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Abstract

I document the effects of macroeconomic and sector-specific shocks on investment

in disaggregate sectoral capital expenditure data. The response of sectoral investment

to macroeconomic shocks is hump-shaped, just as in aggregate data. By contrast,

the effects of sector-specific innovations are monotonically decreasing. I build and

calibrate a model of investment with convex capital adjustment costs and rational

inattention to explain these features of the data. The model matches the empirical

responses of sectoral investment to both shocks. (JEL E22, E32, D83, D92, C38)
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1 Introduction

The hump-shaped response of aggregate investment to macroeconomic shocks is a salient

feature of the business cycle in the United States.1 This paper establishes novel stylized

facts that help to shed light on the propagation mechanism underlying this empirical reg-

ularity. I show that the response of investment to macroeconomic shocks in disaggregate

sectoral data—and, hence, before aggregation—is hump-shaped, just like in aggregate

data. In response to an aggregate shock that leads to a 1 percent increase on impact,

sectoral investment spending in the median sector rises further to 1.2 percent at the 1-

year horizon. At the 2-year horizon, sectoral investment then settles approximately at

the long-run response. By contrast, the effects of sector-specific surprises on sectoral in-

vestment spending are monotonically decreasing.2 In response to a sector-specific shock

that leads to a 1 percent increase on impact, sectoral investment spending in the median

sector falls to 0.7 percent at the 1-year horizon, which equals approximately the long-run

response. Moreover, I find that sector-specific shocks account for 90 percent, aggregate

shocks for 10 percent of sectoral investment volatility.

The second part of this paper seeks to understand the discrepancy in the empirical

responses of sectoral investment to differential shocks. To this end, I build and calibrate

a model of investment with convex capital adjustment costs and rational inattention

following Sims (2003). My main quantitative result is that the model response of sec-

toral investment to aggregate shocks is hump-shaped, while the effects of sector-specific

shocks are monotonically decreasing. The model matches this feature of the data because

decision-makers in production units choose to obtain less than perfect information with

costly information acquisition. The amount of information acquired about aggregate and

sector-specific shocks is roughly the same. Given less than perfect information, the re-

1See, for example, Christiano et al. (2005) and Altig et al. (2011) for monetary policy shocks, Romer and
Romer (2010) and Mertens and Ravn (2013) for tax policy shocks, Dedola and Neri (2007) for technology
shocks, and Altig et al. (2011) for investment-specific technology shocks.

2A monotonically decreasing response peaks on impact and then decreases monotonically.
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sponse of sectoral investment to both shocks is dampened in the impact period of the

shock. At the 1-year horizon, more information becomes available and decision-makers

learn that their optimal capital stock is larger. Capital expenditures increase. In the cali-

bration that draws on empirical estimates from the literature, aggregate shocks are more

persistent than sector-specific shocks. The optimal capital stock therefore decays more

slowly and investment under rational inattention increases more strongly at the 1-year

horizon following these shocks, hence the hump shape in the response of sectoral invest-

ment. On the other hand, the optimal capital stock declines more rapidly in response to

sector-specific shocks and there is less investment demand at the 1-year horizon in this

case. Without convex capital adjustment costs, the response to aggregate shocks becomes

monotonically decreasing because decision-makers choose to adjust the level of capital

immediately, given the information they acquire. At the 1-year horizon, as more infor-

mation about the optimal capital stock becomes available, investment demand is positive

but smaller than on impact. With capital adjustment costs, decision-makers smooth cap-

ital expenditures over time which leads to additional investment demand at the 1-year

horizon. Thus, convex capital adjustment costs and rational inattention are essential for

the model to explain the novel stylized facts documented in the first part of the paper.

Moreover, the form of the investment response to macroeconomic shocks is preserved

under aggregation across all production units in the model. Hence, my results provide a

new microfounded explanation for the hump-shaped response of aggregate investment

to macroeconomic shocks and highlight rational inattention as a new propagation mech-

anism in the investment literature.

To establish my empirical results, I estimate a dynamic factor model using capital

expenditure data from US manufacturing industries. The data set contains information

about real investment spending for 462 industries at the 6-digit NAICS-level for the years

from 1958 to 2009. The dynamic factor model represents sectoral investment as the sum

of a common component, consisting of a common factor with industry-specific factor
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loading, and a sector-specific component. The common factor and the sector-specific

component follow an autoregressive process each with reduced-form error terms that

reflect a variety of macroeconomic and industry-specific shocks. Because the innovations

to the sector-specific component are independent across industries, aggregate shocks

lead to common dynamics in sectoral investment across all 462 industries while sector-

specific shocks do not. I use Bayesian methods to estimate the model. Based on the joint

posterior density, I study the effects of aggregate and sector-specific shocks and compute

the variance shares of each shock in sectoral investment volatility.

The theoretical model has the following features. There is a representative produc-

tion unit in each sector. Production units operate a production function that transforms

capital services into output. Total factor productivity (TFP) consists of an aggregate and

a sector-specific component, which are both affected by shocks. Decision-makers in pro-

duction units maximize the expected discounted value of profits by choosing capital and,

thus, investment spending, subject to convex capital adjustment costs. They must pay

attention to learn about the realizations of TFP shocks. Paying attention reduces un-

certainty about shock realizations, where uncertainty is measured by entropy following

Sims (2003). Paying attention to aggregate and sector-specific shocks are independent

activities.3 Attention is costly and decision-makers optimally allocate their attention. I

calibrate the model parameters using standard values from the literature.

In principle, other propagation mechanisms can also be consistent with the empirical

findings presented in this paper. Following Christiano et al. (2005), many business cycle

models feature investment adjustment costs so as to match the hump-shaped impulse

response of aggregate investment to macroeconomic shocks.4 In Appendix A, I solve an

otherwise standard real business cycle model with investment adjustment costs, perfect

information, and aggregate and sector-specific TFP shocks. I calibrate the model param-

3Maćkowiak and Wiederholt (2009) also make this assumption.
4Following Christiano et al. (2005), investment adjustment costs are convex in the growth rate of invest-

ment while capital adjustment costs are convex in the growth rate of capital.
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eters at the quarterly frequency using standard values from the existing literature and

time-aggregate the model responses to the yearly frequency. This calibration strategy

helps to rule out the case in which the response of sectoral investment following sector-

specific innovations is hump-shaped at the quarterly frequency, but time aggregation

to the yearly frequency obtains a monotonically decreasing response as observed in the

data. My results show that in partial as well as in general equilibrium, the impulse re-

sponses of sectoral investment to aggregate and sector-specific shocks are hump-shaped

at either frequency. Hence, under standard assumptions and using a standard calibra-

tion of the model parameters, a model with investment adjustment costs has difficulties

to match my empirical findings.

Fiori (2012) explores another propagation mechanism that is consistent with the hump-

shaped response of aggregate investment. He shows that if rapid output expansion in

the investment good producing sector is costly, the relative price of investment increases

in response to aggregate shocks. This general equilibrium price response initially de-

presses demand for investment goods in all other sectors of the economy. As the sup-

ply of investment goods increases over time, the relative price of investment falls and

investment demand in the rest of the economy picks up. The impulse responses of sec-

toral investment to aggregate shocks are protracted in each sector, as in the data, but

not hump-shaped in general. Only the consumption good producing sector displays a

slowly building sectoral investment response. More importantly, in Appendix B, I pro-

vide evidence that the relative price of investment in the manufacturing sector does not

move with the macroeconomic shock estimated in the statistical model of this paper.

There are two empirical studies in the price setting literature to which this paper

closely relates. Boivin et al. (2009) and Maćkowiak et al. (2009) examine the effects of

macroeconomic and sector-specific shocks on sectoral price indices. This paper estimates

the same impulse responses in the case of sectoral investment spending. While the statis-

tical model and estimation methodology are similar to their work, there are differences
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that I will describe in more detail below. Interestingly, my empirical findings bear strong

resemblance to those of Boivin et al. (2009) and Maćkowiak et al. (2009). Both studies

find that aggregate shocks lead to gradual changes in sectoral price indices, whereas ad-

justment to sector-specific shocks is immediate. Also, they report that the bulk of sectoral

inflation volatility is due to sector-specific shocks.

This article also adds to the literature on rational inattention following Sims (2003,

2006). To the best of my knowledge, this paper is the first to study the implications of

investment under rational inattention.5 Other applications include price setting decisions

of firms (Woodford, 2009; Maćkowiak and Wiederholt, 2009; Matějka, forthcoming); the

consumption-saving decision of households (Luo, 2008; Tutino, 2013); discrete choice be-

havior (Matějka and McKay, 2015); monetary policy (Paciello, 2012; Paciello and Wieder-

holt, 2014); and portfolio choice (Mondria, 2010; Van Nieuwerburgh and Veldkamp, 2009,

2010; Kacperczyk et al., 2016). Maćkowiak and Wiederholt (2015) formulate a dynamic

stochastic general equilibrium model with rational inattention. However, their model

abstracts from capital in production.

The remainder of this paper is organized as follows. Section 2 presents the statis-

tical model for the sectoral data. Section 3 describes the data. Section 4 contains the

main empirical results and several robustness checks. In Section 5, I lay out the model

of investment with convex capital adjustment costs and rational inattention. Section 6

evaluates the model and contains the quantitative results. Section 7 concludes.

5In related work, Verona (2014) explores the implications of capital adjustment in a model with sticky
information. Under this assumption, decision-makers must pay a fixed cost to acquire new information
and, once they do so, have perfect information in the period of updating.
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2 Statistical Model for Sectoral Capital Expenditure Data

I use the following dynamic factor model to study sectoral capital expenditure data:

yit = Hixt + wit, (1)

where yit, i = 1, . . . , n, t = 1, . . . , T, denotes the period t log change of real investment

in sector i, xt is a single unobserved common factor, and the wit are sector-specific error

terms. The Hi are factor loadings that are possibly different across industries. In Equa-

tion (1), I omit a constant for ease of exposition and because I standardize the data in the

next section.

The factor and the sector-specific terms each follow autoregressive (AR) processes:

xt = F(`)xt−1 + vt, vt ∼ i.i.d.N (0, Q) (2)

wit = Di(`)wit−1 + uit, uit ∼ i.i.d.N (0, Ri) (3)

where F(`) and Di(`) denote lag polynomials of order three, and vt and the uit are Gaus-

sian white noise with variance Q and Ri, respectively. The uit are pairwise independent

and uncorrelated with vt. Moreover, the uit and vt are uncorrelated with initial condi-

tions, the wi0 and x0. These assumptions imply that the wit are pairwise independent

and uncorrelated with xt.

