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On the importance of testing structural identification
schemes and the potential consequences of incorrectly

identified models.

February 2016

Abstract

Identification schemes are of essential importance in structural analysis. This pa-
per focuses on testing a commonly used long-run structural parameter identification
scheme claiming to identify fundamental and non-fundamental shocks to stock prices.
Five related widely used structural models on assessing stock price determinants are con-
sidered. All models are either specified in vector error correction (VEC) or in vector au-
toregressive (VAR) form. A Markov switching in heteroskedasticity model is used to test
the identifying restrictions. It is found that for two of the models considered, the long-
run identification scheme appropriately classifies shocks as being either fundamental or
non-fundamental. A small empirical exercise finds that the models with properly iden-
tified structural shocks deliver realistic conclusions, similar as in some of the literature.
On the other hand, models with identification schemes not supported by the data yield
dubious conclusions on the importance of fundamentals for real stock prices. This is
because their structural shocks are not properly identified, making any shock labelling
ambiguous. Hence, in order to ensure that economic shocks of interest are properly cap-
tured, it is important to test the structural identification scheme.

Key Words: Markov switching model, vector autoregression, vector error correction, heteroskedas-
ticity, stock prices

JEL classification: C32 C34 G12

1 Introduction

An important issue in the economics and finance literature is whether stock prices reflect
some underlying fundamentals or whether they are merely driven by speculation. For in-
stance, Fama (1990), Schwert (1990), Canova and De Nicolo (1995), Lee (1998), Cheung and
Ng (1998), Nasseh and Strauss (2000) and Velinov and Chen (2015) among others find that fun-
damentals are important in explaining stock prices. On the other hand studies such as Shiller
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(1981), Summers (1986), Binswanger (2000, 2004b,c), Allen and Yang (2004) and Laopodis
(2009, 2011) tend to find that stock prices are not fully driven by fundamentals.

Naturally, to answer this question, one would have to determine what stock price funda-
mentals are. Although the studies cited above use varying methodologies, one way of identi-
fying such fundamentals is by means of a structural vector autoregressive (SVAR) model with
appropriate parameter restrictions. Of course, if there happen to be cointegrating relation-
ships among some of the variables then a structural vector error correction (SVEC) model
can be used instead. Such multivariate time series models are quite popular in this line of
literature and are the main focus of this paper.

In particular, we consider simple systems consisting of three variables that claim to be
able to capture fundamental shocks to stock prices. Such trivariate models are popularly
used as shown in Table 1. All these models are similar in the sense of using a different proxy
of real economic activity for the first variable, while the other two variables usually remain the
same. They have the advantage of being relatively straightforward to implement and to work
with. Further, due to their low dimensionality, they do not require too many restrictions so as
to identify the structural shocks. For example, in case of a SVAR model only three restrictions
are enough to exactly identify the shocks.

Structural identification restrictions need to be well founded and should be convincingly
justified since they are usually not testable (Erceg et al. (2005)). In fact, all of the studies
cited in Table 1 use exactly identified structural models, hence none of the restrictions can
be tested in a conventional setting. This is problematic since stock price fundamentals are
identified through some assumptions by the researcher and any subsequent conclusions
are based on these non-testable assumptions. It could be a reason why the papers in Ta-
ble 1 reach different conclusions concerning the drivers of stock prices. Hence, for instance,
Rigobon (2003) and Gospodinov (2010) advocate the need for statistical information to help
verify the structural shocks.

Table 1: Popular models used in the literature.

Model Used by
yt = [Yt ,rt , st ]′ Lee (1995a), Rapach (2001)*, Binswanger (2004a), Jean and Eldomiaty (2010)

Lanne and Lütkepohl (2010)
yt = [I Pt ,rt , st ]′ Binswanger (2004a), Laopodis (2009)*, Jean and Eldomiaty (2010)
yt = [D t ,rt , st ]′ Lee (1995a), Allen and Yang (2004), Jean and Eldomiaty (2010)
yt = [Et ,rt , st ]′ Binswanger (2004a), Jean and Eldomiaty (2010), Hatipoglu et al. (2014)
yt = [Et ,D t , st ]′ Lee (1998), Chung and Lee (1998), Allen and Yang (2001), Binswanger (2004a),

Jean and Eldomiaty (2010)

The variables used are real GDP (Yt ), the index of industrial production (I Pt ), real dividends (D t ),
real earnings (Et ), real interest rates (rt ) and real stock prices (st ).

* These variables are a subset of the variables used in the original model.

This paper tests the identification schemes used by the studies in Table 1. In particular, we
use the novel approach developed in Lanne et al. (2010) and Herwartz and Lütkepohl (2014)
to test whether the structural identification schemes are supported by the data. This could
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determine whether fundamental shocks have been correctly identified and hence reduce any
conflicting conclusions arising form similar types of analyses. As far as we are aware, this is
the first paper to test the identification assumptions of different models in this line of litera-
ture.

Structural restrictions are tested by extending the basic linear model to allow for a regime
dependent covariance matrix. The regimes switch according to a first order discrete Markov
process. This allows for heteroskedastic error terms across states. By means of this methodol-
ogy there are enough reduced form parameters to identify the structural parameters. Hence,
any (identifying) restrictions become over-identifying and can be tested.

We conclude with a small empirical exercise investigating the practical implications of ac-
cepting/rejecting the identification scheme. We find that the models with properly identified
structural shocks deliver plausible and similar conclusions as some existing studies. On the
other hand, models with identification schemes not supported by the data yield unrealistic
conclusions on the importance of fundamentals for real stock prices - either explaining every-
thing or nothing. This is because their structural shocks are not properly identified, making
any shock labelling ambiguous. Hence, in order to ensure that economic shocks of interest
are properly captured, it is important to test the structural identification scheme.

