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Abstract

In choice problems with many alternatives and a priori uncertain outcomes, it has long

been argued that individuals may use the observed choices of others as information to

guide their own decisions. This paper analyses the role of these social interactions in the

context of restaurant choice, while at the same time evaluating the value of a restaurants

user rating in determining economic outcomes (as measured by restaurant checkins). The

model follows a Polya urn logic, with choices being analyzed in a Dirichlet-multinomial

framework. Data is provided by the online urban guide Yelp. Results show that correla-

tion across choices of restaurant guests is present and can be modelled as a function of

group-level variables related to information exchange. Ratings and other factors such as

price categories do play a role, though traditional modelling approaches that ignore social

interactions tend to overstate its importance both in terms of statistical and economic

significance. The presented results from the restaurant market may well prove to be im-

portant in other choice contexts characterized by many alternatives and highly skewed

outcome distributions.
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1 Introduction

Choosing a place to eat is not easy. According to Beinhocker (2007), there exist over 50’000

restaurants in New York City alone. Restaurant choice is a demanding, highdimensional

choice problem from the perspective of an individual - so much so that it has been argued

(Simon, 1955; Ormerod et al., 2012; Sela and Berger, 2012) that with such an abundance of

choices, individuals may lack the processing capacity to select the optimal choice, even when

(or indeed especially when) complete information is available. Consequently, it has been

suggested that individuals may therefore resort to other strategies to make their decisions,

such as heuristics. In the case of restaurant choice, uncertainty about the payoffs is further

complicating the problem, as not only alternatives are abundant, but also the quality of the

food is only imperfectly observable until after the choice was made.1

It is increasingly recognized that in the context of such problems, social interactions may

play a crucial role, possibly affecting both efficiency and equity of the resulting allocation

(Granovetter, 1985; Jackson, 2010; Vega-Redondo, 2007). Instead of processing the vast

amount of imperfectly observed information and making independent choices, individuals

may use the observed choices of others to help guide their decisions. In what they call social

network markets, Potts et al. (2008) suggest that “the very act of consumer choice is governed

not just by the set of incentives decribed by conventional consumer demand theory, but by

the choices of others in which an individual’s payoff is an explicit function of the action of

others.”2 In other words, each individual’s action creates positive externalities, transmitting

information about an alternative from which future decisionmakers can learn (De Vany and

Walls, 1996). This in turn leads to correlated choices and individuals clustering around a

limited set of the many choices available. Social interactions have been shown to play a

significant role in a variety of contexts, including movie attendance (De Vany and Walls,

1996; McKenzie, 2008), music (Salganik et al., 2006), book sales (Beck, 2007), health care

plan choice (Sorensen, 2006) and hospital choice (Guimaraes and Lindrooth, 2007; Pauly and

Satterthwaite, 1981). Becker (1991) made a similar argument for restaurants in a theoretical

framework.

In this paper, I analyze the role of information transmission via social interactions in the

context of restaurant choice. More specifically, I put the focus on two aspects. First, I show

that overdispersion in restaurant checkins is present in the data and that this overdispersion

can be explained using a Polya Urn dynamic, incorporating previous guests choices in the

decision process. I model the strength of social interactions as a function of both information

1This is true even for repeated visits of an individual at the same restaurant, as food quality may vary from

day to day or meal to meal.
2Note that I will use the terms “information transmission”, “observation of actions of others” and “social

interactions” as a synonym for others’ choices.
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exchange-related as well as socioeconomic group variables. To my knowledge, this paper is

the first to embed social interactions in this manner and put the Polya Urn dynamic to use

in the context of restaurant choice.

Second, I analyze the importance of user-provided ratings and other attributes of restaurants

in the social interactions model. The importance of user-provided ratings has been hotly

discussed in recent years both in popular media and research (for an example in the restaurant

context, see Luca (2011)), with such ratings sometimes being described as a new form of

currency or reputation for businesses. While debated, an assessment of the value of such

ratings remains an open issue, and especially in a context with correlated behavior such

ratings may provide little insights with respect to the economic outcomes of such businesses,

as in these cases individuals follow the previous choices regardless of objective measures.

Put simply, in a world where choices are perfectly correlated, a first individual chooses a

restaurant and all successors adopt the same choice no matter what the rating says (whereas

in the case of independent choices, individuals decide solely on attributes of a restaurant,

disregarding the choices of others).

Researchers analyzing choice problems with aggregate data typically use McFadden’s random

utility framework and estimate a conditional logit model (McFadden, 1974). However, from

an econometric perspective, social interactions lead to overdispersion and violate the multino-

mial assumption, resulting in a misspecified model. To account for information transmission

from other individuals and the resulting overdispersion, I use a Dirichlet multinomial re-

gression model, which treats choice probabilites as random variables rather than as constant

parameters of the multinomial distribution. Under the Dirichlet multinomial distribution,

conditional choice probabilities increase proportionally to the number of individuals who

have previously chosen that alternative, introducing a sequential aspect by making todays

choices dependent on past choices - even in the case when one only has cross-sectional data

at hand. The multinomial distribution and thus independence of individual choices is nested

in the Dirichlet-multinomial as a limit case, which allows directly testing the two models

against each other.

While the Dirichlet-multinomial model has been used in the econometric literature before

(e.g. Guimaraes and Lindrooth, 2007), researchers typically omit to back out the parameters

of the Dirichlet distribution, thereby failing to draw final conclusions about the predictability

of outcomes. As I am also interested in the predictability of success of a restaurant dependent

on its rating, I will discuss these parameters in this paper.

I use a dataset provided by the online urban guide Yelp. The dataset contains information

on checkins, ratings and other attributes of restaurants in the metropolitan area of Phoenix

(AZ), covering 3’171 restaurants across 125 ZIP codes within a period from early 2010 to

early 2015. While it may be true that platforms such as Yelp offer only selected samples,
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I regard an ecosystem with an average 135 million monthly users and 67 million reviews as

being interesting in itself. The fact that such platforms impact real-world decisions and their

relevance is growing as the use of these platforms spreads across the population makes the

study of such data important and meaningful beyond its own sake.

The model is estimated across different markets and allows the social interaction parameter

to vary across these markets. By modelling social interactions within a market directly as

a function of market level variables, I can broadly separate effects of within-market homo-

geneity of individuals from social interaction effects. For example, one would expect that

in a market with low income inequality, interactions are higher than in markets with higher

income inequality, as individuals are more alike (in terms of income) and may therefore learn

more from their peers than in a high-inequality environment.

In the baseline specification, markets are defined on a ZIP code and price category level (each

price category in each ZIP code constitutes a market). To check for the robustness of results,

different market definitions are used, markets are evaluated across and within three time

periods and choices are analysed on a higher aggregation level. All the results are robust

vis-à-vis these alternating definitions and periods.

I find strong evidence for social interactions, justifying the use of the Dirichlet multinomial

model. The interactions are driven by a combination of factors, including both informa-

tion transmission variables (such as the total number of reviews in a market) and market-

characteristic variables (such as the price level, the income level or the number of competi-

tors). Meanwhile, within-group heterogeneity in income as measured by an inequality-proxy

has no significant impact on correlation within a group. I also find that higher ratings have a

positive effect on visit probabilities, but that the overall informational value of such ratings

is limited.

Section 2 explains the role of internet data in information transmission, section 3 discusses

data, followed by the outline of the model and estimation of the model in section 4. Section

5 presents main results, section 6 shows robustness checks. Section 7 concludes.

