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Going from Bad to Worse: Adaptation to Poor Health,

Health Spending, Longevity, and the Value of Life∗

February 2016.

Abstract. Unhealthy persons adapt to their bad state of health and persons in

bad health are usually happier than estimated by healthy persons. In this paper we

investigate how adaptation to a deteriorating state of health affects health spending,

life expectancy, and the value of life. We set up a life cycle model in which individ-

uals are subject to physiological aging, calibrate it with data from gerontology, and

compare behavior and outcomes of adapting and non-adapting individuals. While

adaptation generally increases life-time utility (by about 2 percent), its impact on

health behavior and longevity depends crucially on whether individuals are aware of

their adaptive behavior, i.e. whether they adapt in a naive or sophisticated way. We

also compute the QALY change implied by health shocks and discuss whether and

how adaptation influences results and the desirability of positive health innovations.

Keywords: Health, Adaption, Aging, Longevity, Health Care Demand, Value of
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1. Introduction

From the gerontological viewpoint, the human life cycle can be characterized as the continuous

deterioration of physiological fitness. Most human functions and capabilities are in decline

from early adulthood onwards (Case and Deaton, 2005; Skirbekk, 2004; Nair, 2005). Human

aging, understood as “the intrinsic, cumulative, progressive, and deleterious loss of function that

eventually culminates in death” (Arking, 2006), has a deep foundation in evolutionary biology

(Fries, 1980; Gavrilov and Gavrilova, 1991; Robson and Kaplan, 2007) and, at the current state

of medical technology, it can at best be delayed, but not avoided. So it seems to be fortunate

that aging humans are able to adapt to this sad state of affairs. However, at closer inspection,

doubts may arise. Couldn’t it be that quick adaptation to worsening health induces us to invest

less in health maintenance and repair and thus to live a shorter and perhaps overall unhappier

life than we could without adaptation?

Assessing the impact of adaptation on health behavior, longevity, and happiness with the

means of lab or field experiments is difficult if not impossible because of the missing counter-

factual (i.e. the same individual without the illness). With the help of economic theory and the

design of an appropriate computational experiment an assessment is relatively straightforward.

In this paper we propose such a computational experiment. We set up a life cycle model of

human aging, in which deliberate health investments reduce the speed of aging and thus the age

of death, calibrate the model with gerontological data, and compare behavior and outcomes for

adapting and non-adapting individuals.

Inspired by the economics and psychology of time preference (Strotz, 1955; Rabin, 1998) we

distinguish two types of adaptation: sophisticated types understand how their actual health and

health behavior influences their adaptation whereas naive types take the adaptation process as

given (as a function of time or age).1 We find, perhaps surprisingly, that naive adaptation is

conducive to a healthier and longer life. Sophisticated types, on the other hand, spend less on

health and live shorter than otherwise identical non-adapting types. We use these results and

compute the implied value of life. We find, again perhaps surprisingly, that both naive and

sophisticated types experience about the same life-time utility and that both types experience a

1 In the original literature these terms were applied to hyperbolical time discounting: sophisticated types were
conceptualized as those individuals who understand the time inconsistency or their decisions based on hyperbolic
discounting. Here, we focus on adaptation processes and neglect additional problems stemming from inconsistent
decision making.
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significantly higher life-time utility than non-adapting types. We explain the economic intuition

behind these results.

Since the seminal study of Brickman et al. (1978), comparing happiness of paraplegics and

lottery winners, the medical and economics literature has provided ample evidence that humans

adapt to health problems and rate their happiness or quality of life much higher than predicted

by unaffected persons anticipating negative health events (e.g. Wu, 2001; Albrecht and Devlieger,

1999; Riis et al., 2005). This seems to be true for mild nuisances like acne (Baron et al. 2003) as

well as for severe disability (Oswald and Powdthavee, 2008). Adaptation after a severe health

shock is gradual and perhaps complete. Oswald and Powdthavee (2008) estimate approximately

30 percent (50 percent) hedonic adaptation 3 years after the onset of severe (modest) disability

and they could not reject the hypothesis of complete adaptation after 6 years. Using a large panel

of individuals observed from 1984 to 2006, Pagan-Rodriguez (2010) finds gradual adaptation to

disability and cannot reject the hypothesis of complete adaptation after 7 years.