A few remarks are in order. First, it is worth pointing out that I do not attempt to iden-

tify structural innovations. Surprise movements in vt and in the wit are reduced-form and

reflect a convolution of structural innovations. Second, given xt, Equation (1) is a normal

linear regression with serially correlated error term. Because the wit are pairwise inde-

pendent and uncorrelated with xt, all comovement in sectoral investment comes from the

factor xt. It follows that, given xt, Equation (1) can be estimated equation-by-equation

for each sector. Note that sector-specific components are allowed to have different persis-
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tence and innovation variances across industries. Third, the dynamic response of sectoral

investment to innovations in the factor, vt, can be read off the coefficients of the infinite-

order lag polynomial Hi(1 − F(`)L)−1, where L denotes the lag operator. Hence, the

statistical model imposes that the impulse responses of investment to aggregate shocks

are proportional across industries.6 It bears pointing out that the shape of the impulse

responses itself is not pinned down by the model, but will be determined by the data.

Furthermore, the model does not restrict the impulse responses of sectoral investment to

sector-specific innovations to be proportional.

This paper uses Bayesian methods to estimate the model. In particular, I use Gibbs

sampling with a Metropolis-Hastings step to sample from the joint posterior density of

the factor and the model’s parameters. Given a draw of the model’s parameters, I sample

from the conditional posterior density of the factor, xt, using the Carter and Kohn (1994)

simulation smoother. Given a draw of the factor, I sample from the conditional posterior

densities of the parameters. Equation (2) is an AR process that can be estimated using a

variant of Chib and Greenberg (1994). Equation (1) is a normal linear regression model

with AR errors, which can be estimated using the method by Chib and Greenberg (1994).

The priors for the lag polynomials F(`) and Di(`) are centered around zero at each

lag. Like the Minnesota prior, the prior precision at more distant lags is higher. The

factor loadings Hi also have zero prior mean and unit variance. For the sector-specific

innovations Ri, I use the diffuse prior by Otrok and Whiteman (1998). More details on

the estimation methodology and priors are available in Appendix C.

6Maćkowiak et al. (2009) point out this insight. In the spirit of Jordà (2005), their dynamic factor model
estimates impulse responses at each horizon of interest without the restriction of proportionality. Like
Ramey (2013), I found that this approach can lead to erratic impulse responses of sectoral investment
that contradict economic intuition. For this reason, I use the specification in which impulse responses of
sectoral investment to aggregate shocks are proportional.
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3 Data

The disaggregate sectoral capital expenditure data comes from the NBER-CES Manu-

facturing Industry Database. This data set contains nominal investment spending and

investment price deflators at the industry level for a representative sample of the US

manufacturing sector. The sample starts in 1958 and the frequency of the data is annual.

The level of aggregation is the 6-digit NAICS-level.7 The data set contains a balanced

panel of 462 sectors.8 The median number of establishments per sector in the population

is 342.9 The data set ends in 2009.

I compute sectoral real investment by dividing nominal capital expenditures in each

year and sector by the corresponding investment price deflator. I convert each series

into growth rates by taking log differences. Furthermore, I standardize each growth

rate series to have zero mean and unit variance. The standardization helps to abstract

from differences in the coefficients of the statistical model due to differences in sectoral

volatility. This facilitates estimation and makes impulses responses easier to compare

across sectors.

In terms of sectoral comovement, the first principal component of the standardized

sectoral real investment growth rates explains roughly 14.5 percent of their total variance.

The next four principal components add 5.46 percent, 4.15 percent, 3.82 percent, and 3.62

percent each to the total variance explained. The drop and leveling off in incremental

explanatory power after the first principal component informally suggests the presence

of one factor, which is why I assume a single factor in the statistical model described

in the previous section. Also, the low portion of variation explained by the first princi-

pal component already suggests that investment dynamics at the sector-level are mostly

7As an example, “Cookie and Cracker Manufacturing” is a 6-digit NAICS industry.
8In 1997, eleven industries were reclassified into manufacturing but capital expenditure data prior to

1997 is not available for them. Therefore, I do not consider them in the analysis.
9I obtain this number from the County Business Patterns as the median value for the years from 1998

to 2001. The industry classification used in the Country Business Patterns is different from the industry
classification used in the NBER-CES Manufacturing Industry Database in other years.
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driven by sector-specific shocks.

Aggregating over all sectors, the sample covers on average about 55 percent of US

manufacturing nonresidential, private fixed investment spending. In real terms, the lin-

ear correlation between total investment expenditures in the sample and US manufactur-

ing nonresidential, private fixed investment spending is 0.97.10 These statistics suggest

that the data is representative of the US manufacturing sector.

4 Empirical Results

The first part of this section presents the three main empirical findings of this paper: (i)

the impulse response of sectoral investment to aggregate shocks is hump-shaped, (ii) the

effects of sector-specific shocks on sectoral investment are not hump-shaped and decrease

monotonically, and (iii) sector-specific shocks account for the bulk of sectoral investment

volatility.

The second part assesses the robustness of my empirical findings by exploring whether

(i) there are multiple common factors, (ii) the results change at the 4-digit and 3-digit

NAICS industry-level, and (iii) the results are prone to the missing persistence bias

pointed out by Berger et al. (2015). I find that the results are robust along these di-

mensions.

Before I present my main empirical findings, let me give two additional results. First,

Figure 1 displays impulse responses of aggregate investment to a 1 percent innovation

over a 5-year horizon. I estimate the following AR(3) process to obtain these impulse

responses:

yt = c +
3

∑
j=1

φjyt−j + wt, (4)

where yt denotes the log change of aggregate investment in real terms and wt is Gaussian

10US manufacturing nonresidential, private fixed investment spending in nominal and real terms is avail-
able from the Bureau of Economic Analysis (BEA) Fixed Asset Accounts, Tables 4.7 and 4.8, respectively.
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white noise. The impulse response of the log-level of aggregate investment corresponds

to the cumulative impulse response of yt. Again, it is worth pointing out that this is a

reduced-form impulse response and does not reflect the effects of a structural macroe-

conomic shock. I estimate Equation (4) using three different time series.11 The blue line

in Figure 1 shows the effects on US nonresidential, private fixed investment. In response

to a 1 percent innovation, aggregate investment rises further to 1.6 percent at the 1-year

horizon, giving rise to a hump-shape. The green line in Figure 1 is based on aggre-

gate manufacturing investment data, while the red line is based on the aggregated micro

data. The effects of an innovation on aggregate manufacturing investment are in both

cases slightly less pronounced and more short-lived, but the hump shape is nevertheless

preserved. Notice that the error bands do not contain 0.01 at the 1-year horizon.12

Second, in Figure 2, the solid blue line depicts the pointwise posterior median esti-

mate of the common factor. The dashed black line depicts the growth rate of value added

in the US manufacturing sector for comparison.13 The gray-shaded regions correspond to

NBER recessions. The figure suggests that the common factor is pro-cyclical. Indeed, the

correlation with US manufacturing value added growth is 0.55. Moreover, the correlation

between the factor and US manufacturing investment growth is 0.87.

In sum, these results show why the estimated statistical model for disaggregate sec-

toral capital expenditure data from manufacturing industries is useful. The impulse

responses in the manufacturing sector are very similar to that of the total economy.

Moreover, the statistical model provides a plausible estimate of common investment

dynamics. We can now ask what are the effects of macroeconomic and sector-specific

shocks on sectoral investment.
11See Footnote 10 for data sources of manufacturing and total economy data used in the following.
12These are 68 percent error bands obtained by direct Monte Carlo sampling from the posterior distri-

bution of the AR parameters. I take 1,000 draws and use Jeffrey’s noninformative prior in estimation.
13The data source for the US manufacturing value added series is the BEA Industry Economic Accounts.
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4.1 Main Results

The first empirical main result is that the impulse response of sectoral investment to

aggregate shocks is protracted and hump-shaped. To obtain this result, I first sample

randomly 1,000 parameter draws from the joint posterior density. Second, for each sec-

tor and every draw, I compute the cumulative impulse response of investment growth in

response to an aggregate shock that leads to a 1 percent increase on impact. The cumu-

lative impulse response corresponds to the impulse response of the log-level of sectoral

investment. Third, I define the median sector as the pointwise 50th percentile of the

distribution of impulse responses obtained in the previous step. Recall that the impulse

responses of investment to aggregate shocks are proportional across industries. Given

a parameter draw, the pointwise cross-sectional median of impulse responses therefore

corresponds to the same industry at all horizons. Moreover, the impulse responses are

scaled to imply an increase of investment by 1 percent on impact in each sector. It follows

that the impulse responses of investment to aggregate shocks are the same in all sectors

for a given parameter draw. The form of impulse responses across draws varies, however.

The median sector measures the central tendency of impulse responses at each horizon.

Fourth, I also compute the pointwise 16th and 84th percentiles of the distribution of

impulse responses obtained in the second step. I use these statistics to characterize pos-

terior uncertainty about the impulse responses. From the above, it follows that posterior

uncertainty reflects posterior parameter uncertainty only. Figure 3 shows the result of

this procedure. In response to an aggregate shock that leads to a 1 percent increase on

impact, sectoral investment spending in the median sector rises further to 1.2 percent at

the 1-year horizon, giving rise to a hump-shape. Note that the posterior density at the

1-year horizon lies above 0.01. At the 2-year horizon, sectoral investment then settles

approximately at the long-run response.

To shed light on posterior uncertainty from a different angle, I compute the percentage

share of investment responses to aggregate shocks that have a hump-shaped form. I
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consider all investment responses obtained in the second step of the above procedure.

About 83 percent of the investment responses peak between horizons 0 and 5. If, in

addition, the requirement that the response is monotonically increasing to the left of the

peak is imposed, approximately 76 percent of the impulse responses have a hump-shaped

form.

The second empirical main result is that the effects of sector-specific shocks on sectoral

investment are not hump-shaped but monotonically decreasing. I use the same proce-

dure as above to conduct posterior inference on the impulse response to a sector-specific

shock that leads to a 1 percent increase in sectoral investment. However, the median

sector now measures the central tendency of impulses responses at each horizon both

across sectors and draws. Similarly, the posterior uncertainty now reflects both posterior

parameter uncertainty and cross-sectional variation. The reason for this difference with

respect to the impulse responses to aggregate shocks is that the statistical model does

not restrict the impulse responses of sectoral investment to sector-specific shocks to be

proportional. Figure 4 depicts the result. In response to a sector-specific shock that leads

to a 1 percent increase on impact, sectoral investment spending in the median sector falls

to 0.7 percent at the 1-year horizon, which equals approximately the long-run response.

In comparison to the impulse response to aggregate shocks, the effects of sector-specific

shocks on sectoral investment are short-lived and monotonically decreasing.

In the case of sector-specific shocks, only about 14 percent of the investment responses

drawn peak between horizons 0 and 5. This percentage share reduces further to 8 per-

cent if only those responses that are monotonically increasing to the left of the peak are

considered.