2 Information transmission and the role of internet data

In the classic perspective of choice theory, individuals observe a set of choices and their char-

acteristics before choosing whatever option maximizes their utility. The restaurant market

can be seen in such a choice context as well, but it has two features that differentiate it from

more traditional choice applications. For one, there is uncertainty about the choices’ arguably

most important characteristic: the quality of a restaurant (including the food, the location

and/or the athmosphere). A priori, individuals do not have certainty about the payoffs of

eating at a particular restaurant. An individual may know that she has a preference for pizza,
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but she does not know whether she will like the pizza served at a particular restaurant. All

she can do is form an expectation about the quality based on restaurants’ observables, which

might be more or less accurate. At the same time, the a priori unobserved or only imper-

fectly observed quality component seems crucial in explaining the highly unequal economic

outcomes of restaurants (as depicted by the checkins distribution on the left hand side in

Figure 1). This is true even within a geographic area, price or food category.

The second particularity in the restaurant context is the abundance of choice. While in

theory this does not change the choice problem, it has been argued that from a behavioral

perspective, the abundance of alternatives and the corresponding information attached to

these options is so vast that it makes it impractical for individuals to sift through all the

options before making a choice (Simon, 1955). This is not just true in contexts of incomplete

or imperfect information, but also in situations where all the relevant choice attributes are

observed - indeed, complete information might worsen the problem as it raises the computa-

tional burden.

Researchers have long argued that both in contexts with uncertain payoffs as well as in

contexts with high-dimensional choice sets, individuals resort to social interactions (Ormerod

et al., 2012), either to learn new information from signals of others or to circumvent the burden

of evaluating all the information themselves3. The interactions can broadly be thought of

as externalities: every time an individual takes a decision, she gives away information to

her peers that they in turn can take into account in their own decisions. Building on the

previous choices, individuals deciding later in the sequence can filter out the best alternative.

Repeating this process induces correlation across the decisions of individuals, which in turn

can lead to highly unequal outcome distributions.

Such choices and interactions have been hard to measure and track in the past. But in recent

years, internet data has been growing at an unprecedented pace. For example, by logging

checkins and reviews of their users, Yelp measures and publishes information that was largely

restricted to observations in limited geographic space (where people go) and word of mouth

(what they tell about their experience) before the internet age. It is by using this data that

I want to analyze how individuals choose restaurants, in light of the arguments made above.

The paper focuses on two measures in Yelp data: checkins and ratings. By including previous

checkins of others in the decision process, one induces correlation across individuals’ choices

(or the same individual choosing multiple times), enabling the “rich-get-richer”-property that

leads to the unequal outcome distribution seen in Figure 1. Ratings, on the other hand, are

used as a proxy for the quality of a restaurant (assumed to be unbiased), where higher

quality leads to a priori higher checkin probabilities, ceteris paribus. While these ratings are

3Social interactions have many labels such as information transmission, information diffusion or herding; I will

use these terms interchangeably here.

4



a measure for quality, they can be noisy, especially in the beginning when the overall rating

is based on only a few observations: Different individuals may rate the same restaurant very

differently and may therefore not rely on these ratings all that much. In an extreme case,

individuals may disregard others’ opinions completely, deciding in complete uncertainty with

respect to the quality of a restaurant. At the other end of the limit case, ratings are taken as

an objective and valid measure of quality, in which case no person should go to a low-rated

restaurant as long as there is a higher-rated one (conditional on cost). Data on the choices of

individuals in combination with the model described below allow to assess the informational

“value” of these ratings (where a rating is of no value in the former extreme case of complete

uncertainty, but very valuable in the latter case). As individual ratings accumulate over time,

the average rating should become more accurate, and one should move away from the first

extreme, towards the second extreme. This dynamic should be detectable when analyzing

the restaurant market at different points in time.

3 Data

Yelp is an online urban guide collecting visit and review data on businesses, most of which are

active in the food and drink industry. The platform is visited by about 6 million people daily.

The audience is characterized by an overweight of female visitors, an overweight in the 18 to

44 year old group and an above-average eduation and income level, relative to demographics

of the average web user in the US.4

The data used in this paper is a collection of samples offered through the Yelp dataset chal-

lenge and includes information on businesses in the metropolitan area of Phoenix, Arizona,

covering three snapshots over a period of five years between early 2010 and early 2015. Data

on checkin counts (a feature that Yelp introduced in January 2010) as well as ratings and

other restaurant attributes have been accumulated over the period from January 2010 to

January 2015, with the snapshots taken in early 2013, early 2014 and early 2015. I use the

checkins as a count measure for restaurant visits. Snapshots show cumulative checkins from

2010 onwards; having several snapshots across time allows me to calculate annual checkins

for the years 2013 and 2014. The 3’171 restaurants in the final dataset span 42 cities, 125

ZIP code areas and count a total of 895’265 checkins as of early 2015. Roughly half of the

restaurants are chain restaurants (defined as restaurants existing in more than 1 location).

Additional data on ZIP-level economic and demographic characteristics are 5-year estimates

from the 2013 US Census Survey.

Individuals checking in at a restaurant inform others about their choice. The probability

of choosing a particular restaurant is calculated as the number of Yelp checkins divided by

the total number of checkins in the same market. This checkin-based definition is different

4https://www.quantcast.com/yelp.com
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from more traditional measurements such as revenue-based market share calculations, and

as such it has its own characteristics. Rather than seeing checkins as a 1:1 reflection of

visits, one should see it as a proxy for these visits. The number of checkins, averaging

somewhere below 300 at the end of the sample period, is (presumably) much lower than

the actual number of visits. Also, in my simple model, the unconditional probability of an

individual checking in on Yelp is assumed to be constant across individuals, restaurants and

time. This is clearly a strong simplification, and a violation of this assumption may introduce

measurement error. If the measurement error is independent of the true probability pj , it

must be true that the variance of the observed probability is higher than the true variance.

Alternatively, if the measurement error is like prediction error, that is, the observed choice

probability is an unbiased prediction of the true probability, then the observed variance

underestimates the true variance (Glaeser et al., 1996). Yelp users might differ with respect

to the checkin probability among themselves as well as compared to non-Yelp users. Also,

checkin probabilities might differ across restaurants, presumably overestimating true visit

probabilities of trendy or especially good restaurants while underestimating true probabilities

of less popular alternatives.

That being said, it is important to note that I am mainly interested in the behavior and the

dynamics within the Yelp ecosystem; after all, Yelp users have access to that same information

to make their decisions. In the end, these decisions happen in the “real” world, and actions

based on information from online platforms become increasingly relevant as the use of such

platforms spreads across the population. Alternatively, one can interpret a checkin of an

individual as an implicit recommendation to others. While such a viewpoint is different,

it serves equally well to a researcher interested in information transmission. Aside from

that, more traditional proxies for market shares or choice probabilities do not come without

their own drawbacks. Both revenue-based and profit-based calculations tend to overweigh

expensive, high-margin restaurants, for example.

[Figure 1 about here.]

The restaurant population is restricted to restaurants that are recorded over the whole period

of 2010 to 2015. A first look at the data in Figure 1 confirms the clustering around a few choice

alternatives found in other social network markets. The distribution of cumulative checkins

over a period of five years shows a large number of restaurants with very few checkins, and a

small number of restaurants collecting a disproportionately high number of checkins: The top

10 percent of restaurants collectively combine as many checkins as the bottom 57 percent.

That inequality is not reflected in the (bounded) ratings distribution shown in the right half of

Figure 1, which is roughly bell-shaped and centered around a mean value of 3.5. Distributions

on lower aggregation levels are characterized similarly. Note that, on an individual restaurant
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basis, the variance of the ratings decreases the higher the average rating, an indication that

individuals generally agree on what is a good restaurant, but have different opinions when it

comes to bad ones (not shown here).