The basic theory and methodology used in this paper is outlined in Section 2. Section
3 presents the identification test results along with relevant details on the model selection
procedure. Section 4 deals with model robustness issues. Section 5 presents the practical
implications of accepting/rejecting the identification scheme through an empirical exercise.
Finally, Section 6 summarizes the main conclusions.

2 The Models

This section briefly introduces the basic multivariate structural models used in Table 1 and
the regime switching extension needed for testing the structural restrictions.

2.1 The basic structural models

The conventional vector autoregressive model with p lags, VAR(p) can be written as

yt = ν+ A1 yt−1 + A2 yt−2 + . . .+ Ap yt−p +ut , (1)

where yt is a (K × 1) vector of stationary endogenous variables, ν is a (K × 1) vector of con-
stants and Ai , i = 1, . . . , p are (K ×K ) autoregressive parameter matrices. The (K ×1) vector of
reduced form error terms, ut is assumed to have an expected value of 0 and a positive definite
covariance matrix Σu . Hence, ut ∼ (0,Σu).

In case of cointegration, the following reduced form vector error correction model (VEC(p-
1)) is used

∆yt = νt +Πyt−1 +Γ1∆yt−1 +Γ2∆yt−2 + . . .+Γp−1∆yt−p+1 +ut , (2)

where yt may include variables with unit roots. Here νt is a K dimensional deterministic
component that can include an intercept and a trend term, hence νt = ν0 + ν1t . Further,
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Γi , i = 1, . . . , p −1 are (K ×K ) parameter matrices and the residual terms, ut are assumed to
have the same properties as before. Here ∆ is the first difference operator (so that ∆yt =
yt − yt−1 = (1 − L)yt , where L is the lag operator). This means that ∆yt is assumed to be
I (0), such that Πyt−1 also needs to be stationary. The (K ×K ) matrix Π is of rank r , (where
0 < r < K ) and captures the cointegrating relations of the model. More specifically, since Π is
singular, it can be decomposed into the product of two (K × r ) matrices of full column rank,
α,β so that Π = −αβ′. Here β is referred to as the cointegrating matrix and contains the r
linearly independent cointegrating relations, so that β′yt−1 is stationary, and α is known as
the loading matrix.

In line with the literature, structural shocks are defined as ut = Bεt , where εt is a K di-
mensional vector of structural residuals such that εt ∼ (0,Σε), where Σε is usually assumed
to be IK , the identity matrix. Here B is a (K ×K ) matrix depicting contemporaneous effects.
According to these assumptions Σu = BB ′. The structural parameters can be derived from
the reduced form parameters. However, since Σu is symmetric, this only leaves K (K + 1)/2
reduced form parameters to identify the K 2 structural parameters of the B matrix. Hence,
K 2 −K (K +1)/2 = K (K −1)/2 restrictions need to be imposed. This is done in different ways
for the SVAR and SVEC model and is discussed in the following.

2.1.1 Restrictions on the VAR model

The papers considered in Table 1 all make use of long-run identifying restrictions, as in Blan-
chard and Quah (1989). Hence, it is briefly explained here how such restrictions are imple-
mented. Rewriting equation (1) in lag polynomial form gives

A(L)yt = ν+ut , (3)

where A(L) = IK − A1L − A2L2 − ·· · − Ap Lp . Provided that A(L)−1 exists, the Wold moving
average (MA) representation for the stationary yt process is

yt =µ+
∞∑

s=0
Φsut−s =µ+Φ(L)ut , (4)

where µ= (IK − A1 − A2 −·· ·− Ap )−1ν= A(1)−1ν, Φ(L) ≡ A(L)−1 and Φ0 = IK . Having defined
the structural shocks as εt = B−1ut , the structural representation of (4) is

yt =µ+
∞∑

s=0
Ψsεt−s =µ+Ψ(L)εt , (5)

here Ψi ≡ Φi B , for i = 0,1,2, . . .. The accumulated long-run effects of the structural shocks
over all time periods are given by the long-run impact matrix, Ψ≡ΦB , where Φ≡ ∑∞

s=0Φs =
A(1)−1. It is on theΨmatrix that Blanchard and Quah (1989) suggest imposing identifying re-
strictions, usually in the form of zeros. This is interpreted as some shocks having permanent
effects and others only having transitory effects.

Most studies reported in Table 1 make use of the following lower triangular Ψ matrix

Ψ=
 F 0 0

F F 0
F F F

 , (6)
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where F denotes an unrestricted element. The studies claim that this identification scheme
distinguishes between fundamental and non-fundamental shocks (see for eg. Zhong et al.
(2003)). The non-fundamental shock is assumed not to have any permanent effect on any of
the variables except the last one (last column of (6)). The other two shocks are assumed to be
of a fundamental nature; in that one of them (first column of (6)) influences all variables in
the long-run, while the other (second column of (6)) only leaves a permanent impact on the
last two model variables.1 The identification scheme in (6) is used for testing restrictions on
SVAR models throughout this paper.

2.1.2 Restrictions on the VEC model

From Granger’s representation theorem, the VEC counterpart ofΦ is given as

Ξ=β⊥
[
α′
⊥
(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1
α′
⊥,

where ⊥ stands for the orthogonal complement of a given matrix. For instance, the orthogo-
nal complement of an (m×n) matrix, A, is given by the (m×(m−n)) matrix, A⊥. TheΞmatrix
is computed from the estimates of the reduced form parameters.

