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Abstract

Many mechanisms have been developed to solve the free-rider problem in private

public good provision. Most of these mechanisms were designed to have good static

(Nash) equilibrium properties. I present in this paper a new class of mechanisms,

the Conditional Contribution Mechanisms (CCM), which are designed to have good

dynamic equilibrium properties instead. The CCMs give all agents the possibility to

condition their contribution on the total level of contribution provided by all agents.

Their dynamic incentive structure makes the CCMs particularly suited for repeated

public goods. I prove for a very general class of environments that all equilibria of

the CCMs under a new variant of Better Response Dynamics, called Unexploitable

Better Response Dynamics (UBRD), are Pareto e�cient. I further present a �rst

experimental study of one mechanism's performance compared to the performance of

the Voluntary Contribution Mechanism. In an environment with binary contribution

and linear valuations, agents play the mechanisms in a repeated setting. I test one

case of complete information and homogeneous valuations and a second case with

incomplete information and heterogeneous valuations. In both cases a signi�cantly

higher contribution rate can be observed when the CCM is used. Furthermore, all

stable outcomes of the CCM, which are observed in the experiment, are in line with

the prediction of UBRD.

Keywords: Experimental Economics, Public Goods, Mechanism Design, Better

Response Dynamics.

JEL-Classi�cation: C9, D82, H41, C72



1 Introduction

Public goods are characterized by non-excludability and non-rivalry in consumption. If con-

tribution to public goods is voluntary, egoistic utility maximizing agents choose their contri-

bution to a public good on basis of their individual price and individual bene�t. Therefore,

the positive external e�ects of individual contributions are neglected, leading to an ine�-

cient level of public good provision. This is the well known free-rider problem. Numerous

attempts have been made to �nd a mechanism that provides e�cient contributions in public

good environments. I give a short survey of previously proposed mechanisms in section 2. In

this paper, I propose a new class of mechanisms, which I call the Conditional Contribution

Mechanisms (CCM). In these mechanisms agents can choose conditional contribution o�ers

as messages.

An optimal mechanism for public good provision should implement a Pareto e�cient

outcome in dominant strategies, or at least in a unique Nash equilibrium. The mechanism

should be individually rational, i.e. all agents should be ex ante better o� by participating

in the mechanism. It should be budget balanced, i.e. the sum of transfers payed to and

received from an eventual central authority should be zero. The mechanism should not make

use of any information, e.g. on individual preferences, that is unlikely to be available to the

mechanism designer in applications. And the mechanism should not be too complicated, such

that agents can be trusted to play the mechanism as intended. Furthermore, the optimal

mechanism should not have any environmental restrictions. I.e. it should not make use of

speci�c tools, as e.g. communication, which are not available to agents in every environment.1

It is apparent from this extensive list of properties, that such a mechanism does not exist.

In fact, already Pareto optimality, budget balance and dominant strategy implementation

are incompatible (Groves and Ledyard, 1977b). Therefore, there is a need to make some

restrictive assumptions on public good environments and search for optimal mechanisms in

1I do not claim that this list of properties is complete. There are always further desirable features that
can be asked of a mechanism. Fairness considerations, which might be captured by a switch from Pareto
optimal outcomes to core outcomes, could be one such further desirable property.
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those environments.

The main di�erence between this attempt and previous attempts is that to this point

most mechanisms aimed at an implementation of Pareto e�cient outcomes in Nash equilib-

ria. In this sense, mechanisms proposed so far were designed to have good static equilibrium

properties. The CCMs on the other hand are speci�cally designed with a focus on their dy-

namic equilibrium properties and are therefore particularly suited for repeated public goods.

There are many public goods that have to be supplied repeatedly. Financing of online public

goods like Wikipedia, renovations of infrastructure, like roads or children playgrounds, and

the cleanness of the kitchen in a shared �at are only three examples of very di�erent scale.

One reason, why repeated public good environments have not gained more attention so far,

might be that dynamic behavior in repeated mechanisms was hard to predict.

However, Healy (2006) provides solid indication that agents behavior in repeated interac-

tion in public good mechanisms can be well described by a model of better response dynamics.

Therefore, I assume in this paper that there is a repeated public good environment in which

agents' behavior can be described by a behavioral model that is based on better response

dynamics. For such environments, I propose a new class of mechanisms, the Conditional

Contribution Mechanisms. I give a formal analysis of the CCMs' dynamic equilibrium prop-

erties and I demonstrate by experimental evidence that one version of the CCMs outperforms

the Voluntary Contribution Mechanism (VCM) signi�cantly in two di�erent environments.

Furthermore, I show that the behavioral model, which is used in the theory sections, makes

correct predictions according to the experimental evidence presented.

In the Conditional Contribution Mechanisms, agents can free-ride and contribute un-

conditionally, just as in the VCM. Moreover, agents have the possibility to conditionally

contribute. In the �rst part of the paper, I consider an environment in which contribution is

binary. In such an environment, a conditional contribution o�er is especially simple. Agents

may announce: "I am willing to contribute to the public good if at least k agents contribute

in total." The mechanism then selects the highest possible level of total contribution that
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satis�es all those conditions. I call this simple version of the CCMs the Binary Conditional

Contribution Mechanism (BCCM). I claim in the following that this kind of mechanism has

very good dynamic behavioral properties. I.e. in my opinion this mechanism is well suited

to allow agents to coordinate over time on Pareto e�cient equilibrium outcomes in repeated

public good environments.2

I model a repeated public good environment in the following way. There is a �nite number

of agents, one private and one public good. All agents interact via the same mechanism over

a �nite or in�nite number of periods. Every agent has the same endowment in every period

and has to spend his entire endowment on the two goods.3 The basic behavioral model that

I apply to this environment is Better Response Dynamics (BRD). In this concept, all agents

can change their message from one period to the next. And a message is a better response

to the message pro�le of the previous period if this message leads to a (weak) increase in

utility, when everybody else sticks to the message from the previous period. Under BRD

agents switch with strictly positive probability from their message in the previous period to

a certain message if and only if this message is a better response to the message pro�le of

the previous period. A set of message pro�les that, once reached, can never be left by BRD,

and that does not contain a smaller set with the same property is called a recurrent class. If

such a set is a singleton, i.e. it only contains a single message pro�le, it is called an absorbing

state. An outcome is considered an equilibrium outcome under such a dynamic model if it

is the outcome of a recurrent class or of an absorbing state.

If agents behave according to BRD, then conditional contribution o�ers have two distinct

properties that make them suitable for repeated interaction in public goods. First, imagine

that in the current period nobody contributes to the public good. By o�ering a contribution

conditional on some (higher) total level of contribution, agent i can cooperate without being

2The CCMs are supposed to be simple decentralized mechanisms and applicable in environments without a
central authority. As such the mechanisms do not make use of transfer payments between agents. Therefore,
I also consider the notion of Pareto e�ciency in this paper without the possibility of transfers. It may,
therefore, be possible that Pareto improvements on e�cient outcomes can be found, when transfer payments
are allowed.

3I.e. there is no consideration of consumption or saving between periods.
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worse o� in the short term. If others behave similarly, contributions can be increased without

anyone su�ering short term losses. Thus, conditional contribution o�ers have the potential

to leave ine�cient outcomes under BRD.

Second, imagine that contributions are on a Pareto e�cient level. Assume further that

all agents, who contribute positive amounts, condition that contribution on the same level,

the aggregate level of contributions. Such a message pro�le, in which all conditions equal

the sum of contributions, shall be called perfectly coordinated. Whenever the message pro-

�le is perfectly coordinated, every single agent is pivotal. I.e. no agent can reduce his or

her contribution, without total contributions going to zero. This indicates that conditional

contribution o�ers have the potential to stabilize e�cient outcomes under BRD.

In fact, there is only one kind of a better response that makes agents leave a Pareto

optimal outcome, once a perfectly coordinated message pro�le is reached. Agents can lower

their condition. Such a deviation never alters the outcome immediately (contribution o�ers

did not change and all conditions are still satis�ed). However, it can introduce incentives for

other agents to free ride on the deviator's contributions. I claim that lowering one's condition

in a coordinated state is not rational, and I call such a deviation exploitable. Accordingly,

deviations which are not exploitable will be called unexploitable. I add unexploitability as a

second condition to the model of Better Response Dynamics. Therefore, I assume that agents

only deviate to messages which are unexploitable and a better response with respect to the

current outcome. I prove that under this behavioral model, Unexploitable Better Response

Dynamics (UBRD), the CCMs lead only to Pareto e�cient equilibrium outcomes.

In the second part of the paper, I test this theory in a lab experiment in two environments.

In both environments, contribution is binary and the bene�t from the public good is linear.

The environments di�er in terms of preferences and information structure. For the �rst

environment, I choose homogeneous valuations and complete information, because this is a

standard environment. In this way the results are better comparable to previous experiments.

For the second environment, I choose heterogeneous valuations and incomplete information,
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since this is more realistic and more challenging. In both environments, I compare the BCCM

with the VCM, repeated over 20 periods. I �nd that the BCCM signi�cantly outperforms the

VCM in terms of contributions and e�ciency in both environments. Furthermore, all stable

equilibrium outcomes, which can be observed in the BCCM treatments, are in line with the

prediction of the behavioral model UBRD.

Finally, in the third part of the paper, I generalize the environment. Contributions are

no longer assumed to be binary, and the utility functions are much more general. In an

environment with non-binary contribution, a conditional contribution o�er has the form: "I

am willing to contribute x to the public good if total contribution is at least y." I demonstrate

that the simple generalization of the BCCM, in which all agents announce one such o�er, has

ine�cient equilibria under UBRD. I call this mechanism the Single Conditional Contribution

Mechanism (SCCM). However, the slightly more complex version, in which all agents are

allowed to make two such o�ers in each period, solves this issue. Since this is the most

general form of the CCMs, I simply call it the Conditional Contribution Mechanism (CCM).

The rest of the paper is structured as follows. Section 2 provides a short survey of pre-

viously proposed public good mechanisms and their environmental restrictions, as well as a

discussion of environmental restrictions for the mechanisms I propose in this paper. Section

3 introduces the Binary Conditional Contribution Mechanism and provides the equilibrium

analysis under Unexploitable Better Response Dynamics. Section 4 describes the experimen-

tal setting that is used to test the BCCM in the lab. In Section 5, I present and discuss the

experimental results. In Section 6, I extend the theoretical analysis to environments in which

contributions are not binary and preferences over the public good are very general. Finally,

Section 7 gives a short summary and discussion of the paper. Proofs to all theorems can be

found in Appendix A. Translations of written instructions and test questions handed out to

agents in the experiment can be found in Appendix B and Appendix C.

6



2 Related literature.

Since I propose new mechanisms for public good provision, my work relates to all previously

proposed mechanisms in this area. However, a complete and extensive survey of all those

mechanisms is beyond the scope of this paper. Therefore, I give a short discussion of the

most prominent work in this area. One way of presenting these mechanisms is by listing all

desirable properties which they do and do not satisfy. However, the �nal goal of the design

of public good mechanisms must be the application to real problems. Therefore, I try to go

one step further and give for all mechanisms a characterization of all environments to which

I think they could be reasonably applied. At the very end of this section, I also give the same

characterization for the CCMs.

The �rst mayor point of distinction between environments is whether or not there is a

central authority. The most prominent examples of mechanisms for environments with a cen-

tral authority are the well known Vickrey-Clarke-Groves (VCG) mechanisms (Vickrey, 1961,

Clarke, 1971, Groves and Ledyard, 1977a). The mayor disadvantages of the VCG mechanisms

are that they are not budget balanced and that participation does not have to be rational

for all agents. However, in environments with a central authority, participation is usually

considered to be enforceable and an unbalanced budget, while not desirable, might at least

be possible. Therefore, the VCG mechanisms are suitable for environments with a central

authority. The tax and subsidy scheme of Falkinger (1996) falls into this category as well. In

this mechanism, agents receive a subsidy or have to pay a tax, depending on the deviation of

their contribution to the public good from the average contribution of everyone else. While

this mechanism has an advantage over the VCG mechanisms by having a balanced budget,

the Falkinger mechanism only has an e�cient interior equilibrium when the induced prices for

the public good happen to be the Lindahl prices (Kirchsteiger and Puppe, 1997). This turns

out to be almost only satis�ed, when preferences of all agents are perfectly homogeneous.

In environments with homogeneous preferences, there is also experimental support for this

mechanism (Falkinger et al., 2000, Bracht et al., 2008). Thus, the Falkinger mechanism is
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suitable for environments with a central authority, in which preferences are homogeneous.

