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Abstract

A coalition of given size fights climate change by purchasing fossil fuel deposits to

prevent their exploitation, and it seeks to manipulate the terms of fuel trade in its

favor. Harstad (2012, Theorem 1) claims that the trade of deposits internalizes the

negative climate externalities and renders non-distortionary the coalition’s strategic

action on the fuel market. Based on our earlier result that Harstad’s ’killing-two-

birds-with-one-stone theorem’ is flawed, our paper presents the correct outcome

within Harstad’s analytical framework. We show that the coalition’s strategic

action is distortionary, if one of two conditions is satisfied in the first-best regime,

in which the coalition takes the fuel price as given. Either the coalition imports

fuel or it exports fuel and the gain from increasing export revenues via pushing the

fuel price up overcompensates the induced climate damage increase.
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1 Introduction

Compelling scientific evidence suggests that greenhouse gas emissions, notably carbon emis-

sions, generate severe negative climate externalities that can be internalized by global co-

operative action. The experience from the Kyoto protocol and the climate change summits

of recent years to reach a post-Kyoto agreement are disappointing. It is true that several

countries have increased their efforts to curb emissions, notably the (Annex 1) countries

that committed to emissions reductions in the Kyoto Protocol. Yet many small and large

countries still refrain from taking (strong) action, and most of them have expanded their

emissions significantly since 1990. That raises the question of what the chances are of a

climate coalition to reduce carbon emissions efficiently by unilateral action.

Environmental economists have intensively analyzed this question. There is a literature

that shows that unilateral environmental or trade policy is distortionary in the presence

of trade and transboundary pollution (Markusen 1975, Hoel 1994, Copeland 1996).1 In

these second-best settings, the unilateral policy causes carbon leakage, which renders global

emissions inefficiently high. The inefficiency aggravates, if the climate coalition implements

its environmental policy strategically by influencing the terms of trade to its own favor.

Most of the aforementioned studies investigate demand-side climate policies. Bohm

(1993), Harstad (2012) and Asheim (2013) are the only studies we know with an analytical

approach to supply-side policies in which countries suffering from climate damage purchase

or lease fossil energy deposits (’buy coal’) to prevent their extraction. In a stylized parametric

model, Bohm (1993) derives conditions under which a special policy mix consisting of the

purchase or lease of deposits and a fuel-demand cap implements the emission cap at lower

costs than the stand-alone fuel-demand-cap policy. Asheim (2013) makes the case for deposit

policies as a distributional instrument in a growth model á la Dasgupta-Heal-Solow-Stiglitz.

Harstad (2012) considers a world economy with non-cooperative countries and a (cli-

mate) coalition acting as one agent. The coalition and the countries extract and consume

fossil fuel. Carbon emissions from fuel consumption generate climate damage that hits the

coalition only. As in Hoel (1994), the coalition exerts - or tries to exert - market power by

manipulating the terms of fuel trade in its favor via the choice of fuel demand and supply.

Hence, in the absence of climate policy Harstad’s economy exhibits two different kinds of

distortions: the non-internalized climate damage suffered by the coalition and the distortion

1Not only unilateral environmental policy is inefficient, but also non-cooperative environmental policy

(Ludema and Wooton 1994, Copeland and Taylor 1995, Kiyono and Ishikawa 2013) and the formation of

self-enforcing international environmental agreements (Barrrett 1994, Rubio and Ulph 2006, Eichner and

Pethig 2013).
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caused by the coalition’s strategic action on the fuel market. Harstad then allows for interna-

tional trade in (the right to extract) fossil-fuel deposits. Loosely expressed in our words, his

Theorem 1 states that if ’his’ deposit market is in equilibrium, embedded in the equilibrium

of his three-stage game, both types of distortions are eliminated. Eichner and Pethig (2016)

disprove Harstad’s Theorem 1. The present paper adopts Harstad’s analytical framework

and characterizes the outcome of Harstad’s three-stage game after having corrected the flaw

in the proof of his Theorem 1.

For that purpose Section 2 briefly presents the model, characterizes the social optimum

with deposit trading for preservation and decentralizes the social optimum in an economy

with a perfectly competitive market for fuel and a deposit market for preservation. Propo-

sition 1 shows that deposit trading internalizes the climate damage. Since strategic effects

are absent the economy with a perfectly competitive market for fuel and a deposit market

for preservation is efficient.

Section 3 investigates Harstad’s three-stage game with deposit trade for preservation.

In that game there emerge two distortions: the non-internalized climate damage and the

market power on the fuel market. It turns out that the deposit purchases for preservation

again internalize the climate damage. However, whether the distortion from strategic action

on the fuel market is eliminated depends on import and export patterns (Proposition 2).

Deviating from the efficient fuel caps changes the coalition’s welfare via two channels: we

identify a terms-of-trade effect and a climate damage effect. If the coalition’s fuel extraction

exactly equals its fuel consumption, the terms-of-trade effect vanishes, the climate damage

effect is negative and the coalition would loose welfare when deviating from the efficient

fuel caps. Hence, the coalition chooses the efficient fuel caps and (strategic) action is non-

distortionary. If the coalition imports fuel, the terms-of-trade effect is positive, the climate

damage effect vanishes and the coalition gains through strategic action that is distortionary.

If the coalition exports fuel, the terms-of-trade effect is positive and the climate damage effect

is negative. Strategic action is distortionary if the terms-of-trade effect overcompensates the

climate damage effect.

Finally, Section 4 provides a brief assessment of Harstad’s Theorem 1. Harstad in-

troduces in addition to deposit trade for preservation further deposit trade for extraction.