The long-run impact matrix is ΞB , this is the VEC equivalent to the Ψ matrix above. The
number of restrictions on theΞB matrix necessary to achieve exact identification of the struc-
tural parameters depends on the number of cointegrating relations, r . Note that Ξ is a singu-
lar matrix, in particular, the rank of Ξ is K − r and according to King et al. (1992) there can be
at most r transitory shocks, i.e. r columns of ΞB can be 0 and each column of zeros stands
for only K −r restrictions. In addition, there need to be r (r −1)/2 restrictions on the B matrix
to identify the non-permanent shocks. The remaining restrictions needed to exactly identify
the model can be placed on the non-zero elements of ΞB or B .

As will be seen in Section 3.1.1, all the VEC models considered in this paper have a cointe-
grating rank of one. Hence, long-run restrictions on SVEC models are placed as follows

ΞB =
 F 0 0

F F 0
F F 0

 . (7)

Here again F denotes unrestricted elements. This seemingly lower triangular identification
scheme potentially also distinguishes between fundamental and non-fundamental shocks.
In particular, a non-fundamental shock is assumed not to have permanent effects on any of
the variables, i.e. the last column of (7) contains only zeros. Note that such an assumption
cannot be made for the SVAR model restrictions since Ψ in (6) cannot be a singular matrix.
Indeed, it may be more realistic to assume that shocks labeled as non-fundamental do not

1The zero restriction in the second column ofΨ in (6) is left out in Lee (1995a) and Laopodis (2009). The shocks
are still labeled as fundamental and non-fundamental, even though the model itself is under-identified. Further,
the models used in Jean and Eldomiaty (2010) are initially identified according to the Swanson and Granger (1997)
identification scheme, however, in a section on model robustness, they note that a lower triangular long-run
impact matrix as in (6) performs equally well.
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have a permanent impact on any of the model variables. Note that the column of zeros pro-
vides two independent restrictions and hence, there needs to be one more restriction on the
second column of ΞB to exactly identify the model. Further, since r = 1 (see Section 3.1.1)
there do not need to be any restrictions on B .

2.2 The Markov switching SVAR and SVEC models

In order to test identification schemes such as in (6) or in (7), Lanne et al. (2010) and Herwartz
and Lütkepohl (2014) expand the standard structural models discussed above to allow for
regime dependent covariance matrices. In addition, for estimation convenience they also
assume that the residuals are normally distributed, hence,

ut ∼ NID(0,Σu(St )). (8)

The normality assumption still leads to a very general class of unconditional distributions
and is hence, not restrictive. St is assumed to follow a first-order discrete valued Markov
process with transition probabilities given by

pi j = P (St = j |St−1 = i ),

which can be grouped in an (M ×M) matrix of transition probabilities, P such that the rows
add up to 1 and where M are the number of different states.

Note that it is also possible to allow for switches in the intercept term, ν in the SVAR case
and ν0 in the SVEC case. In principle, all the parameters could be subject to regime switches,
however such assumptions need to be justified in the sense of there being structural breaks
in the data or some reasonable economic explanation as to why a certain parameter could
be switching. In this analysis it is crucial for the covariance matrices to be switching, it may
also be reasonable to assume — given the data used — that the intercept parameter could be
subject to regime switches as is discussed in Section 4. All other parameters are assumed to
be stable.2

2.3 Estimation and Testing Procedure

This section concludes with a brief examination of parameter estimation and restrictions test-
ing procedures used in this paper.

The VAR parameters are estimated by means of OLS. Further, since only long-run restric-
tions are imposed, estimation of the structural parameters is straightforward. After a simple
substitution it follows thatΦΣuΦ

′ =ΨΨ′. The left hand side of this equation is known, hence
for a fully identified model, Ψ is easy to derive. The contemporaneous matrix is then easily
obtained as B =Φ−1Ψ.

2Note that the Markov switching (MS) model is a convenient way of dealing with data subject to structural
breaks. In the relevant literature changes in structural relationships are documented in Lee (1998), Chung and
Lee (1998), Binswanger (2000, 2004b,c) and Laopodis (2009) among others. However, this is not the purpose of
the present analysis.
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The VEC parameters are estimated by the method of reduced rank regression discussed
in Johansen (1995). Since the cointegrating matrix, β, is not unique it can be identified by a
simple normalization such that the first r rows contain an (r × r ) identity matrix, as is shown
in (Lütkepohl, 2005, Ch. 6). The structural parameters are estimated by an iterative algo-
rithm proposed by Amisano and Giannini (1997) subject to identifying restrictions placed as
in Vlaar (2004).

The MS models parameters are estimated using the iterative expectation maximization
(EM) algorithm following Velinov and Chen (2015). This algorithm was initially popularized
by Hamilton (1994) for univariate processes and later extended to multivariate processes by
Krolzig (1997). Since the β matrix in the VEC models symbolizes long-run relationships, it is
not re-estimated at each maximization step of the EM algorithm.3

In order to test the identifying restrictions it is necessary to decompose the covariance
matrices in the following way

Σu(1) = BB ′, Σu(2) = BΛ2B ′, . . . Σu(M) = BΛM B ′, (9)

where the Λi , i = 2, . . . , M matrices are diagonal with positive elements, λi j , i = 2, . . . , M , j =
1, . . . ,K and can be interpreted as relative variance matrices. The underlying assumption is
that the contemporaneous effects matrix, B stays the same across states. This assumption is
testable for models with more than two Markov states. The corresponding test statistic has
an asymptotic χ2 distribution with (1/2)MK (K +1)−K 2 − (M −1)K degrees of freedom.