The second category of mechanisms covers mechanisms that are very simple. The Vol-

untary Contribution Mechanism is the most prominent example. It is applicable in all envi-

ronments. However, it has the mayor disadvantage that it does not lead to Pareto e�cient

outcomes in equilibrium. Especially when interaction is repeated, contribution rates under

the VCM get very low in later periods. See Ledyard (1994) for a survey on this extensive

branch of the literature. A second example of a simple mechanism is the Provision Point

Mechanism (PPM). In the PPM there exists a certain threshold. When total contributions

do not meet at least this threshold no public good is provided and the money is usually

refunded. While the PPM is also applicable in all environments, the di�culty of choosing an

optimal threshold varies across environments. When the public good is binary, as e.g. in the

one streetlight problem (Bagnoli and Lipman, 1989), the optimal threshold is obvious. How-

ever, in other cases, like the multiple streetlight problem or continuous public goods, �nding

the optimal threshold may not be trivial. There are multiple studies that demonstrate that

in suitable environments the PPM leads to higher contributions to the public good than the

VCM ( see e.g. Rondeau et al. (1999, 2005), Rose et al. (2002)). Because of its simplicity

the PPM is regularly applied in practice, as e.g. on crowd funding platforms. Bagnoli and

Lipman (1989) attempted to extend the idea of the PPM to continuous public goods. Their

generalization produced e�cient outcomes in theory under a special re�nement of the Nash

equilibrium, the Successively Undominated Strictly Perfect Equilibrium (SUSPE). However,

experimental evidence suggests that agents do not play the game according to this re�nement

(Bagnoli et al., 1992).

The third category covers mechanisms that o�er potential rewards for contributions. Such

mechanisms are e.g. auction and lottery mechanisms. Schram and Onderstal (2009) compare

a �rst-price winner-pay auction, a �rst-price all-pay auction and a lottery. They �nd that

out of those three mechanisms the all-pay auction leads to signi�cantly higher contributions.

Morgan and Sefton (2000) present an experiment in which a lottery leads to higher contri-
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butions to a public good than the VCM. They further �nd that higher prize money leads

to a more e�ective mechanism. Contrary to the �ndings of Schram and Onderstal (2009),

Corazzini et al. (2010) show an experiment in which a lottery outperforms an all-pay auction.

Still in their experiment both mechanisms fare better than the VCM. The main disadvantage

of such mechanisms is the risk of losing the prize money. When preferences for the public

good are rather low, total contributions might be lower than the price money, leading to

an unbalanced budget. One further environmental constraint is that the use of monetary

incentives limits the applicability to environments in which contributions are also monetary.4

However, in environments where there is good indication that contributions will exceed the

prize money such mechanism may not be a bad choice.

In contrast to the use of rewards, mechanisms of the forth category aim to increase

contributions by allowing punishments. This literature started with Ostrom et al. (1992) and

Hirshleifer and Rasmusen (1989), who showed that punishment or ostracism can theoretically

and experimentally increase cooperation under repeated interaction. This idea became even

more popular when Fehr and Gächter (2000) demonstrated that agents even punish in one-

shot games out of anger, although punishment in their experiments is costly and there is no

potential gain in future periods. This implies that the threat of punishment is also credible

in one-shot games. Punishment can therefore increase cooperation in both cases. However,

the use of punishment has one severe disadvantage. While punishment usually increases

contribution rates, it does not increase e�ciency by the same margin. This is due to the fact

that the punishment itself is socially costly.

The �fth category covers mechanisms that use an extensive form. One example is the

auction mechanism of Smith (Smith, 1979, 1980). This auction mechanism lets all agents

announce a marginal contribution, which they are willing to pay for one unit of the public

good, and a desired quantity. The mechanism then proposes to supply the average of these

desired quantities if the sum of all marginal contributions is at least as high as the marginal

4Otherwise the budget is de�nitely negative.
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price. In the next stage agents vote on the proposed outcome. Only unanimous acceptance

implements the proposed quantity. In case the vote fails, the entire procedure is repeated up

to �ve times. One further extensive form mechanism is the subsidy mechanism proposed by

Danziger and Schnytzer (1991). They propose that agents announce a price in the �rst stage,

by which they will subsidize all other contributions in the second stage. In the second stage

agents choose their contributions based on the announced subsidies. Varian (1994) proposes

a similar mechanism for two agents in more general environments. Furthermore, there is the

Jackson-Moulin mechanism (Jackson and Moulin, 1992), which was later generalized by Bag

(1997). In this mechanism all agents announce the total bene�t of a public project in the

�rst stage. If the highest announced number is lower than the cost of the project the project

is not undertaken. In the second stage, all agents announce their individual bene�t. If the

sum of those bene�ts is higher than the highest total bene�t announced in period one, the

project is implemented and costs are shared according to some prede�ned rule. All those

mechanisms have in common, that they use sub-game perfection as a re�nement. This leads to

high requirements of information on part of the participating agents to play the equilibrium.

Smith (1979) incorporated this problem into his mechanism by giving agents �ve trials. In

this way, agents have some time to learn the information by trial and error. However, this

comes with the disadvantage that it might take a long time to play the mechanism, which

comes at a cost as well.5 Therefore, these mechanisms are best suited for environments in

which agents have much information on other agents' preferences and/or environments in

which simultaneous play can be implemented easily and at low costs.

Finally, the sixth category covers other mechanisms that focus on dynamic equilibrium

behavior. There is �rst of all the canonical mechanism by Maskin (1999). This mecha-

nism is designed to implement general social choice functions. Therefore, it is, in theory,

also applicable to public good environments. The main challenge when applying the canon-

5Think about larger groups that are not in one room as in lab experiments and that can not be forced to
sit at their computer at the same time. In such groups simultaneous play will have to be implemented by
waiting for the slowest responding agent's input in each round. With up to ten rounds (�ve times sending
messages and �ve times voting) this can take up to some weeks.
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ical mechanism is that it uses the entire type pro�le of all agents in every agent's message

space. One can choose relatively simple type spaces to test the canonical mechanism in the

lab. However, it is entirely unclear how those type spaces should be modeled in the �eld,

without message dimensionality getting completely out of hand. Probably most related to

my work are the contractive mechanisms by Healy and Mathevet (2012). They manage to

design a mechanism that satis�es nearly all desired properties. It Nash implements Pareto

e�cient outcomes, it is budget-balanced and it is individually rational. The main challenge

in this mechanism might be its complexity. Especially when budget-balance is guaranteed o�

equilibrium, the outcome function of the mechanism becomes very mathematical and hard

to comprehend for agents. The main di�erence to the approach in this paper is that their

mechanism is continuous, while the mechanism in this paper works exactly because of its

discontinuities.

Of course, the mechanisms that I propose in this study, the Conditional Contribution

Mechanisms, have environmental constraints as well. First of all, the CCMs are designed for

repeated interaction. While I demonstrate in this paper that all outcomes of the mechanisms,

which are stable in the long run, are Pareto e�cient, this does not tell us anything about

e�ciency in one shot public good games. Therefore, the CCMs are probably only suited for

repeated public good environments. Second, the CCMs use conditional contribution o�ers

and I assume that those o�ers can be enforced. This is not a problem in environments in which

contributions are monetary, however when contributions are not monetary enforceability of

such o�ers must always be considered.6 And third, the behavioral model of Unexploitable

Better Response Dynamics must give an accurate description of long term stable outcomes in

the respective environment. This is an empirical question. I provide experimental evidence

in section 5 that the model gives an accurate description of long term stable outcomes in

binary contribution environments with linear valuations for the public good. Whether this

extends to other environments, is an interesting question for further research.

6When contributions are monetary they can be submitted with each o�er and be refunded if the corre-
sponding condition is not met, just as in the PPM when the threshold is not met.
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3 The Binary Conditional Contribution Mechanism

This section introduces one Conditional Contribution Mechanism in a binary contribution

environment with linear valuations for the public good. In environments with binary con-

tribution the mechanism has a particularly simple form.7 I call it the Binary Conditional

Contribution Mechanism (BCCM). In section 6, I show how the mechanism can be general-

ized to environments with non-binary contributions. And I prove that similar results to the

ones in this section hold for very general preferences over the public good.

Consider the following environment. There are n ∈ N agents labeled i that interact over

a certain number of periods t. There is one public and one private good. Each agent has an

endowment of one monetary unit in each period, which he or she can either invest into one

unit of the private or one unit of the public good. An outcome in a certain period t is then

de�ned as zt = (zt1, ..., z
t
n) with zti ∈ {0, 1}, ∀i ∈ I := {1, . . . , n}. Here zti = 1 is interpreted

as agent i investing his monetary unit in period t into the public good. And zti = 0 represents

agent i investing his monetary unit in period t into the private good. Let Z := {0, 1}n be

the outcome space that contains all possible outcomes in a certain period. For notational

convenience de�ne z = (0, . . . , 0) as the outcome in which no agent invests into the public

good.

Since I intend to apply a dynamic solution concept, utility is de�ned for each period

separately. In this section, I assume utility to be linear in the both the private good and

the public good.8 Further, all agents i ∈ I have a certain valuation θi ∈ [0, 1) for the public

7Whether contributions are binary or not, is either given by the environment and observable to everyone.
Or it is a design choice by the mechanism designer. Therefore, it is not problematic to propose di�erent
forms of a mechanism, depending on whether contribution is binary or not.

8This assumption is made in this section for twp reasons. First to get some simple intuition on how the
CCMs work. And second to cover the theory for the experiment in sections 4 and 5. In later sections this
assumption will be relaxed considerably.
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good.9 Utility of agent i in period t is therefore given by

uti = 1− zti + θi

n∑
j=1

ztj. (1)

The main solution concept in this paper is a dynamic adjustment process that will be

formally introduced in subsection 3.2. Therefore, the results of this paper apply whenever

this adjustment process describes equilibrium outcomes reasonably well. This might be the

case in environments with complete or incomplete information. Therefore, I do not make any

speci�c assumption on whether agents are informed on other agents' valuations or not.

In this environment, I de�ne the Binary Conditional Contribution Mechanism as

GBCCM := (MBCCM , gBCCM), where MBCCM describes the mechanism's message space and

gBCCM : MBCCM 7→ Z describes the mechanism's outcome function. In the BCCM every

agent can choose a natural number between 1 and n+ 1. Thus, the message space is de�ned

asMBCCM =
∏n

i=1M
BCCM
i , withMBCCM

i := {1, 2, . . . , n+1}, ∀i ∈ I.10 The chosen message

is interpreted in the following way: Choosing message mi = k is like saying �I'm willing to

contribute to the public good if at least k agents (including myself) contribute in total.� Note

that with the messages mi = 1 and mi = n+ 1 players can decide to contribute in any or no

case, respectively.11

Given a chosen message pro�le, the outcome selected by the mechanism is the outcome

with the highest possible level of contributions such that all message statements are satis�ed.

9Values θi < 0 are excluded, since then the public good would be a bad for those agents. If this were
the case a mechanism that does not use transfers can never guarantee Pareto improvements. Thus, the
mechanism proposed in this paper should only be applied if valuations for the public good of all agents are
weakly positive. Values θi ≥ 1 are excluded for simplicity of notation. Any agent with θi ≥ 1 has a weakly
dominant strategy to contribute the entire endowment to the public good. Thus, there is no need to provide
additional incentives to these kind of agents. Therefore, including the possibility of θi ≥ 1 would not lead to
a signi�cant change in any results of the paper, but would complicate notation at several points.

10If the number of participating agents is unknown to either the mechanism designer or the participating
agents themselves, the message space can be chosen as MBCCM

i := N instead. This is less elegant, since
agents now have some redundant options. However, all relevant results are una�ected.

11Since there are only n agents, there can never be n+ 1 contributing agents.
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Formally, de�ne

K(m) := max

{
k ∈ {0, 1, ..., n}

∣∣∣∣ n∑
i=1

1(mi≤k) ≥ k

}
.12 (2)

The outcome of the mechanism is de�ned as gBCCM(m) = z with zi = 1 if and only if

mi ≤ K(m).

3.1 Nash equilibria of the BCCM

I will later use a dynamic solution concept to predict the outcomes of the BCCM. However,

looking at the Nash equilibria of the stage game provides a lot of intuition on what the

incentive structure looks like. Therefore, I will start with a discussion of Nash equilibria.

The following example demonstrates what properties an outcome must have to be a Nash

equilibrium outcome.

Example 3.1 Consider 5 identical agents with valuation θi = 0.4 ∀ i ∈ I. The trivial

Nash equilibrium is given by mi = 6, ∀ i ∈ I, where no agent contributes to the public good.

However, there are more equilibria as e.g. when agents 1, 2 and 3 choose message mi = 3 and

agents 4 and 5 choose mi = 6. In this case the �rst three agents will contribute to the public

good: z = (1, 1, 1, 0, 0). The structure of the mechanism makes this an equilibrium. Agents

4 or 5 can only change the outcome to z′ = (1, 1, 1, 1, 0) or z′′ = (1, 1, 1, 0, 1) respectively

by unilateral deviation. Neither deviation is bene�cial. And the �rst three agents can only

change the outcome to z, which is not bene�cial either. Thus, no agent has any (strict)

incentive do deviate.