[Table 1 about here.]

There’s a set of 8 variables used in estimation, with a number of additional interaction

variables (price category and rating, price category and income). Summary statistics for

all variables are shown in Table 1. The dependent variable CUMULCHECKINS measures

the cumulative checkins at a restaurant. The checkin distribution is highly skewed, with few

restaurants capturing a disproportional share of the market (see also Table 7 in the appendix).

Note that checkins have no exact timestamp, but can be assigned to the years 2010-2012, 2013

or 2014. The main explanatory variable is the STARS rating, the (rounded) average rating

given by users which is used as an intial quality guess (which supposedly gets better as the

number of ratings grows). Ratings go from 1 to 5 in half-steps, are constant over time in the

vast majority of cases and will serve as a measure of quality of a restaurant. As there are only

few restaurants in the lower and upper parts of the STARS distribution, the variable has been

recoded as a rating variable with four groups defined as RATING1 = {1, 1.5}, RATING2 =

{2, 2.5}, RATING3 = {3, 3.5}, RATING4 = {4, 4.5, 5}. The variable PRICE indicates the

price category of a restaurant, ranging from 1 to 4. Price category one is a restaurant serving

food below 10 dollars, price category two ranges from 11 to 30 dollars, category three from

31 to 60 dollars and category four is for prices from 61 dollars. The categories three and four

have been merged due to the small number of restaurants in these categories. The variable

LNSUMREVIEWS is defined as the logarithmized total number of reviews within a group,

serving as a measure for the overall Yelp activity within the group. The variable LNCOMP

is the logarithmized count of the number of competitors in the same group. The variables

LNINC and LNPOP are ZIP-level measures for log-income and log-population, respectively.

Finally, the variable INEQ is an income inequality measure defined as the ratio of mean and

median income (ZIP-level) used to approximate within-group homogeneity. An inequality

measure above 1 implies a right-skewed income distribution. Within-group homogeneity is

potentially important since in a more homogenous group, individuals are expected to respond

more strongly to the information provided by others, while in more heterogeneous groups such

signals may not be as important.

4 Model

The model of restaurant choice employed here is an adapted version from De Vany and Walls

(1996), who used it to explain the unequal revenue distribution at the box office via word-of-

mouth recommendations and correlated decisions of moviegoers. The model is a generalized
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version of a Polya Urn scheme, where the first individual draws a ball of color j with some

probability from an urn, replaces that ball and adds an additional ball of the same color to

the urn, thereby enabling a “rich-get-richer” dynamic that is captured as social interactions

in the present context. It is also closely related to the Chinese Restaurant Process (Aldous,

1985), but with a preset number of restaurants (blocks in the partition).

4.1 Restaurant choice with perfect information

I start with the benchmark of a simple, perfectly informed world. Suppose there is a sequence

of i = 1, . . . , N individuals in a market M who have to choose a place to eat from a choice

set of R restaurants. The decision set of the ith consumer is denoted by di = {1, . . . , R}
and is identical for all individuals in the sequence. For simplicity, assume that each of these

restaurants represents a distinct quality level q. Individuals maximize a utility with a quality-

dependent payoff.

In the case of perfect information, all individuals make choices observing quality perfectly,

leading to a quality-dependent vector of choice probabilities p(q) = {p1, . . . , pR} that is

equal across individuals. The N individuals make their choices independently from one

another and allocate themselves across restaurants 1, . . . , R, resulting in the allocation vector

A = {A1, . . . , AR} whose realization can be defined as a = {a1, . . . , aR} where

R∑
k=1

ak = N.

Any particular outcome is multinomial distributed with probability function

Pr{A1 = a1, . . . , AR = aR|p1, . . . , pR} =

Pr{A = a|p} =
N !

a1! . . . aR!
pa11 . . . paRR

(1)

4.2 Restaurant choice with imperfect information

Now suppose that the quality of a restaurant is unknown or only imperfectly known to

individuals at the moment they make their decisions, introducing uncertainty about the

payoffs of a particular choice. Instead of maximizing utilities, individuals now maximize

expected utilities that, as I will show later, depend on their position in the choice sequence.

While in this setting, individuals cannot observe the quality of a restaurant directly, they

now have two alternative measures at their disposal. For one, they can form an expectation

about the quality of a restaurant using restaurant ratings s = E(q), which on average is
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assumed to be an unbiased quality estimate. On the other hand, individuals can observe the

choices of the (i− 1) individuals preceding them in the sequence and use these observations

as additional signals for quality.

In statistical terms, p is now itself a random vector dependent on ratings, rather than a

constant parameter reflecting quality as in the perfect information case. Whereas before, a

was the random realization of an allocation vector generated by the parameters in p, there is

now an additional random layer as the entries in p are generated from a random process as

well.

The probabilty density of choosing a restaurant given p, P (A = a|p), is still a known function:

It’s the multinomial density shown in the previous section. To account for the fact that p is

a random vector, I need a prior probability distribution for p supposed to reflect individuals’

beliefs about the ratings as a quality indicator. In other words, as p is a function of ratings,

one can interpret this prior probability distribution as the informational value of a rating,

absent any information about the choices of others.

Now consider what happens when individuals later in the sequence start taking into account

the choices that were made previously. They can use the previous choices to update their

beliefs and form a posterior distribution, where the posterior distribution of p is proportional

to the product of the known density of choosing a restaurant given p and the prior distribu-

tion of p. One can now see what role previous choices play: They change the distribution

of the number of guests visiting a restaurant. For example, it can be shown that on av-

erage, the distributions become more concentrated, reflecting an average gain in knowledge

(Lindley, 1961). So while the first individual in a sequence can base his decision only on a

prior distribution, the individual making the Nth decision has access to much more accurate

information to make his decision.

P (A = a|p) is still the multinomial density defined previously. What I need to embed quality

uncertainty is a prior distribution of p given the ratings, P (p|δ−1α), where the value of a rating

is captured in the parameters δ and α. In my case, I assume p to be Dirichlet distributed.

The Dirichlet distribution (also known as the multivariate Beta distribution) is a conjugate

prior for the probability parameter p of the multinomial distribution with density:

f(p1, . . . , pR;α1, . . . , αR, δ) =
1

B(δ, α)

R∏
k=1

pδ
−1αk−1
k (2)

where
∑M

k=1 pk = 1, αk > 0, δ > 0. B(δ−1α) is the β function that can be expressed in terms

of the Gamma function:
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B(δ, α) =

∏R
k=1 Γ(δ−1αk)

Γ(
∑R

k=1 δ
−1αk)

(3)

The marginal Beta distribution of the Dirichlet distribution (Beta(αk,
∑R

k=1 αk − αk)) has

mean

E(pj) =
δ−1αj∑R
k=1 δ

−1αk
=

αj∑R
k=1 αk

. (4)

The covariance between the choice probabilities for restaurants j and m is given by

Cov(pj , pm) =
−αjαm

(
∑R

k=1 αk)
2(
∑R

k=1 δ
−1αk + 1)

, j 6= m (5)

When R = 2, the Dirichlet reduces to the Beta distribution.

Figure 2 shows distributions over pj for different values of δ (for simplicity, αk = α = 1,

E(pj) = 0.5). When all components of δ−1α are equal to 1, the Dirichlet distribution reduces

to the uniform distribution over the probability simplex. When the components of δ−1α are

all greater than 1, the density is unimodal, and when the components of δ−1α are all less

than 1, the density has sharp peaks at the boundaries. As δ → 0, the distribution over p

degenerates to a constant, i.e. there is no uncertainty about the quality left and we’re back

in the perfect information case with the multinomial distribution.