Eichner and Pethig (2016) point out that additional deposit trade does not change the coali-

tion’s fuel exports or imports. Hence, the inefficiency of strategic action for the deposit

preservation trade also prevails for Harstad’s deposit trade. Section 5 concludes.
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2 Buy deposits for preservation and take the fuel price

as given

Throughout the paper, we adopt Harstad’s (2012) analytical framework. His world economy

consists of two groups of countries, M and N . The members of group M participate in

an international climate agreement and the group – or coalition – M acts as one agent.

Each country i ∈ N ∪ {M} := Ω is endowed with the amount l̄i of a composite immobile

factor ("labor"), and produces fossil fuel xi with factor input lxi and a consumption good

ws
i ("wheat") with factor input lwi. The simple production functions are ws

i = ailwi and

xi = Xi(lxi), with ai > 0 and constant, X ′

i > 0 and X ′′

i < 0. Combined with the labor supply

constraint lxi + lwi = l̄i, the production functions yield the production possibility frontier

ws
i = ai l̄i − Ci(xi) ∀i ∈ Ω, (1)

where Ci(xi) := X−1
i (xi) is country i’s strictly convex extraction cost function. Country

i’s deposits are specified by the fossil fuel in situ ordered according to increasing marginal

extraction costs. We denote these fossil fuel deposits by
[
0,∞

[

C′

i

and determine the cost of

extracting some (small) deposit2
[
x, x]C′

i
∈
[

0,∞
[

C′

i

as Ci(x)−Ci(x). Country i is the initial

owner of the deposits
[

0,∞
[

C′

i

and has both the right to extract and to sell the right to

extract the fossil fuel contained in these deposits. The utility of the representative consumer

of country i is

ui = Bi(yi) + wd
i − δ(i)H

(
∑

Ω

xj

)

with δ(i) =

{

1, if i = M,

0, if i ∈ N.
(2)

H (
∑

Ω xj) (with H ′ > 0) is the climate damage suffered by the coalition and Bi(yi) is the

utility from consuming yi units of fuel (with B′

i > 0 and B′′

i < 0). Carbon emissions from

burning fossil fuel generate climate damage. Since emissions are proportional to fuel output

and consumption, xi denotes both fuel supply and emissions. The scarcity constraints for

wheat and fuel,

∑

Ω

(xj − yj) = 0 and
∑

Ω

(ws
j − wd

j ) = 0, (3)

complete the description of the analytical framework.

In the present section, we assume perfectly competitive international markets for wheat

and fuel. Treating all agents and governments as price takers on these markets is in contrast

to Hoel (1994) and Harstad (2012) whose focus are economies in which the coalition exerts

2For the concept of deposit endowments in the formal model see Appendix A1.
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market power on the fuel market by manipulating the terms of trade in its favor. We will take

up that case in the next section. Throughout the paper, the countries in group N abstain

from actions to reduce carbon emissions. If the coalition would not fight climate damage

either, the damage would obviously be non-internalized, i.e. excessive. Aiming to avoid

that inefficiency, the coalition is supposed to implement the following supply-side climate

policy. It purchases (the right to exploit) deposits from the countries outside the coalition

for the purpose to prevent their exploitation. We refer to that policy as the introduction

of a deposit preservation market (deposit market, for short). By assumption, this market

clears, when there is no deal left to purchase deposits for preservation at some price3 that

would be strictly beneficial for both the coalition and the selling country.

In the sequel, we follow Eichner and Pethig (2016) and show that an equilibrium in

the market economy with competitive international markets for wheat and fuel and with a

deposit market as specified above is efficient. It is analytical convenient to establish first the

social optimum and then decentralize the social planner’s solution. In order to characterize

an efficient allocation in case of tradable deposits, imagine a social planner who takes away

from the initial deposit endowment
[

0,∞
]

C′

i

of each country i ∈ N all deposits in some

interval
[

σi, ξi

[

C′

i

6= ∅ and transfers them to the coalition obliging it to preserve the deposits

it receives. Then the question arises how to choose the boundary points σi and ξi of the

interval
[

σi, ξi

[

C′

i

that maximize global welfare. Denote the ’number’ of deposits in the

interval
[

σi, ξi

[

C′

i

by zsi := ξi − σi and the total ’size’ of deposits transferred to the coalition

by

zdM =
∑

N

zsj . (4)

The social planner solves the Lagrangean

L(·) =
∑

N

[
Bj(yj) + aj r̄j − Cj(ξj − zsj )

]
+BM (yM ) + aM r̄M − CM (xM )

−H

(

xM − zdM +
∑

N

ξj

)

+ λf

[

xM − yM +
∑

N

(ξj − zsj − yj)

]

+ λz

(
∑

N

zsj − zdM

)

. (5)

Attach an asterisk superscript to the solution values of (5) and characterize the social

optimum by

H ′

(
∑

Ω

x∗

j

)

= λ∗

z, B
′

i(y
∗

i ) = C ′

i(x
∗

i ) +H ′

(
∑

Ω

x∗

j

)

= λ∗

f ∀ i ∈ Ω, (6a)

zs∗i = ξ∗i − σ∗

i = ξ∗i − x∗

i ∀ i ∈ N. (6b)

3Note that following Harstad (2012) we do not require a uniform deposit price.
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As expected, (6a) implies

B′

i(y
∗

i ) = B′

j(y
∗

j ) and C ′

i(x
∗

i ) = C ′

j(x
∗

j) ∀ i, j ∈ Ω. (6c)

It is easy to see that the equations (6c) also result from the standard solution of the social

planner that we obtain when solving the Lagrangean (5) after setting zsi = 0 and ξi = xi for

all i ∈ N .

After having characterized the social planner’s solution we turn to decentralize the

social optimum. The standard procedure considers perfectly competitive markets for fuel

(price = p), wheat (price = 1), and deposits (price = pz) and determines an equilibrium of

that market economy by setting p = p∗ = λ∗ and pz = p∗z = λ∗

z. We need to deviate slightly

form that procedure, because the definition of our deposit market allows for deposit deals

at different prices.