In the second message pro�le in the example (m = (3, 3, 3, 6, 6)) all agents, who end up

contributing to the public good, condition their contribution exactly on the aggregate level

of contributions. And all other agents choose to free-ride in any case. I call such a mes-

sage pro�le perfectly coordinated. In a perfectly coordinated message pro�le any agent can

12In equation (2) 1(mi≤k) denotes the indicator function, which is 1 if mi ≤ k and 0 otherwise.
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only alter the outcome in one way by a unilateral deviation. Agents that currently do not

contribute can only alter the outcome by unilaterally contributing themselves. Since θi < 1

this is not pro�table. Agents that currently do contribute can only change the outcome to

z. This may or may not be pro�table depending on the current outcome z. This reasoning

demonstrates that a certain outcome z can be implemented as a Nash equilibrium if and only

if there is no agent for which the deviation from z to z is pro�table.13

Theorem 3.2 z is the outcome of a Nash-equilibrium of the BCCM if and only if

z �i z, ∀ i ∈ I.

Theorem 3.2 predicts equilibria which are Pareto e�cient as well as equilibria which may

not be Pareto e�cient. In the next subsection I will present my considerations on why only

the Pareto e�cient Nash equilibria will prevail as stable outcomes of a reasonable dynamic

adjustment process.

3.2 Unexploitable Better Response Dynamics

In this subsection, I construct and apply a dynamic behavioral model for the Conditional

Contribution Mechanisms.14

Since Better Response Dynamics (BRD) have been found to give a good description of

agents' behavior in repeated public good mechanisms (Healy, 2006), a BRD model will be

the basis for my behavioral model. In such a dynamic model agents play the same game

repeatedly over several periods. And in our case all agents will be allowed to adjust their

message from one period to the next.15 A message mt+1
i in period t + 1 is called a better

13It is easy to see that an outcome that can be realized as a Nash equilibrium outcome by some message
pro�le can also be realized as a Nash equilibrium by a perfectly coordinated message pro�le.

14Constructing a new behavioral model for a new mechanism might be unusual and this step can certainly
be criticized. However, it is my believe that we should put more weight on what we believe is rational play in a
given mechanism, rather than simply put our trust into one of the standard solution concepts. I �rmly believe
that the model of Unexploitable Better Response Dynamics, which I introduce in this paper, combines all
relevant rational incentives to correctly predict the outcomes of dynamic stable states in the CCMs. However,
since I can not simply expect the reader to share my believes, I present experimental evidence that supports
the presented model in chapter 5.

15Any dynamic model must specify whether only one or all agents can change their message in a given
period. I choose the latter, since it seems more reasonable for most applications.
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response for agent i to the message pro�le mt in period t if mt+1
i had provided a least as

much utility to i as mt
i if he had chosen mt+1

i already in period t. Mathematically, mt+1
i is a

better response if

ui(g(mt+1
i ,mt

−i)) ≥ ui(g(mt
i,m

t
−i)) (3)

In this equation g represents a general outcome function and mt
−i is the message pro�le of

all agents other than agent i in period t. A recurrent class of BRD is a set of message pro�les,

which if ever reached by the dynamics, is never left and which contains no smaller set with

the same property. If such a recurrent class consists of a single message pro�le, it is called

an absorbing state. The equilibrium outcomes of Better Response Dynamics are de�ned as

all outcomes of their recurrent classes or absorbing states. I will also call such outcomes the

long term stable outcomes of the dynamic model.

For some mechanisms all better responses might be equally rational and the standard

BRD model might be a good predictor of dynamic behavior. However, I argue that for the

CCMs some better responses are more rational than others, because of strategic implications.

Consider the following example.

Example 3.3 Assume there are 5 identical agents all with type θi = 0.4. Assume that

currently 4 agents contribute to the public good. The message pro�le could e.g. be mt =

(4, 4, 3, 3, 6). In this case agents 1 through 4 contribute to the public good. Consider now

agent 1. Any message mt+1
1 ∈ {1, 2, 3, 4} is a better response for agent i to the message pro�le

mt. None of these messages would change the outcome if no other agent changes his message

at the same time. However, the message mt+1
1 = 3 gives agent 2 an incentive to deviate to

mt+2
2 = 6 in the following period. Under the new message pro�le mt+2 = (3, 6, 3, 3, 6) only

agents 1, 3 and 4 would contribute to the public good. Thus, agents 1, 3, and 4 are worse o�

and agent 2 is better o�. The same would be true for the messages mt+1
1 = 2 and mt+1

1 = 1.

Messages mt+1
1 ∈ {1, 2, 3} can thus be exploited by agent 2 in a later period, making agent

2 better o� and agent 1 worse o�. Therefore, I call these messages exploitable. The special
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structure of the CCMs makes it possible for agents to prevent this kind of incentives for

exploitation without having to free-ride themselves.

With the motivation of the example in mind, I propose to combine the myopic better

response condition with a second condition on behavior. I call this condition unexploitability.

As demonstrated by the example, unexploitability captures non-myopic strategic incentives

in the CCMs and, therefore, complements the myopic better response condition to form

a balanced dynamic behavioral model.16 Before I present more intuition on this model, I

formally de�ne Unexploitable Better Response Dynamics (UBRD).

De�nition 3.4 Given a message pro�le mt and an outcome g(mt) = zt, a message mt+1
i is

called exploitable if there is any mt+1
−i ∈M−i such that zt+1 = g(mt+1

i ,mt+1
−i ) ≺i zt with zt+1

i >

0. A message mt+1
i is called unexploitable if it is not exploitable.

This de�nition has two particular details that deserve a discussion. Note �rst that all possible

message pro�les of other agents m−i are considered. One could argue, since I assume a BRD

model, that I should only consider pro�les of better responses of other agents at this point.

However, the UBRD model is designed with the most realistic case in mind, in which agents

have no information on the preferences on other agents. In this case agents can not tell

whether a certain message of another agent is a better response. Therefore, from such a

player's perspective it seems rational to account for all possible choices. Note second that I

only consider outcomes zt+1 in which agent i contributes a strictly positive amount. This has

to be the case, since the choice of conditions in the BCCM only allows agents to exclude some

outcomes in which they have to contribute. Agents never have any in�uence over outcomes

in which they do not contribute. Furthermore, the term exploitable suggests that agent i is

exploited by another agent. If he does not contribute, there is nothing to exploit.

16There is one further indication that choosing exploitable messages is not rational. Being exploitable is in
some cases identical to being weakly dominated. This can best be demonstrated by the following example.
Assume there are 5 identical agents all with type θi = 0.4. Let the current message pro�le bem = (6, 6, 6, 6, 6).
In this case no agent contributes and the outcome is z. In this situation a message is exploitable if it makes
outcomes possible in which an agent is worse o� than in z. Those messages are only mi = 1 and mi = 2.
Both messages are weakly dominated by mi = 3. In general, when the current outcome is z a message is
exploitable if and only if it is weakly dominated.
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In the next step I combine unexploitability with the BRD model into one behavioral

model.

De�nition 3.5 In Unexploitable Better Response Dynamics (UBRD) all agents can adjust

their message in every period. Agent i switches in period t+ 1 to message mt+1
i with strictly

positive probability if and only if

(1) mt+1
i is a (weak) better response to mt and

(2) mt+1
i is unexploitable.

This model is well de�ned for the CCMs. In other words, unexploitable better responses

always exist.17 If agent i currently contributes to the public good, conditioning his contri-

bution on the current total level of contribution is always an unexploitable better response.

And if agent i currently does not contribute to the public good, unconditional free-riding is

always an unexploitable better response. The rest of the paper uses the following de�nition

to simplify notation.

De�nition 3.6 z′ is a strict∗ Pareto improvement over z if z′ is a Pareto improvement over

z, that is strict for all agents with type θi 6= 0. 18

With this de�nition I can formulate the central result for the binary model.

Theorem 3.7 An outcome z ∈ Z is an outcome of some recurrent class of the BCCM under

UBRD if and only if it is a Pareto optimal outcome and a strict∗ Pareto improvement over

z, if at least one such an outcome exists. If no such outcome exists, the dynamics cycle over

all outcomes, which are weak Pareto improvements over z. 19

17This statement holds only for the CCMs. In most other mechanisms, there might be situations where
the set of unexploitable better responses is empty.

18Agents, who do not bene�t from the public good (θi = 0), can never be strictly better o� than in z. If
those agents are excluded by assumption, this special de�nition of strict

∗ is not necessary. However, when
there exist agents with a valuation of θi = 0, many mechanisms, which try to force agents to cooperate, violate
individual rationality. I my opinion it is worth the additional notation to demonstrate that the BCCM can
handle this case.

19Note again at this point that I consider a concept of Pareto optimality without the possibility of transfer
payments.
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Note �rst that the assumption of existence is very weak. It will be true in all cases, in which

there are signi�cant e�ciency gains possible. With the other assumptions in this section,

we can formulate this assumption mathematically in the following way. A Pareto optimal

outcome, which is a strict∗ Pareto improvement over z exists, if and only if

∃ k ≤ n and i1, . . . , ik ∈ I : θi >
1

k
,∀i ∈ {i1, . . . , ik} (4)

Let me provide an example to further improve the intuition for the main result:

Example 3.8 Revisit the example with 5 identical agents all with type θi = 0.4. The theorem

predicts that all outcomes in which 3, 4, or 5 agents contribute to the public good are outcomes

of recurrent classes of the BCCM. Assume for example that the current message pro�le is

mt = (4, 4, 4, 4, 6). Then agents 1 through 4 contribute to the public good, while agent 5

does not. Thus, the outcome is zt = (1, 1, 1, 1, 0). Any unilateral deviation of agent 5 would

lead to zt+1 = (1, 1, 1, 1, 1) and would thus not be a better response. For agents 1 through 4

unilateral deviations to mt+1
i ∈ {5, 6} would lead to the outcome zt+1 = z. They are, thus,

not better responses either. And for agents 1 through 4 messages mt+1
i ∈ {1, 2, 3} make

outcomes possible in which the agent has to contribute, and total contribution is less than 4.

Thus, those messages are exploitable. Therefore, the message pro�le mt = (4, 4, 4, 4, 6) is an

absorbing state of UBRD.20

As demonstrated by example 3.8, Pareto optimal outcomes can only be left under Better

Response Dynamics if agents choose exploitable messages. Despite all described strategic

incentives I do not expect that no exploitable messages at all will be chosen in experiments.

Instead my trust in the predictive power of the model comes from the following observation.

When agents play the BCCM and they better respond, they will reach a Pareto optimal

outcome eventually, even by random play, since there is no absorbing state under BRD. Once

agents reach such a Pareto optimal outcome, one of three cases has to happen. In the �rst

20In this example the other absorbing states are given by m′ = (5, 5, 5, 5, 5) and m′′ = (3, 3, 3, 6, 6) (in any
permutation)
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case, which is described by UBRD, enough agents play unexploitable to stabilize the Pareto

optimal outcome. In the second case, some agents play exploitable such that incentives for

exploitation exist. In this case, assume that the remaining agents do not exploit them (e.g.

because they have preferences for conditional cooperation, as described in Fischbacher et al.

(2001), Fischbacher and Gächter (2010)). If the exploitable messages are not exploited, the

outcome is again not left under UBRD. It is, therefore, stable as predicted by UBRD, even if

agents do not actually play unexploitable. In the third case, enough agents play exploitable

such that they can be exploited. And then they are exploited. In this case, the outcome,

which should be stable according to UBRD, is left. This is the case which is most critical for

the theory. In this last case, however, choosing exploitable messages makes agents strictly

worse o� once they are exploited. And no matter how often such an outcome is left, agents

will at some point return to the same or another absorbing state of UBRD, because there are

no other stable outcomes under BRD. Therefore, I claim that in this case, after some time,

enough agents will realize that choosing exploitable messages makes them worse o�. And

they will stop to choose them. Once this happens we return to case one and the outcome is

once again stable.

In fact, not even all agents have to play unexploitable to remove incentives for exploitation.

This strengthens the argument that in the third case eventually enough agents will learn to

do so. Consider again an example to demonstrate this.

Example 3.9 Assume there are 5 identical agents all with type θi = 0.4. Let the current

message pro�le be mt = (5, 5, 5, 1, 1). In this case only agents 1 through 3 send an unex-

ploitable message. Nevertheless, neither of the agents can strictly bene�t from any unilateral

deviation. Although agent 4 and 5's messages are exploitable, any attempt to exploit these

agents would leave only agents 4 and 5 contributing. Thus, total contribution to the public

good would go down by 3. This makes all agents worse o�. Thus, in this example it is

su�cient if 60% of agents behave according to UBRD and 40% behave according to BRD to

support full cooperation.
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4 Experiment on the BCCM

The main prediction of last section's theoretical model is that only Pareto e�cient outcomes

are stable outcomes of the BCCM under UBRD. The focus of this section is the design of an

experiment to test this prediction. Since the theory should hold for cases of complete and

incomplete information about agents' preferences, I test the BCCM in two di�erent environ-

ments. The �rst environment covers complete information and homogeneous valuations. I

include this case, since it is very simple and it provides basic intuition on whether the predic-

tion of the UBRD model holds. The second environment covers incomplete information and

heterogeneous valuations. I include this case, since it is particularly challenging and it pro-

vides good intuition on whether or not the results are stable across di�erent environments.21

Besides validating the prediction of UBRD, I want to evaluate the level of contributions

that the BCCM can provide. For this reason, I need to compare the contribution rates of the

BCCM to some other mechanism that can be used as a benchmark. The mechanism that I

use as a benchmark is a standard binary Voluntary Contribution Mechanism (VCM). In this

mechanism agents have only two options in any given period. They can contribute in any

case or free-ride in any case. I use the VCM as a benchmark for three reasons. First, the

VCM is still used in many applications to provide important public goods (e.g. Wikipedia).