[Figure 2 about here.]

Up to now I only considered a single market. To uncover parameters of the distribution, I

will need to estimate across multiple markets, where restaurants with identical ratings are

assumed to be identical in terms of expected quality (both within as well as across markets).

This may sound simplistic and reductionist, but actually reproduces the choice problem faced

by individuals: Before actually having eaten at a restaurant, a rating and some rudimentary

information such as a price range is all an individual can base his decision on.

Consider a set of markets m = 1, 2, . . . ,M . For the mth market, there is an associated

vector p(m) of length k = R for the probabilities of going to each restaurant. Suppose that

one can model these M probability vectors as coming from a Dir(δ−1α) distribution and

that we have Nm samples from the mth probability vector. This prior distribution is then

compounded with the multinomial distribution. The resulting {am} are realizations of a

Dirichlet-multinomial distribution.
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The m = 1, 2, . . . ,M sets of samples {am} drawn from the M probability mass functions

drawn from the Dir(δ−1α) distribution are conditionally independent given δ−1α, so the

likelihood of δ−1α can be written as the product

Pr{A = a} =

M∏
m=1

Pr{Am = am|δ−1α} (6)

where the compounded, unconditional distribution of Am is obtained by integrating over p:

Pr{Am = am|α} =

∫
Pr{Am = am|p}f(p|α)dp

=
Nm!∏R
k=1 amk!

Γ(
∑R

k=1 δ
−1
m αk)

Γ(Nm +
∑R

k=1 δ
−1
m αk)

R∏
k=1

Γ(amk + δ−1
m αk)

Γ(δ−1
m αk)amk!

=
NB(δ−1Am, Nm)∏

k:amk>0 akB(δ−1
m αk, amk)

(7)

where NB() denotes the negative binomial distribution. By substituting Equation (7) into

Equation (6), one obtains the likelihood of the observed data (see Equation 12 in the estima-

tion section).

Using the law of iterated expectations and the law of total variance, the Dirichlet multinomial

can be shown to have expected value, variance and covariance given by (Ng et al., 2011)

E(ajm) = E[E(ajm|pjm)] = NmE(pjm) =
Nmαj∑R
k=1 αk

, (8)

V ar(ajm) = V ar(E[ajm|pjm]) + E[V ar(ajm|pjm)]

= E(Nmpjm(1− pjm)) + V ar(Nmpjm)

= Nm
αjm∑R
k=1 αk

(
1− αj∑R

k=1 αk

)
(1 + (Nm − 1)ρm)

(9)

where ρ = 1/(δ−1
m

∑R
k=1 αk + 1) is an overdispersion parameter, inflating the variance by a

factor (1 + (Nm − 1)ρm) vis-à-vis the multinomial distribution. Note that αj is restaurant-

specific, while δm is market specific. The expected value of the Dirichlet-multinomial distri-

bution is independent of δ; in the case of the variance, δ enters through ρ. In the case of

perfect information and no uncertainty about payoffs, δ → 0, ρ → 1 and the overdispersion

disappears.

It is important to point out that the social interactions as modeled here could be interpreted

both as a form of information transmission or individuals simply having a preference to be
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surrounded by other individuals (or a combination of the two). In the former case individuals

indirectly find out about the quality of a restaurant, while in the latter case the presence of

others itself becomes an attractive feature of a restaurant. When only looking at choices on

the level of individual restaurants, both explanations are observationally equivalent in the

sense of Ellison and Glaeser (1997).

4.3 Parameters of interest

To see the role previous choices play in this process, it is instructive to look at the conditional

probability of the (N+1)st individual to eat at restaurant j given the first N individuals have

led to the allocation vector AN = aN . For notational ease, I drop the m-subscript and go

back to focussing only on a single market. If (A|p) ∼ Multinomialk(N, p) and P ∼ Dir(δ−1α),

then (P |A = a) ∼ Dir(δ−1α + a). Based on this, the conditional probability given the first

N individuals can be shown to be equal to

Pr{dN+1 = j|A = a} =
δ−1αj + aj

N +
∑R

k=1 δ
−1αk

=
δ−1αj∑R
k=1 δ

−1αk

∑R
k=1 δ

−1αk

N +
∑R

k=1 δ
−1αk

+
aj
N

N

N +
∑R

k=1 δ
−1αk

= wE(pj) + (1− w)
aj
N

(10)

where w =
∑R

k=1 δ
−1αk

N+
∑R

k=1 δ
−1αk

. The last step in Equation (10) decomposes the probability into a

weighted average of a prior probability and a likelihood component. The first line in Equa-

tion (10) nicely illustrates how information transmission depends on α and δ. The parameter

vector α serves as a (conditional) quality measure (higher quality restaurants have higher

αj), which is scaled by δ on a market level. The conditional probability also illustrates an

important property of the Dirichlet-multinomial distribution: While the individuals’ deci-

sions are (clearly) not independent, they are exchangeable, meaning that the order in which

individuals choose is irrelevant.

A higher αj increases the expected probability of an individual visiting the restaurant relative

to restaurants with a lower rating, ceteris paribus. If social interactions are strong enough

though, these relative differences may become irrelevant. This is reflected in the δ param-

eter. δ does not influence the marginal expectation of any alternative, but does influence

the marginal variance, capturing social interactions. As δ → 0 (δ−1
∑R

k=1 αk → ∞), the

Dirichlet multinomial converges to the multinomial distribution with a constant p vector and

independent choices. Differences in choice probabilities are entirely determined by differences

in ratings refleted in αj - reliance on social interactions becomes irrelevant.

δ → ∞, on the other hand, leads to a sparse distribution of p and a process heavily deter-
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mined by social interactions (i.e. almost all people go or don’t go to a particular restaurant,

irrespective of quality or other attributes). In other words, the first individual flips a coin

and chooses a restaurant at random, while all others following in the sequence adopt the

first individual’s choice.5 Outcomes become highly skewed, as they are heavily influenced by

strong but a priori unpredictable social interactions. The α vector completely looses its pre-

dictive power. A special case is δ−1αj = 1 ∀ j with a uniform distribution over outcomes, i.e.

all possible outcome allocations are a priori equally likely (also known as the Bose-Einstein

distribution, discussed in De Vany and Walls (1996)).

4.4 Grouping restaurants by quality

Up to this point, the model assumed that each of the R restaurants represents a distinct

quality level. When estimating the model, this will not be the case, as quality will be

measured by a rating with a 9-point scale only. I will estimate the model on the individual

restaurant level, assigning the same αj parameter to restaurants with the same rating, making

restaurants with the same rating are a priori indistinguishable from each other. This may

seem like an oversimplification, but for the ratings to be of any value a high rating in one

place should translate into an approximately equivalent signal for quality in another place

(conditional on location and price category). If ratings and their informational value are

idiosyncratic, they are of little help.

Alternatively, I also aggregate restaurants by their quality and estimate the model, taking

these aggregated restaurant groups as the observational unit. With respect to the Dirichlet-

multinomial distribution, partitioning {1, 2, . . . , R} restaurants into {C1, C2, . . . , Cs} with

s < R is straightforward, as

(
∑
i∈C1

Pi,
∑
i∈C2

Pi, , . . . ,
∑
i∈Cs

Pi, ) ∼ Dir(
∑
i∈C1

αi,
∑
i∈C2

αi, . . . ,
∑
i∈Cs

αi)

due to the Dirichlet’s aggregation property (Frigyik et al., 2010). By definition then, the αj in

the aggregated model should be at least as high as the in the model working with individual

restaurants.