In order for the B matrix in (9) to be unique up to changes in sign and column ordering, it
is necessary for all pairwise diagonal elements in at least one of the Λi , i = 2, . . . , M matrices
to be distinct. For example, for a 3-state model it is required that λi j 6= λi l , i = 2 and/or 3,
j , l = 1, . . . ,K , j 6= l . In other words, even if these elements are equal in one state, they should
not be equal in the other state. For a more detailed explanation of the uniqueness of the B
matrix the reader is referred to Proposition 1 in the appendix of Lanne et al. (2010). If this
distinction requirement is fulfilled, then B is said to be identified through heteroskedasticity.

In this paper Wald tests4 are used to determine whether the λi j , i = 2, . . . , M , j = 1, . . . ,K
parameters are distinct. In order to implement such tests standard errors of the parameter
estimates are obtained from the inverse of the negative of the Hessian matrix evaluated at the
optimum.

Finally, provided that the B matrix is identified through heteroskedasticity, any restric-
tions (short or long-run) are over-identifying and can therefore be tested. This is done by
means of an LR test, which has an asymptotically χ2 distributed test statistic with degrees of
freedom equal to the number of restrictions being tested.

3It is trivial to change this so that a reduced rank regression is performed in each maximization step. However,
this leads to increased computational time without influencing the overall results since they are robust to this
specification.

4One could potentially use likelihood ratio (LR) tests for this purpose as well. However, such tests are not
reliable with these types of models since the restricted model usually converges to the same optimum regardless
of where the restrictions are placed. For instance, the LR test proceeds by restricting two diagonal elements of
Λi , i = 2, . . . , M to be equal and then comparing the log-likelihoods of the restricted and unrestricted models. This
is done until all pairwise combinations of elements are exhausted. However, in some cases the same parameter
estimates and therefore log-likelihood value is reached for different restricted models. This leads to multiple LR
tests having the same values.
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3 Testing Results

This section first discusses model specification and selection and then presents the results of
testing the long-run identification schemes.

3.1 The Data and Model Specification

All data used in this paper are for the US. Data on dividends (D) and earnings (E) are from
Robert Schiller’s webpage.5 All other data on GDP (Y ), industrial production (I P ) the fed-
eral funds rate (r ) and the stock price (s) are from the St. Louis Federal Reserve Economic
Database (FRED). The data is quarterly ranging from 1960:I - 2015:I (the last available date
of the stock price series in the FRED database). All variables are in real terms. The interest
rate is transformed to real terms by subtracting the CPI growth rate and all other variables are
transformed to real terms by dividing by the percent level of the CPI. Further, all series are
in logs, except for the interest rate series. Figure 1 plots the data used along with recession
periods according to NBER dating indicated by the shaded bars.

(a) E, r, s, D (b) Y, IP

Figure 1: Data used with recession dates indicated by the bars.

Standard unit root tests indicate that all variables are I (1). The null hypothesis of a unit
root for the real interest rate series is only weakly accepted at the 10% level according to the
ADF test. Hence, as is customary in the economics and finance literature (for eg. Rigobon
(2003)), the real interest rate series is kept in levels throughout the analysis.

The Johansen (1995) and the Saikkonen and Lütkepohl (2000) cointegration tests indicate
that two of the models in Table 1 show signs of cointegration and have a cointegrating rank,
r of 1. These are models IV with yt = [Et ,rt , st ]′ and V with yt = [Et ,D t , st ]′. Evidence of
cointegration in these models is quite plausible since company earnings, dividends and stock

5Found at http://www.econ.yale.edu/ shiller/data.htm.
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prices would tend to be driven by a common stochastic trend. This is further documented in
Lee (1996) who finds evidence of cointegration among earnings, dividends and stock prices.

3.1.1 MS Model Specification

The number of volatility states is chosen based on the Akaike Information Criterion (AIC) and
the Schwartz Criterion (SC) developed by Psaradakis and Spagnolo (2006).

Table 2 shows results of the information criteria along with values of the log-likelihoods,
ln(L) for all unrestricted6 i.e. VAR/VEC models. Note that models I, II and III are in VAR form
and models IV and V are in VEC form. Minimum values of the information criteria are in
bold. The maximum number of states considered is three. This is due to a preference for
parsimony as well as for several practical considerations: Firstly, there is no state with very
few observations (only with outliers), which could cause algorithm convergence and estima-
tion problems. Secondly, estimation of such parsimonious specifications is usually robust to
starting values (see Section 2.3). Finally, computational time is greatly reduced when having
to estimate models with fewer states.

Table 2: Information criteria of unrestricted models.

Model States AIC SC ln(L)

I: yt = [Yt ,rt , st ]′
1 -1412.265 -1280.449 745.123
2 -1584.211 -1435.495 836.105
3 -1594.245 -1421.870 848.122

II: yt = [I Pt ,rt , st ]′
1 -1221.763 -1150.593 631.882
2 -1410.299 -1322.183 731.150
3 -1427.885 -1316.046 746.943

III: yt = [Dt ,rt , st ]′
1 -1203.022 -1131.851 622.511
2 -1384.012 -1295.896 718.006
3 -1408.420 -1296.580 737.210

IV: yt = [Et ,rt , st ]′
1 -317.230 -218.947 187.615
2 -838.750 -730.300 451.375
3 -926.363 -794.190 502.182

V: yt = [Et ,Dt , st ]′
1 -2472.602 -2343.991 1274.301
2 -2917.483 -2748.488 1508.741
3 -2966.398 -2803.942 1531.199

The AIC is calculated as −2(log-likelihood −n) and the SC is calcu-
lated as −2log-likelihood + log(T )n, where T is the sample size and n
is the number of free parameters, ln(L) is the log-likelihood.