Proposition 1 . Consider an economy (1) - (4) with perfectly competitive interna-

tional markets for wheat and fuel and with the deposit preservation market as specified above.

If the coalition buys the deposits
⋃

j∈N

[

x∗

j , ξ
∗

j

]

C′

j

defined in (6) at prices that are beneficial

for both trading partners and if we set p∗ = λ∗, all markets clear, and the equilibrium of the

market economy is efficient.

The message of Proposition 1 is that if the climate damage is the only distortion in the

absence of deposit trading, the introduction of deposit trading for the purpose of preser-

vation internalizes the climate damage and thus renders efficient the equilibrium of that

market economy. In our model, the coalition’s deposit purchases are a climate policy that

internalizes the climate damage according to the beneficiary-pays principle.4

3 Buy deposits for preservation and manipulate the terms

of trade

We now modify the market economy of the last section by assuming, as do Hoel (1994) and

Harstad (2012), that the coalition exerts market power on the fuel market by influencing

the terms of international fuel trade, i.e. the fuel price, through the strategic choice of its

fuel supply and demand. The analysis of the coalition’s strategic action on the fuel market

requires setting up a game model with three stages. At stage 1, the deposit market clears.

The coalition determines its fuel supply and demand at stage 2, and at stage 3, the fuel

4Note, however, that this policy would not achieve efficiency, if the countries outside the coalition would

also suffer from climate damage.
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market equilibrates. In the present section, we analyze and solve that three-stage game

applying our concept of the deposit market.5 We follow the standard procedure of solving

the game via backward induction.

Stage 3. At stage 3, M has already chosen its fuel supply and demand, xM and yM . The

representative consumer of country i ∈ N determines its fuel demand by maximizing with

respect to yi

Bi(yi)−Ki(xi, pa, πz)− p(yi − xi) +Ri(pa, πz) ∀ i ∈ N.

pa is the fuel price anticipated at stage 1; p is the fuel price prevailing at stage 3; πz is the

marginal climate damage determined at stage 1;6 Ki is country i’s extraction cost function

after the deposit sales at the first stage; and Ri(pa, πz) is i’s revenue from selling deposits at

stage 1. The first-order condition readily yields

B′

i(yi) = p and hence yi = B−1
i (p) =: Di (p) ∀ i ∈ N, (7)

where B−1
i is the inverse of the marginal benefit function B′

i. Next, consider the fuel supply

of country i ∈ N . At stage 3, i recalls that it sold at stage 1 the deposits [σi(pa, πz), ξi(pa)]C′

i
,

where

ξi = ξi(pa) = C
′
−1
i (pa), σi = σi(pa, πz) := C

′
−1
i (pa − πz) (8)

and where C
′
−1
i is the inverse of the marginal cost function C ′

i. The deposit sale at stage

1 changed i’s endowment of deposits such that i’s initial marginal cost function C ′

i turned

into the marginal cost function K ′

i defined by7

K ′

i(xi, pa, πz) :=

{

C ′

i(xi) for xi ≤ σi,

C ′

i(ξi)− C ′

i(σi) + C ′

i(xi) for xi ≥ σi,
∀ i ∈ N. (9)

Figure 1 illustrates the marginal cost functions C ′

i and K ′

i (Figure 1a) and the total

cost functions Ci and Ki (Figure 1b). The straight line 0D in Figure 1a is the graph of C ′

i.

After having sold the deposits [σi, ξi]C′

i
at stage 1, country i’s marginal cost function K ′

i, is

represented by the line 0BEF . We derive that line from 0D by shifting the line segment CD

to the left by the amount ξi − σi such that CD becomes EF . Thus, country i’s endowment

5The structure of the three-stage game is the same as in Harstad (2012), but Harstad’s concept of deposit

market differs from ours. We discuss the consequences of that difference in Section 4 below.
6For details of the role and determination of πz see Lemma 1.
7To avoid clutter, we write σi, ξi etc. for the terms σi(pa, πz), ξi(pa) etc. unless it is useful to emphasize

their dependence on the variables which were determined at earlier stages of the game.
9The line 0BEF in Figure 1a is constructed as in Harstad’s (2012) Figure 1.

6



C ′

i, K
′

i

xi

pa

pa − πz

0 σi ξi

Ci, Ki

xi0

pa

pa − πz

σi ξi

B

F
C

D

A

B

E

F

K

L
C

D

α ββ

Figure 1a Figure 1b

Figure 1: Marginal and total cost curves of country i ∈ N before and after deposit trading

[σi, ξi]C′

i
at stage 19

of deposits changed from 0ABCD to 0ABEF . The function K ′

i is discontinuous at xi = σi,

as reflected in the gap BE of the graph 0BEF . In Figure 1b, 0BCD is the graph of the

cost function Ci. After the deposit sale at stage 1, the curve 0BF represents country i’s

new cost function Ki. The curve segment BF of Ki results from moving the curve segment

CD from its base point C to the new base point B. The gap BE of the graph of K ′

i in

Figure 1a translates into a kink of the cost curve 0BF at xi = σi (= at point B) in Figure

1b. Figure 1b illustrates that if σi is approached from above, the marginal extraction cost

is K ′

i(σi) = tanα = pa, and it is K ′

i(ξi) = tanβ = pa − πz < pa, if σi is approached from

below.