4.5 Estimation

The model derived in the previous section can be estimated by maximum likelihood (Guimaraes

and Lindrooth, 2007). Main results will focus on markets defined on a ZIP code and pricerange

5In such a case, the model would degenerate to a constant-only conditional logit model with restaurant fixed

effects - which could be interesting from a marketing perspective (e.g. is the constant for restaurant A higher

than the constant for restaurant B), but not interesting in the context of social interactions where individuals

only have limited access to information. Also, overdispersion would be ignored.
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level, thereby assuming information is exchanged within a given price range and limited ge-

ographic area (i.e. social interactions are limited within that group). Since I do not observe

any individual-specific information, actual restaurant choices can be aggregated into a vector

of counts am = {a1m, . . . , aRm} without any loss of information. Consequently, individuals in

a given market face the same choice set with identical choice attributes. As noted previously,

individual visits are not independent but exchangeable, making the counts independent of

the ordering of individuals in the queue while maintaining the sequential nature of the choice

problem.

As shown by Guimaraes and Lindrooth (2007), modelling pjm as a random variable is equiv-

alent to introducing unobservable market-specific effects that equally influence the decisions

of all individuals belonging to the same market. These market-specific effects will induce cor-

relation across individuals in the same market, which in turn leads to overdispersion in the

akm count. The choice probability of individual i in market m selecting choice j (conditional

on the group random effects) is defined as

pijm =
exp(β′xj + ηjm)∑R
k=1 exp(β′xk + ηkm)

=
αj exp(ηjm)∑R
k=1 αk exp(ηkm)

(11)

where αj = exp(β′xj), xj are observable characteristics of choice j, ηjm are the random effects

that affect members in market m and εijm are assumed to be independent conditional on the

market random effects. Assume that the random market effects exp(ηjm) are i.i.d. gamma

distributed with parameters {δ−1
m αj , δ

−1
m αj} where δm > 0 is a market-specific parameter.

Then, exp(ηjm) has unit expectation and a variance equal to δmα
−1
j . Moreover, the variables

defined by the product αj exp(ηjm) also follow independent gamma distributions with param-

eters {δ−1
m αj , δ

−1
m }. Given that all these variables follow independent gamma distributions

with the same scale parameter, the vector p = {p1m, . . . , pRm} follows a Dirichlet distribution

with a density as defined in Equation 2 (Mosimann, 1962; Guimaraes and Lindrooth, 2007).

Compounding the Dirichlet with the multinomial and involving all markets M leads to the

unconditional likelihood function

LDM =

G∏
m=1

∫ R∏
k=1

am!
pakmkm

akm!
fDM (p1m, . . . , pR−1m)dp1 . . . dpR−1

=
G∏

m=1

am!Γ(δ−1
m

∑Rm
k=1 αk)

Γ(δ−1
m
∑Rm

k=1 αk + am)

R∏
k=1

Γ(δ−1
m αk + akm)

Γ(δ−1
m αk)akm!

(12)

where pR = 1 −
∑R−1

k=1 pk. If the market random effects ηjm have a variance of zero and

the correlation coefficient tends to zero, the likelihood function of the Dirichlet multinomial

collapses into the likelihood function of the multinomial logit model (or grouped conditional
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logit model). Testing for the existence of social interactions (i.e. testing for δm > 0) can

therefore be implemented directly via a likelihood ratio test. Note that the null hypothesis

for the test is in the boundary of the parameter space, and therefore the correct p-value is

one-half that which is obtained from the χ2
1 (Self and Liang, 1987; Gutierrez et al., 2001).

Guimaraes and Lindrooth (2007) show that the likelihood in Equation 12 can be reformulated

as the fixed effects negative binomial model developed by Hausman et al. (1984), which makes

estimation of the Dirichlet multinomial model readily implementable in standard statistical

software packages (see also Guimaraes, 2005). As shown by Guimaraes and Lindrooth (2007),

Guimaraes (2005) and - in the context of fixed effects negative binomial models - by Allison

and Waterman (2002), the group parameter δm can be modelled as a function of group-level

variables denoted by wm, i.e. δm = f(γ′wm), which allows to identify the driving forces of the

social interactions and the overdispersion parameter. This is in contrast to the multinomial

logit model, where market fixed effects cancel out. In my case, I assume − ln(δm) = γ′wm.

If those variables are restricted to a single constant, it is implicitly assumed that all markets

share a common δ (δm = δ).6

5 Main results

This section is structured as follows: First, I present coefficient estimates for the different

rating categories in three different models. The first model is the traditional multinomial logit,

where the probability vector p is treated as a constant. This model serves as a benchmark.

In the second model, I estimate the Dirichlet multinomial model enforcing δg = δ across all

markets. The last model relaxes this assumption and models δg as a function of market-level

variables, which allows insights into what drives the correlation across individuals. More

specifically, I assume − ln(δg) = γ′wg. Both Dirichlet-multinomial models can be tested

directly using a likelihood ratio test comparing the likelihood of the Dirichlet multinomial to

the likelihood of the multinomial logit which imposes δ = 0 (the resulting p-value should be

halfed, as outlined previously). Robustness checks using only single-period checkins rather

than cumulative checkins, specifications aggregating restaurants by rating category as well

as results using alternative market definitions can be found in the appendix.

In a second step, I back out the parameters of the Dirichlet multinomial model using the

estimates of the model with constant δ. The parameters δ−1α can be interpreted in the

6Note that I deliberately abstain from using restaurant fixed effects in estimation. Using fixed effects would

imply effects that are only unobserved by the researcher but not the individual, whereas in my case I explicitly

want to allow for inidividuals making decisions in a setting of imperfect information. Also, if the user-

provided ratings are informative enough, unobserved restaurant fixed effects should be reflected in those

ratings (whether they are is one of the questions this paper addresses). Other unobserved factors such as

characteristics of the neighborhood do not affect results as restaurants are grouped by location and price

category and all restaurants in a group would be equally affected by such factors.
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context of the prior distribution, where the distribution over p converges to a constant as

δ−1α → ∞, consequently indicating a high informational value for the Yelp ratings. Low

parameter values, on the other hand, indicate a stronger role of social interactions.

[Table 2 about here.]

Main results are summarized in Table 2, where the multinomial logit model and two Dirichlet

multinomial models are estimated using cumulative checkins at three different points in time.

Main results focus on markets defined by both ZIP code and price category, i.e. each market is

a unique ZIP x Price combination, resulting in 236 markets (robustness checks use different

market definitions). Results for different time periods are estimated separately; note that

since I use cumulative checkins for the main results, observations for later periods include

checkins from all previous periods.

Coefficients on the rating variable are all positive and increasing, which is expected. Coeffi-

cients in the grouped conditional logit model are all highly significant at all points in time,

whereas in the Dirichlet model the coefficient on the second rating category is not statisti-

cally significant at any conventional significance level. Put differently: Using the Dirichlet

model, a higher rating does not correlate with higher choice probabilities if this rating is in

the bottom half of the scale. Standard errors increase roughly by a factor of 4 or 5 compared

to the multinomial logit model, depending on the period considered.

Focussing on the Dir II model, one can see what drives within-market social interactions

(note that δg = exp(−γ′wg)). Higher price categories, more competitors and higher income

lead to a relatively stronger role for social interactions, while the total number of reviews in a

market weakens them - which could be explained by ratings becoming more valuable as they

are based on a larger number of opinions. Coefficients on the income inequality proxy and

population are not significant. It is noteworthy that when including market level variables,

the coefficient on the constant is close to zero and statistically insignificant. This opposed to

the Dir I model where the coefficient on the constant is highly significant, suggesting that

market level variables capture a large part of the social interaction parameter δ.