The observations that healthy persons underestimate the happiness of sick persons and that

sick persons believe they would be happier if they had never been sick (Boyd et al., 1990; Riis et

al., 2005) indicates that people are not fully aware of there adaptive behavior. It indicates naive

rather than sophisticated adaptation. The available evidence suggests also that adaptation to

bad health is “genuine” and not driven by an overoptimistic assessment of one’s health and

survival probabilities (Wu, 2001) and that the misprediction of healthy people of their adaptive

capabilities is hard to explain by focussing illusion (Ubel et al., 2001; Baron et al., 2003).

While most studies focus on adaptation after severe health shocks, we are here mostly (but not

exclusively) interested in the gradual and progressive decline of health that comes with age. In

this context it is interesting to observe that many empirical studies document that aggregate

measures of happiness or wellbeing do not decline (by much) over the life cycle (e.g. Costa et

al., 1987; Diener and Suh, 1998; Deaton, 2007).

The model that we set up below in order to discuss the effects of adaptation to deteriorating

health is particularly suitable for this purpose since it is based on the notion of aging as progres-

sive health deficit accumulation. It is easy to see that the alternative paradigm, the Grossman

(1972) model, is less suitable. It is based on health capital accumulation and the assumption

that health capital depreciates at a given (potential age-specific) rate d(t) such that individuals

with health capital H(t) lose health d(t)H(t) through health depreciation. The health capital
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model thus assumes that of two persons of the same age t the one in better health, i.e. with

more health capital H(t), loses more health in the next period. This counterfactual assump-

tion leads to counterfactual predictions. For example, without further amendments, the health

capital model predicts eternal life (Case and Deaton, 2005; Strulik, 2015a) and when death is

enforced by design, the model usually predicts that health investments decline in old age and

near death (Wagstaff, 1986; Zweifel and Breyer, 1997; Strulik, 2015a). Health capital deprecia-

tion also implies that health shocks in early life (or in utero) have a vanishing impact on health

in old age while actually the opposite is observed (Almond and Currie, 2011; Case and Deaton,

2005). Most importantly, health capital is a latent variable, unknown to doctors and medical

scientists, a fact that confounds any serious calibration of the model. The health deficit model

developed by Dalgaard and Strulik (2014a), in contrast, avoids these shortcomings. Due to its

gerontological foundation it can be calibrated straightforwardly using the so-called frailty index

(Mitnitski et al., 2002a,b). Since the calibration provides no degrees of freedom, the model can

be used to assess health issues quantitatively. In the present context it will be used to assess

the impact of adaptation on health investment, aging, wellbeing, longevity, quality adjusted life

expectancy (QALY), and the value of life.2

In a related earlier study, Gjerde et al. (2005) applied the Grossman model to health adap-

tation. Facing the difficulties entailed by the health capital approach concerning calibration

and predictive quality, they presented their study as a first attempt to formalize adaptation

processes in a health context. Moreover, they focussed on the apparently less relevant case

of sophisticated adaptation. Here, we build on the health deficit model and provide a serious

calibration of the model with actual data. This allows us to assess the quantitative importance

of health adaptation for experienced utility and the value of life, which in turn allows us to draw

conclusions on the quantitative role of adaptation processes in the evaluation of, for example,

public health projects.3

2Earlier quantitative studies using the health deficit model were concerned with the Preston curve (Dalgaard
and Strulik, 2014a), the education gradient (Strulik, 2015), and the long-term evolution of the age at retirement
(Dalgaard and Strulik, 2012).