The Appendix A2 shows that maximizing with respect to xi the welfare Ui = Bi(yi)−

Ki(xi, pa, πz)− p(yi − xi) +Ri(pa, πz) yields the fuel supply function Si with the properties

Si(p, pa, πz) =







C
′
−1
i (p) for p ≤ pa − πz,

σi for p ∈ [pa − πz, pa],

C
′
−1
i [p− C ′

i(ξi) + C ′

i(σi)] for p ≥ pa,

∀ i ∈ N. (10)

In view of (7) and (10), the fuel market clearing condition is

xM +
∑

N

Sj(p, pa, πz) = yM +
∑

N

Dj (p) . (11)

Equation (11) yields the equilibrium fuel price as a function of xM , yM , pa and πz, all of

which have been determined earlier in the game. We denote that price function as

p = P (xM , yM , pa, πz). (12)
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Stage 2. M ’s deposit purchases at stage 1 does not change its initial extraction cost

function C ′

M since the coalition only buys deposits for preservation. M chooses its fuel

supply and demand by maximizing with respect to xM and yM its welfare

UM(xM , yM , pa, πz) = BM(yM)− CM(xM)− p(yM − xM )

−H

[

xM +
∑

N

Sj(p, pa, πz)

]

−RM(pa, πz) (13)

subject to (12). The first-order conditions

∂UM

∂yM
= B′

M − p−

(

yM − xM +H ′

∑

N

S ′

j

)

∂P

∂yM
= 0, (14)

∂UM

∂xM

= −C ′

M + p−H ′ −

(

yM − xM +H ′

∑

N

S ′

j

)

∂P

∂xM

= 0 (15)

coincide with Harstad’s (2012) equations (6) and (7). Implicitly, these equations determine

M ’s optimal choice of xM and yM as functions of pa and πz. We denote the solution of (14)

and (15) by

xM = XM(pa, πz) and yM = YM(pa, πz). (16)

While at stage 3 the equilibrium fuel price depends on xM , yM , pa and πz, as shown in (12),

it now depends on pa and πz only,

p = P [XM(pa, πz), YM(pa, πz), pa, πz] . (17)

Stage 1. We have to determine those deposits [xi, xi]C′

i
which each country i ∈ N sells

to the coalition with mutual gains from trade and which clear the deposit market. M aims

at buying deposits the preservation of which fully reduces the climate damage. Hence,

M only buys some of those deposits, which are profitable, that is, which country i would

have extracted in the absence of deposit trading. Given the anticipated fuel price pa, the

interval with profitable deposits is [0, ξi]C′

i
, where ξi = ξi(pa) := C

′
−1(pa).

10 Hence M ’s

purchase and subsequent preservation of [xi, xi]C′

i
secures full climate damage reduction only

if [xi, xi]C′

i
⊂ [0, ξi]C′

i
.11 Moreover, the inequality xi ≤ ξi must hold as equality, because there

is no other interval of deposits in [0, ξi]C′

i
of the same size as [xi, ξi]C′

i
, whose economic value

is smaller than that of [xi, ξi]C′

i
.12 These considerations make M ’s purchase (and country i’s

10See equation (8) above.
11Here we presuppose w.l.o.g. that the price pa is so low that the aggregate fuel supply XM (pa, πz) +

∑

N ξj(pa) leads to excessive climate damage.
12The economic value of the deposits in the interval [xi, ξi(pa)]C′

i
is the profit p(ξi(pa)−xi)−Ci(ξi(pa))+

Ci(xi) that would accrue to country i if it would extract and sell the fuel from these deposits instead of

selling the unexploited deposits to M .
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sale) of deposits equivalent to the choice of xi. To put it differently, we have to determine

zsi = ξi − xi, the ’number’ of deposits M buys in the interval [xi, ξi]C′

i
. In the Appendix A2

we prove

Lemma 1. (Equilibrium of the deposit market)

Suppose pa, πz, ξi(pa), σi(pa, πz) from (8) and xM = XM(pa, πz) from (16) are given and

define

σ̂i(pa) := σi(pa, πz(pa)) = C
′
−1
i (pa − πz(pa)), (18)

where πz = πz(pa), if and only if

πz = H ′

[

XM(pa, πz) +
∑

N

σj(pa, πz)

]

. (19)

Contingent on the anticipated fuel price pa, the deposit market is in equilibrium, if and only

if the coalition purchases the deposits
{
[σ̂i(pa), ξi(pa)]C′

i

}

i∈N
.

Lemma 1 establishes that the deposit market is cleared,13 if xi = σ̂i(pa) and therefore

zsi = ξi(pa) − σ̂i(pa) is satisfied for all i ∈ N . Equation (19) provides the reason for our

interpretation of πz as the shadow price of climate damage and it implicitly specifies the

shadow price πz, which we treated as given up to now, as a function of pa.
14 The specification

of πz by πz(pa) in (18) not only yields (19), but also determines the equilibrium values

xM = XM(pa, πz(pa)) := X̂M(pa), yM = YM(pa, πz(pa)) := ŶM(pa)

and p = P̂ (pa) := P [XM(pa, πz(pa)), YM(pa, πz(pa)), pa, πz(pa)] . (20)

Consistency requires equality of the fuel price pa that is anticipated at stage 1 and the fuel

price p that clears the fuel market at stage 3. Assuming that the price function P̂ from (20)

possesses a fixed point, we set p = pa. That completes the characterization of the solution

to the three-stage game.