According to these criteria we choose three states for models III, IV and V. Further, for
identification purposes, (see Section 2.3) we also choose three states for model II. Finally, 2
states are chosen for model I since a model with three states tends to have a state with very
few observations, rendering the accuracy of parameter estimates questionable. Finally, it
is worth noting that models with one state, or simply linear VAR and VEC models, are not
favoured by any criterion. Although, the purpose of this paper is to test the commonly used

6Here unrestricted refers to no (short or) long-run restrictions on the state invariant B matrix (see (6) and (7)).
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restrictions, and not to find the most appropriate model for the data, these results do suggest
that a Markov switching model may be more appropriate than a conventional linear model.7

Model lag orders are chosen based on the (parsimonious) Schwartz Criterion (SC) of the
conventional linear VAR model. Therefore, one lag order is used for models II, III and IV, two
lags for model V and three lag orders for model I. Note that the number of lags is indicated by
p in equations (1) and (2) for the VAR and VEC models respectively.8

Table 3 summarizes the Markov switching (MS) vector model specifications introduced
in Table 1.

Table 3: Summary of the Markov switching specifica-
tions of the models in Table 1.

Model I yt = [Yt ,rt , st ]′ MS(2)-VAR(3)
Model II yt = [I Pt ,rt , st ]′ MS(3)-VAR(1)
Model III yt = [D t ,rt , st ]′ MS(3)-VAR(1)
Model IV yt = [Et ,rt , st ]′ MS(3)-VEC(1), r = 1
Model V yt = [Et ,D t , st ]′ MS(3)-VEC(2), r = 1

MS(M) stands for Markov switching with M states,
r is the cointegration rank of the VEC models.

3.2 Estimation results

The parameter estimates of interest along with their standard deviations and the covariance
matrices for all unrestricted models, are shown in Table 4.

The covaraince matrices give information on the volatility of the different states. In partic-
ular, the variances (the diagonal elements of the covariance matrices) usually tend to increase
with each state. Hence, the states can be classified as increasing in volatility.

This can further be observed in the model smoothed probabilities given in Figure 2. These
probabilities depict the degree of certainty the model attributes to being in a particular state
at a given time period. Shaded bars in the figure represent recession dates according to NBER
dating. It is usually the case that most severe recessions are present in state 2 and (except for
model I) state 3, which, as the covariance matrices suggest are the more volatile states. In
particular, severe recessions, such as the great recession of the late 2000s are always present
in state 3 (state 2 for model I), the most volatile state. In fact, for model IV, state 3 is only
present during the great recession period. Note that since model I only has two states, the
first state is depicted in Figure 2, the second state is naturally the mirror image of the first.

7Further, although not shown here, the log-likelihoods of models with a fully unrestricted state varying B ma-
trix are only slightly higher than those with a state invariant B matrix (see (9)); and the AIC and SC values are
lower for such models. This means that the assumption of a state invariant B matrix in (9) has support from the
data, although this is formally tested in the following subsection (see Table 4).

8More precisely, for the VEC models a one lag model is ∆yt = νt +Πyt−1 +Γ1∆yt−1 +ut a two lag model is
∆yt = νt +Πyt−1 +Γ1∆yt−1 +Γ2∆yt−2 +ut , etc..
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(a) Model I

(b) Model II (c) Model III

(d) Model IV (e) Model V

Figure 2: Smoothed probabilities of state 1 (top), state 2 (middle) and state 3 (bottom) along
with recession dates (shaded bars). For Model I only the smoothed probabilities of state 1 are
shown.
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Further, transition probabilities, pi i , i = 1,2,3 in Table 4, show that state 1 is most persis-
tent.9 This is to be expected given the labelling of the states — crisis periods tend to be more
transitory than economically stable periods. In this case the duration of the most volatile
state (state 2 for model I and state 3 for all other models) is roughly between 4 and 7 quarters,
depending on the model used. This is a reasonable severe recession duration estimate given
the data range considered. Hence, there is substantial credence to the state labelling.

Finally, the bottom part of Table 4 displays p-values of the null hypothesis of a state in-
variant B matrix as given in (9). The alternative hypothesis is a fully unrestricted state varying
B matrix.10 At conventional critical levels the null hypothesis of a state invariant B matrix
cannot usually be rejected. Hence, one of the necessary model assumptions is justified by
the data.11

3.2.1 Determining whether the B matrix is identified

The B matrix is identified through heteroskedasticity on the condition that all pairwise di-
agonal λi j , i = 2, . . . , M , j = 1, . . . ,K elements are distinct over any Λi , i = 2, . . . , M matrix (see
section 2.3). This condition is tested by means of a Wald test. The test statistic follows a χ2 dis-
tribution with degrees of freedom equal to the number of joint hypotheses being examined.
The exact hypotheses and corresponding p-values are given in Table 5.

Table 5: Null hypotheses and p-values of Wald tests.

H0 :
Model λ21 =λ22,λ31 =λ32 λ21 =λ23,λ31 =λ33 λ22 =λ23,λ32 =λ33

I: [GDPt ,rt , st ]′∗ 0.028 0.080 0.106
II: [I Pt ,rt , st ]′ 0.001 0.120 0.016
III: [D t ,rt , st ]′ 0.038 0.049 0.052
IV: [Et ,rt , st ]′ 0.042 0.058 0.004
V: [Et ,D t , st ]′ 0.001 0.000 0.003

* Since this is a two state model the null hypothesis only involves elements ofΛ2, i.e.
λ2i , i = 1,2,3

The hypotheses are largely rejected at a 10% critical level meaning that the B matrix is
identified through heteroskedasticity and hence, any restrictions on it become over-identifying
and are thus testable. Although, there are some instances of higher p-values for models I and
II, Likelihood Ratio (LR) tests (not reported here) reject the nulls at values of around or below
5%. Further, when model I is modelled in three states the nulls are all rejected even at a 5%
critical value.

