (ak) cφ (k) dk. (A7)

Differentiating wrt a, we observe that (A7) is monotone decreasing in a,

− 1

a3

∫
aku′ (ak) cφ (k) dk +

1

a3

∫
a2k2u′′ (ak) cφ (k) dk ≤ 0,

where the inequality follows from the curvature condition

q
u′′ (q)

u′ (q)
= q

`′′ (q)

`′ (q)
≥ 1. (A8)
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V < C implies C2

V
−2C+σ2

η > σ2
ω−C2

V
. The curvature condition (A8) implies monotonicity

and therefore

1

2

C2

V 2

∫
z

(
σ2
ω −

C2

V

)− 1
2

u′

(
z

(
σ2
ω −

C2

V

) 1
2

)
cφ (z) dz

≥ 1

2

C2

V 2

∫ (
C2

V
− 2C + σ2

η

)− 1
2

tu′

((
C2

V
− 2C + σ2

η

) 1
2

t

)
cφ (t) dt.

Hence the derivative is non-negative for V < C. By symmetry, the derivative is non-positive

for V > C. These inequalities become strict for functions that satisfy the curvature condition

(A8) with strict inequality. It follows that the problem is maximized in V for V = C.

The second step is now to maximize over C, given that V = C.

max
C

∫
u
(
z
(
σ2
ω − C

) 1
2

)
cφ (z) dz +

∫
u
((
σ2
η − C

) 1
2 t
)
cφ (t) dt.

The derivative wrt C is given by

−
∫

1

2
z
(
σ2
ω − V

)− 1
2 u′
(
z
(
σ2
ω − V

) 1
2

)
cφ (z) dz

−
∫

1

2

(
σ2
η − C

)− 1
2 tu′

((
σ2
η − C

) 1
2 t
)
cφ (t) dt

> 0.

The payoff is unambiguously increasing in C. The solution is thus C = Cmax.

Proof of Proposition 1. By Theorem 1, for quadratic loss functions all information

structures satisfying Cov(ω, θ) = σωη are optimal for θ public. By Theorem 2, smooth

communication is an equilibrium if and only if Cov(ω, θ) = V ar (θ). By Lemma 3, the

candidate solution V ar (θ)∗ = Cov(ω, θ)∗ = σωη is feasible if Cov(ω,θ)∗

V ar(θ)∗
= 1 ∈

[
ση
σω
ρ, ση

σω
1
ρ

]
.

This is guaranteed by the assumption min
{
σ2
ω, σ

2
η

}
≥ σωη.
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