Therefore, improvements on the VCM in such environments are still important. Second, most

other experimental studies so far chose the VCM as a comparison as well (e.g. Smith (1979,

1980), Morgan and Sefton (2000), Corazzini et al. (2010)). Thus, this choice provides some

intuition on how the BCCM compares to those other mechanisms as well. Third, the VCM

is the most standard of all public good mechanisms and therefore best understood. And

although the VCM may not lead to the most e�cient levels of contribution, it still enables a

better evaluation of the contribution rates of another mechanism than any other choice.22

21Comparisons between the two environments, with the same mechanism, are not the focus of this experi-
ment. Therefore, it is not a problem that more than one variable changes between the two environments.

22Because of the similarities between the CCMs and the PPM, the PPM might seem to be a good com-
parison as well. However, this is not the case. A closer examination reveals that the PPM and the CCMs
are suited for more or less disjoint sets of environments. The success of the PPM depends on the mechanism
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In each treatment groups of �ve agents play one of the two mechanisms as a stage game

repeated over 20 periods. In every period each agent is endowed with 10 points.23 Each

agent can either invest those points in a group project (the public good) or keep them in his

private account. As in the theory part in the previous section, contributions are binary in

this experiment. Therefore, the endowment can not be divided between the two accounts.

An outcome is again described by z = (z1, z2, z3, z4, z5). And zi = 0 still denotes that agent i

does not invest his points into the project. Since every agent has an endowment of 10 points,

zi = 10 implies in the experimental part that agent i does invest his points into the project.

All agents are provided with a linear valuation θi for the public good. Given their valuation

agents have the following payo� function in each period:

Πi = 10− zi + θi

5∑
j=1

zj (5)

In the complete information case every agent knows all players' valuations for the public

good and valuations are homogeneous with θi = 0.6, ∀ i. In the incomplete information case

agents only know their own valuation and that every agent has a valuation of θi = 0 with a

probability of 20% and a valuation of θi = 0.6 with a probability of 80%. I call those agents

who do not bene�t from the public good type 1 agents. And I call agents who do bene�t

type 2 agents. The valuation for every agent is constant over all periods and all draws of

valuations are independent. Therefore, it is possible that all or none of the agents are of type

1.24 In expectation, there is one agent per group, who does not bene�t from the public good.

Every random draw is used for one group with each mechanism to ensure comparability.

designer's choice of the threshold. The PPM is, therefore, best suited for environments in which the socially
optimal choice of the threshold is known to the mechanism designer. Instead, the main point of the CCMs
is that agents can �nd a socially optimal threshold, which is not known to the mechanism designer, by an
endogenous dynamic adjustment process.

2310 points are chosen to ensure that the number of points earned in each period is a natural number in
all cases.

24In the end, the random draws resulted in three groups with only type 2 agents, �ve groups with one type
1 agent and four groups with two type 1 agents.
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4.1 Conducting the experiment

The experiments were conducted at the Alfred-Weber Institute (AWI) of Heidelberg Uni-

versity. agents were recruited via ORSEE (Greiner, 2004) from the AWI agent pool, which

consists mainly of students of di�ering agents. In total 195 agents took part in the experiment.

Seven groups played the VCM with complete information and eight groups played the BCCM

with complete information. In the incomplete information treatments, each mechanism was

played by 12 groups. Sessions lasted between 45 minutes and one hour.

When the agents entered the lab, they were randomly allocated to their seats by drawing

numbered cards. All seats are separated by screens to prevent any interaction of agents

outside of the program. Every agent was handed one set of instructions and test questions

in German. English translations of the instructions and test questions can be found in

Appendix A and B. Once all agents answered the test questions correctly and there were no

more questions, a computer program written in z-Tree (Fischbacher, 2007) was started. The

program randomly matched agents into groups of �ve. Groups stayed the same over all 20

periods. Every group played only one mechanism and only one information setting. In the

incomplete information treatments, the random draw of types was performed by the program

at the beginning of period one.

After the last period, there was a short questionnaire asking for personal characteristics

such as gender and previous knowledge of game theory. Afterwards agents were called by

seat number to receive their payo� in cash and in private. In every period, type 2 agents

and agents in the complete information treatment could earn between 6 and 34 points. Type

1 agents earned 10 points per period if they followed their dominant strategy not to invest

into the public good in any case. Points of all periods were added up. agents were payed

1¤ for every 40 points. Type 1 agents in the incomplete information treatment received an

additional 5¤ lump sum to compensate them for the lower earning possibilities. Average

earnings per agent were 11.55¤.

23



4.2 Expectation on behavior

The Voluntary Contribution Mechanism gives every agent the choice whether or not he

contributes to the public good. However, no agent has any in�uence over any other agent's

contribution. If agents care only for their own pro�t, it is easy to see, and well known in the

literature, that free-riding is a dominant strategy. The straight forward Nash prediction is,

therefore, that all agents will free-ride. Since free-riding is a strictly dominant strategy any

re�nement of Better Response Dynamics will also predict this outcome as a unique absorbing

state.

However, it is equally well known that this theoretical prediction is seldom to never

observed in experiments. The general observation is a contribution rate of about 40-60%

of the e�cient level in the �rst period. If the public good game is played repeatedly, as

it is in this study, the typical experimental �nding is that contribution rates decline over

time. Social preferences (e.g. inequality aversion as in Fehr and Schmidt (1999)) as well as

preferences for conditional cooperation (Fischbacher et al., 2001, Fischbacher and Gächter,

2010, Kocher et al., 2008) in combination with a better responding behavior (Healy, 2006)

explain these �ndings well. Since those �ndings are very persistent (see Ledyard (1994) for

a survey of the early �ndings and Burger and Kolstad (2009) for a recent example with the

binary VCM), this is also what I expect to �nd in this experiment.

The theoretical prediction for the BCCM, as derived in the last chapter, is that under

Unexploitable Better Response Dynamics all stable outcomes are Pareto optimal. Therefore,

the theory does not predict anything for the �rst few periods. Instead, whenever a group,

after arbitrary play in some periods, sticks to one speci�c outcome until the last period, my

behavioral model predicts that this outcome is Pareto e�cient in all cases.
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5 Experimental results

I run this experiment with the intention to answer two questions. First, is the model of

UBRD suited to predict long term stable outcomes of Conditional Contribution Mechanisms?

Second, can the BCCM improve contribution rates to public goods compared to the VCM?

5.1 Contribution rates

In this subsection, I discuss whether or not the BCCM can increase contributions to the

public good signi�cantly, compared to the VCM. Therefore, I compare total contributions

in groups under the BCCM to the contributions under the VCM, using the Wilcoxon-Rank-

Sum Test. In each group I take the average of total contributions over a certain number of

periods. First, I consider all periods to get an impression of contributions overall. Second, I

only consider the last 10 periods, to get an impression of the long run contributions, once a

certain level of convergence has taken place. Since the last 10 periods include the well known

endgame e�ect, I further consider periods 9 to 18 as third choice. This makes it possible to

look at long run contributions without the end game e�ect.

Figure 1: Comparison of average contributions over all groups in the complete informa-
tion treatment.
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Figure 2: Comparison of average contributions over all groups in the incomplete infor-
mation treatment.

Average contributions per period over all groups with complete information are displayed

in Figure 1. The �gure makes the following immediate observations possible. First, the

average contribution rate in the �rst period under the VCM is surprisingly high. The reason

for this is probably the binary contribution environment in combination with the rather small

group size of 5. Second, contributions in the VCM decline over time as expected. Third,

contribution rates in the BCCM are similar to the VCM in early periods but much higher

in later periods. Fourth, the BCCM does, under complete information, not su�er from any

endgame e�ect. All these observations support the theoretical prediction that the BCCM has

better dynamic properties than the VCM. In fact the BCCM leads already to signi�cantly

higher contributions when all periods are taken into account (p = 0.0425). When only the

last 10 periods are considered, the e�ect is highly signi�cant (p = 0.0080). And when I

exclude the endgame e�ect (periods 9 to 18) the results are still signi�cant (p = 0.0388).

In the incomplete information treatments, the following type distributions were drawn.

Three groups contained only type 2 agents. Five groups contained one type 1 and four type

2 agents. And four groups contained two type 1 and three type 2 agents. The type 1 agents
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Figure 3: Comparison of average contributions over all groups with at least one type 1
agent.

have a dominant strategy to free-ride. Besides a few mistakes in period 1 and one mistake

in period 2, all type 1 agents also chose this strategy. Therefore, contribution rates in the

incomplete information treatments are always compared in terms of average contributions

of type 2 agents. Average contributions of type 2 agents per period over all groups with

incomplete information are displayed in Figure 2. Observations from this �gure di�er from

the complete information case in only one way. Under incomplete information the BCCM

su�ers from a severe endgame e�ect.25 There are two reasons for this. First, many groups

play a stable Pareto e�cient equilibrium over some periods ahead of period 20. Nevertheless,

some agents in these groups harm themselves by deviating in period 20, which results in a

complete breakdown of contributions. One explanation for this behavior is that some agents

make mistakes because of the somewhat higher complexity of the incomplete information

treatment. Another explanation might be that those agents are familiar with the successful

VCM behavior, to contribute most of the periods and free-ride at the very end. And they

apply this behavior without much thought. The second reason for the endgame e�ect is that

25In fact this endgame e�ect only exists in groups with exactly one type 1 agent. And it occurs in all of
those groups.
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some groups reach Pareto e�cient outcomes, but not enough agents play unexploitable to

stabilize the equilibrium in period 19. This creates incentives for individual agents to deviate

in period 20. However, more than one deviation usually leads again to a complete breakdown.

These complete breakdowns make the endgame e�ect in the BCCM even bigger than in the

VCM. This second e�ect might vanish when more periods are played. This gives agents more

time to converge to stable equilibria. Besides the endgame e�ect, the results are very similar.

Average contributions are higher under the BCCM than under the VCM. When all periods

are considered, this e�ect is only weakly signi�cant (p = 0.0602). However, for the last 10

periods results are again signi�cant at the 1% level with a p-value of p = 0.0078. And when

the last two periods are excluded the increase is signi�cant at the 5% level (p = 0.0199).

Figure 3 shows average contribution rates in the incomplete information treatments when

only the more challenging groups are considered. These are the groups that contain at least

one type 1 agent. This leads to lower contribution rates under both mechanisms in the

�rst half of the experiment. However, groups playing the BCCM again manage to achieve

high contribution rates in periods 10 to 19. Groups playing the VCM, on the other hand,

can not stop the decline of contributions. This observation strengthens the impression that

the BCCM robustly reaches high long term contribution rates, even in settings in which

coordination in early periods is di�cult.

Result 5.1 Under complete as well as under incomplete information the Binary Conditional

Contribution Mechanism leads to more e�cient contribution rates than the Voluntary Con-

tribution Mechanism.

One typical goal of the implementation problem is that the designed mechanism should

lead to Pareto e�cient outcomes. Whether the BCCM leads to Pareto e�cient outcomes

can only be answered qualitatively. In the case of complete information, when all periods

are considered, 91.88% of outcomes are Pareto e�cient. When only the last 10 periods

are taken into account 96.25% of outcomes are e�cient. And in the last 4 periods every

single outcome is Pareto e�cient. Note again that Pareto e�ciency is considered without
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the possibility of transfer payments. Thus, an outcome is Pareto e�cient in the complete

information treatment if four or �ve agents contribute to the public good.

While the theoretical prediction of Pareto e�cient outcomes �ts the data very well in the

complete information case, the situation is not as clear under incomplete information. In

those treatments 75.42% of all outcomes under the BCCM are Pareto e�cient. This number

increases slightly to 80.83% in the last 10 periods, but decreases again to 75% in the last 4

periods, because of the endgame e�ect under incomplete information.

Result 5.2 Under complete information the Binary Conditional Contribution Mechanism

converges to Pareto e�cient outcomes. Under incomplete information about three out of four

outcomes are Pareto e�cient.

5.2 Unexploitable Better Response Dynamics

Finally, I am interested in the model of Unexploitable Better Response Dynamics itself. How

well does the model �t the data for the Binary Conditional Contribution Mechanism?