The third empirical main result is that sector-specific shocks explain the bulk of sec-

toral investment volatility. To obtain this result, recall that the assumptions of the econo-

metric framework imply that the factor, xt, and the sector-specific term, wit, are uncor-

related. Hence, the variance of the sectoral investment growth rate, yit, can be written
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as Var[yit] = H2
i Var[xt] + Var[wit]. The first term captures the contribution of aggregate

shocks, the second term the contribution of sector-specific shocks to sectoral investment

volatility. First, I use the posterior median estimate of F(`) to compute the unconditional

variance of the process for xt, Var[xt]. Second, I compute the unconditional variance of

the process for wit, Var[wit], using the posterior median estimates of Di(`) and Ri for each

sector. Third, I compute the variance shares of aggregate and sector-specific shocks in

sectoral investment volatility for each sector. Fourth, I define the median industry as the

50th percentile of the cross-sectional distribution of variance shares. I find that sector-

specific shocks account for about 90 percent, aggregate shocks for about 10 percent of

sectoral investment volatility in the median sector.

4.2 Robustness

4.2.1 Number of Factors

The statistical model in Equation (1) assumes a single common factor. To test for the

presence of additional common factors, I study the cross-sectional correlation of the

sector-specific terms, wit. Recall that the factors account for all the comovement in the

observable data, whereas the sector-specific terms are assumed to be uncorrelated in the

cross-section. If there are additional factors omitted from Equation (1), the comovement

stemming from them has to be captured by the sector-specific terms. Therefore, I take

a random draw from the posterior distribution of the factor, xt, and the factor loading,

Hi, to compute the wit. Next, I compute the median of the absolute value of the cross-

sectional correlation, |corr[wi, wj]|, ∀i 6= j. I repeat this procedure 1,000 times. Figure 5

displays the histogram of this statistic. The median of this distribution is low and equals

0.1091, which means that there is little cross-sectional correlation in the sectoral compo-

nents. This exercise suggests that there are no additional factors relevant to explain the

cross-sectional comovement in the sectoral investment.
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4.2.2 Level of Aggregation

I re-estimate the model at the 4-digit and 3-digit NAICS industry level to test if the results

depend on the level of aggregation.14 Figure 6 contrasts the posterior median estimate

of the common factor at different levels of aggregation. The solid blue line depicts the

estimate based on 6-digit NAICS industry data shown in Figure 2. The red dash-dot line

and the green dashed line show the estimates obtained from using 4-digit and 3-digit

NAICS industry data, respectively. Figure 6 shows that the median estimates of the factor

have virtually the same dynamics at different levels of aggregation. At higher levels of

aggregation, the factor captures more comovement in sectoral investment, which is why

the volatility of the estimates increases. Figures 7 and 8 show that the impulse responses

to shocks also do not change with the level of aggregation. Figure 7 contrasts the impulse

responses of sectoral investment to aggregate shocks at the 6-digit, the 4-digit, and the

3-digit NAICS industry level. The line styles and colors are the same as in Figure 6. The

figures shows that the impulse responses to aggregate shocks are qualitatively and, to

a large extent, quantitatively the same and do not depend on the level of aggregation.

Similarly, Figure 8 depicts the effects of sector-specific shocks on sectoral investment at

different levels of aggregation. The line styles and colors are again the same as above. In

all three cases, the effects of sector-specific shocks are monotonically decreasing. As the

sectors become more aggregate, the impulse responses become more gradual.

4.2.3 Missing Persistence Bias

Berger et al. (2015) prove that the estimated persistence of aggregate time series with

lumpy behavior at the micro level is biased towards zero at low levels of aggregation.

The reason for the bias is an identification problem: the econometrician cannot disen-

tangle the adjustment in response to contemporaneous shocks from the adjustment to

past shocks, and attributes all adjustment to the contemporaneous innovation. At higher

14I follow the approach by the BEA to aggregate chain-type quantity indices and aggregate the real
investment quantity indices to the 4-digit and 3-digit NAICS industry level. There are 86 industries at the
4-digit and 21 industries at the 3-digit NAICS industry level in the US manufacturing sector.
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levels of aggregation, the cross-sectional correlation of capital adjustments across sec-

tors informs the econometrician and the bias vanishes. Indeed, Figure 8 suggests that

the persistence of impulse responses of sectoral investment to sector-specific shocks in-

creases with the level of aggregation. To account for this bias, Berger et al. (2015) propose

to use proxy variables for the shocks.

To verify the robustness of my results, I follow Berger et al. (2015) and use proxy

variables for the shocks to re-estimate impulse responses. More specifically, I calculate

growth rates of Solow residuals for each sector from the NBER-CES data using a Cobb-

Douglas production function for real value added in employment and real capital. Since

the data set does not contain a deflator for value added, I use the GDP deflator. The

employment share equals the average percentage share of payroll in value added in the

ongoing and in the previous year. The capital share equals the residual factor share.

Next, I decompose the sectoral Solow residual growth rates into common and sectoral

components, denoted TFPAgg
t and TFPSect

t , using principal components. Using these

variables as proxies for aggregate and sector-specific shocks, I run a regression of the

sectoral investment growth rate on the contemporaneous and lagged values of TFPAgg
t

and TFPSect
t :

yit =
5

∑
j=0

αijTFPAgg
t−j +

5

∑
j=0

βijTFPSect
t−j + εit. (5)

Using TFPAgg
t and TFPSect

t as proxy variables for each shock, the impulse responses of

sectoral investment to aggregate and sector-specific shocks after h years are just the sum

of the coefficients on the contemporaneous value and the first h lags of aggregate and

sector-specific TFP: ∑h
j=0 αij and ∑h

j=0 βij. To test if sectoral investment responds faster

to sector-specific shocks than to aggregate shocks, I follow Maćkowiak et al. (2009) and

measure the speed of adjustment for each sector i by the following statistic:

τ
Agg
i =

∑1
h=0|∑h

j=0 αij|

∑3
h=2|∑

h
j=0 αij|

and τSect
i =

∑1
h=0|∑h

j=0 βij|

∑3
h=2|∑

h
j=0 βij|

. (6)
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For each shock, this statistic captures the short-run response of sectoral investment

spending relative to the long-run response. I define the short-run response as the aver-

age absolute effect on sectoral investment in the impact period and at the 1-year horizon.

Similarly, I take the long-run response as the average absolute effect at the 2-year and at

the 3-year horizon.

Figure 9 plots the histogram of the cross-sectional distribution for the speed of ad-

justment. The upper panel shows the speed of adjustment to aggregate shocks, the lower

panel the speed of adjustment to sector-specific shocks. The median of the distribution

is 0.6241 in the top panel and 0.9113 in the bottom panel. This means that adjustment of

the median sector to aggregate shocks in the short run is less than two-thirds of the ad-

justment in the long run, while the adjustment to sector-specific shocks in the short run

is about as large as the adjustment in the long run. In other words, investment adjusts

relatively faster to sector-specific TFP shocks than to aggregate TFP shocks. This exercise

suggests that the main results of this paper are not prone to the missing persistence bias.

An interesting observation that emerges from this exercise regards the nature of the

aggregate shock. In Figure 10, I contrast the pointwise posterior median estimate of the

common factor with the aggregate component of sectoral TFP growth. The two shock

measures are very similar, the correlation between both series is 0.63. This is at least

suggestive that the estimated aggregate shock in the statistical model can be interpreted

as innovations to TFP. In the theoretical model in the next section, I will assume that TFP

shocks are the driving force of investment activity.

5 Investment under Rational Inattention

In this section, I build a model of investment with convex capital adjustment costs and

rational inattention. In the next section, I calibrate and solve the model to investigate if

it can account for the empirical findings presented in this paper.
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5.1 Setup

The economy consists of a large number of sectors, which are each populated by a rep-

resentative production unit indexed by i. Time is discrete. Production unit i operates the

production function

Yit = ZtEitKα
it, (7)

where Kit denotes the current stock of capital, Zt and Eit are aggregate and sectoral total

factor productivity (TFP), and α is a parameter.15

Production units own the capital stock, which is specific to their sector. The law of

motion for capital is

Kit+1 = (1− δ)Kit + Iit, (8)

where Iit is investment and δ denotes the rate of depreciation. Changing the level of capi-

tal is costly because of installation costs and results in a loss of profit. Capital adjustment

cost are given by γ
2

(
Iit
Kit

)2
Kit. Period profits of production unit i thus read

Yit − Iit −
γ

2

(
Iit

Kit

)2

Kit. (9)

The sectoral and aggregate components of TFP each follow stationary Gaussian first-

order autoregressive processes in logs:

ln Zt = ρz ln Zt−1 + et, (10)

ln Eit = ρε ln Eit−1 + vit, (11)

where the error terms are Gaussian white noise with distributions et ∼ N (0, σ2
e ) and

vit ∼ N (0, σ2
v ), respectively. The sector-specific shocks, vit, are pairwise independent in

the cross-section. Moreover, the vit are independent of aggregate shocks, et.

15Because each sector has a representative product unit, the term “sectoral” henceforth refers to the
idiosyncratic variables of the production unit in that sector.

17



In each production unit, a decision-maker maximizes the expected net present value

of current and future profits with discount factor β. In period -1, decision-makers de-

cide how much attention to pay. Paying attention is costly and decision-makers will

not attend to all available information. Given less than perfect information, decision-

makers choose investment. I begin with the derivation of the objective function given the

information they do acquire. The following section describes the attention problem of

decision-makers.

Substituting the production function in Equation (7) and the law of motion for capital

in Equation (8) into the expression for period profit in Equation (9) yields the period

profit function

π (Kit, Kit+1, Zt, Eit) = ZtEitKα
it − Kit+1 + (1− δ)Kit −

γ

2

(
Kit+1

Kit
− (1− δ)

)2

Kit. (12)

Rewriting Equation (12) in log-deviations from the non-stochastic steady state, multi-

plying with βt, summing over all periods from 0 to ∞, and finally taking expectations

conditional on information in period −1 yields the objective function for production

unit i. I work with a log-quadratic approximation around the non-stochastic steady

state. That is, I compute a second-order Taylor approximation to the objective function

and derive the following expression for the expected discounted sum of losses in profit

when the actual capital choice given less than perfect information, kit+1, deviates from

the profit-maximizing capital choice under perfect information, k∗it+1:

∞

∑
t=0

βtEi,−1

{
1
2

H0
(
kit+1 − k∗it+1

)2
+
(
kit+1 − k∗it+1

)
H1
(
kit+2 − k∗it+2

)}
, (13)

where H0 = K
[
−γ + β

(
α(α− 1)Kα−1 − γ

)]
and H1 = βγK. Here, K denotes the value

of capital in the non-stochastic steady state and lower case letters denote log-deviations

from the non-stochastic steady state, for example kit+1 = ln Kit+1 − ln K.