It remains to examine the efficiency properties of the outcome. According to (6),

efficiency requires B′

i = B′

j for all i, j ∈ Ω and B′

i − K ′

i − H ′ = 0 for all i ∈ N and

B′

M − C ′

M −H ′ = 0. These equations are satisfied for all i ∈ N due to p = pa, (7), (8) and

13The countries in group N are price takers on the fuel market. They leave the decision about which and

how many deposits to buy to the coalition, but they do not sell deposits unless the sales price exceeds the

profits they could have made from exploiting instead of selling their deposits (profits foregone). If a deal

enhances the joint welfare of the trading partners, an agreement about their shares of the surplus is always

reached.
14Obviously, πz = πz(pa) is the equilibrium deposit price of a perfectly competitive deposit market

(contingent on the anticipated fuel price pa).
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(19). In view of (14) and (15), the equation B′

M −C ′

M −H ′ = 0 is also satisfied, if and only

if
(

yM − xM +H ′

∑

N

S ′

j

)

∂P

∂yM
= 0. (21)

This equation is satisfied, in turn, if and only if either ∂P
∂yM

= 0 or the bracketed term is

zero. Since we consider here a coalition that acts strategically on the fuel market, we have
∂P
∂yM

= − ∂P
∂xM

> 0 such that efficiency requires

yM − xM +H ′

∑

N

S ′

j = 0. (22)

Before we investigate the conditions under which (22) is satisfied, we briefly consider the

special case of the game, in which the coalition is a price taker on the fuel market along with

all other countries. Technically speaking, we drop the second stage of the game by simply

setting ∂P
∂yM

= − ∂P
∂xM

= 0 in (14) and (15) to obtain the efficiency condition B′

M−C ′

M−H ′ = 0.

We conclude that the outcome is efficient if the coalition acts as a price taker on the fuel

market in the game in which the competitive fuel market clears after the deposit market.

That conclusion is in line with our result in Proposition 1.

Returning to the case of strategic action on the fuel market, we characterize the equi-

librium of the three-stage game as follows.

Proposition 2 . Consider the world economies (1) - (4) with a deposit market, with

a perfectly competitive wheat market, and with a fuel market, on which the coalition acts

strategically while all other countries are price takers. The equilibrium of the three-stage

game satisfies:

(i) The deposit market equilibrium internalizes the climate damage. The coalition’s equi-

librium deposit purchases are
⋃

j∈N

[

σ̂j (p) , ξ̂j (p)
]

C′

j

.

(ii) The coalition’s strategic action on the fuel market is distortionary, if and only if15

either
〈
y∗M − x∗

M > 0
〉

or
〈
y∗M − x∗

M < 0 and y∗M − x∗

M +H ′

∑

N

S
′
∗

j
︸︷︷︸

+

< 0
〉

(23)

15We conducted a two-country numerical example with the help of the computer programme Mathematica.

For the functions Bj(yj) = 9yj −
y2

j

2
for j = M,N , CM (xM ) = x2

M , CN (xN ) =
x2

N

2
, H(xM +xN ) = xM +xN

the efficient allocation is characterized by fuel consumption, extraction and welfare levels y∗M = 3.429 >

x∗

N = 2.286, u∗

M = 6.031 and u∗

N = 21.398. Strategic action on the fuel market (S′ > 0) yields ũM = 6.375

and ũN = 20.813. We also have determined the laissez-faire scenario without buying any deposits which is

characterized by B′

M = B′

N , B′

M = C′

M +H ′, B′

N = C′

N , yM + yN = xM +xN . The associated welfare levels

are uo
M = 6.204 and uo

N = 21.398. Comparing the three scenarios we obtain the ranking ũM > uo
M > u∗

M ,

u∗

N > uo
N > ũN and u∗

M + u∗

N > ũM + ũN > uo
M + uo

N . Further details are available from the authors upon

request.
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where the letters marked by an asterisk denote the values of variables and functions in

an efficient equilibrium of the market economy in Proposition 1.

In the absence of deposit trading non-coalition countries extract fuel without accounting

that their fuel extraction harms the coalition. In other words the coalition suffers a non-

internalized climate damage distortion. With deposit trading the coalition purchases de-

posits for preservation and internalizes the negative externalities generated by non-coalition

countries (see Proposition 2(i)).

Proposition 2(ii) answers the question whether and when it is in the coalition’s interest

to act strategically on the fuel market. To get an intuition for (23) we investigate how the

coalition’s welfare changes when fuel caps xM or yM are marginally increased, formally

dUM =
∂U∗

M

∂qM
dqM := −

(

y∗M − x∗

M +H
′
∗

∑

N

S
′
∗

j

)

P ∗

qM
dqM

= − (y∗M − x∗

M )P ∗

qM
dqM

︸ ︷︷ ︸

dwF

−

(

H
′
∗

∑

N

S
′
∗

j

)

P ∗

qM
dqM

︸ ︷︷ ︸

dwH

(24)

The term dwF in (24) represents the coalition’s welfare change due to the change of fuel

exports or imports which is induced through its variation of the fuel supply or fuel demand

(dqM 6= 0). dwF is the terms of trade effect of strategic action. The term dwH captures

the welfare change due to the change in climate damage which is induced by the coalition

through its variation of the fuel supply or fuel demand (dqM 6= 0). dwH is the climate

damage effect of strategic action.

We explain the welfare changes exemplarily for a fuel importing coalition (y∗M > x∗

M ).

If the coalition refrains from strategic action, the fuel supply and the marginal extraction

costs of country i ∈ N are characterized by point E in Figure 1a. To figure out whether

strategic action pays the coalition marginally increases16 xM . The consequence is a reduction

of the fuel price (P ∗

xM
< 0) which yields a positive terms-of-trade effect of strategic action

(−(y∗M−x∗

M )P ∗

xM
> 0). Reducing the fuel price (the movement from point E in the direction

of point B in Figure 1a) does not change the fuel supply of country i ∈ N , formally S ′

i = 0

due to p ∈ [pa − πz, pa] in (10), and hence the climate damage effect of strategic action

vanishes. To sum up, increasing xM enhances the coalition’s welfare and strategic action

pays. For sake of completeness, we also investigate the welfare effects of reducing the fuel

cap xM . Decreasing xM raises the fuel price and the terms-of-trade effect of strategic action

is negative. Country i ∈ N increases its fuel supply (S ′

i > 0) upon the fuel price hike (the

movement from point E in Figure 1a in the direction of point F implies p > pa in (10)) and

16The same arguments also hold for reducing yM .
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the climate damage effect −H ′
∑

N S
′
∗

j P
∗

xM
dxM is also negative. Reducing xM diminishes the

coalition’s welfare. However, the relevant result is that the coalition gains welfare through

incrreasing xM . To conclude, if y∗M > x∗

M the coalition’s strategic action is distortionary,

because there is a strategic action that has a positive terms-of-trade effect (dwF > 0) and a

zero climate damage effect (dwH = 0).