The more general model of better responding agents �ts the data very well. In the

complete information treatment about 93% of chosen messages are better responses. In the

incomplete information treatment the value is even higher at 96%. This is in both cases high

enough to claim that BRD is a good description of agents' behavior.26 However, only around

half of all messages are also unexploitable better responses in the two treatments (41% under

complete and 53% under incomplete information).

There is no support for a theory that agents learn to choose unexploitable messages over

time under incomplete information (52% of messages are unexploitable better responses in

the last ten and 53% in the last 5 periods). And only weak support for a learning towards

unexploitability under complete information (35% in the last ten and 47% in the last 5

periods).

26Note that this observation is not in con�ict with the dips in earlier periods. Since high contribution rates
can be obtained in exploitable strategies a better response behavior can in some periods lead to a decline in
contributions.
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However, the main intention of Unexploitable Better Response Dynamics is not the pre-

diction of individual behavior, but the prediction of the long term stable outcomes. Here

UBRD predicts that the long term stable outcomes are the Pareto e�cient outcomes. If the

dynamics are considered to have converged to a stable outcome if at least four out of the last

�ve outcomes are identical, then 14 out of 20 groups converge to an outcome in the BCCM

treatments.27 Of those 14 outcomes all 14 are Pareto e�cient. This supports the conclusion

that UBRD predicts the dynamically stable outcomes of the BCCM correctly. In comparison,

under the de�nition of convergence from above, 8 out of 19 groups under the VCM reach a

stable outcome. Of those 8 outcomes 4 are Pareto e�cient and 4 are not Pareto e�cient.

5.2.1 Individual group behavior

In the last part of the results section, I will not provide any more statistics. Instead, I provide

some examples of behavior in selected groups. This provides a better intuition of whether or

not UBRD is a useful behavioral model for the CCMs.

Figure 4 shows the messages of all agents over all periods in one speci�c group. This

example is taken from experiments with incomplete information and agents 1 and 5 do not

bene�t from the public good. In the �rst ten periods, contribution rates oscillate between

0% and 100%. Agents might be trying to �gure out, who bene�ts from the public good and

who does not, as well as trying to coordinate their messages. From period ten onwards, the

group is in an absorbing state of Unexploitable Better Response Dynamics and the outcome

is Pareto e�cient. Thus, in this group UBRD perfectly predicts behavior, as well as the long

term stable outcome.

The second case in Figure 5 demonstrates the predictive power of the UBRD concept

when no exploitation takes place. From the �rst to the last period agents choose exploitable

messages. Thus, agents do not at all behave according to UBRD. Nevertheless, since no

27This de�nition of convergence is rather loose. It allows to include those groups that reach a stable
outcome, and in which some agent deviates in period 20. A loose de�nition of convergence makes this test
more challenging for the theory, since it considers more cases in which the theory has to apply.
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Figure 4: Example for a group with perfect convergence under UBRD.

exploitation takes place, the outcomes are Pareto e�cient in all periods. Thus, in this group

the outcome, but not individual behavior, is correctly predicted by UBRD.

The third case in Figure 6 demonstrates that it is not necessary that all agents behave

unexploitable, such that an outcome is stable. In this group only agents 3 and 4 play

unexploitable. Nevertheless, no agent has any incentive to free-ride. Thus, UBRD correctly

predicts the outcome in all periods and partially predicts agents' individual behavior.

In the fourth case in Figure 7, coordination is not achieved (or only achieved in the last

two periods if one wants to count that as convergence). In this speci�c group, agent 2 is of

type 1 and makes two errors in periods 1 and 2. This might induce other agents to believe

he is type 2. Therefore, some agents try repeatedly to make him contribute by conditioning

their contribution on a total level that includes agent 2's contribution. This kind of �ght,

where one agent tries to free-ride while one other agent conditions his contribution on a level

that includes the �rst agent's contribution is the main force that keeps contributions low in

some groups. I claim that this behavior will rarely be persistent over time since in general

both agents have a short term incentive to give in. Therefore, these kind of �ghts will be

settled at some point. This is the moment when the stable outcomes of UBRD are reached.

In summary, UBRD does not perfectly capture agent behavior in all groups. However,
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Figure 5: Example for a group with no exploitation.

Figure 6: Example for a group in which two unexploitable agents stabilize the perfectly
e�cient outcome.
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Figure 7: Example for a group with late or no convergence under UBRD

in all groups in which an outcome is stable over the last periods, this outcome is one of

the outcomes predicted by UBRD. Thus, the data partially supports UBRD as a predictor

for actual behavior, and it completely supports UBRD as a predictor of long term stable

outcomes. And the second point is what the model is intended to predict correctly.

6 Non-binary Conditional Contribution Mechanisms

The environment of section 3 can be generalized to a setting in which contribution is not

binary, while keeping the mechanism similar. Assume that every agent can invest any amount

between 0 and 1 into the public good. Because it is closer to reality and it keeps the dynamic

analysis simpler, I assume a smallest indivisible monetary unit of 0.01.28

The BCCM can be adjusted to this environment in a very natural way. However, this

natural extension turns out to have equilibria under dynamic considerations, which are not

Pareto optimal. Nevertheless, this failure of the natural extension is an important motivation

for the more complex message space of the Conditional Contribution Mechanism, which will

28This discretization resembles the money structure in most countries. All results in the paper hold with
any other �nite discretization as well as with di�erent levels of income.
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be introduced afterwards.

6.1 The Single Conditional Contribution Mechanism

The natural extension of the BCCM, the Single Conditional Contribution Mechanism

(SCCM), will assign every agent i the message space MSCCM
i := {0, 0.01, . . . , 0.99, 1} ×

{0, 0.01, . . . , n − 0.01, n}, where mi = (xi, yi) is interpreted as �I am willing to contribute

xi to the public good if total contribution is at least yi.� The outcome space is then given

by Z := {0, 0.01, . . . , 0.99, 1}n, where zi is the contribution of agent i to the public good in

outcome z. z := (0, . . . , 0) is used as before as the outcome with no contribution to the public

good by anyone. The level of contribution selected by the mechanism is again the highest

level of total contribution such that all conditions are satis�ed. Formally, let ZSCCM(m) ⊂ Z

be the set of all outcomes that satisfy all conditions in m. This can be formalized by

z ∈ ZSCCM(m)⇔

(
zi = 0 or zi = xi and

n∑
j=1

zj ≥ yi

)
, ∀ i ∈ I. (6)

It is easy to see that z ∈ ZSCCM(m) and z′ ∈ ZSCCM(m) imply together

z′′ = (max{z1, z′1}, . . . ,max{zn, z′n}) ∈ ZSCCM(m). Thus, the outcome of the mechanism is

uniquely de�ned by

gSCCM(m) = argmaxz∈ZSCCM (m)

n∑
i=1

zi. (7)

The structure of Nash equilibria is similar to the binary case:

Theorem 6.1 An outcome z is an outcome of a Nash equilibrium of the NEM if and only

if z �i z, ∀ i ∈ I.

Revisit the example

Example 6.2 Each of �ve agents has type θi = 0.4. Assume z = (0.5, 0.4, 0.3, 0.2, 0.1). Then

z �i z ∀ i ∈ I. This outcome is the outcome of the Nash equilibrium given by mi = (zi, 1.5).
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This is a Nash equilibrium since no agent can reduce his contribution without the outcome

becoming z. And neither can any agent by changing his message increase any other agent's

contribution. Thus, the options for unilateral deviations can be reduced to the same cases as

in the binary model.

Unfortunately, the SCCM has undesirable equilibria under UBRD as well. The simplest way

to show this is by considering an example.

Example 6.3 Assume again each of �ve agents has type θi = 0.4. Assume further that in

period t all agents sent message mt
i = (0.1, 0.5) and zt = (0.1, 0.1, 0.1, 0.1, 0.1). Let us �nd

all unexploitable better responses in period t + 1. Consider w.l.o.g agent 1. Any message

m′1 = (x1, y1) with x1 < 0.1 and y1 > x1 will lead to z and is thus not a better response. Any

message m′1 = (x1, y1) with x1 < 0.1 and y1 ≤ x1 will lead to z = (x1, 0, 0, 0, 0) and is thus

not a better response, either. Any message m′1 = (x1, y1) with x1 > 0.1 and y1 > 0.4 + x1

will lead to z and is thus not a better response. Any message m′1 = (x1, y1) with x1 > 0.1 and

y1 ≤ 0.4 + x1 will lead to z = (x1, 0.1, 0.1, 0.1, 0.1) and is thus not a better response, either.

This leaves only messages with x1 = 0.1. However of those messages the ones with y1 > 0.5

lead to z and are not a better response and the ones with y1 < 0.5 are exploitable. y1 = 0.3

e.g. could lead after deviations of the other agents to m′j = (0.05, 0.3), ∀j ∈ {2, 3, 4, 5} to

z′ = (0.1, 0.05, 0.05, 0.05, 0.05). In this outcome agent 1 is worse o� than in zt but contributes

a strictly positive amount. Thus, his message was exploitable. The only unexploitable better

response is thus m′1 = (0.1, 0.5). This implies that message pro�le mt is an absorbing state

of UBRD. However, zt = (0.1, 0.1, 0.1, 0.1, 0.1) is not Pareto optimal.

Agents can in this way get stuck on Pareto improvements over z which are not Pareto

optimal. Any deviation aiming to make further Pareto improvements possible would make

the deviating agent worse o� in the next period. And such a deviation is infeasible under a

better response behavior.

This problem can be solved by letting agents announce more than one tuple of the form

(xi, yi). This grants agents a higher �exibility in their strategy giving them the opportunity
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to explore Pareto improvements with some tuples, while securing the current level of cooper-

ation with one other tuple. As it turns out a message of two such tuples is already enough to

solve the issue. Simplicity is a further desirable feature of mechanisms once practical imple-

mentations are considered. Thus, the mechanism I propose in the following paragraph lets

agents announce exactly two tuples.29 I call this mechanism the Conditional Contribution

Mechanism (CCM).

6.2 The Conditional Contribution Mechanism

In the CCM every agent can announce two tuples {(x1i , y1i ), (x2i , y2i )} ∈MCCM
i := MSCCM

i ×

MSCCM
i . The outcome gCCM(m) of the CCM is then de�ned as in the SCCM as the outcome

with the highest level of contribution consistent with the messages chosen. Let ZCCM(m) ⊂ Z

be the set of feasible outcomes for a message pro�le m:

z ∈ ZCCM(m)⇔ zi = 0 or

(
∃li ∈ {1, 2} : zi = xlii and

n∑
j=1

zj ≥ ylii

)
, ∀ i ∈ I (8)

The outcome of the CCM is then uniquely de�ned by

gCCM(m) = argmaxz∈ZCCM (m)

n∑
i=1

zi.
30 (9)

The additional tuple in the message has no e�ect on Nash equilibrium outcomes, since only

one of the two announced tuples per agent is responsible for the outcome. Such a mechanism

29Depending on the application di�erent versions of the mechanism are possible. The more tuples agents
can send, the more �exible they are. Thus, more tuples could lead to faster convergence. However, more
tuples also make the mechanism more complicated. Therefore, a reasonable version for applications might
be to let agents announce any amount of tuples they choose between one and some upper bound. This gives
agents the simple option of choosing one tuple, while also giving them the option to choose very detailed
messages. This mechanism is from the theoretical perspective identical to the version in the paper. The
paper version is chosen since it simpli�es notation, especially in proofs.

30The outcome can easily be computed by translating the messages of all agents into step-functions, adding
them up and taking the highest �xed point of the resulting function. This makes sure that there is no problem
in computation, when n is large.
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can thus only be found and argued for, when dynamic properties are taken into consideration.

The CCM has indeed the desired positive dynamic properties:

Theorem 6.4 An outcome z ∈ Z is an outcome of some recurrent class of the CCM under

UBRD if and only if it is a Pareto optimal allocation and a strict∗ Pareto improvement over

z.

An example shall provide some intuition for this result.

Example 6.5 Consider the example with 5 agents. Each agent has type θi = 0.4. Then

in all outcomes of recurrent classes 3 agents contribute their entire endowment. The two

other agents can contribute any amount. Take for example the outcome z = (1, 1, 1, 0.5, 0.5).

This outcome is supported by the messages mi = ((1, 4), (1, 4)) for i = 1, 2, 3 and mi =

((0.5, 4), (0.5, 4)) for i = 4, 5. The combination of unexploitability and better responding

behavior makes sure that the outcome cannot be left to another outcome with lower contri-

butions and the unexploitability condition implies further that the outcome cannot be left

to any outcome with higher contributions since either agent 4 or 5 would be worse o�

than in z. Consider for example the message m′4 = ((0.5, 4), (1, 5)). This deviation in

itself does not change the outcome, thus it is a better response. However if agent 5 also

switches to m′5 = ((0.5, 4), (1, 5)), the outcome would change to z′ = (1, 1, 1, 1, 1). Since

u4/5(z) = 2.1 > 2.0 = u4/5(z
′) the messages m′4 and m

′
5 are exploitable.