Comparison of the models using loglikelihood values, Pearson chi-square statistics and AIC

statistics all clearly favor the Dirichlet models (note that Pearson statistics have been adjusted

accordingly for the Dirichlet-multinomial; see Guimaraes and Lindrooth (2007); Mosimann

(1962)). Interestingly, all these statistics change little over time in the case of the Dirichlet

multinomial model, while they get progressively worse in the multinomial logit model as

checkins accumulate over longer periods of time.

These statistics lead to the conclusion that social interactions (or previous checkins) do play

a role in the decision process of individuals. The follow-up question then is: how much so?
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In order to answer this question, I back out the parameter vectors α and δ of the Dir I model

and report them in Table 3. I also report the overdispersion parameter, ρ. The top half of

the table reports parameters for the cumulative checkins, the bottom half for single period

checkins.

[Table 3 about here.]

The Dirichlet’s α = exp(x′β) parameters are a unidimensional function of a rating dummy,

where higher βj leads to higher αj which in turn leads to a higher expected value of pj ,

the probability of choosing a restaurant with rating j in a market. The α vector is then

scaled by δ−1, where delta = exp(−γ0) and γ0 refers to the constant, defining the Dirichlet

parameters.7 The existence of social interactions can be tested directly by testing the null

hypothesis δ = 0 or performing a likelihood ratio test, where the multinomial logit model

serves as the restricted model. As already apparent in the statistics reported in the footer of

Table 2, the hypothesis of δ = 0 is clearly rejected.

As outlined in the model section, a Dirichlet parameter of 1 results in a uniform distribution

of p (the Bose-Einstein distribution). Paramaters above 1 result in unimodel peaks at the

expected value of p, while parameters below 1 lead to sparse distributions with peaks at the

edges. Parameters are reported in Table 3. Figure 3 plots the densities of p for the different

rating categories listed in Table 3.

As one can see from both the table and the figure, the Dirichlet parameter for highest rating

category is the only one above 1 in the case of cumulative checkins. All other parameters

are below one, indicating that little can be learned about the number of checkins from those

ratings as checkins are mainly governed by a priori unpredictable social interactions. In the

case of cumulative checkins, the combinations δ−1α stay roughly constant, even though both

components increase over periods.

Single period checkins for the years 2013 and 2014 are displayed in the bottom half of the

table and are based on the result in Table 5 in the appendix. 2013 results use 1-year lags,

while 2014 results use 2-year lags. Generally, all parameters are lower than in the cumulative

case, indicating that focussing only on more recent checkins and discarding checkins in the

more distant past, the importance of social interactions only rises relative to the importance

of ratings.

[Figure 3 about here.]

What one can learn from the preceding table and figures is that while the quality reflected

7delta = exp(−γ′wg) in the Dir II model.
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in the ratings do impact expected choice probabilities, the final allocation of checkins is far

from certain. They give better-quality restaurants a headstart, but the choice probabilites

within a rating category and their ultimate outcomes still vary wildly as individuals are

responding strongly to signals of others. Intuitively, this social dynamic is best explained by

the mechanism of Polya’s urn: Each time an individual chooses a restaurant from the pool

of possible candidates, the choice probability of that restaurant increases for the individuals

choosing later in the sequence. As time passes, conditional choice probabilities (as defined in

Equation 10) are less governed by the δ−1αj parameters, and more by the previous choices

of others.

6 Robustness checks

I perform a number of robustness checks. First, by the aggregation property of the Dirichlet

distribution, restaurants can be aggregated and assigned to partitions (as mentioned in the

Model section). For the results in Table 4, restaurants within a given ZIP code and price

category are grouped by their rating, resulting in one count per rating in a group. By the

properties of the Dirichlet distribution, aggregating should increase δ−1
g αj and - as the number

of choices within a group is decreased - mechanically decrease correlation across individuals,

which is proportional to the number of choice alternatives. This is shown in Table 4. Results

stay qualitatively the same, and even though you observe an increase in the parameters,

social interactions still play a large role.

[Table 4 about here.]

Second, to address potential concerns of endogeneity between ratings and visits, Table 5

shows results where only checkins within a given year are used in combination with lagged

ratings.8 Single-period visits have been obtained by differencing the cumulative checkins

(which is why the 2010-2012 is not covered). The 2013 specification uses (t − 1) lags, while

the 2014 specification uses both (t−1) and (t−2) lags. Results stay qualitatively the same as

the previously reported results. The exception is the coefficient for the second rating category,

which becomes even weaker as before. Again, correlation across choices is highly significant,

strongly favoring the Dirichlet multinomial to the multinomial logit model. Also note that

coefficients increase from 2013 to 2014 when using 1-period lags, while staying constant when

comparing 2013 results to 2014 results using (t− 2) lags. Again, loglikelihood, Pearson and

AIC statistics for the Dirichlet models show little change across periods, while they worsen

quite significantly in the case of the multinomial logit.

[Table 5 about here.]

8Note that ratings themselves change only little over time, and if they do mostly in the early phase when tha

rating is based only on few user feedbacks.
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As a last robustness check, I estimate the model under a wider grouping structure. Grouping

restaurants by ZIP code and price category assumes away wider spread social interactions

that might exist, either across ZIP codes or across price categories. Table 6 in the appendix

therefore presents results of the three models when the grouping is changed to ZIP code (i.e.

across different price categories), to a citywide group and to a group defined on the city

and price category level (instead of the ZIP and price category level). The latter leads to

little changes compared to previous estimations as shown in the middle section of the table,

whereas extending the groups to multiple price categories results in lower correlation within

group, which is expected. Since price categories now change within group, price variables

as well as interaction variables between price category and ratings and price category and

group-level income are included. Interestingly, price categories have no significant effect in

the Dirichlet models.

[Table 6 about here.]

7 Discussion

The aim of this paper is to explore the role of information transmission through social in-

teractions in the choice process of individuals in a highly competitive market with a wide

range of hard to distinguish alternatives, exemplified by the restaurant market. The presence

of social interactions leads to correlation across individuals, highly skewed allocations and

generally more uncertainty in the prediction of economic outcomes. Here, social interactions

are embedded in a simple but insightful Dirichlet multinomial framework. The choice of

the model turns out to be superior to the traditional multinomial logit approach based on a

number of different measures as well as simulations.

Social interactions are found to be present in Yelp’s restaurant data, and can be modelled

largely as a function of variables relating to aggregate information exchange variables, while

socioeconomic variables such as income or income heterogeneity within a market play a

negligible role as a driver of correlation. Results are robust against both restricting choices to

a single period and lagged ratings as well as to widening the market definition and aggregating

restaurants into their rating levels. I also find that user-provided ratings only have a limited

impact on individuals’ decisions, as interpreted from the magnitude of the parameters of the

Dirichlet-multinomial distribution. Generally, ratings at the top end of the scale are more

informative than ratings at the bottom of the scale.