A detailed analysis of all possible case for a non-importing coalition y∗M ≤ x∗

M can

be found in the Appendix A3. The results are as follows: If the coalition neither imports

nor exports fuel in the social optimum (y∗M = x∗

M), its strategic action is non-distortionary,

because all feasible strategic actions have a zero terms-of-trade effect (dwF = 0) and a

non-positive climate damage effect (dwH ≤ 0). If the coalition exports fuel in the social

optimum (y∗M < x∗

M), its strategic action is distortionary, if and only if the positive terms-

of-trade effect of reducing xM and/or increasing yM (dwF > 0) overcompensates the negative

climate-damage effect of reducing xM and/or increasing yM (dwH < 0).

4 An assessment of Harstad’s (2012) Theorem 1

The game model of the last section is the same as Harstad’s (2012) game model except

that Harstad’s concept of deposit market differs from the concept we applied. Specifically,

Harstad’s deposit market allows for bilateral deposit trades at prices that may differ between

each pair of traders, as does our concept of deposit market. However, purchases on his

deposit market are not restricted to the purpose of preservation. The market ". . . clears

when there exists no pair of countries that would both strictly benefit from trading some of

their deposits at some price" (Harstad 2012, p. 92).

According to Harstad, the difference in outcome of the three-stage game with our and

his deposit market is significant. Expressed in our words, his Theorem 1 states that in

any equilibrium of the three-stage game his deposit market accomplishes two things. It

internalizes the climate damage, as does our deposit market, but it also prevents allocative

distortions through the coalition’s strategic action in all economies, whereas our deposit

market prevents such distortions only in the subset of economies satisfying (21).

Harstad’s Theorem 1 must rely on purchases of deposits for exploitation made in

addition to the transactions
(

zs∗i

)

i∈N
, because the transactions

(

zs∗i

)

i∈N
are necessary in

the equilibrium of the market economy of Proposition 1 as well as in the first-best outcome of

Harstad’s three-stage game to secure the internalization of climate damage. Harstad adopts

the following strategy to prove that the coalition’s strategic action is non-distortionary in

all economies. He aims to show that there exist suitable transactions on his deposit market

12



in addition to the transactions
(

zs∗i

)

i∈N
that close the gap y∗M − x∗

M 6= 0 in all economies

satisfying (22). His Lemma 2 claims that xi = yi for all i ∈ Ω holds whenever his deposit

market is in equilibrium.

Eichner and Pethig (2016) prove that it is impossible to attain xi = yi for all i ∈ Ω

through deposit market transactions economies characterized by y∗M−x∗

M 6= 0. The economic

argument is simple. Further trade of deposits for the purpose of extraction changes the

property rights of these deposits but not the location of extraction and hence does not

change any fuel exports or imports. For a formal proof of this argument we refer to Eichner

and Pethig (2016, Result 4). We summarize these results in

Proposition 3 . Proposition 2 is still satisfied if we replace our by Harstad’s concept

of deposit market.

5 Concluding remarks

The paper has analyze the performance of deposit trading to reduce carbon emissions effi-

ciently by unilateral action in the model of Harstad (2012). The efficiency result we attained

in the case that all agents are price-takers both on the fuel market and on the deposit market

is an interesting benchmark. Through the purchase of deposits for preservation the coalition

reduces the non-coalition countries’ – and its own – fuel supply by an appropriate amount

and thus fully internalizes the negative externalities generated by non-coalition countries.

In case of strategic action on the fuel market, the present paper corrects the flaw in the

proof of Harstad’s Theorem 1 and shows that strategic action is distortionary if the coalition

imports fuel and non-distortionary if the coalition neither exports nor imports fuel. A sub-

global climate coalition likely does not consist of the big fuel exporting countries, i.e. it likely

is a fuel importer. Under this condition, the prediction of our model is that the coalition’s

strategic action is distortionary. Consequently, internalizing the climate externality is less

costly for the coalition than it would be if its strategic action would be non-distortionary.

Our results obfuscate the performance of deposit trading. To judge whether deposit trading

is indeed a valuable unilateral climate policy option a cost-benefit analysis with realistic

calibration is an important item on the agenda of future research.
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Appendix

A1: Extraction costs and endowment of deposits

For analytical convenience, we assume that each deposit contains a single (small) unit of

fuel. The ordering of country i’s deposits according to costs results in a step function, say

Ci : N → R+, such that Ci(xi) is the cost of extracting the unit of fuel from the xth

i deposit17

and Ci(xi) ≤ Ci(xi+1) for all xi ∈ N (where we exclude the equality sign for analytical relief).

Finally, we replace the step function Ci(xi) by its real-number approximation, denoted C ′

i :

R+ → R+. With a slight abuse of notation we refer to C ′

i(xi) as the extraction cost of

country i’s xth

i deposit - which is the deposit with the xth

i lowest extraction cost.18

A2: Proofs

Proof of Proposition 1:

If the coalition buys the deposits
⋃

j∈N

[

x∗

j , ξ
∗

j

]

C′

j

at prices that are beneficial for both trading

partners, the deposit market is in equilibrium, because the climate damage is internalized

and there is no other distortion in the market economy. In order to show that the coalition

is able to buy the deposits
⋃

j∈N

[

x∗

j , ξ
∗

j

]

C′

j

at mutually beneficial prices, observe that the

perfectly competitive deposit market is a special case of the deposit market. The competitive

deposit market clears at the equilibrium price p∗z = λ∗

z (with λ∗

z from (6a)) and the price per

deal, p∗zz
s
i , all i ∈ N is strictly beneficial for country i and the coalition. Hence, mutually

beneficial deals can also be made at prices that deviate from p∗zz
s
i . �

Derivation of (10):

Maximizing ui = Bi(yi)−Ki(xi, pa, πz)− p(yi − xi) +Ri(pa, πz) with respect to xi yields

K ′

i(xi, pa, pz) = p.