After the log-quadratic approximation, the profit-maximizing capital choice under
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perfect information is given by

k∗it+1 =
γk∗it + βEt

{
γk∗it+1 + αKα−1

(zt+1 + εit+1)
}

γ + βγ− βα(α− 1)Kα−1 . (14)

Here, Et denotes the expectation operator conditioned on the history of the economy up

to and including period t.16 Equation (14) is the usual log-linearized optimality condition

for capital in a partial equilibrium model with capital adjustment costs, which can be

expressed as a linear function of current and past shocks:

k∗it+1 = A1(`)et︸ ︷︷ ︸
k∗zit+1

+ A2(`)vit︸ ︷︷ ︸
k∗εit+1

, (15)

where A1(`) and A2(`) are infinite-order lag polynomials.17

The actual capital choice by decision-makers given less than perfect information fol-

lows the stochastic process

kit+1 = B1(`)et + C1(`)ue
it︸ ︷︷ ︸

kz
it+1

+ B2(`)vit + C2(`)uv
it︸ ︷︷ ︸

kε
it+1

, (16)

where Bs(`) and Cs(`) with s = 1, 2 are infinite-order lag polynomials. Moreover, ue
it and

uv
it are Gaussian white noise with unit variance, independent of et and vit, independent

of each other, and independent across production units.

Given less than perfect information, the actual capital choice by decision-makers dif-

fers from the profit-maximizing capital choice under perfect information along two di-

mensions. First, capital may respond with dampening and delay to aggregate and sector-

16Appendix E contains the derivation of Equations (13) and (14).
17Let λ1 and λ2 denote the roots of the characteristic equation of the linear difference equation appearing

in Equation (14). Without loss of generality, suppose that λ1 < λ2. The coefficient corresponding to

lag j in A1(`) equals ρ
j
z

γ
αKα−1−ρz

λ2−ρz

1−(λ1/ρz)
j+1

1−λ1/ρz
, and the coefficient corresponding to lag j in A2(`) equals

ρ
j
ε

γ
αKα−1−ρε

λ2−ρε

1−(λ1/ρε)
j+1

1−λ1/ρε
.
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specific shocks, i.e., Bs(`) 6= As(`) for some s. Second, the actual capital choice may be

noisy, i.e., Cs(`) 6= 0 for some s.18 Clearly, if decision-makers know the history of the

economy up to and including period t, they will choose Bs(`) = As(`) and Cs(`) = 0 for

s = 1, 2 and the actual capital choice coincides with that under perfect information.

5.2 Information Structure

All information is freely available in the economy. Paying attention is costly, however.

It takes time and mental capacity to process information about shocks and translate

it into decisions. Following Sims (2003), I assume that paying attention is modelled

as uncertainty reduction, where uncertainty is measured by entropy. The amount of

information that the actual capital choice, kit+1, contains about the profit-maximizing

capital choice under perfect information, k∗it+1, cannot be greater than κ ≥ 0. Formally,

I
({

k∗zit+1, k∗εit+1
}

,
{

kz
it+1, kε

it+1
})
≤ κ, (17)

where the operator I is defined in Appendix D.

Decision-makers choose how much attention to pay. Paying attention is costly and

results in loss of profit. The per-period marginal cost of paying attention equals λ.

5.3 Attention Problem

In period −1, the decision-maker in production unit i chooses the allocation of attention

and hence a stochastic process for kit+1 to minimize the expected discounted value of

current and future profit losses:

max
κ,B(`),C(`)

{
∞

∑
t=0

βtEi,−1

{
1
2

H0
(
kit+1 − k∗it+1

)2
+
(
kit+1 − k∗it+1

)
H1
(
kit+2 − k∗it+2

)}
− λ

1− β
κ

}
(18)

18Maćkowiak and Wiederholt (2015) also make these assumptions.
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subject to the law of motion for the profit-maximizing capital choice under perfect infor-

mation

k∗it+1 = A1(`)et + A2(`)vit, (19)

the law of motion for the actual capital choice

kit+1 = B1(`)et + C1(`)ue
it + B2(`)vit + C2(`)uv

it, (20)

and the information flow constraint

I
({

k∗zit+1, k∗εit+1
}

,
{

kz
it+1, kε

it+1
})
≤ κ. (21)

Decision-makers weigh the benefit of paying more attention so that their actual capital

choices follow more closely the profit-maximizing capital choices under perfect informa-

tion against the cost of paying attention. Note that the decision to pay more attention to

one shock does not have an effect on the information acquisition about the other shock,

given a constant marginal cost of attention.

6 Model Results

This section calibrates and solves the model. I find that the model is able to explain the

discrepancy in the empirical responses of sectoral investment to differential shocks.

6.1 Calibration

I calibrate the model parameters to standard values from the investment literature to

evaluate the model. A period in the model corresponds to a year. The parameters for

β and δ are chosen to match empirical moments reported by Khan and Thomas (2008).

The discount factor β is set to imply discounting of future profits by decision makers at
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an annual real interest rate of 4 percent, which gives β = 0.9615. The depreciation rate

is δ = 0.10, which implies that the steady-state investment-to-capital-ratio equals 10 per-

cent. Bachmann et al. (2013) estimate the value-added-weighted average persistence and

value-added-weighted average standard deviation of sectoral TFP from Solow residuals

measured using the same data source as this paper, which leads to the values ρε = 0.55

and σv = 0.0501. Khan and Thomas (2008) estimate the persistence and volatility of ag-

gregate TFP from Solow residuals and find ρz = 0.8590 and σe = 0.0140. Because the

production function of production units implicitly reflect the output of a whole sector, I

assume that the arguments invoked to justify decreasing returns to scale such as span-

of-control do not apply. Indeed, averaging over the returns-to-scale estimates by Basu

et al. (2006) for 2-digit manufacturing industries gives 0.94. However, for the steady state

level of capital to be uniquely defined, some curvature in production is required. For this

reason, the parameter α is set to 0.99. The capital adjustment costs parameter γ equals

0.5, a value at the lower end of estimates in the literature. Finally, the parameter λ is

set to imply a per-period marginal cost of attention equal to 0.06% of steady state prof-

its. This value corresponds to the value for the marginal cost of attention estimated by

Maćkowiak and Wiederholt (2015) in the case of the price setting decisions. Given that

rational inattention is a friction that sits on the level of decision-makers, the marginal

costs of paying attention should be the same order of magnitude for any profit-relevant

decision.

6.2 Numerical Solution

I use numerical methods to solve the firm’s attention problem. Following Maćkowiak and

Wiederholt (2015), I parametrize the infinite-order lag polynomials Bs(`) and Cs(`) with

s = 1, 2 as lag polynomials of ARMA(2,2) and AR(1) processes, respectively. To make

the problem finite-dimensional, I truncate the lag polynomials to degree 250. Similarly, I

evaluate the information flow constraint in Equation (17) for 250 periods. I use the non-
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linear optimization routine by Kuntsevich and Kappel (1997) to solve for the coefficients

in the lag polynomials and the allocation of attention. To concentrate the numerical

search on regions of the parameter space that imply invertibility of the AR parts in the

lag polynomials Bs(`) and Cs(`) with s = 1, 2, I reparameterize the problem by adapting

the method of Monahan (1984).

6.3 Model Investment Responses

The main quantitative result from the model with capital adjustment costs and rational

inattention, depicted in Figure 11, is that the response of sectoral investment to aggregate

shocks displays a hump-shaped form. By contrast, the response of sectoral investment

to sector-specific shocks is monotonically decreasing.

Figure 11 shows the model responses of sectoral investment to aggregate and sector-

specific shocks over a 5 year horizon in the top and bottom panel, respectively. The solid

black lines in both panels show the case of investment with capital adjustment costs

under perfect information. The dashed blue lines in both panels show the case of invest-

ment with capital adjustment costs under rational inattention. The size of each shock is

scaled to imply a 1 percent increase of sectoral investment under perfect information.

It is well-known that capital adjustment costs under perfect information do not give

rise to hump-shaped investment responses; in Figure 11 the peak response of sectoral

investment to both aggregate and sector-specific shocks occurs in the impact period in

this case. Due to increasing marginal costs of capital adjustment, however, decision-

makers delay some of their investment spending to future periods, which explains the

persistence in sectoral investment responses. Note that the effects in the top panel are

longer-lasting than those in the bottom panel. In the calibration, aggregate shocks are

more persistent than sector-specific shocks. Hence, the optimal level of capital decays

more slowly in response to these shocks.

Now consider the case with the information flow constraint binding. The response
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of sectoral investment to aggregate shocks becomes hump-shaped. An aggregate shock

that increases sectoral investment spending by 1 percent under perfect information leads

to a 0.84 increase on impact under rational inattention. At the 1-year horizon, sectoral

investment rises further to 0.90 percent. On the other hand, the response of sectoral

investment to sector-specific shocks is still monotonically decreasing. A sector-specific

shock that increases sectoral investment spending by 1 percent under perfect information

leads to a 0.78 increase on impact under rational inattention. At the 1-year horizon,

sectoral investment falls to 0.59 percent.

Under rational inattention, the effects of both shocks on sectoral investment are damp-

ened in the impact of period of the shock. The reason for this dampening is that decision-

makers have less than perfect information about the current values of aggregate and

sector-specific shocks. Note that the dampening in both responses is about equal. In-

deed, decision-makers on average attend to information about aggregate shocks equal to

1.2943 bits per period and information about sector-specific shocks equal to 1.0867 bits

per period.

Decision-makers pay about as much attention to aggregate and sector-specific shocks

even though the unconditional variance of the latter is greater by a factor of about five.

To understand this perhaps surprising result, consider the expression for loss of profit

due sub-optimal investment decisions in Equation (13). The first term in expectation

captures the variance of errors when the actual capital choice given less than perfect in-

formation deviates from the profit-maximizing capital choice under perfect information.

The second term in expectation captures the first-order autocovariance of errors. The

goal of decision-makers is to minimize the variance of errors and to make only those

mistakes that do not persistent extensively over time. Notice that these two objectives do

not necessarily coincide. On the one hand, because the unconditional variance of sector-

specific shocks is larger, decision-makers wish to pay more attention to these shocks.

On the other hand, because aggregate shocks are more persistent, the mistakes from
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not paying attention to these shocks last longer over time. In the calibrated version of

the model, these two effects together are about the same for both shocks, which is why

decision-makers roughly pay the same amount of attention.

At the 1-year horizon, there is further uncertainty reduction. Decision-makers learn

that their optimal capital stock is larger and increase investment spending. This effect is

absent under perfect information. At the 1-year horizon, the optimal level of capital is

higher in response to aggregate shocks than in response to sector-specific shocks because

the former are more persistent than the latter. As a result, decision-makers expand their

capital expenditures more strongly and the response of sectoral investment to aggregate

shocks becomes hump-shaped.

In the model, the response of sectoral investment to aggregate shocks is the same

in every sector. Therefore, aggregation across all production units preserve the form

of the investment response to aggregate shocks. My results therefore provide a new

microfounded explanation for the hump-shaped response of aggregate investment which

is a salient feature of aggregate data.

Crucially, both capital adjustment costs and rational inattention are necessary to ob-

tain these results. The solid black lines in Figure 11 illustrated that capital adjustment

costs alone do not give rise to hump-shaped investment responses. Next, I will consider

a model without capital adjustment costs and rational inattention. In this model, the

response of investment to aggregate shocks is also not hump-shaped.