This paper only deals with counts aggregated on a restaurant level and with no information on

the level of the individuals themselves. It is therefore important to note that I cannot provide

details on the exact definition of the social interactions. Specifically, the social interactions

found here could both be a form of information transmission or individuals simply having
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a preference to be surrounded by other individuals (or a combination of the two). In the

former case individuals indirectly find out about the quality of a restaurant, while in the latter

case the presence of others itself becomes an attractive feature of a restaurant. When only

looking at choices on the level of individual restaurants, both explanations are observationally

equivalent in the sense of Ellison and Glaeser (1997).
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Figure 1: Restaurant visits and ratings as of 2015
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Figure 2: Dirichlet distributions for a set of different δ
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Figure 3: Dirichlet parameters for different rating categories, over time
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Tables

Table 1: Summary Statistics

2010-2012 2013 2014
Mean SD Mean SD Mean SD

CUMULCHECKINS 125.06 (218.77) 210.05 (363.23) 282.42 (480.47)
CHECKINS (1 period) 125.06 (218.77) 84.87 (154.08) 72.41 (128.49)
RATING1 0.01 (0.11) 0.01 (0.11) 0.01 (0.11)
RATING2 0.10 (0.30) 0.10 (0.29) 0.10 (0.30)
RATING3 0.47 (0.50) 0.50 (0.50) 0.51 (0.50)
RATING4 0.41 (0.49) 0.39 (0.49) 0.38 (0.49)
PRICE 1.56 (0.59) 1.56 (0.59) 1.56 (0.59)

LNSUMREVIEWS 6.51 (1.51) 6.84 (1.47) 7.11 (1.44)
LNSUMREVIEWS, adj. 3.55 (0.78) 3.88 (0.74) 4.15 (0.72)
LNCOMP 2.96 (0.95) 2.96 (0.95) 2.96 (0.95)
INEQ 1.36 (0.21) 1.36 (0.21) 1.36 (0.21)
LNINC 11.14 (0.37) 11.14 (0.37) 11.14 (0.37)
LNPOP 10.34 (0.68) 10.34 (0.68) 10.34 (0.68)
Observations 3’159 3’169 3’170
Standard errors in parentheses. Price, lncompetitors, lninc and lnpop are constant over time and within ZIP.

Lnsumreviews and lnsumreviewsadj are calculated on the Price x ZIP level.

Lnsumreviewsadj is the sum of reviews in the group divided by the number of restaurants in the group.

Source : Yelp, US Census. Own calculations.
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Table 2: Cumulative checkins over time

2010-2012 2013 2014
Variable MNL Dir I Dir II MNL Dir I Dir II MNL Dir I Dir II
RATING2 0.537 0.178 0.248 0.866 0.277 0.333 0.634 0.229 0.309

(0.041) (0.160) (0.673) (0.037) (0.163) (0.162) (0.033) (0.162) (0.161)
RATING3 1.400 0.576 0.673 1.787 0.663 0.739 1.673 0.611 0.707

(0.040) (0.154) (0.153) (0.036) (0.157) (0.156) (0.032) (0.156) (0.155)
RATING4 1.846 0.795 0.881 2.299 0.956 1.023 2.240 0.939 1.026

(0.040) (0.154) (0.153) (0.036) (0.156) (0.156) (0.032) (0.155) (0.156)

Group level

PRICE2 0.301 0.268 0.217
(0.068) (0.068) (0.068)

PRICE3 0.727 0.603 0.454
(0.160) (0.155) (0.152)

REVIEWS -0.408 -0.394 -0.344
(0.059) (0.060) (0.060)

LNCOMP 0.479 0.458 0.375
(0.089) (0.089) (0.088)

INEQ -0.171 -0.118 -0.184
(0.170) (0.168) (0.166)

LNINC 0.115 0.010 0.055
(0.067) (0.066) (0.066)

LNPOP -0.064 -0.053 -0.067
(0.050) (0.050) (0.049)

CONST -0.631 0.003 -0.765 -0.012 -0.771 0.713
(0.153) (1.004) (0.156) (0.995) (0.155) (0.987)

No. of markets 236 236 236 239 239 239 238 238 238
LogL -188’783 -15’740 -15’696 -310’566 -17’289 -17’253 -416’735 -18’144 -18’113
Pearson 443’831 3’559 3’522 742’451 3’450 3’426 983’624 3’352 3’338
AIC 377’573 31’487 31’414 621’137 34’587 34’528 833’475 36’296 36’315

Source: Yelp. Dependent variable: Cumulative checkins of individual restaurants. Standard errors in parentheses. Markets are
defined on a ZIPxPRICE level. Dirmul I refers to δg = δ, Dirmul II to δg = f(xg) = exp(−γ′wg). RATING dummy variables
reflect a 4-step scale. PRICE dummy variables reflect three price categories. REV IEWS is the logarithm of the sum of reviews
in a market. LNCOMP is the logarithm of the number of competitors in a market. INEQ is the ratio of average income and
median income in a ZIP code area, proxying income inequality. LNINC is the logarithm of average income in the ZIP code area.
LNPOP is the logarithm of the ZIP population.
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Table 3: Expectations and correlations across time

2010-2012 2013 2014
Variable MNL Dir I MNL Dir I MNL Dir I
Cumulative checkins
δ 1.879 2.149 2.162
ρ 0.233 0.239 0.245
δ−1α1 0.532 0.465 0.462
δ−1α2 0.636 0.614 0.582
δ−1α3 0.947 0.903 0.852
δ−1α4 1.179 1.210 1.183

Single period checkins
δ 2.868 3.090
ρ 0.336 0.351
δ−1α1 0.349 0.324
δ−1α2 0.355 0.331
δ−1α3 0.512 0.477
δ−1α4 0.758 0.719

Source: Yelp. The upper half of the table shows results for cumulative checkins, the
lower half shows results for single-period checkins in years 2013 and 2014. Dirmul I
refers to δg = δ = exp(−constant). Calculations assume that exactly one restaurant of
each rating category exist within a group and are based on the results in Table 2 and
5. Bottom half uses L1-lags for 2013 and L2-lags for 2014. δ measures the strength
of interactions, with δ → 0 indicating no social interactions, while δ → ∞ presents a
the limit case where visits depend exclusively on other individuals’ previous choices.
ρ = 1/(1 +

∑R
j=1 δ

−1αj) is the overdispersion parameter converging to 0 as δ → 0.
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Table 4: Cumulative checkins over time, aggregated by rating

2010-2012 2013 2014
Variable MNL Dir I Dir II MNL Dir I Dir II MNL Dir I Dir II
RATING2 0.946 0.354 0.505 1.502 0.444 0.566 1.306 0.433 0.588

(0.041) (0.189) (0.188) (0.037) (0.186) (0.186) (0.033) (0.184) (0.185)
RATING3 3.522 1.640 1.908 4.216 1.787 2.022 4.058 1.742 1.992

(0.040) (0.184) (0.188) (0.036) (0.181) (0.188) (0.032) (0.179) (0.185)
RATING4 3.723 1.895 2.127 4.403 1.990 2.199 4.295 1.948 2.127

(0.040) (0.183) (0.188) (0.036) (0.181) (0.188) (0.032) (0.179) (0.184)

Group level

PRICE2 0.003 -0.104 0.057
(0.177) (0.176) (0.168)

PRICE3 0.193 0.137 0.087
(0.342) (0.349) (0.320)

REVIEWS -0.409 -0.323 -0.447
(0.128) (0.132) (0.129)

LNCOMP 0.911 0.760 0.811
(0.214) (0.216) (0.209)

INEQ -0.446 -0.292 0.016
(0.514) (0.529) (0.511)

LNINC 0.002 0.043 0.158
(0.188) (0.196) (0.183)

LNPOP -0.057 -0.088 0.094
(0.127) (0.136) (0.126)

CONST - 0.948 0.160 -1.091 -0.260 -1.132 -3.191
(0.176) (2.698) (0.172) (2.958) (0.169) (2.796)

No. of observations 592 592 592 598 598 598 593 593 593
No. of markets 220 220 220 223 223 223 221 221 221
LogL -37’723 -2’172 -2’157 -63’836 -2’377 -2’365 -89’520 -2’480 -2’468
Pearson 74’659 354 372 132’279 370 382 183’405 342 355
AIC 75’451 4’352 4’335 127’677 4’762 4’751 179’046 4’969 4’957