Suppose that xi ≤ σi(pa, πz) = C
′
−1
i (pa − πz), then we obtain

C ′

i(xi) = p ⇐⇒ xi = C
′
−1
i (p)

17We need not care about an upper bound of the domain of the function Ci because deposits with extremely

high extraction costs will never be exploited under realistic conditions.
18Hence the primary concept is the marginal cost function C′

i rather than the total cost function Ci.

Differently put, in the deposit-trading perspective we derive Ci from C′

i rather than C′

i from Ci.

15



for p ≤ pa − πz.

Suppose that xi ≥ σi(pa, πz) = C
′
−1
i (pa − πz), then we get

C ′

i(ξi)− C ′

i(σi) + C ′

i(xi) = p ⇐⇒ xi = C
′
−1
i [p− C ′

i(ξi) + C ′

i(σi)]

for p ≥ pa (due to C ′

i(σi)− C ′

i(ξi) = −πz). �

Proof of Lemma 1:

Solve the Lagrangean

L(zs1, . . . , z
s
N , z

d
M , λz) =

∑

N

[
Bj(yj)− Cj(ξi(pa)− zsj )− pa(yj − ξj(pa) + zsj )

]

+BM(yM)− CM(XM(pa, πz))− pa(yM −XM(pa, πz))

−H

[

XM(pa, πz) +
∑

N

ξj(pa)− zdM

]

− πz

(

zdM −
∑

N

zsj

)

(A1)

with respect to zs1, . . . , z
s
N , z

d
M and λz for predetermined pa, πz, yM and yi ∀ i ∈ Ω. The

first-order conditions yield

C ′

i(xi) = pa − λz and hence xi = σi(pa, λz) := C
′
−1
i (pa − λz) ∀ i ∈ N (A2)

and λz = H ′

[

XM(pa, πz) +
∑

N

σj(pa, λz)

]

. (A3)

(A3) implicitly characterizes λz as a function of pa and πz, and this function possesses a fixed

point, denoted λz = πz = πz(pa), for all pa in the relevant sub-domain. Under consideration

of λz = πz = πz(pa), we determine the solution of (A1) as

zsi = Zs
i (pa) := ξi(pa)− σ̂i(pa) ∀ i ∈ N, (A4)

where σ̂i(pa) := σi(pa, πz(pa)). �

Proof of Proposition 2:

The partial derivatives of (13) with respect to yM and xM evaluated at the equilibrium values

referred to in Proposition 2(ii) read

∂UM

∂yM

∣
∣
∣
∣
y∗
M

= B
′
∗

M − p∗
︸ ︷︷ ︸

=0

−

(

y∗M − x∗

M +H
′
∗

∑

N

S
′
∗

j

)

·
∂P

∂yM

∣
∣
∣
∣
y∗
M

, (A5)
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where ∂P
∂yM

> 0 and for all i ∈ N

S
′
∗

i =
∂Si

∂p

∣
∣
∣
∣
p∗=p∗a

=







S
′
∗

i+ > 0, if dp = ∂P
∂yM

dyM
︸︷︷︸

(+)

> 0,

S
′
∗

i− = 0, if dp = ∂P
∂yM

dyM
︸︷︷︸

(−)

< 0,
(A6)

and

∂UM

∂xM

∣
∣
∣
∣
x∗

M

= −C
′
∗

M + p∗ −H
′
∗

︸ ︷︷ ︸

=0

−

(

y∗M − x∗

M +H
′
∗

∑

N

S
′
∗

j

)

·
∂P

∂xM

∣
∣
∣
∣
x∗

M

, (A7)

where ∂P
∂xM

< 0 and for all i ∈ N

S
′
∗

i =
∂Si

∂p

∣
∣
∣
∣
p∗=p∗a

=







S
′
∗

i+ > 0, if dp = ∂P
∂xM

dxM
︸︷︷︸

(−)

> 0,

S
′
∗

i− = 0, if dp = ∂P
∂xM

dxM
︸︷︷︸

(+)

< 0.
(A8)

Consider first the marginal welfare (A5) and distinguish the following four cases.

(a) Suppose that y∗M − x∗

M > 0. If dyM > 0, (A6) yields S
′
∗

i = S
′
∗

i+ > 0 and ∂UM

∂yM

∣
∣
∣
y∗
M

< 0

follows from (A5). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM < 0. If dyM < 0, (A6) yields S
′
∗

i =

S
′
∗

i− = 0 and ∂UM

∂yM

∣
∣
y∗
M

< 0 follows from (A5). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM > 0.

(b) Suppose that y∗M − x∗

M < 0 and y∗M − x∗

M +H
′
∗
∑

N S
′
∗

j+ < 0. If dyM > 0, (A6) yields

S
′
∗

i = S
′
∗

i+ and ∂UM

∂yM

∣
∣
∣
y∗
M

> 0 follows from (A5). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM > 0.

If dyM < 0, (A6) yields S
′
∗

i = S
′
∗

i− = 0 and ∂UM

∂yM

∣
∣
∣
y∗
M

> 0 follows from (A5). Hence

dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM < 0.