6.4 Model without Capital Adjustment Costs

The attention problem of decision-makers simplifies when adjusting the capital stock is

not costly. Setting γ = 0 in Equation (13), we have H0 = βα(α− 1)Kα and H1 = 0. The

profit-maximizing capital choice under perfect information in Equation (14) becomes

k∗it+1 =
Et {zt+1 + εit+1}

1− α
, (22)
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and the expression for loss of profit in Equation (13) reads:

∞

∑
t=0

βtEi,−1

{
1
2

(
βα(1− α)Kα

) (
kit+1 − k∗it+1

)2
}

. (23)

Notice that the per-period loss becomes static and does not depend on past or future

values of capital, even though choosing capital is an intertemporal decision. The reason

for this result is the fact that the capital choice for the next period is independent of the

current level of capital without capital adjustment costs.

I use the same calibration and the same numerical solution method to solve the deci-

sion maker’s attention problem in the model without capital adjustment costs. In order

to make the two models comparable, however, I fix the amount of attention, κ, at the

same level as in the model with capital adjustment costs. The main results from this

exercise are that (i) the effects of aggregate shocks on sectoral investment are protracted,

but not hump-shaped and (ii) the effects of sector-specific shocks on sectoral investment

are short-lived and monotonically decreasing.

Figure 12 displays the response of sectoral investment to aggregate and sector-specific

shocks in the model without capital adjustment costs over a 5 year horizon. The solid

black lines in both panels show the case of investment under perfect information. The

dashed blue lines in both panels show the case of investment under rational inattention.

The size of each shock is scaled to imply a 1 percent increase of sectoral investment under

perfect information.

Without capital adjustment costs and the constraint on information flow, a decision-

maker optimally chooses instantaneous adjustment of capital to the optimal level. Sec-

toral investment consequently spikes on impact. The effects of shocks to TFP dissipate

over time and the optimal level of capital reverts to the non-stochastic steady state. In re-

sponse to aggregate shocks, the amount of depreciation per period roughly corresponds

to the decrease in the optimal capital level, which is why sectoral investment is essen-

tially zero at the 1-year horizon and thereafter. Because sector-specific shocks are less
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persistent, the optimal level of capital decays faster, which is why sectoral investment

turns negative at the 1-year horizon and thereafter.

Now consider the case with the information flow constraint binding. Relative to

the perfect information case, the response of sectoral investment to aggregate shocks is

dampened. Moreover, the effects of aggregate shocks are protracted; there is still some

positive investment at the 1-year horizon, but the response is not hump-shaped. On the

other hand, the response of sectoral investment to sector-specific shocks is almost identi-

cal to the perfect information case. The reason for this result is that decision-makers now

allocate a larger share of attention to sector-specific shocks, about 2/3. Decision-makers

choose a different allocation of attention without capital adjustment costs because their

errors do not persist over time in this case. The information flow about sectoral TFP

thus closely resembles that under perfect information. The information about aggregate

shocks is more noisy. On impact the decision-maker dampens the response of sectoral

investment because of higher uncertainty. At the 1-year horizon, uncertainty declines,

decision-makers learn that the optimal capital stock is larger, and choose to invest. How-

ever, the bulk of capital adjustment occurs in the impact period of the shock in the

absence of capital adjustment costs and the response does not display a hump-shaped

form in this case.

7 Conclusion

This paper shows that, in the median US manufacturing sector, the impulse response

of sectoral investment to aggregate shocks is hump-shaped, just as in aggregate data.

By contrast, the effects of sector-specific shocks are monotonically decreasing. I solve a

model of investment with convex capital adjustment costs and rational inattention. The

model predicts that the response of sectoral investment to aggregate shocks is hump-

shaped, and monotonically decreasing in response to sector-specific shocks, hence match-
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ing the empirical findings of this paper.

There are two different ways in which I will explore the model further in future

research. First, I will introduce a household sector to examine feedback effects of the

real interest rate on investment activity in general equilibrium. Second, I will formally

estimate the model by matching impulse responses of the theoretical model with impulse

responses from the statistical model.
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Matějka, F. (forthcoming): “Rationally Inattentive Seller: Sales and Discrete Pricing,”

Review of Economic Studies.
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Figure 1 – Estimated Response of Aggregate Investment to 1 Percent Innovation.

0 1 2 3 4 5
0.004

0.006

0.008

0.01

0.012

0.014

0.016

years

pe
rc

en
t

 

 
Total economy (NIPA)
Manufacturing (NIPA)
Manufacturing (NBER−CES)

Notes: This figure depicts three impulse responses of aggregate investment to a one percent innovation in year zero. Total
economy (NIPA) is the response of nonresidential, private fixed investment in the total economy using data from the Bureau
of Economic Analysis (BEA) Fixed Asset Accounts, Table 4.8. Manufacturing (NIPA) is the response of nonresidential, private
fixed investment in the manufacturing sector using data from the same source. Manufacturing (NBER-CES) is the response of
the aggregated sectoral real capital expenditure data from the NBER-CES Manufacturing Industry Database. Each impulse
response is obtained by estimating Equation (4) and computing the cumulative effects of an innovation in wt that leads to a one
percent increase on impact. The gray-shaded area corresponds to the 68 percent error bands for the response of Manufacturing
(NBER-CES) generated by taking 1,000 draws from the joint posterior density as described in the text.

Figure 2 – Estimated Common Factor.
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Notes: This figure shows the pointwise posterior median estimate of the common factor, xt (left axis), in the dynamic factor
model given by Equations (1)-(3). The model is estimated using Gibbs-sampling with a Metropolis step as described in the text.
∆VAMFCT

t (right axis) is the growth rate of real value added in the manufacturing industry using GDP-by-industry data from
the BEA Annual Industry Account. The correlation coefficient between xt and ∆VAMFCT

t , ρ, is 0.55. The gray-shaded regions
show NBER recessions.
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Figure 3 – Estimated Response of Sectoral Investment to 1 Percent Aggregate Shock.
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Notes: This figure plots the impulse response of sectoral investment in the median industry to a one percent aggregate shock
in year zero. The impulse response is obtained by estimating the dynamic factor model in Equations (1)-(3) and computing the
cumulative effects of an innovation in vt that leads to a one percent increase on impact. The gray-shaded area corresponds to
the 68 percent error bands generated by taking 1,000 draws from the joint posterior density as described in the text. The median
industry is defined as the pointwise median impulse response across all draws and sectors.

Figure 4 – Estimated Response of Sectoral Investment to 1 Percent Sector-Specific Shock.
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Notes: This figure plots the impulse response of sectoral investment in the median industry to a one percent sector-specific shock
in year zero. The impulse response is obtained by estimating the dynamic factor model in Equations (1)-(3) and computing the
cumulative effects of an innovation in uit that leads to a one percent increase on impact. The gray-shaded area corresponds to
the 68 percent error bands generated by taking 1,000 draws from the joint posterior density as described in the text. The median
industry is defined as the pointwise median impulse response across all draws and sectors.
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Figure 5 – Testing for the Number of Common Factors.
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Notes: The histogram in this figure depicts the posterior density of the statistic defined in the text to test for the number
of common factors. The test statistic is the median absolute value of cross-sectional correlations between the sector-specific
components of the dynamic factor model in Equations (1)-(3), obtained by taking a draw from the joint posterior density of the
common factor and the model’s parameters, computing the pairwise cross-sectional correlations between the wit in Equation (1),
corr

[
wi , wj

]
, ∀i 6= j, taking absolute values, and retaining the median across sectors. The posterior density of this statistic is

simulated for 1,000 draws.

Figure 6 – Estimated Common Factor by Level of Aggregation.
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Notes: This figure shows three estimates of the common factor, xt, obtained by estimating the dynamic factor model in Equa-
tions (1)-(3) using sectoral real capital expenditure data at different levels of aggregation. 6-digit NAICS is the pointwise
posterior median estimate shown in Figure 2 using data at the 6-digit North American Industry Classification System (NAICS)
industry level. 4-digit NAICS is the pointwise posterior median estimate using 4-digit NAICS industry-level data. 3-digit NAICS
is the pointwise posterior median estimate using data at the 3-digit NAICS industry level. The gray-shaded regions show NBER
recessions.
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Figure 7 – Estimated Response to 1 Percent Aggregate Shock by Level of Aggregation.
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Notes: This figure plots impulse responses of sectoral investment at different levels of aggregation to a one percent aggregate
shock in year zero. 6-digit NAICS is the response in the median industry shown in Figure 3 using data at the 6-digit NAICS
industry level. 4-digit NAICS is the response in the median industry using 4-digit NAICS industry-level data. 3-digit NAICS is
the response in the median industry at the 3-digit NAICS industry level. See the notes to Figure 3 for further information.

Figure 8 – Estimated Response to 1 Percent Sector-Specific Shock by Level of Aggregation.
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Notes: This figure plots impulse responses of sectoral investment at different levels of aggregation to a one percent sector-
specific shock in year zero. 6-digit NAICS is the response in the median industry shown in Figure 3 using data at the 6-digit
NAICS industry level. 4-digit NAICS is the response in the median industry using 4-digit NAICS industry-level data. 3-digit
NAICS is the response in the median industry at the 3-digit NAICS industry level. See the notes to Figure 4 for further
information.
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Figure 9 – Speed of Adjustment to Shocks Using Proxy Variables for Each Shock.
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Notes: This figure depicts histograms of the speed of adjustment to aggregate shocks and sector-specific shocks using direct
proxy variables for each shock. The proxy variables for each shock are measures of aggregate and sector-specific total factor
productivity (TFP), respectively, constructed as described in the text. The top panel plots the cross-section of the speed of
adjustment statistic for aggregate shocks, τ

Agg
i , the bottom panel the cross-section of the speed of adjustment statistic for sector-

specific shocks, τSect
i , both defined in Equation (6). Each panel trims the histogram at the maximum of the 95th percentiles of

either the τ
Agg
i or the τSect

i .

Figure 10 – Estimated Common Factor and Aggregate Total Factor Productivity.

Aggregate Shocks (ρ = 0.63)
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Notes: This figure plots the pointwise posterior median estimate of the common factor, xt, in the dynamic factor model given
by Equations (1)-(3). The model is estimated using Gibbs-sampling with a Metropolis step as described in the text. TFP is the
first principal component of sectoral TFP growth rates constructed as described in the text. The correlation coefficient between
xt and TFP, ρ, is 0.63. The gray-shaded regions show NBER recessions.
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Figure 11 – Model Responses to Aggregate and Sector-Specific Shocks
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Notes: This figure depicts impulse responses of sectoral investment to aggregate and sector-specific shocks in the model with
capital adjustment costs and two different information structures. The top panel shows the impulse response to aggregate
shocks, the bottom panel the impulse response to sector-specific shocks. Perfect Information plots the response to a one percent
innovation when decision-makers know the history of the economy up to and including period t . Rational Inattention depicts the
response for the same shock when the information-flow constraint in Equation (17) is binding. The calibration and numerical
solution of the model follows the description in the text.