31

6.3 Non-linear valuation functions

In this section I drop the assumption that valuations are linear and replace it by a weaker

assumption. Consider a �nite number n of agents with utility functions ui(wi, wp). Here wi

is the private wealth of agent i and wp is the total amount of wealth invested into the public

good by all agents. The functions ui are only assumed to be strictly increasing and continuous

31Agents 1 through 3 did not actively exploit the messages of agents 4 and 5 in this example. In some
sense these agents exploited each other. However, the important point is that the deviation from z to z′ is
not desirable for agents 4 and 5.
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in wi and weakly increasing (and possibly not continuous) in wp.
32 Further, utility functions

may di�er across agents. Endowment and outcome space Z := {0, 0.01, . . . , 1}n remain

unchanged.33

The fact, that utility gained from the public good increases no longer linearly with the

contribution towards the public good, changes the properties of the outcomes of recurrent

classes under UBRD. Coalitions of agents might in some instances bene�t from collectively

reducing their own contributions, even if all other agents would not contribute anything any

more. And under the behavioral model, UBRD, deviations by coalitions can occur. Therefore,

Pareto optimality will not be enough to ensure that an outcome is part of a recurrent class

in this setting.

In the proofs, I use that the options for deviations of coalitions can be limited to outcomes

in which no agent outside the coalition contributes. I call such outcomes enforceable, since

coalitions cannot force other agents to contribute. When coalitions' options for deviations are

limited to their enforceable outcomes, the equilibrium outcomes of the CCM under UBRD

can be captured by the core.

Note that the core captures, besides Pareto e�ciency, also some fairness considerations.

Therefore, implementing the core is at least as desirable as implementing Pareto e�cient

outcomes. The main disadvantage of the core is the fact that it might be empty. I discuss

this concern at the very end of this section.

De�nition 6.6 An outcome z ∈ Z is enforceable for a coalition S ⊂ I if zi = 0 ∀i /∈ S. The

set of all enforceable outcomes for coalition S shall be denoted ZS

As in the case of Pareto e�ciency I use a standard de�nition of the core for games without

transferable utility as e.g. in (Owen, 1982, p. 293).

32Note that this includes the cases of agents not pro�ting at all from the public good, or who get satiated
at some level.

33A further generalization to di�erent endowments for di�erent agents only complicates notation. The
mechanism can easily be adjusted by enhancing the message space and all main results would be una�ected.
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De�nition 6.7 An outcome z ∈ Z is in the core if there is no S ⊂ I, S 6= ∅, and z′ ∈ ZS,

such that z′ �i z, ∀ i ∈ S.

As in the previous results there needs to be a strict disincentive for agents to deviate.

Since the outcome space is �nite the usual core de�nition does not guarantee this.

I therefore need a de�nition, which is somewhat stronger than the usual core de�nition

to describe the equilibrium outcomes. Possibilities for deviations under indi�erence need to

be excluded. The following two technical de�nitions allow me to formulate the theorem in a

simple way.

De�nition 6.8 A core allocation z is strict∗ for a subset S ⊂ I of agents if for any en-

forceable outcome z′ of a coalition S ′ with S ′ ∩ S 6= ∅ there exists some agent i ∈ S ′ with

z �i z′.

De�nition 6.9 De�ne the subset SC(z) ⊂ I via i ∈ SC(z) if and only if ui(1−zi,
∑n

j=1 zj) >

ui(1− zi, 0) as the set of agents that strictly bene�t from the amount of public good in z.

Theorem 6.10 Assume there exists at least one outcome z that is a core allocation and

strict∗ for SC(z). Then an outcome z′ is an outcome of a recurrent class of the CCM under

UBRD if and only if it is a core allocation that is strict∗ for SC(z′).

If no such outcome exists the result would be a cycling behavior of the dynamics. It is

not obvious that the assumption of existence of such an outcome is satis�ed in all relevant

cases. However, the existence problem only exists on an in�nitesimal level. The mechanism

can be adjusted to guarantee existence at arbitrarily low expected costs.34

In the following theorem let ∆ be a mapping from Z×I → R+. The interpretation is that

the mapping de�nes for any agent and any outcome some expected payment ∆(z, i) := δzi

that agent i gets payed if outcome z occurs. I write G + ∆ to describe a mechanism G to

which the additional payments ∆ are added.

34Note �rst, that since costs are arbitrarily low, there is no need to argue here who should pay those costs.
Note further, that only expected costs can be arbitrarily low as the assumption of a smallest monetary unit
makes arbitrarily low payments only possible as lotteries.
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Theorem 6.11 For any environment with weakly increasing valuation functions and for any

ε > 0 there exists a mapping ∆ such that in the game CCM+∆ there exists a core allocation

z, which is strict∗ for the subset SC(z). Further, the expected cost of ∆ is less than ε.35

7 Summary and discussion

This paper introduces the class of Conditional Contribution Mechanisms for the provision

of public goods in repeated environments. In these mechanisms agents can condition their

contribution on the total level of contribution provided by all agents. Based on the obser-

vation by Healy (2006), that Better Response Dynamics describe agent behavior in public

good mechanisms well, I motivate a new behavioral model. This model, Unexploitable Better

Response Dynamics, predicts that all outcomes of absorbing states of the mechanisms are

Pareto e�cient.

An experiment was conducted with the aim to test the performance of the Binary Condi-

tional Contribution Mechanism (BCCM) for public good provision. Since this is the �rst test

a simple binary contribution environment with linear valuations is chosen. In the experiment

the BCCM is compared to the standard Voluntary Contribution Mechanism in one setting

with complete and one with incomplete information.

In all settings the BCCM leads to signi�cantly higher contribution rates than the VCM.

This e�ect is especially large if only the second half of the experiment is considered. In those

periods convergence in many groups of the BCCM is complete and average contribution

rates are rather stable at 93% (complete information) or 81% (incomplete information).

By comparison, average contribution rates over the same periods under the VCM are 60%

(complete information) and 53% (incomplete information). Another important di�erence

between the mechanisms is that in groups playing the BCCM no decline of contributions

35Note that in the proof of this theorem I make use of the speci�c utility functions of all agents, to design
the payments ∆. And these utility functions will in general not be known. The theorem can therefore not be
interpreted as a �x of the problem in applications. It should rather be seen as an indication that the problem
of existence only exists on an in�nitesimal level and is therefore likely to be no problem in applications at all.
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over time can be observed.

Furthermore, the experimental results support the dynamic model Unexploitable Better

Response Dynamics. The model gives an accurate prediction of the long term stable outcomes

of the BCCM in the test environment. And all those outcomes are Pareto e�cient.

Everything considered, the class of Conditional Contribution Mechanisms is an important

addition to the set of public good mechanisms. It satis�es individual rationality and leads

under UBRD to Pareto e�cient outcomes in repeated public good environments. This makes

the CCMs particularly suited for repeated public good environments.
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Appendix

General notation: In many proofs I have to show that some outcome z is some sort of

equilibrium. In those proofs I need to distinguish between two subsets of agents. The subset

of agents who contribute to the public good in z, shall be called I1 ⊂ I. And the subset

of agents who do not contribute to the public good in z shall be called I0 ⊂ I. If I need a

second outcome z′ in the proof, those sets will be called I ′1 and I
′
0, respectively.

Proof of Theorem 3.2 Let z be an allocation such that no agent strictly prefers z to z

and de�ne k :=
∑n

i=1 zi. Then the message pro�le mi = k ∀i ∈ I1,mi = n + 1 ∀i ∈ I0 is

a Nash equilibrium with the desired outcome. It is obvious that gBCCM(m) = z. In the

following I show that m is a Nash equilibrium.

If some agent i in I1 deviates to a message m′i < k, the outcome does not change. If he

changes his message to some m′i > k, the new outcome will be z. Since no agent strictly

prefers z to z, this can not make agent i strictly better o�. Thus agents in I1 have no strict

incentive to deviate.

If some agent j in I0 deviates to m
′
j > k+ 1, the outcome does not change. If he changes

his message to m′j ≤ k + 1 he will contribute and total contribution will be k + 1. Since

θj ∈ [0, 1) this will make him worse o�. Thus also the agents in I0 have no incentive to

deviate and m is indeed a Nash equilibrium.

Let on the other hand z be an outcome such that any agent i strictly prefers z to z. Let

then m be any message pro�le leading to the outcome z. By choosing the message m′i = n+1

any outcome that might occur is at least as good for agent i as z. Thus i has an incentive to

deviate. Thus m can not be a Nash equilibrium. �

Proof of Theorem 3.7 Assume �rst that there exists an outcome, which is Pareto optimal

and a strict∗ Pareto improvement over z. I prove this part of the theorem in two steps. In

step 1, I show that any outcome with the described properties is an outcome of a recurrent

class of the dynamics. In step 2, I show that from any other outcome the dynamics reach
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such a recurrent class with strictly positive probability.

Step1: Let z be any outcome, which is Pareto optimal and a strict∗ Pareto improvement

over z, and let k =
∑n

i=1 zi. Then mi = k if and only if i ∈ I1 and mi = n + 1 if and only if

i ∈ I0 is part of a recurrent class of UBRD with outcome z. I prove this by checking that no

deviation to a di�erent outcome is compatible with UBRD.

For any agent i ∈ I1 deviations to any mi = k′ > k will lead to the outcome z. Since z is

a strict Pareto improvement over z for those agents, this is not a better response. Deviations

to any mi = k′ < k make outcomes possible in which i contributes but total contribution

is less than k. Thus, those messages are exploitable. Thus, no agent in I1 will change their

message according to UBRD. If only agents in I0 change their messages, total contributions

can only increase. No agent i ∈ I0 will choose any mi = k′ < k + 2 since then this agent

i would contribute. Since θi ∈ [0, 1) agent i would be worse o�. Thus, this is not a better

response for agent i.

Assume now that after some deviations of agents i ∈ I0 under UBRD, the outcome

nevertheless changes from z to z′. Since z was Pareto optimal at least one agent, call him

j, is worse o� in z′ than in z. Since we already noted that no agent in I1 has any incentive

to deviate, total contributions are higher in z′ than in z. Thus, j ∈ I ′1 or agent j could not

be worse o� in z′. This implies that the message of agent j that made the change from z

to z′ possible was exploitable. Thus, j would not have chosen this message under UBRD.

Therefore, z is indeed the outcome of a recurrent class of the UBRD process.

Step2: Take now any outcome z ∈ Z which is not Pareto optimal or not a strict Pareto

improvement over z for all i with θi > 0. Then I distinguish two cases. In case 1 z is Pareto

optimal but not a strict Pareto improvement over z for all i with θi > 0. Then there exists

some agent i, who contributes, but would be better o� by or indi�erent to not contributing

even if this will lead to z. Thus for this agent mi = n+1 is a (weak) better response. Further

mi = n + 1 can never be exploitable. If all other contributing agents chose unexploitable

messages the switch to mi = n + 1 will lead to the outcome z. From z the dynamics reach
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any recurrent class with Pareto optimal outcome z, which is a strict∗ Pareto improvement

over z, with positive probability. All messages in any such recurrent class are unexploitable

better responses, whenever the current outcome is z.

In case 2 z is not Pareto optimal. Then there exists a Pareto optimal outcome z′, which

is a Pareto improvement over z. Assume that in z′, k′ agents will contribute. Then for

those agents who contribute in z′ but not in z, mi = k′ is an unexploitable better response.

Once all those agents play mi = k′, the outcome switches to z′. Thus the dynamics reach

z′ with positive probability. Now z′ is either a Pareto optimum which is a strict∗ Pareto

improvement over z, or we are in case 1.

For the second part assume that there does not exist any outcome, which is Pareto optimal

and a strict∗ Pareto improvement over z. I show in three steps that in this case there is only

one recurrent class and it contains all outcomes, which are weak Pareto improvements over

z.

Step 1: In this step I show that from all outcomes which are not part of the recurrent

class the dynamics reach the recurrent class with strictly positive probability. In all out-

comes, which are not weak Pareto improvements over z, some agents must be worse o� than

in z. Assume now that all those agents choose to free-ride in the next period, which is an

Unexploitable Better Response. Assume that all other agents that currently contribute con-

dition their contribution in the next period on the current total level of contributions. Then

the outcome in the next period will be z.

Step 2: In this step I show that the recurrent class is never left under UBRD. Assume

that the current outcome is some weak Pareto improvement over z. Assume further that

after some deviations according to UBRD the outcome in the next period is no weak Pareto

improvement over z. Then at least one agent must now be worse o� than in z. Since only

contributing agents can be worse o� than in z, this agent's deviation to the message in the

current period was exploitable, which is a contradiction.