9State persistence is calculated as 1/(1-pi i ), i = 1,2,3.
10As noted in section 2.3, the test statistic under the null is asymptoticallyχ2 with (1/2)MK (K+1)−K 2−(M−1)K

degrees of freedom, which is 3 for all three state models.
11Note that this hypothesis is only testable for models with more than 2 Markov states. To test this for model I a

three state version of the model is used.
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3.2.2 Testing the identification restrictions

We now turn to testing the lower triangular long-run identification schemes in (6) and (7)
using LR tests. The distribution of the test statistic is asymptotically χ2 with 3 degrees of
freedom since all restricted models have 3 restrictions so that they are just-identified in the
traditional sense. The alternative hypothesis is the model without any restrictions on the
state invariant B matrix.

Table 6 presents the test results. These indicate that the restrictions are either fairly well
supported or are strongly rejected, depending on the model used. We therefore conclude
that only models I and II have support from the data for the lower triangular long-run identi-
fication scheme. Such restrictions could indeed categorize shocks as fundamental and non-
fundamental. With other models these restrictions do not seem to be warranted by the data,
meaning that the identified shocks can probably not be interpreted as fundamental and non-
fundamental. We will investigate this issue in more detail in Section 5.

Table 6: p-values for LR tests of the long-run restrictions. The alternative hypothesis is a state
invariant, unrestricted B matrix.

model H0 LR test p-value

I: [Yt ,rt , st ]′ (6) 3.608 0.307
II: [I Pt ,rt , st ]′ (6) 2.657 0.448
III: [D t ,rt , st ]′ (6) 21.050 1.028 ×10−4

IV: [Et ,rt , st ]′ (7) 58.884 3.171 ×10−11

V: [Et ,D t , st ]′ (7) 43.238 2.191 ×10−9

4 Robustness Analysis

This section investigates whether the results obtained thus far rely to some extent on the exact
model specifications used. In general the number of states do not influence the results. They
only matter for identifying the B matrix in (9) by heteroskedasticity, up to changes in sign and
column ordering. The number of lags, as well, do not drive the results, although models with
different lag orders may have residual autocorrelation as indicated by Portmanteau tests.

To more thoroughly investigate the robustness of the results we conduct the following
tests. Firstly, we relax the Markov switching (MS) specification so as to allow for a switching
intercept term in addition to the switching covariance matrix. This may even better fit our
data.12 For instance, stock prices tend to rise (fall) in periods of low (high) volatility. This

12We need to stress here that the purpose of the MS model is to test the identifying restrictions and not to best
model the data. In that respect, we do not allow the autoregressive parameters to switch since this would be
harder to justify and interpret. Further, this may cause estimation issues since the number of parameters to be
estimated increases by K 2p for every additional state.
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specification within the VAR framework (1) would look as follows

yt = ν(St )+ A1 yt−1 + A2 yt−2 + . . .+ Ap yt−p +ut , (10)

where St follows a discrete valued first order Markov process as before and ut still has the
same distributional assumption as in (8). The reduced form VEC model is similar to (10) with
the switching intercept being ν0(St ).

Secondly, we use a reduced sample, excluding all observations from the financial crisis
onwards i.e. our reduced sample ends on 2007:I. This crisis marks a very volatile period, as
indicated by all models. For instance, the smoothed probabilities of model IV in panel (d) of
Figure 2 show that only the financial crisis is present in the most volatile third state. Removing
the financial crisis would reduce the amount of volatility in the data.

Thirdly, we use the S&P 500 index as the third variable in all models. Although, the above
used total share prices for all shares series is very general, it is not an official index such as
the S&P 500. We therefore, investigate whether the results would be robust to the proxy of the
real stock price.

In conducting the robustness analysis we use the same VAR/VEC specifications as before.
Cointegration tests further confirm evidence of cointegration at reasonable levels in the ro-
bustness configurations. Hence, models IV and V are still of the VEC form, with a cointegrat-
ing rank of 1, while models I - III are still of the VAR form. This would also allow the results of
the robustness checks to be easily compared with the original ones.

As in the original analysis, it is first necessary to confirm whether the assumption of a state
invariant B matrix is justified. Recall, that this can be tested for models with three Markov
states. This indeed turns out to be the case whenever a three state model is employed.

Table 7 presents the results of all three robustness checks along with the original find-
ings, in terms of LR tests of the structural restrictions. Starting with the first specification
of a switching intercept, we see that the original conclusions have not changed. In case of
models II and III, two Markov states are used as indicated by the information criteria (see
Section 3.1.1).13 Thus, the findings are robust to the MS model specification used. Since the
purpose of the MS model is to test the identifying restrictions, it is sufficient to use a MS in
heteroskedasticity specification.

Moving on to the shorter sample range, we see that the results are again robust whenever
the B matrix is identified (through heteroskedasticity). For models I, II and V this matrix is not
identified. Hence, for instance, even though the restrictions on model II are again accepted
at the 5% level, this finding is not reliable. Usually the p-values of the hypotheses tested in
Table 5 are well above 20%, in some instances above 50%. Since this shorter sample excludes
32 observations and a volatile part of the data, it may not be sufficient for the purpose of
restrictions testing for models I, II and V. Indeed, for example, GDP and industrial production
may not have been very volatile before the financial crisis. The absence of the very volatile
crisis period is also the reason why two states are used for all models, except for model IV.
Three volatility states would appear to be unnecessary according to the information criteria.