Figure 12 – Model Responses to Shocks without Capital Adjustment Costs
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Notes: This figure depicts impulse responses of sectoral investment to aggregate and sector-specific shocks in the model without
capital adjustment costs and two different information structures. The top panel shows the impulse response to aggregate
shocks, the bottom panel the impulse response to sector-specific shocks. Perfect Information plots the response to a one percent
innovation when decision-makers know the history of the economy up to and including period t . Rational Inattention depicts the
response for the same shock when the information-flow constraint in Equation (17) is binding. The calibration and numerical
solution of the model follows the description in the text.
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A Model with Investment Adjustment Costs

The purpose of this appendix is to investigate whether other, existing propagation mech-

anisms are consistent with my empirical findings. Following Christiano et al. (2005),

many business cycle models assume convex costs in the growth rate of investment, so-

called investment adjustment costs, so as to match the hump-shaped response of ag-

gregate investment to macroeconomic shocks. This appendix outlines and calibrates a

model with investment adjustment costs and perfect information. I use the model to

study the responses of sectoral investment to aggregate and sector-specific shocks under

this alternative propagation mechanism.

The model takes into account the effects of time aggregation on the estimated invest-

ment responses. Remember that the capital expenditure data in the estimation of the

statistical model is at the yearly frequency. It is possible that the speed of adjustment

following sector-specific shocks is faster (absent general equilibrium price responses, for

instance) and that the response of sectoral investment is also hump-shaped at higher

frequencies. In this case, time aggregation from quarterly to yearly frequency can ob-

tain a monotonically decreasing response to sector-specific shocks. Therefore, I calibrate

the model to the quarterly frequency and time-aggregate the theoretical investment re-

sponses to the yearly frequency.

My findings are as follows. In partial equilibrium, the effects of both aggregate and

sector-specific shocks on sectoral investment are hump-shaped. In addition, if a house-

hold sector closes the model in general equilibrium, the response of sectoral investment

to sector-specific shocks becomes relatively more hump-shaped in the sense that the peak

response occurs after a longer period of time. Time aggregation does not change these

results. Hence, under standard assumptions and using a standard calibration of the

model parameters, a model with investment adjustment costs and perfect information

has difficulties to explain my empirical findings.

38



A.1 Setup

The physical environment of the economy is the same as in Section 5, except that pro-

duction units now face investment instead of capital adjustment costs.

The economy consists of a unit measure of sectors, which are each populated by a

representative production unit indexed by i. Time is discrete. Production unit i operates

the production function Yit = ZtEitKα
it, where Kit denotes the current stock of capital, Zt

and Eit are aggregate and sectoral total factor productivity (TFP), and α is a parameter.

Production units own the capital stock, which is specific to their sector. The law of

motion for capital now reads Kit+1 = (1− δ)Kit +
(

1− S
(

Iit
Iit−1

))
Iit, where Iit is invest-

ment, δ denotes the rate of depreciation, and S
(

Iit
Iit−1

)
are investment adjustment costs.

The function S is monotonically increasing, convex, and satisfies S (1) = S′ (1) = 0.

The sectoral and aggregate components of TFP each follow stationary Gaussian first-

order autoregressive processes in logs: ln Zt = ρz ln Zt−1 + et and ln Eit = ρε ln Eit−1 + vit,

where the error terms are Gaussian white noise with distributions et ∼ N (0, σ2
e ) and

vit ∼ N (0, σ2
v ), respectively. The sector-specific shocks, vit, are pairwise independent in

the cross-section. Moreover, the vit are independent of aggregate shocks, et.

Decision-makers in production units discount future profits between period t and

period 0 using the stochastic discount factor βtλt. Their profit maximization problem

reads

max
{Kit+1,Iit}∞

t=0

E0

∞

∑
t=0

βtλt [ZtEitKα
it − Iit]

subject to the capital accumulation equation, the stochastic processes for aggregate and

sector-specific TFP, and given an initial capital stock Ki0.

The household sector of this economy is deliberately simple. A representative house-

hold consumes, buys shares of production units, receives dividends, and trades in a

risk-free bond. Market are complete. Households maximize lifetime utility, their instan-
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taneous utility function is U(Ct), and their discount factor is β.

Market clearing and aggregation require the following:

∫ 1

0
Yitdi = Ct +

∫ 1

0
Iitdi,

Kt =
∫ 1

0
Kitdi.

Aggregate output equals consumption and aggregate investment expenditures. Aggre-

gate capital equals the integral over each production’s unit capital stock.

A.2 Solution and Calibration

I solve this model by taking a log-linear approximation to the household’s and produc-

tion unit’s optimality conditions, the law of motion for capital, and the market clearing

conditions.

A period in the model now corresponds to a quarter. The calibration of the model’s

parameters is exactly the same as in Section 5, adjusted correspondingly to account for

the change in frequency. The second derivative of the function S is set to 1.5. This value

corresponds to the estimate by Altig et al. (2011).

To aggregate the investment responses over time, I use the fact that iy = 1
4

(
iq1 + iq2 + iq3 + iq4

)
.

That is, the log-deviation of investment from its non-stochastic steady state at the yearly

frequency equals the yearly average log-deviation of investment from its non-stochastic

steady state at the quarterly frequency.

A.3 Results

Figure 13 shows the effects of aggregate and sector-specific shocks on sectoral investment

in the model with investment adjustment costs and perfect information. The left panel

shows the responses to aggregate shocks in the partial equilibrium version of the model

(that is, with the real interest rate fixed at its steady-state value). The middle panel
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Figure 13 – Investment Responses in Model with Investment Adjustment Costs.
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depicts the effects of aggregate shocks in general equilibrium. The right panel graphs

the responses of sectoral investment to sector-specific shocks. In each panel, blue lines

with circles show the model response of sectoral investment at the quarterly frequency,

while red lines with triangles correspond to the model responses time-aggregated to the

yearly frequency.

At the quarterly frequency, the response of sectoral investment to both aggregate and

sector-specific shocks is slowly building over time and the peak response does not oc-

cur on impact. In either case, production units must pay investment adjustment costs

and abrupt investment growth is extremely costly. Aggregate shocks are more persistent

than sector-specific shocks, which is why in partial equilibrium decision-makers find it

optimal to smooth their investment expenditure over a longer time period of time. As a

result, the peak response following aggregate shocks occurs later. In general equilibrium,

the real interest rate decreases because the supply of funds increases stronger than in-

vestment demand, because the latter is constrained by investment adjustment costs. The

rate reduction makes capital today more valuable and decision-makers find it optimal to

front-load their investment spending.

Time aggregation from the quarterly to the yearly frequency does not change these
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findings. Note that, in general equilibrium, the response following sector-specific shocks

is actually more hump-shaped in the sense that the peak response occurs later. I conclude

that a model with investment adjustment costs and perfect information has difficulties to

explain the discrepancy in the empirical responses of sectoral investment to differential

shocks, at least under standard assumptions and under the standard calibration used in

this exercise.

B Aggregate Shocks and the Relative Price of Investment

This section tests whether the macroeconomic shock estimated in the statistical model of

this paper is correlated with the relative price of investment in the manufacturing sector.

Fiori (2012) formulates an alternative model that is also consistent with the observed

hump-shape response of aggregate investment. In his model, rapid output expansion

in the investment good producing sector is costly. In response to aggregate shocks,

the relative price of investment increases, initially depressing demand for investment

goods in all other sectors of the economy. As the supply of investment goods increases

over time, the relative price of investment falls and investment demand in the rest of the

economy picks up. Aggregation across all sectors in the economy obtains a hump-shaped

response of aggregate investment to macroeconomic shocks.

In order to evaluate this alternative model, I test one of its key predictions in the data:

movements in the relative price of investment in response to macroeconomic shocks. To

this end, I estimate (by ordinary least squares) a bivariate vectorautoregression (VAR) and

test for Granger-causality of the macroeconomic factor for the relative price of investment

in the manufacturing sector. The VAR contains three lags.

For simplicity, I use the pointwise posterior median estimate of the macroeconomic

factor (depicted in Figure 6). The relative price of investment in the manufacturing

industry corresponds to the ratio of the deflators for investment and gross domestic
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product. I work with two measures of the deflator for investment. The first measure

uses aggregate manufacturing investment data while the second measure is based on the

aggregated micro data.19

At the 5% significance level, the macroeconomic factor is not Granger-causal for the

relative price of investment in the manufacturing sector for neither measure of the latter.

Hence, there is no evidence that macroeconomic shocks are followed by movements in

the relative price of investment, one of the key predictions of the model by Fiori (2012).

C Econometric Appendix

This appendix provides further details about the statistical model for the sectoral capital

expenditure data. For the reader’s convenience, I first restate the dynamic factor model

from Section 2. Next, I describe identification of the unobserved factors and the unob-

served loadings. The appendix then moves on to explain the estimation methodology,

which closely follows Del Negro and Schorfheide (2011). Specifically, I use the Gibbs

sampling algorithm to sample from the joint posterior of the factors and the model’s

parameters. This algorithm draws alternately from their respective conditional distri-

butions to generate a sample from the joint distribution. I lay out the priors and write

down the conditional posterior densities. Importantly, I do not condition on initial ob-

servations but use the full conditional distributions in the Gibbs sampling algorithm. A

minor difference between this paper and the estimation methodology by Del Negro and

Schorfheide (2011) is that I switch the ordering of conditional distributions in the algo-

rithm. In particular, I first sample from the conditional posterior density of the factors

and then from the conditional posterior density of the model’s parameters. The appendix

concludes by describing how I initialize the Gibbs sampling algorithm.

19See Footnote 10 for data sources of aggregate manufacturing data used in this exercise.
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Model Consider the dynamic factor model

xt = F(`)xt−1 + vt, vt ∼ i.i.d.N (0, Q) (24)

yit = Hixt + wit (25)

wit = Di(`)wit−1 + uit, uit ∼ i.i.d.N (0, Ri) (26)

where yit, i = 1, . . . , n, t = 1, . . . , T, denotes the standardized period t sector i log change

of real investment, xt is an unobserved factor, the Hi are factor loadings, and the wit are

sector-specific components. Both xt and wit follow AR processes, F(`) and Di(`) denote

lag polynomials of order three, and vt and the uit are Gaussian white noise with variance

Q and Ri, respectively. Assume that the uit are pairwise independent and uncorrelated

with vt.

Identification Stacking Equation (25) over all i gives

yt = Hxt + wt (27)

where yt, wt, and H are column vectors of length n. Because the factor and the loadings

are unobserved, their sign and scale are not identified from the data. Therefore, I assume

that the first element in H is positive and that Q in Equation (24) is a known constant.

These assumptions are standard in the literature on dynamic factor models and uniquely

identify the space spanned by the factors.