Step 3: In this step I show that there exists no smaller recurrent class inside of the one
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described above. Assume that the current outcome in period t is zt = z. And let z′ be any

weak Pareto improvement over z di�erent from z. Let k′ =
∑n

i=1 z
′
i. If all agents i ∈ I ′1

choose mt+1
i = k′ and all other agents choose mt+1

j = n + 1, then zt+1 = z′. It is easy to see

that all these messages are Unexploitable Better Responses. Assume next that the current

outcome z is any weak Pareto improvement over z. Since this Pareto improvement over z

can not be strict∗ by assumption, there is at least one contributing agent that is indi�erent

between z and z. If those agents and all agents in I0choose m
t+1
i = n+ 1 in the next period

and all other agents in I1 choose to condition on the current total level of contributions, the

outcome in the next period will be zt+1 = z. It is again easy to verify that all these messages

are Unexploitable Better Responses. This demonstrates that any outcome in the recurrent

class is reached from any other such outcome with strictly positive probability. �

Proof of Theorem 6.1 Let z := (z1, . . . , zn) ∈ Z be an outcome, such that z �i z ∀ i ∈ I,

and de�ne ȳ :=
∑n

i=1 zi. Then mi = (zi, ȳ) is a Nash-equilibrium of the mechanism with

outcome z. There are four ways in which any agent i can deviate from this message. He can

increase or decrease his proposed contribution. And he can increase or decrease his condition.

Any decrease in the o�ered contribution will fail to satisfy all other agents conditions and

can thus only lead to outcomes, which are worse for agent i, no matter what condition he

chooses.

Any (weak) increase in the o�ered contribution will not lead to an increase of other agents'

contributions. Thus, such an increase combined with a condition that can be satis�ed will

only lead to a (weakly) higher contribution by agent i. If the increase in the o�ered condition

is combined with a condition that can not be satis�ed the outcome will be z. In both cases

agent i is (weakly) worse o�. Thus, no agent has any incentive to deviate and m is a Nash

equilibrium.

Let now z ∈ Z be an outcome such that some agent i strictly prefers z to z. Given any

message pro�le m′ leading to the outcome z agent i can pro�tably deviate to m′′i = (0, 0).

This gives him an outcome which is at least as good as z and thus strictly better than z.
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Therefore, there is no message pro�le that makes z a Nash equilibrium outcome.�

Proof of Theorem 6.4 I prove this theorem in two steps. In step 1 I prove that the de-

scribed outcomes are indeed outcomes of recurrent classes of UBRD. And in step 2 I prove

that from any other outcome the dynamics reach one of those recurrent classes with strictly

positive probability.

Step1: In the discussion of the environment I assumed that there exists some Pareto

improvement z over z, which is strict for all i ∈ I1. Take then any Pareto optimal outcome

z′, which is a Pareto improvement over z. Then z′ is a Pareto optimal outcome, which is

strict for all i ∈ I ′1. Assume to the contrary that some i ∈ I ′1 were indi�erent between z′ and

z, then his valuation θi must be positive. But then i was either better o� in z than in z′ if

i ∈ I0, or he was worse o� in z than in z if i ∈ I1. Both possibilities lead to a contradiction.

Note further that any Pareto improvement z over z, which is strict for all i ∈ I1 is further

strict for all agents i with θi > 0.

Thus, there exists a Pareto optimal outcome z ∈ Z, which is a strict Pareto improvement

over z for all agents i with θi > 0. Let z be such an outcome and de�ne ȳ :=
∑n

i=1 zi. Then

x1i = x2i = zi and y
1
i = y2i = ȳ is part of a recurrent class of UBRD with outcome z. Assume

to the contrary that after deviations of some agents consistent with UBRD the outcome

changes from z to some z′ 6= z. Note that z′ 6= z implies in this environment that not all

agents are equally well o� in z′ as in z. Then at least one agent is worse o� in z′ than in z

(otherwise this would be a Pareto improvement over z). If one of the agents who is worse o�

contributes in z′ a strictly positive amount then his message that led to the outcome z′ was

either exploitable or no better response and he would not have chosen it in UBRD. Thus,

all agents, who are worse o� in z′ than in z, need to contribute zero in z′. Assume to the

contrary that in the group of the other agents who are equally well or better o� in z′ than

in z there are some agents who contribute more in z′ than in z. Then it would be a Pareto

improvement over z if those agents made the contributions as in z′, while all other agents

made contributions as in z. This cannot be the case since z was Pareto optimal. Thus, all
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agents contribute weakly less in z′ than in z. This implies that total contributions are lower

in z′ than in z. Then there is one agent in this group whose contribution sank relatively to

the contributions in z by the lowest percentage. If this agent is better o� in z′ than in z he

would still be better o� in z since the valuation of the public good is linear. This contradicts

that z was a strict∗ Pareto improvement over z. This yields a contradiction and thus it is

not possible that the outcome changes under UBRD once the described message pro�le is

reached.

Step2: Assume now that the current outcome z is not Pareto optimal. Then there exists

a Pareto improvement z′ over z such that z′ is Pareto optimal. De�ne again ȳ :=
∑n

i=1 zi

and ȳ′ :=
∑n

i=1 z
′
i. Then for any agent i the message x1i = zi, y

1
i = ȳ, x2i = z′i, y

2
i = ȳ′ is

an unexploitable better response to their current message. If all agents choose this message

the outcome will be z′. Thus the dynamics reach this message pro�le with strictly positive

probability. Once it is reached the new outcome is z′ and now x1i = z′i, y
1
i = ȳ′, x2i = z′i,

y2i = ȳ′ is an unexploitable better response for all agents. Thus from any not Pareto optimal

outcome a message pro�le, like the one in the �rst part of this proof, is reached with strictly

positive probability.

If z′ is a strict Pareto improvement over z for all agents i with θi > 0 the proof is complete.

If it is not, then there exists some agent i ∈ I ′1 who is at least as well o� in z as in z′. For this

agent the message x1i = 0, y1i = 0, x2i = 0, y2i = 0 in an unexploitable better response. Thus

the dynamics move from any Pareto optimum like z′ to z with positive probability. From z

any Pareto optimal allocation, which is a strict∗ Pareto improvement over z, is reached with

positive probability in the way described above. �

Proof of Theorem 6.10 In the �rst part of the proof I show that any core outcome z,

which is strict∗ for SC(z), is an outcome of recurrent classes of the dynamics.

Let z be an outcome of the mechanism and let z be a core allocation, which is strict*

for SC(z). De�ne ȳ :=
∑n

i=1 zi. Then x1i = x2i = zi and y
1
i = y2i = ȳ is part of a recurrent

class of UBRD with outcome z. Assume to the contrary that after deviations of some agents
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consistent with UBRD the outcome changes to some z′ 6= z. Then at least one agent i ∈ I ′1

is worse o� in z′ than in z (otherwise this would be a coalition improvement over z). Agent

i's message, which led to the outcome z′, was thus either exploitable or no better response

and he would not have chosen it in UBRD.

In the second part of the proof I show that from all other allocations the dynamics move

with strictly positive probability to a core allocation, which is strict∗ for SC(z).

Assume that the dynamics are in a state with some outcome z, which is not Pareto

optimal and let z′ be any Pareto optimal allocation, which is a Pareto improvement over z.

De�ne ȳ :=
∑n

i=1 zi and ȳ
′ :=

∑n
i=1 z

′
i. Then the message (zi, ȳ), (z′i, ȳ

′) is an unexploitable

better response for any agent i. Thus the dynamics move with strictly positive probability

from z to any such z′.

I can thus assume that the dynamics are in a state with some outcome z, which is Pareto

optimal, but not a core outcome that is strict for SC(z). Then there exists a coalition S

and an outcome z′ ∈ ZS such that all agents i ∈ I ′1 are at least as well o� in z′ than in

z. This implies that ȳ′ :=
∑n

i=1 z
′
i < ȳ :=

∑n
i=1 zi or this would be a Pareto improvement.

Then in a �rst step the messages (zi, ȳ), (z′i, ȳ
′) are unexploitable better responses for every

agent i ∈ I ′1. Once all agents i ∈ I ′1 switched to those messages, the messages (z′i, ȳ
′), (z′i, ȳ

′)

and (zi, ȳ), (zi, ȳ) are both unexploitable better responses for those agents, since the current

outcome is still z. But if now simultaneously one agent chooses (z′i, ȳ
′), (z′i, ȳ

′) and another

one chooses (zj, ȳ), (zj, ȳ), then contribution breaks down entirely and the outcome will be

z. From z any core allocation, which is a Pareto improvement over z and strict∗ for SC(z)

will be reached with strictly positive probability in the way described above. �

Proof of theorem 6.11 I prove this theorem in two steps. In step 1, I show that it is pos-

sible to design arbitrarily cheap incentive schemes, such that no agent is indi�erent between

any two outcomes. In step 2, I show that this leads to the existence of a core outcome in

the given environment. Finally, when every agent has a strict preference between any two

outcomes then any core outcome is strict∗ for all subsets of agents. Thus, there exists a core
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outcome z, which is strict for SC(z).

Step 1: Let ε > 0. De�ne ε′ := mini∈I minz,z′∈Z:ui(z)6=ui(z′) |ui(z) − ui(z′)| as the smallest

positive di�erence in utility between any two outcomes for any agent. Let NZ := #Z be

the number of possible outcomes and let r : Z → {1, ..., NZ} be any bijective mapping,

which satis�es
∑n

i=1 zi >
∑n

i=1 z
′
i ⇒ r(z) > r(z′). Let m ∈ N. De�ne the mapping u+zim =

r(z)ε′

2nmNZ
∀ i ∈ I. Interpret u+zim as the utility increment we want to add to agent i's utility in

outcome z. Since ui is strictly increasing in wi and since u+zim < ε′ ∀z ∈ Z, i ∈ I there exists

a payment ∆zim < 0.01 that adds exactly the utility u+zim. If the payments ∆m are de�ned

in this way, no agent is indi�erent between any two outcomes, since this would imply.

ui(z) + u+zim = ui(z
′) + u+z′im ⇔ ui(z)− ui(z′) = u+zim − u+z′im (10)

The absolute value of the left-hand side of the second equation is either equal to zero or

weakly bigger than ε′. However, since r(z) 6= r(z′) the absolute value of the right-hand

side is strictly bigger than zero and strictly smaller than ε′. This leads to a contradiction.

Therefore, adding the payments ∆m leads to a mechanism in which no agent is indi�erent

between any two outcomes. Further, out of continuity of ui in wi there exists an m ∈ N such

that total expected costs of ∆m are less than ε.

Step 2: I prove this step by induction over the number of agents in the economy. For the

beginning assume there are n = 1 agents. Then existence of a core outcome is equivalent

to the existence of an outcome which gives the agent maximal utility. Since our state space

is �nite this is trivial. Thus, one may assume that for an economy with n = k agents

there exists a core outcome. Let's now look at an economy with n = k + 1 agents. Call

the coalition of agents 1 through k in this economy C. Then by assumption there is an

outcome z, with zk+1 = 0, from which no subcoalition of C can improve. I call this a core

outcome in the coalition C. Let z′ be the Pareto optimal Pareto improvement over z, in

which agent k + 1 gets the highest utility. Then no subcoalition of C can improve on z′.

Otherwise z could not have been a core outcome in coalition C. Assume to the contrary
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a coalition C ′ including agent k + 1 can improve from z′ to an outcome z′′. Then total

contributions are less in z′′ than in z′ or this would be a further Pareto improvement. Then

z′′′ := (max{z1, z′′1}, ...,max{zk, z′′k}, z′′k+1) is a Pareto improvement over z in which agent k+1

is better o� than in z′′ (since
∑n

i=1 zi >
∑n

i=1 z
′
i ⇒ r(z) > r(z′)) and thus better o� than

in z′. This contradicts the assumptions on z′. Thus, no coalition can improve on z′ and

therefore z′ is in the core.�

Appendix B

This Appendix covers the experiment instructions. They are translations from the German

original. The German version can be obtained on request from the author. The di�erent

instructions for the four treatments are given in the following order: 1.) VCM, complete

information, 2.) CCM, complete information, 3.) VCM, incomplete information 4.) CCM,

incomplete information.

7.1 Instructions for VCM with complete information

Instructions

Welcome to our experiment! Please read the instructions carefully. Do not talk to your

neighbor from now on. Shut down your mobile phone and keep it turned o� until the

experiment ends. If you have any questions, raise your hands. We will come to you. All

participants have got the same instructions.

In the experiment you will be divided in groups of 5. The experiment will last for 20

periods. You will be grouped with the same four players in all periods. The experiment

is entirely anonymous. No player will be informed whom he was grouped up with or what

payo� any other player obtains.

Points are the currency in the experiment. In every period you start with 10 points.

These points will by the end of the period either be added entirely to your private account,
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or will be invested entirely into a common project. For every player who invests his 10

points into the project all players obtain 6 points.

Example 1: You invest you 10 points into the project and 2 other players invested into

the project additionally. You will get for your investment and for the investment of the other

2 players 6 points each. Thus you will get 3× 6 = 18 points in total added to your account.