Source: Yelp. Dependent variable: Cumulative checkins, aggregated by rating within a market. Standard errors in parentheses.
Markets are defined on a ZIPxPRICE level. Dirmul I refers to δg = δ, Dirmul II to δg = f(xg) = exp(−γ′wg). RATING dummy
variables reflect a 4-step scale. PRICE dummy variables reflect three price categories. REV IEWS is the logarithm of the sum of
reviews in a market. LNCOMP is the logarithm of the number of competitors in a market. INEQ is the ratio of average income
and median income in a ZIP code area, proxying income inequality. LNINC is the logarithm of average income in the ZIP code
area. LNPOP is the logarithm of the ZIP population.
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Table 5: Single period checkins over time

2013 2014
Variable MNL Dir I Dir II MNL Dir I Dir II MNL Dir II Dir II
LRATING2 0.524 0.017 0.062 0.912 0.217 0.241

(0.051) (0.182) (0.182) (0.072) (0.208) (0.208)
LRATING3 1.470 0.384 0.466 1.939 0.617 0.687

(0.050) (0.174) (0.174) (0.070) (0.200) (0.200)
LRATING4 2.052 0.776 0.853 2.666 1.048 1.110

(0.050) (0.174) (0.174) (0.070) (0.200) (0.201)
L2RATING2 0.603 0.022 0.076

(0.040) (0.183) (0.182)
L2RATING3 1.558 0.387 0.481

(0.039) (0.175) (0.175)
L2RATING4 2.174 0.798 0.886

(0.039) (0.175) (0.175)

Group level

PRICE2 0.025 0.042 0.047
(0.070) (0.026) (0.068)

PRICE3 0.112 -0.015 0.059
(0.163) (0.052) (0.158)

LREVIEWS -0.178 -0.148
(0.061) (0.064)

LCOMP 0.140 0.025
(0.092) (0.095)

L2REVIEWS -0.171
(0.059)

L2COMP 0.108
(0.089)

INEQ -0.312 -0.317 -0.257
(0.181) (0.190) (0.179)

LNINC 0.027 -0.080 -0.041
(0.071) (0.072) (0.069)

LNPOP -0.067 -0.029 -0.061
(0.053) (0.055) (0.052)

CONST -1.054 0.440 -1.521 0.993 -1.128 1.027
(0.173) (1.041) (0.198) (1.078) (0.173) (1.014)

No. of markets 237 237 237 238 238 238 236 236 236
LogL -147’888 -14’139 -14’111 -134’399 -13’390 -13’359 -268’138 -15’753 -15’626
Pearson 327’815 2’427 2’448 294’048 2’151 2’173 605’410 2’311 2’326
AIC 295’781 28’270 28’245 268’805 26’788 26’740 536’283 31’514 31’341

Source: Yelp. Dependent variable: Single-period checkins of individual restaurants. Standard errors in parentheses. Markets are
defined on a ZIPxPRICE level. Dirmul I refers to δg = δ, Dirmul II to δg = f(xg) = exp(−γ′wg). RATING dummy variables
reflect a 4-step scale. PRICE dummy variables reflect three price categories. REV IEWS is the logarithm of the sum of reviews
in a market. LNCOMP is the logarithm of the number of competitors in a market. INEQ is the ratio of average income and
median income in a ZIP code area, proxying income inequality. LNINC is the logarithm of average income in the ZIP code area.
LNPOP is the logarithm of the ZIP population.
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Table 6: Cumulative checkins over time, higher grouping levels

ZIP, 2014 City X Price, 2014 City, 2014
Variable MNL Dir I Dir II MNL Dir I Dir II MNL Dir II Dir II
RATING2 0.689 0.219 0.280 0.677 0.239 0.316 0.675 0.209 0.281

(0.032) (0.160) (0.159) (0.032) (0.157) (0.156) (0.032) (0.158) (0.158)
RATING3 1.646 0.543 0.622 1.752 0.604 0.701 1.685 0.526 0.612

(0.031) (0.154) (0.154) (0.031) (0.150) (0.150) (0.031) (0.153) (0.153)
RATING4 2.139 0.817 0.889 2.313 0.921 1.011 2.174 0.780 0.856

(0.031) (0.159) (0.158) (0.031) (0.151) (0.150) (0.031) (0.158) (0.158)
PRICE2 1.010 0.123 1.024 4.554 3.753 1.001

(0.082) (0.798) (0.949) (0.127) (1.294) (1.660)
PRICE3 -0.519 1.134 2.394 5.877 5.355 3.387

(0.190) (2.032) (2.115) (0.267) (3.116) (3.278)
PRICERAT2 0.152 0.122 0.133 0.148 0.133 0.129

(0.004) (0.047) (0.046) (0.004) (0.047) (0.046)
PRICERAT3 -0.086 0.002 0.027 0.075 0.082 -0.316

(0.013) (0.124) (0.122) (0.013) (0.126) (0.295)
PRICEINC2 -0.074 -0.017 -0.101 -0.384 -0.343 -0.096

(0.007) (0.070) (0.084) (0.011) (0.116) (0.149)
PRICEINC3 0.084 -0.088 -0.206 -0.534 -0.488 -0.316

(0.016) (0.177) (0.186) (0.023) (0.279) (0.295)

Group level

PRICE2 0.240
(0.116)

PRICE3 0.414
(0.208)

REVIEWS -0.349 -0.418 -0.548
(0.064) (0.126) (0.224)

LNCOMP 0.385 0.353 0.565
(0.097) (0.154) (0.294)

INEQ -0.182 0.049 0.203
(0.164) (0.184) (0.249)

LNINC 0.168 -0.164 0.142
(0.078) (0.149) (0.292)

LNPOP -0.066 0.045 -0.008
(0.049) (0.058) (0.081)

CONST -0.909 -0.543 -0.859 2.092 -0.992 -0.464
(0.154) (1.087) (0.149) (1.793) (0.153) (2.989)

No. of markets 118 118 118 71 71 71 37 37 37
LogL -439’340 -19’310 -19’277 -514’537 -20’046 -20’016 -520’212 -20’488 -20’462
Pearson 1’085’552 3’630 3’610 1’413’224 4’288 4’271 1’433’497 4’371 4’350
AIC 878’697 38’641 38’584 1’029’080 40’099 40’054 1’040’443 40’997 40’954

Source: Yelp. Dependent variable: Cumulative checkins of individual restaurants. Standard errors in parentheses. Markets are
defined on a ZIP level. Dirmul I refers to δg = δ, Dirmul II to δg = f(xg) = exp(−γ′wg). RATING dummy variables reflect a
4-step scale. PRICE dummy variables reflect three price categories. REV IEWS is the logarithm of the sum of reviews in a market.
LNCOMP is the logarithm of the number of competitors in a market. INEQ is the ratio of average income and median income
in a ZIP code area, proxying income inequality. LNINC is the logarithm of average income in the ZIP code area. LNPOP is the
logarithm of the ZIP population.
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Appendix

Table 7: Overdispersion in restaurant checkins at different levels of aggregation

Level of aggregation Global ZIP Price category ZIP x Price

Mean 282.42 282.42 282.42 282.42

SD 480.47 178.25 119.53 228.72

Skew 1.90 1.44 0.07 1.78

Kurtosis 42.87 5.35 1.05 6.20

Source : Yelp. 2015 data used, covering cumulative checkins across a 5 year period.

32


	Introduction
	Information transmission and the role of internet data
	Data
	Model
	Restaurant choice with perfect information
	Restaurant choice with imperfect information
	Parameters of interest
	Grouping restaurants by quality
	Estimation

	Main results
	Robustness checks
	Discussion