Priors The prior distribution for the coefficients of F(`) is N (φ0, Φ−1
0 )ISF , where N

denotes the multivariate Normal distribution with mean φ0 and second moment Φ−1
0 ,

and ISF is an indicator function for stationary of xt implied by F(`). Similarly, the prior

for the coefficients of Di(`) is N (θ0, Θ−1
0 )ISD . I choose prior means φ0 and θ0 equal to

column vectors of zeros of length three. The prior precisions are small but increase with
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lag length as in the case of the Minnesota prior. In particular, following Robertson and

Tallman (1999), I set the lag l prior precisions implied by Φ0 and Θ0 equal to (exp(cl −

c))−1, where c matches a quarterly harmonic decay rate at lag three. The prior for

each Ri is IG(ν0/2, δ0/2), where IG denotes the inverse gamma distribution. Following

Otrok and Whiteman (1998), I set ν0 = 6 and δ0 = 0.001, which implies a diffuse prior

distribution. Finally, the prior on each loading Hi is N (β0, B−1
0 ). I choose β0 = 0 and

B0 = 1.

Sample factors, conditional on parameters and data In general, let px and pw denote

the order of the lag polynomials F(`) and Di(`), respectively. To sample from the condi-

tional posterior density of the factors given the parameters and the data, I follow Carter

and Kohn (1994). Given Di(`) and Hi, define y∗it = (1− Di(`)L)yit and the lag polyno-

mial h∗i (`) = (1− Di(`)L)Hi of order pw and, using Equation (26), rewrite Equation (25)

as y∗it = hi(`)
∗xt + uit. Let H∗i the (pw + 1)× 1 column vector which stacks all the coeffi-

cients of h∗i (`) and define the (pw + 1)× 1 column vector x∗t =
[

xt xt−1 ... xt−pw
]T. Thus, we

can express the equation for y∗it as y∗it = H∗Ti x∗t + uit. Stacking each of these n equations,

we can write down the state-space representation:

x∗t = F∗x∗t−1 + v∗t (28)

y∗t = H∗x∗t + ut (29)

where v∗t is the (pw + 1)× 1 vector v∗t =
[

vt 0 ... 0
]T, H∗ is an n× (pw + 1) matrix, and F∗

is the (pw + 1)× (pw + 1) matrix

F∗ =

 F 01×((pw+1)−px)

Ipw 0pw×1

 (30)
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where F is the 1× px row vector which corresponds to the first row of the companion

form matrix of F(`). Note that this notation assumes pw + 1 ≥ px and that Equation (29)

starts from t = pw + 1 instead of t = 1 because y∗0 , . . . , y∗−pw+1 are unobserved. The

variance-covariance matrix of v∗t , Q∗, is (pw + 1)× (pw + 1), the first element on the main

diagonal corresponds to Q, and all other elements equal zero. The variance-covariance

matrix of ut is given by R = diag(R1, . . . , Rn). Conditional on F∗, Q∗, H∗, R, and the data,

the Carter and Kohn (1994) simulation smoother draws a whole sample of the xt, t =

pw + 1, . . . , T, from the corresponding conditional posterior density function. For the sake

of brevity, I omit the conditioning arguments below. Let F̃∗ denote the first row of F∗.

Following Kim and Nelson (1999), I recursively sample from the conditional distributions

x∗T ∼ N (x∗T|T, PT|T) and x∗t | xt+1 ∼ N (x∗t|t,xt+1
, Pt|t,xt+1

), t = T − 1, . . . , pw + 1, where

x∗t|t,xt+1
= x∗t|t + Pt|t F̃

∗T(F̃∗Pt|t F̃
∗T + Q)−1(xt+1 − F̃∗x∗t|t) (31)

Pt|t,xt+1
= Pt|t − Pt|t F̃

∗T(F̃∗Pt|t F̃
∗T + Q)−1F̃∗Pt|t (32)

and x∗t|t and Pt|t are the conditional mean and the conditional variance of x∗t obtained

from Kalman filtering. The first element of each draw x∗t corresponds to a draw of xt.

Following Del Negro and Otrok (2008), I use the density of x∗pw conditional on the

model’s parameters and the data to initialize the Kalman filter. Specifically, rewrite Equa-

tion (27) as

yt =

≡H̃︷ ︸︸ ︷[
H 0n×pw

]
x∗t + wt (33)

and substitute x∗t = (F∗)tx∗0 + ∑t−1
j=0(F∗)jv∗t−j for x∗t . Stacking the first pw observations
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gives

≡ypw ...1︷ ︸︸ ︷
ypw

...

y1

 =

≡A︷ ︸︸ ︷
H̃(F∗)pw

...

H̃(F∗)

 x∗0 +

≡B︷ ︸︸ ︷

H̃ H̃F∗ · · · H̃(F∗)pw−1

0n ×(pw+1) H̃ · · · H̃(F∗)pw−2

... . . . ...

0n ×(pw+1) · · · · · · H̃



≡(v∗)pw ...1︷ ︸︸ ︷
v∗pw

...

v∗1

 +

≡wpw ...1︷ ︸︸ ︷
wpw

...

w1

(34)

x∗pw = (F∗)pw x∗0 +
[
I(pw+1) F∗ · · · (F∗)pw−1

]
︸ ︷︷ ︸

≡C

(v∗)pw ...1 (35)

The joint distribution of the pw initial observations of the data and the (pw + 1) initial

observations of the factors, conditional on the data, therefore reads

ypw ...1

x∗pw

 ∼ N



 AE{x∗0}

(F∗)pw E{x∗0}

 ,

AΣx∗0 AT + BΣ(v∗)pw ...1 BT + Σwpw ...1 •

(F∗)pw Σx∗0 AT + CΣ(v∗)pw ...1 BT (F∗)pw Σx∗0 ((F∗)pw)T + CΣ(v∗)pw ...1CT




where E{x∗0} and Σx∗0 are the unconditional mean and variance covariance matrix of x∗0 ,

respectively, Σ(v∗)pw ...1 denotes the variance covariance matrix of (v∗)pw ...1, and Σwpw ...1 is

the variance covariance matrix of wpw ...1.

From the properties of the multivariate normal distribution, it follows that x∗pw |

ypw ...1 ∼ N with first and second moment given by

E{x∗pw | ypw ...1} = (F∗)pw E{x∗0}+ ((F∗)pw Σx∗0 AT + CΣ(v∗)pw ...1 BT)

(AΣx∗0 AT + BΣ(v∗)pw ...1 BT + Σwpw ...1)−1(ypw ...1 − AE{x∗0}) (36)

V{x∗pw | ypw ...1} = ((F∗)pw Σx∗0 ((F∗)pw)T + CΣ(v∗)pw ...1CT)− ((F∗)pw Σx∗0 AT + CΣ(v∗)pw ...1 BT)

(AΣx∗0 AT + BΣ(v∗)pw ...1 BT + Σwpw ...1)−1((F∗)pw Σx∗0 AT + CΣ(v∗)pw ...1 BT)T (37)
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where Σ(v∗)pw ...1 = Ipw ⊗Q∗. To work out Σwpw ...1 , rewrite the process for wt in companion

form


wt

...

wt−pw+1

 =



diag(D1) diag(D2) · · · diag(Dpw)

In · · · 0n

... . . . ...

0n · · · In 0n


︸ ︷︷ ︸

≡D


wt−1

...

wt−pw

+


ut

...

0n

 (38)

where diag(Di) is a n × n diagonal matrix with the coefficients on the ith lag for each

sector on the main diagonal and ut ∼ N (0n, R). Hence, under stationarity, we have

vec(Σwpw ...1) = (I(npw)2 − D⊗ D)−1 vec(


R · · · 0n

... . . . ...

0n · · · 0n

) (39)

Finally, under stationarity of the factors, E{x∗0} = 0(pw+1)×1 and vec(Σx∗0 ) = (I(pw+1)2 −

F∗ ⊗ F∗)−1 vec(Q∗). For numerical robustness, I use the method by Bai and Wang (2015)

to compute the conditional variance covariance matrix.

To initialize the Kalman filter in the Carter and Kohn (1994) simulation smoother, I use

the conditional mean F∗E{x∗pw | ypw ...1} and conditional variance F∗V{x∗pw | ypw ...1}(F∗)T +

Q∗. The pw initial observations of xt are drawn from x∗pw | ypw ...1 ∼ N with first and sec-

ond moment given by Equation (36) and (37), respectively. The last element of xpw , x0, is

discarded.

Sample parameters of state equation, conditional on parameters in observation equa-

tion, factors and data Abusing notation, write Equation (24) in companion form x∗t =

F∗x∗t−1 + v∗t where F∗ denotes the px × px companion form matrix of F(`) and vt ∼

N (0px , Q∗). Suppose that this process is stationary and that the initial observation x∗0 =
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[
x0 x−1 ... x−px+1

]T is drawn from the stationary distribution x∗0 ∼ N (0px , QΣx) where

vec(Σx) = (Ip2
x
− F∗ ⊗ F∗)−1 + vec(e1(px)e1(px)T) with e1(px) =

[
1 0 ... 0

]T denoting the

px × 1 unit vector. Let e the T − px × 1 column vector containing xt, t = px + 1, . . . , T

and E the T − px × px matrix with tth row given by
[

xt−1 ... xt−px
]
. Given Q, H, R,

and the data, Chib and Greenberg (1994) show that the full conditional posterior of the

parameters of the lag polynomial F(`) is given by F ∝ ΨF(F) × N (φ̂, Φ−1
n )ISF , where

φ̂ = Φ−1
n (Φ0φ0 + Q−1ETe), Φn = (Φ0 + Q−1ETE), and

ΨF(F) = |Σx(F)|−1/2 exp
[
− 1

2Q
xT

0 Σ−1
x (F)x0

]
(40)

To sample from the conditional distribution, Chib and Greenberg (1994) use a Metropolis-

Hastings step. That is, in the jth iteration of the Gibbs sampler, I generate a candidate

draw F′ from the distribution N (φ̂, Φ−1
n )ISF and use it for the next iteration with prob-

ability min(ΨF(F′)/ΨF(F(j−1)), 1). With probability (1 − min(ΨF(F′)/ΨF(F(j−1)), 1)), I

retain the current value F(j−1).

Sample parameters of observation equation, conditional on factors and data To sam-

ple from the conditional posterior density of the observation equation’s parameters, note

that the Equations (25) are independent regressions with AR(pw) errors, given the fac-

tor (Otrok and Whiteman, 1998). I follow the method by Chib and Greenberg (1994) to

sample from the posterior equation-by-equation.

Write Equation (26) in companion form w∗it = D∗i w∗it−1 + u∗it, where D∗i denotes the

pw × pw companion form matrix of Di(`), and u∗it ∼ N (0pw , R∗i ), R∗i = diag(Ri, 0, . . . , 0).