13As noted before, this does not influence the test results, however it could help identify the B matrix through
heteroskedasticity (see Table 5).
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Table 7: p-values for LR tests of the long-run restrictions for different robustness specifica-
tions. The alternative hypothesis is a state invariant, unrestricted B matrix.

Until
model H0 Intercept 2007:I S&P 500 Original

I: [Yt ,rt , st ]′ (6) 0.378* 0.008 0.287* 0.307*

II: [I Pt ,rt , st ]′ (6) 0.673† * 0.052† 0.653† * 0.448*

III: [D t ,rt , st ]′ (6) 2.465 ×10−5† * 5.751 ×10−7† * 7.845×10−5* 1.028×10−4*

IV: [Et ,rt , st ]′ (7) 1.545×10−10* 1.471×10−8* 1.160×10−9* 3.171×10−11*

V: [Et ,D t , st ]′ (7) 4.872×10−8* 0.758† 1.384 ×10−9 2.191×10−9*

* The B matrix is identified through heteroskedasticity.
† A two state model is used (originally three states).

It is worth noting that the results for model IV are robust to the exclusion of the financial crisis,
which only occurs in state 3 of the original specification (see Figure 2 (d)).

Finally, using the S&P 500 as a proxy for the real stock price, leaves the original results
unchanged. Only in case of model V is the B matrix not identified. However, given the low
p-value (similar to the original one) this is unlikely to be a problem. Hence, the model results
are robust to this specification.

In summary, these robustness tests indicate that the original findings are reliable and not
merely subject to some favourable conditions.

5 Practical Implications

Now we go back to the initial issue of our investigation; whether stock prices reflect some
underlying fundamentals. To see whether the testing methodology implemented thus far has
any practical implications, we use all the popular models (Table 1) and investigate whether
their conclusions differ. Following the literature, we only use linear conventional VAR/VEC
specifications.14 Hence, we keep the model form and lag lengths as described in Table 3,
however we do not consider any regime switches.

A popular means of determining the significance of fundamentals in stock prices is by
means of a forecast error variance decomposition (FEVD) (for example Lee (1995b), Binswanger
(2004b), Pan (2007) and Velinov and Chen (2015)). This allows us to investigate the fractions
of the error variance in forecasting a particular variable that are attributable to the various
system shocks. In particular, the h period ahead FEVD is given as

FEVDk j ,h =
Ψ2

k j ,0 +Ψ2
k j ,1 +·· ·+Ψ2

k j ,h−1∑h−1
i=0

∑K
j=1Ψ

2
k j ,i

, (11)

14Recall, the Markov switching specifications were used in effect only to test the identifying restrictions and not
for the purpose of data modelling.
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where theΨs are the moving average coefficients of the structural model (see (5)). The decom-
position in (11) is interpreted as the contribution of innovations in variable j to the forecast
error variance of the h-step forecast of variable k (see (Lütkepohl, 2005, Ch. 2)). This formula
is identical for both SVAR and SVEC models.

Table 8: Forecast error variance decompositions of the real stock price for all models. Values are in
percent

Percentage of variance attributable to: Percentage of variance attributable to:
Quarters Fundamental Fundamental Non fundamental Quarters Fundamental fundamental Non fundamental
ahead shock 1 shock 2 shock ahead shock 1 shock 2 shock

model I: yt = [Yt ,rt , st ]′ model II: yt = [I Pt ,rt , st ]′
1 25.94 13.63 60.42 1 27.27 13.57 59.16
2 30.47 11.50 58.03 2 26.29 12.18 61.52
3 30.32 11.56 58.12 3 25.98 12.31 61.71
4 30.87 11.46 57.68 4 25.89 12.63 61.48
5 30.89 11.49 57.52 5 25.84 12.83 61.33
10 30.86 11.54 57.60 10 25.79 13.01 61.20
20 30.86 11.56 57.58 20 25.79 13.05 61.16
50 30.85 11.57 57.58 50 25.79 13.06 61.15

model III: yt = [Dt ,rt , st ]′ model IV: yt = [Et ,rt , st ]′
1 0.03 0.58 99.39 1 90.73 9.08 0.19
2 0.02 0.53 99.44 2 82.83 17.01 0.16
3 0.04 0.62 99.35 3 80.38 19.53 0.10
4 0.05 0.73 99.22 4 78.98 20.94 0.08
5 0.08 0.83 99.09 5 78.11 21.79 0.10
10 0.18 1.11 98.70 10 76.64 23.26 0.10
20 0.28 1.27 98.45 20 76.34 23.61 0.05
50 0.32 1.31 98.37 50 76.13 23.85 0.02

model V: yt = [Et ,Dt , st ]′
1 18.12 76.11 5.77
2 17.74 77.24 5.01
3 17.89 77.97 4.15
4 18.04 78.52 3.43
5 18.19 78.92 2.89
10 18.69 79.75 1.56
20 18.83 80.38 0.79
50 18.69 80.99 0.32

Since the identification schemes in (6) and (7) claim to identify fundamental shocks, we
label the first shock as the fundamental one. In what follows we could also consider the sec-
ond shock as a type of fundamental shock (see Pan (2007)) since it has a long-run impact on
real interest rates (dividends in case of model V). Finally, the third model shock is labelled as
a non-fundamental shock. Hence, the structural shocks are

εt =
[
εF 1

1t εF 2
2t εN F

3t

]′
(12)

where F stands for fundamental and NF for non-fundamental.
Table 8 displays the FEVDs of the real stock price for all models. For models I and II,

the first fundamental shock explains roughly 30% of the forecast error variance of real stock
prices. Both fundamental shocks combined would account for around 40% of the forecast
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error variance. This finding is similar to that in the literature (for example Binswanger (2004b),
Jean and Eldomiaty (2010), Velinov and Chen (2015)).