(c) Suppose that y∗M − x∗

M < 0 and y∗M − x∗

M +H
′
∗
∑

N S
′
∗

j+ ≥ 0. If dyM > 0, (A6) yields

S
′
∗

i = S
′
∗

i+ > 0 and ∂UM

∂yM

∣
∣
∣
y∗
M

≤ 0 follows from (A5). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM ≤ 0.

If dyM < 0, (A6) yields S
′
∗

i = S
′
∗

i− = 0 and ∂UM

∂yM

∣
∣
∣
y∗
M

> 0 follows from (A5). Hence

dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM < 0.

(d) Suppose y∗M − x∗

M = 0. If dyM > 0, (A6) yields S
′
∗

i = S
′
∗

i+ and ∂UM

∂yM

∣
∣
∣
y∗
M

< 0 follows

from (A5). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM < 0. If dyM < 0, (A6) yields S
′
∗

i = S
′
∗

i− and

∂UM

∂yM

∣
∣
∣
y∗
M

= 0 follows from (A5). Hence dUM = ∂UM

∂yM

∣
∣
∣
y∗
M

· dyM = 0.

Next we investigate whether variations of xM enhance welfare under the conditions specified

in the cases (c) and (d).
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(e) Suppose y∗M−x∗

M < 0 and y∗M−x∗

M+H
′
∗
∑

N S
′
∗

j+ ≥ 0 (as in (c)). If dxM > 0, (A8) yields

S
′
∗

i = S
′
∗

i− = 0 and ∂UM

∂xM

∣
∣
∣
x∗

M

< 0 follows from (A7). Hence dUM = ∂UM

∂xM

∣
∣
∣
x∗

M

· dxM < 0.

If dxM < 0, (A8) yields S
′
∗

i = S
′
∗

i+ > 0 and ∂UM

∂xM

∣
∣
∣
x∗

M

≥ 0 follows from (A7). Hence

dUM = ∂UM

∂xM

∣
∣
∣
x∗

M

· dxM ≤ 0.

(f) Suppose y∗M − x∗

M = 0 (as in (d)). If dxM > 0, (A8) yields S
′
∗

i = S
′
∗

i− and ∂UM

∂xM

∣
∣
∣
x∗

M

= 0

follows from (A7). Hence dUM = ∂UM

∂xM

∣
∣
x∗

M

· dxM = 0. If dxM < 0, (A8) yields S
′
∗

i = S
′
∗

i+

and ∂UM

∂xM

∣
∣
∣
x∗

M

> 0 follows from (A7). Hence dUM = ∂UM

∂xM

∣
∣
∣
x∗

M

· dxM < 0.

In view of (a) - (f), the equilibrium of the three-stage game with strategic action on the fuel

market is inefficient, if and only if the equilibrium of the market economy in Proposition 2

satisfies (23). �

A3: An analysis of (24)

(i) dxM > 0 =⇒ dp = P ∗

xM
dxM < 0 =⇒ S

′
∗

j = 0

=⇒ dUM =
∂U∗

M

∂xM
dxM =

{

−(y∗M − x∗

M)P ∗

xM
dxM ≥ 0, if y∗M ≥ x∗

M

−(y∗M − x∗

M)P ∗

xM
dxM < 0, if y∗M < x∗

M

(ii) dxM < 0 =⇒ dp = P ∗

xM
dxM > 0 =⇒ S

′

j > 0

=⇒ dUM =
∂U∗

M

∂xM
dxM =







−(y∗M − x∗

M)P ∗

xM
dxM

︸ ︷︷ ︸

(−,0)

−

(

H ′

∑

N

S ′

j

)

P ∗

xM
dxM

︸ ︷︷ ︸

(−)

≤ 0, if y∗M ≥ x∗

M

−(y∗M − x∗

M)P ∗

xM
dxM

︸ ︷︷ ︸

(+)

−

(

H ′

∑

N

S ′

j

)

P ∗

xM
dxM

︸ ︷︷ ︸

(−)

R 0, if y∗M < x∗

M

(iii) dyM > 0 =⇒ dp = P ∗

yM
dyM > 0 =⇒ S

′

j > 0

=⇒ dUM =
∂U∗

M

∂yM
dyM =







−(y∗M − x∗

M)P ∗

yM
dyM

︸ ︷︷ ︸

(−)

−

(

H ′

∑

N

S ′

j

)

P ∗

yM
dyM

︸ ︷︷ ︸

(−)

< 0, if y∗M > x∗

M

−
(
H ′
∑

N S ′

j

)
P ∗

yM
dyM < 0, if y∗M = x∗

M

−(y∗M − x∗

M)P ∗

yM
dyM

︸ ︷︷ ︸

(+)

−

(

H ′

∑

N

S ′

j

)

P ∗

yM
dyM

︸ ︷︷ ︸

(−)

R 0, if y∗M < x∗

M
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y∗M > x∗

M y∗M = x∗

M y∗M < y∗M

dxM > 0 dwF > 0, dwH = 0 dwF = dwH = 0 dwF < 0, dwH = 0

dxM < 0 dwF < 0, dwH < 0 dwF = 0, dwH < 0 dwF > 0, dwH < 0

dyM > 0 dwF < 0, dwH < 0 dwF = 0, dwH < 0 dwF > 0, dwH < 0

dyM < 0 dwF > 0, dwH = 0 dwF = dwH = 0 dwF < 0, dwH = 0

dUM dUM > 0 dUM = 0 dUM R 0

Table 1: Comparative statics of the fuel caps

(iv) dyM < 0 =⇒ dp = P ∗

yM
dyM < 0 =⇒ S ′

j = 0

=⇒ dUM =
∂U∗

M

∂yM
dyM =

{

−(y∗M − x∗

M)P ∗

yM
dyM ≥ 0, if y∗M ≥ x∗

M

−(y∗M − x∗

M)P ∗

yM
dyM < 0, if y∗M < x∗

M

We summarize the results (i)-(iv) in Table 1.
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