Suppose that this process is stationary and that the initial observation w∗0 =
[

w0 w−1 ... w−pw+1
]T

is drawn from the stationary distribution w∗0 ∼ N (0pw , RiΣw), where vec(Σw) = (Ip2
w
−

D∗i ⊗ D∗i )
−1 + vec(e1(pw)e1(pw)T) with e1(pw) =

[
1 0 ... 0

]T denoting the pW × 1 unit

vector. Let y∗i1 = P−1yi1, x∗1 = P−1x1, where P solves PPT = Σw. Define y∗i2 and x∗2

with typical element (1− Di(`)L)yit and (1− Di(`)L)xt, t = pw + 1, . . . , T, respectively.
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Stacking all transformed observations gives y∗ =
[

y∗Ti1 y∗Ti2

]T and x∗ =
[

x∗T1 x∗T2

]T. Let

et = yit − Hixt and define e =
[

epw+1 ... eT
]T and the T − pw × pw matrix E with typi-

cal row given by
[

et−1 ... et−pw
]T, t = pw, . . . , T. Chib and Greenberg (1994) give the full

conditional posterior densities

Hi | Ri, Di(`)∼ N (B−1
n (B0β0 + R−1

i X∗Ty∗i ), B−1
n ), (41)

Ri | Hi, Di(`)∼ IG((vo + n)/2, (δ0 + d1)/2), (42)

Di(`) | Hi, Ri ∝ ΨD(Di)×N (θ̂, Θ−1
n )ISDi

, (43)

where Bn = B0 + R−1
i X∗TX∗, θ̂ = Θ−1

n (Θ0θ0 + R−1
i ETe), Θn = (Θ0 + R−1

i ETE), d1 =

‖y∗ − X∗β‖2, and

ΨD(Di) = |Σy(Di)|−1/2 exp
[
− 1

2Ri
(y1 − X1β)TΣ−1

y (Di)(y1 − X1β)
]

(44)

To sample from the conditional distribution, Chib and Greenberg (1994) use a Metropolis-

Hastings step. That is, in the jth iteration of the Gibbs sampler, I generate a candidate

draw D′i from the distribution N (θ̂, Θ−1
n )ISD and use it for the next iteration with prob-

ability min(ΨD(D′i)/ΨD(D(j−1)
i ), 1). With probability (1−min(ΨD(D′i)/ΨD(D(j−1)

i ), 1)),

I retain the current value D(j−1)
i .

Initialization In order to initialize the Gibbs sampling algorithm, I use the first prin-

cipal component of the data to obtain an estimate for the factor. Given this estimate, I

run an OLS regression on its own px lags to initialize F(`). I compute the variance of the

error term of this regression and use it throughout as the constant (by assumption) value

of Q. For each Hi, I obtain the OLS estimate from a regression of yit on the principal

components factor estimate. On the residuals of this regression, I run an OLS regression

on its own pw lags to initialize the Di(`). Using the residuals of this regression in turn, I

compute their variance to set the initial value of Ri.
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The Gibbs sampling algorithm Using the initial values for the model’s parameters de-

scribed in the previous paragraph, I sample the factors using their conditional posterior

density from above. Next, I first draw the parameters of state equation and then the pa-

rameters of the observation equation from their respective conditional posterior density

as explained in this appendix. Using the parameter draws from this iteration, I repeat the

algorithm and sample the factors again. In total, I run 20,000 iterations and discard the

first 5,000 draws to ensure that the algorithm has converged to its ergodic distribution.
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D Modeling Limited Attention

This appendix provides further details on how I model limited attention of decision-

makers in firms. Following Sims (2003), I assume that limited attention is a constraint on

uncertainty reduction, where uncertainty is measured by entropy. Entropy is a measure

of uncertainty from information theory, defined as

H(X) = −E {log2 (p (X))} ,

where X is a random vector. For example, if X is a T × 1 multivariate normal random

vector with variance-covariance matrix Σ, then it has entropy

H(X) =
1
2

log2

[
(2πe)T det Σ

]
.

Similarly, given two T × 1 multivariate normal random vectors X and Y, the condi-

tional entropy of X given Y is

H(X|Y) = 1
2

log2

[
(2πe)T det ΣX|Y

]
,

where ΣX|Y denotes the conditional variance-covariance of X given Y.

Define uncertainty reduction as

I(X; Y) = H(X)− H(X|Y).

This measure is also called mutual information. It quantifies by how much uncertainty

about X reduces having observed Y. If {Xt}∞
t=0 and {Yt}∞

t=0 are two stochastic processes,

we can define the average per-period uncertainty reduction

I({Xt} ; {Yt}) = lim
T→∞

1
T
(H(X1, . . . , XT)− H(X1, . . . , XT|Y1, . . . , YT)) .
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E Derivation of Objective

This appendix derives the expression for the expected discounted sum of losses in profit

when the actual investment decisions given less than perfect information deviate from

the profit-maximizing investment decisions under perfect information. The derivation

closely follows Maćkowiak and Wiederholt (2015, Appendix D).

First, express the period profit function in log-deviations from the non-stochastic

steady state, multiply by βt, and sum over all periods from 0 to ∞. Let g denote this

functional, and let g̃ denote the second-order Taylor expansion to g around the non-

stochastic steady state.

Second, let yit = ( zt εit )
T denote the vector of shocks in period t. Conditional on

production unit i’s information in period -1, compute the second-order Taylor approxi-

mation to the expected discounted sum of profits around the non-stochastic steady state.

This approximation gives

Ei,−1 {g̃ (ki0, ki1, yi0, ki2, yi1, ki3, yi2, . . .)} =

Ei,−1



g(0, 0, 0, 0, 0, 0, 0, . . .)

+
∞

∑
t=0

βt


hkkit+1 + hT

y yit

+1
2 kit+1Hk,−1kit +

1
2 Hk,0k2

it+1 +
1
2 kit+1Hk,1kit+2

+1
2 kit+1Hky,1yit+1 +

1
2 yT

it Hy,0yit +
1
2 yT

it Hyk,−1kit


+β−1

(
h−1ki0 +

1
2 H−1k2

i0 +
1
2 ki0Hk,1ki1 +

1
2 ki0Hky,1yi0

)


, (45)

where Ei,−1 denotes the expectation operator conditional on production unit i’s infor-

mation in period -1 and lower-case letters denote log-deviations from the non-stochastic

steady state, for example kit+1 = ln Kit+1 − ln K. Moreover, βthk is the first derivative of

g with respect to kit+1, βthy is the vector of first derivatives of g with respect to yit, βtHk,τ

denotes the second derivative of g with respect to kit+1 and kit+1+τ, βtHy,0 denotes the

matrix of second derivatives of g with respect to yit, βtHky,1 denotes the vector of second
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derivatives of g with respect to kit+1 and yit+1, and βtHyk,−1 denotes the vector of second

derivatives of g with respect to yit and kit. Similarly, β−1h−1 and β−1H−1 are the first and

second derivative of g with respect to ki0, respectively. All first and second derivatives

appearing in Equation (45) are evaluated at the non-stochastic steady state. Because for

all t ≥ 0 the first derivatives of g with respect to kit+1 and yit+1 depend only on kit, kit+1,

kit+2, yit+1 and kit, yit, respectively, and because the first derivative of g with respect to

ki0 depends only on ki0, ki1, yi0, Equation (45) contains only certain second-order terms.

Third, under regularity conditions similar to those of Maćkowiak and Wiederholt

(2015, Appendix D) and using the fact that Hk,1 = βHk,−1 and Hky,1 = βHT
yk,−1, one can

rewrite Equation (45) as

Ei,−1 {g̃ (ki0, ki1, yi0, ki2, yi1, . . .)}

= g(0, 0, 0, 0, 0, . . .) +
∞

∑
t=0

βtEi,−1 {hkkit+1}+
∞

∑
t=0

βtEi,−1

{
hT

y yit

}
+

∞

∑
t=0

βtEi,−1

{
1
2

Hk,0k2
it+1

}
+

∞

∑
t=0

βtEi,−1

{
1
2

kit+1Hk,1kit+2

}
+

∞

∑
t=0

βtEi,−1
{

kit+1Hky,1yit+1
}
+

∞

∑
t=0

βtEi,−1

{
1
2

yT
it Hy,0yit

}
+β−1Ei,−1

{
h−1ki0 +

1
2

H−1k2
i0 + ki0Hk,1ki1 + ki0Hky,1yi0

}
. (46)

Fourth, define the stochastic process
{

k∗it+1
}∞

t=−1 for the profit-maximizing capital

choice under perfect information satisfying the following properties: (i) k∗i0 = ki0, (ii) in

each period t ≥ 0, k∗it+1 satisfies

Et
{

hk + Hk,−1k∗it + Hk,0k∗it+1 + Hk,1k∗it+2 + Hky,1yit+1
}
= 0, (47)

where Et denotes the the expectation operator conditioned on the history of the economy

up to and including period t, and (iii) a regularity condition similar to that of Maćkowiak

and Wiederholt (2015, Appendix D).
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Fifth, multiply Equation (47) by (kit+1 − k∗it+1), use the law of iterated expectations,

and rearrange. This gives

Ei,−1
{
(kit+1 − k∗it+1)

(
hk + Hky,1yit+1

)}
= −Ei,−1

{
(kit+1 − k∗it+1)

(
Hk,−1k∗it + Hk,0k∗it+1 + Hk,1k∗it+2

)}
, (48)

a useful result in the next step.

Sixth, compute the expected discounted sum of losses in profit when the actual in-

vestment decisions given less than perfect information from the profit-maximizing in-

vestment decisions under perfect information, recall that k∗i0 = ki0, note that hk = 0, and

use the result in Equation (48) to obtain

Ei,−1 {g̃ (ki0, ki1, yi0, ki2, yi1, . . .)} − Ei,−1 {g̃ (k∗i0, k∗i1, yi0, k∗i2, yi1, . . .)}

=
∞

∑
t=0

βtEi,−1

{
1
2

Hk,0k2
it+1 −

1
2

Hk,0k∗2it+1 + kit+1Hk,1kit+2 − k∗it+1Hk,1k∗it+2

}
−

∞

∑
t=0

βtEi,−1
{
(kit+1 − k∗it+1)

(
Hk,−1k∗it + Hk,0k∗it+1 + Hk,1k∗it+2

)}
+β−1Ei,−1 {ki0Hk,1(ki1 − k∗i1)} (49)

The regularity conditions, the fact that Hk,1 = βHk,−1, k∗i0 = ki0, and rearranging yields

Ei,−1 {g̃ (ki0, ki1, yi0, ki2, yi1, . . .)} − Ei,−1 {g̃ (k∗i0, k∗i1, yi0, k∗i2, yi1, . . .)}

=
∞

∑
t=0

βtEi,−1

{
1
2

Hk,0
(
kit+1 − k∗it+1

)2
+
(
kit+1 − k∗it+1

)
Hk,1

(
kit+2 − k∗it+2

)}
(50)

Seventh, compute the first and second derivatives appearing in Equations (47) and (50).
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These are:

hk = 0 (51)

Hk,0 = K
[
−γ + β

(
α(α− 1)Kα−1 − γ

)]
(52)

Hk,1 = βγK (53)

Hk,−1 = γK (54)

Hky,1 =

[
βαKα

βαKα

]
(55)

Eighth, solve for the profit-maximizing investment decision under perfect information

by substituting Equations (51)-(55) into Equation (47) and rearrange to arrive at:

k∗it+1 =
γk∗it + βEt

{
γk∗it+1 + αKα−1

(zt+1 + εit+1)
}

γ + βγ− βα(α− 1)Kα−1 (56)
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