On the other hand, results differ greatly for models III to V — the ones for which the long-
run identification scheme is not supported by the data. For instance, model III indicates that
fundamental shocks explain almost none of the forecast error variance of real stock prices,
barely more than 1%. Models IV and V however, deliver the opposite conclusion, namely
that fundamental shocks explain almost all of the forecast error volatility of real stock prices,
more than 99%. Moreover, the first fundamental shock is by far the most important in model
IV while it is far less dominant in model V, even though real earning are still ordered first.
Clearly, these extreme conclusions are unrealistic.

To investigate this issue further, we conduct an impulse response (IR) analysis. As evi-
denced in the Markov switching models above, the data seem to show signs of heteroskedas-
ticiy. So as to take this into account we use the wild bootstrap technique as suggested by
Podstawski and Velinov (2016) to formulate the confidence bands of the IRs. For example,
using the VAR specification, the series are bootstrapped as

∆y?t = ν̂+ Â1∆y?t−1 + Â2∆y?t−2 +·· ·+ Âp∆y?t−p +u?t , (13)

where u?t =ϕt ût and whereϕt is a random variable, independent of yt following a Rademacher
distribution. In other words, ϕt is either 1 or -1 with a 50% probability. The hat denotes esti-
mated parameters. This procedure is analogous for the VEC models.

Further, so as to avoid the problem of very wide confidence bands, due in part to arbi-
trary normalization methods, we employ the likelihood preserving (LP) normalization as sug-
gested by Waggoner and Zha (2003). Note that this would bias the analysis in favour of nar-
rower confidence bands since the LP normalization is not commonly used in this literature.
However, any insignificant impulse responses would, in this case, be stronger emphasised.

Figure 3 displays the responses of the real stock price to the various structural shocks for
each model. So as to make the SVAR and SVEC models comparable, the accumulated effects
are displayed in the figure for all SVAR models (I to III). Our main shock of interest is the first
fundamental shock, which is usually considered the most important in the literature (Lee
(1995a), Laopodis (2009)).

For models I and II (the correctly identified models) the first fundamental shock to real
stock prices is significant throughout the whole forecast horizon. The second fundamental
shock would also be significant for model II upon impact at the 68% band.

Models III to V on the other hand find all fundamental shocks insignificant. Only model
IV finds any significance for the fundamental shocks, however, only at the 68% level.15 The
second fundamental shock for model V is barely significant at the 90% level, even though it is
the most dominant one in the FEVDs. The findings from these incorrectly identified models
do cast doubts about whether the structural shocks they generate can truly be labelled as
fundamental.

Finally, we note that, compared with conventional normalization methods16 the LP nor-

15Note that the non-fundamental shock in the SVEC models is set to have a cumulative long-run impact of 0 by
construction (see (7)).

16Such as multiplying by -1 the columns of the B matrix whose diagonal elements are negative.
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(e) Model V

Figure 3: Impulse responses (accumulated for models I to III) to real stock prices. Dashed
(dash-dot) lines depict 68 (90) percentile Efron confidence intervals generated with 2000 fixed
design wild bootstrap replications using the likelihood preserving normalization method.

19



malization does not significantly influence the size and shape of the confidence bands for the
SVAR models, i.e. it does not change any of the conclusions above. For the SVEC models on
the other hand, without this normalization, both fundamental shocks would have insignif-
icant impulse responses at both the 90% and 68% levels. This casts further doubt on their
shock labelling.

This small empirical exercise illustrates the importance of being able to test structural
restrictions. Any empirical analysis using the incorrectly identified models III to V would give
distorted conclusions on the importance of fundamentals for real stock prices.

6 Conclusion

This analysis focuses on testing a commonly used structural parameter identification scheme
claiming to identify fundamental and non-fundamental shocks to stock prices. In particular,
five related structural models, which are widely used in the literature on assessing stock price
determinants are considered. Each of these models consist of three variables. The first vari-
able represents different proxies of economic activity such as real GDP, the industrial produc-
tion index, real dividends and real earnings; each proxy being a different model. All models
are either specified in vector error correction (VEC) or in vector autoregressive (VAR) form.
Restrictions are placed on the long-run effects matrix as in Blanchard and Quah (1989), mak-
ing it lower triangular. All models are hence just-identified in the traditional sense.

A Markov switching in heteroskedasticity model as in Lanne et al. (2010) and Herwartz
and Lütkepohl (2014) is used to test whether the long-run restrictions are supported by the
data. It is found that for two of the models considered, the long-run identification scheme
appropriately classifies shocks as being either fundamental or non-fundamental.

A small empirical exercise is conducted to investigate the practical implications of accept-
ing/rejecting the identification scheme. This finds that the models with properly identified
structural shocks deliver plausible and similar conclusions as some existing studies. On the
other hand, models with identification schemes not supported by the data yield unrealistic
conclusions on the importance of fundamentals for real stock prices. This is because their
structural shocks are not properly identified, making any shock labelling ambiguous. Hence,
in order to ensure that economic shocks of interest are properly captured, it is important to
test the structural identification scheme.
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