Example 2: You do not invest your 10 points into the project and 2 players invested into

the project in total. Your will keep your 10 points and get additionally 6 points each for the

investment of the other 2 players. Thus you get 10 + 2×6 = 22 points in total added to your

account.

Every player can choose in every period between two actions:

• You can invest your 10 points into the project.

• Or you can keep your 10 points for yourself.

All players decide simultaneously.

Payo� of all periods

After it was determined who contributes to the project in a given period, all players get

the corresponding points added to their account.

Then a new period starts. After 20 periods there will be a questionnaire. After the

experiment you will be called to receive your money. You will receive your earnings for all

periods at a rate of 40 points=1¤. The payment will be private and in cash.

Program structure

You obtained a printed example for the structure of the program, which you will use to

submit your decision in every period. The screen is divided into three blocks.

The block on the upper left side contains a calculator. Here you can test actions for you

and the four other players. Once you select an action for every player the computer will

calculate the payo� you would obtain in this case.
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In the upper right block you enter the action that will be relevant for your payo�. Below

there is a red button. When you push this button you submit your decision and leave the

screen. Only when all players pushed the button the experiment continues. A clock on the

upper right hints at the time in which your decision should be made. If the time runs out

this has no e�ect.

From period two on the actions of all players of all previous periods and your payo� in

those periods will be displayed in the big block below. In the �rst period this block will be

empty.

The texts in the green frames on the printed example of the program are comments that

explain the print. They will not be displayed in the actual program.

7.2 Instructions for CCM with complete information

Instructions

Welcome to our experiment! Please read the instructions carefully. Do not talk to your

neighbor from now on. Shut down your mobile phone and keep it turned o� until the

experiment ends. If you have any questions, raise your hands. We will come to you. All

participants have got the same instructions.

In the experiment you will be divided in groups of 5. The experiment will last for 20

periods. You will be grouped with the same four players in all periods. The experiment

is entirely anonymous. No player will be informed whom he was grouped up with or what

payo� any other player obtains.

Points are the currency in the experiment. In every period you start with 10 points.

These points will by the end of the period either be added entirely to your private account,

or will be invested entirely into a common project. For every player who invests his 10

points into the project all players obtain 6 points.

Example 1: You invest you 10 points into the project and 2 other players invested into

the project additionally. You will get for your investment and for the investment of the other
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2 players 6 points each. Thus you will get 3× 6 = 18 points in total added to your account.

Example 2: You do not invest your 10 points into the project and 2 players invested into

the project in total. Your will keep your 10 points and get additionally 6 points each for the

investment of the other 2 players. Thus you get 10 + 2×6 = 22 points in total added to your

account.

Every player can choose in every period between six di�erent conditions:

• 0=Contribute in any case.

• 1=Contribute only if at least one other player contributes, too.

• 2=Contribute only if at least two other players contribute, too.

• 3=Contribute only if at least three other players contribute, too.

• 4=Contribute only if all four other players contribute, too.

• 5=Contribute in no case.

The computer selects the highest amount of players, which can contribute to the project,

without violation the condition of any player. These players will then automatically con-

tribute to the project. The other players will not contribute.

Example 1: 3 players choose condition "1" and the other two players choose condition

"5". Then those 3 players, who chose condition "1" will contribute to the project.

Example 2: 3 players choose condition "3" and the other two players choose condition

"5". Then no player will contribute to the project.

Payo� of all periods

After it was determined who contributes to the project in a given period, all players get

the corresponding points added to their account.

Then a new period starts. After 20 periods there will be a questionnaire. After the

experiment you will be called to receive your money. You will receive your earnings for all

periods at a rate of 40 points=1¤. The payment will be private and in cash.
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Program structure

You obtained a printed example for the structure of the program, which you will use to

submit your decision in every period. The screen is divided into three blocks.

The block on the upper left side contains a calculator. Here you can test conditions for

you and the four other players. Once you select a condition for every player the computer

will calculate the payo� you would obtain in this case.

In the upper right block you enter the condition that will be relevant for your payo�.

Below there is a red button. When you push this button you submit your decision and leave

the screen. Only when all players pushed the button the experiment continues. A clock on

the upper right hints at the time in which your decision should be made. If the time runs

out this has no e�ect.

From period two on the conditions of all players of all previous periods and your payo�

in those periods will be displayed in the big block below. In the �rst period this block will

be empty.

The texts in the green frames on the printed example of the program are comments that

explain the print. They will not be displayed in the actual program.

7.3 Instructions for VCM with incomplete information

Instructions

Welcome to our experiment! Please read the instructions carefully. Do not talk to your

neighbor from now on. Shut down your mobile phone and keep it turned o� until the

experiment ends. If you have any questions, raise your hands. We will come to you. All

participants have got the same instructions.

In the experiment you will be divided in groups of 5. The experiment will last for 20

periods. You will be grouped with the same four players in all periods. The experiment

is entirely anonymous. No player will be informed whom he was grouped up with or what

payo� any other player obtains.
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Points are the currency in the experiment. In every period you start with 10 points.

These points will by the end of the period either be added entirely to your private account,

or will be invested entirely into a common project.

At the beginning of the �rst period every player will be assigned one type, which he will

keep for the entire game.

With a chance of 20% you are type 1 and you do not bene�t from the common project.

In this case in each period your 10 points will be added to your private account if you do

not invest them into the project. And 0 points will be added to your private account if you

invest into the project. If any other players invest into the project does not in�uence your

payo� in this case.

With a chance of 80% you are type 2 and you bene�t from the common project. In this

case in each period your 10 points will be added to your private account as well if you do not

invest them into the project, but 6 points will be added to your private account if you invest

into the project. Additionally you receive 6 points for every other player, who also invests

into the project.

The types are drawn independently, especially di�erent players may thus have di�erent

types. Every player gets displayed his type in every period. He does not get to know the

types of the other players.

Example 1: You are type 2 and you invest you 10 points into the project and 2 other

players invested into the project additionally. You will get for your investment and for the

investment of the other 2 players 6 points each. Thus you will get 3× 6 = 18 points in total

added to your account.

Example 2: You are type 2 and you do not invest your 10 points into the project and 2

players invested into the project in total. Your will keep your 10 points and get additionally

6 points each for the investment of the other 2 players. Thus you get 10 + 2× 6 = 22 points

in total added to your account.
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Example 3: You are type 1 and you do not invest your 10 points into the project and 2

players invested into the project in total. Your will keep your 10 points and get no additional

points for the investment of the other 2 players. Thus you get 10 points in total added to

your account.

Every player can choose in every period between two actions:

• You can invest your 10 points into the project.

• Or you can keep your 10 points for yourself.

All players decide simultaneously.

Payo� of all periods

After it was determined who contributes to the project in a given period, all players get

the corresponding points added to their account.

Then a new period starts. After 20 periods there will be a questionnaire. After the

experiment you will be called to receive your money. You will receive your earnings for all

periods at a rate of 40 points=1¤. The payment will be private and in cash. If you are

type 1 you will receive 5¤ additionally to compensate for your lower earning possibilities.

Program structure

You obtained a printed example for the structure of the program, which you will use to

submit your decision in every period. The screen is divided into three blocks.

The block on the upper left side contains a calculator. Here you can test actions for you

and the four other players. Once you select an action for every player the computer will

calculate the payo� you would obtain in this case.

In the upper right block you enter the action that will be relevant for your payo�. Addi-

tionally in this block your type is displayed and whether you bene�t from the project. Below

there is a red button. When you push this button you submit your decision and leave the
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screen. Only when all players pushed the button the experiment continues. A clock on the

upper right hints at the time in which your decision should be made. If the time runs out

this has no e�ect.

From period two on the actions of all players of all previous periods and your payo� in

those periods will be displayed in the big block below. In the �rst period this block will be

empty.

The texts in the green frames on the printed example of the program are comments that

explain the print. They will not be displayed in the actual program.

7.4 Instructions for CCM with incomplete information

Instructions

Welcome to our experiment! Please read the instructions carefully. Do not talk to your

neighbor from now on. Shut down your mobile phone and keep it turned o� until the

experiment ends. If you have any questions, raise your hands. We will come to you. All

participants have got the same instructions.

In the experiment you will be divided in groups of 5. The experiment will last for 20

periods. You will be grouped with the same four players in all periods. The experiment

is entirely anonymous. No player will be informed whom he was grouped up with or what

payo� any other player obtains.

Points are the currency in the experiment. In every period you start with 10 points.

These points will by the end of the period either be added entirely to your private account,

or will be invested entirely into a common project.

At the beginning of the �rst period every player will be assigned one type, which he will

keep for the entire game.

With a chance of 20% you are type 1 and you do not bene�t from the common project.

In this case in each period your 10 points will be added to your private account if you do

not invest them into the project. And 0 points will be added to your private account if you
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invest into the project. If any other players invest into the project does not in�uence your

payo� in this case.

With a chance of 80% you are type 2 and you bene�t from the common project. In this

case in each period your 10 points will be added to your private account as well if you do not

invest them into the project, but 6 points will be added to your private account if you invest

into the project. Additionally you receive 6 points for every other player, who also invests

into the project.

The types are drawn independently, especially di�erent players may thus have di�erent

types. Every player gets displayed his type in every period. He does not get to know the

types of the other players.

Example 1: You are type 2 and you invest you 10 points into the project and 2 other

players invested into the project additionally. You will get for your investment and for the

investment of the other 2 players 6 points each. Thus you will get 3× 6 = 18 points in total

added to your account.

Example 2: You are type 2 and you do not invest your 10 points into the project and 2

players invested into the project in total. Your will keep your 10 points and get additionally

6 points each for the investment of the other 2 players. Thus you get 10 + 2× 6 = 22 points

in total added to your account.

Example 3: You are type 1 and you do not invest your 10 points into the project and 2

players invested into the project in total. Your will keep your 10 points and get no additional

points for the investment of the other 2 players. Thus you get 10 points in total added to

your account.

Every player can choose in every period between six di�erent conditions:

• 0=Contribute in any case.

• 1=Contribute only if at least one other player contributes, too.

• 2=Contribute only if at least two other players contribute, too.
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• 3=Contribute only if at least three other players contribute, too.

• 4=Contribute only if all four other players contribute, too.

• 5=Contribute in no case.

The computer selects the highest amount of players, which can contribute to the project,

without violation the condition of any player. These players will then automatically con-

tribute to the project. The other players will not contribute.

Example 1: 3 players choose condition "1" and the other two players choose condition

"5". Then those 3 players, who chose condition "1" will contribute to the project.

Example 2: 3 players choose condition "3" and the other two players choose condition

"5". Then no player will contribute to the project.

Payo� of all periods

After it was determined who contributes to the project in a given period, all players get

the corresponding points added to their account.

Then a new period starts. After 20 periods there will be a questionnaire. After the

experiment you will be called to receive your money. You will receive your earnings for all

periods at a rate of 40 points=1¤. The payment will be private and in cash. If you are

type 1 you will receive 5¤ additionally to compensate for your lower earning possibilities.

Program structure

You obtained a printed example for the structure of the program, which you will use to

submit your decision in every period. The screen is divided into three blocks.

The block on the upper left side contains a calculator. Here you can test conditions for

you and the four other players. Once you select a condition for every player the computer

will calculate the payo� you would obtain in this case.

In the upper right block you enter the condition that will be relevant for your payo�.

Additionally in this block your type is displayed and whether you bene�t from the project.

59



Below there is a red button. When you push this button you submit your decision and leave

the screen. Only when all players pushed the button the experiment continues. A clock on

the upper right hints at the time in which your decision should be made. If the time runs

out this has no e�ect.

From period two on the conditions of all players of all previous periods and your payo�

in those periods will be displayed in the big block below. In the �rst period this block will

be empty.

The texts in the green frames on the printed example of the program are comments that

explain the print. They will not be displayed in the actual program.
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Appendix C

In addition to instructions agents had to �ll out a slide of comprehension questions. A

translation of the German original is given exemplary for the case of the CCM and incomplete

information:

Comprehension questions - Experiment PGCCM

You are asked to complete two test questions to check whether you understood the in-

structions completely.

Choose in the following test question 1 a condition for each player. Choose at least

three di�erent conditions:

Your condition (player 1):

Condition player 2:

Condition player 3:

Condition player 4:

Condition player 5:

Underline those players, who would contribute to the project in this case:

Player 1 Player 2 Player 3 Player 4 Player 5

What payo� would you obtain in this period if you are of type 2?

Choose also in the following test question 2 a condition for each player. Choose at least

three di�erent conditions, such that the number of players, who contribute to the project,
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di�ers in test question 1 and 2:

Your condition (player 1):

Condition player 2:

Condition player 3:

Condition player 4:

Condition player 5:

Underline those players, who would contribute to the project in this case:

Player 1 Player 2 Player 3 Player 4 Player 5

What payo� would you obtain in this period if you are of type 1?
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