3Moreover, the specification of the adaptation process differs (mildly) across the studies. Whereas our analysis
uses the well-established formulation of adaption according to Ryder and Heal’s (1973) reference stock model,
Gjerde et al. (2005) use a more idiosyncratic formulation. The two formulations, however, are structurally
similar, with a single parameter governing the speed of adjustment of a health reference stock (or subjective
health, respectively) to changing actual health.
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The paper is organized as follows. Section 2 presents a simple deterministic model of health

deficit accumulation for 3 different types of individuals: non-adapting, naive, and sophisticated.

In this simple model the only life cycle decision is how to spend a given income stream on

consumption and health care. We calibrate the model for a reference U.S. American (a white 20

year old male in the year 2000) and evaluate how adaptive behavior affects health expenditure,

longevity, and the value of life. We discuss the robustness of these results regarding a larger

weight of health in utility and a higher speed of adaptation. We also discuss how results change

with improving medical technology and increasing income. In Section 3 we discuss the adaptation

process after a severe health shock as well as the impact of positive health interventions. We

compute the implied change of quality adjusted life years (QALYs) with and without adaptation,

whereby the former could be interpreted as the actual QALY change experienced by patients

and the latter as the QALY change expected by un-treated individuals. In Section 4 we extend

the model to uncertain survival and a savings decision and show that all results from the basic

model are preserved qualitatively with only minor quantitative changes. Section 5 concludes.

2. The Basic Model

2.1. Setup. Consider an individual who derives utility from consumption and from being in

good health. The actual (objective) state of health is measured by the accumulated health

deficits D. By subjectively evaluating the state of health the individual compares actual health

with a reference state of health R. Utility declines in the number of accumulated health deficits

and rises in the state of reference health. For non-adapting individuals the reference state of

health is a given constant (the state of best health). For adapting individuals, the reference

state of health adjusts to the actual state of health according to

dR

dt
≡ Ṙ = θ(D −R), (1)

in which t is age and θ controls the speed of adaptation.4

We normalize initial age to zero (which will be age 20 in the calibration). In order to flesh out

the basic mechanism as clearly as possible, we assume for the benchmark model that survival

is deterministic. Following Dalgaard and Strulik (2014a), individuals accumulate health deficits

4Our treatment of adaptation as adjusting reference stock is inspired by the modeling of gradual adaption
and habit formation in macroeconomics and economic growth (Ryder and Heal, 1973; Carroll et al. 2000).
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as they age in the following way:

Ḋ = µ(D −Ahγ − a), (2)

in which µ is the “natural” rate of aging. Health deficit accumulation can be slowed down by

health expenditure h. The parameters A and γ control the state of medical technology A > 0,

0 < γ < 1, and a captures environmental influences. As shown in Dalgaard and Strulik (2014a)

the law of health deficit accumulation has a deep foundation in gerontology and its parameters

can be calibrated using the so called frailty index.5

Following Finkelstein et al. (2013) we consider the health state as a shifter of the utility

function of consumption ũ(c) such that both utility and marginal utility of consumption are

negatively affected by bad health. Specifically we assume that instantaneous utility is given by

u(c,D,R) =

(
R

D

)α
· ũ(c), with ũ(c) =


c1−σ−1
1−σ for σ 6= 1

log(c) for σ = 1.

(3)

The parameter α controls by how much an additional health deficit shifts the utility function

down. The variable R captures the effect of adaptation. In case of spontaneous and perfect

adaptation, R = D at all ages and utility remains unaffected by deteriorating health.

By allocating expenditure for consumption c and health care h the individual maximizes

utility over his or her remaining life-time. For simplicity we consider a constant flow of income

over the life time. This simple setup is helpful for an understanding how health adaptation

affects behavior. In Section 3 we introduce capital income and a savings decision. The budget

constraint is given by

w = c+ ph, (4)

in which w is the flow of income and p is the relative price of health care. The individual takes

income and price parametrically. Summarizing, the individual maximizes life-time utility

V =

T∫
0

e−ρtu(c,D,R)dt, (5)

5 Mitnitski et al. (2002a) demonstrate that there is a strong exponential association of health deficit accu-

mulation with age, D (t) = E +Beµt, that is, in flow form, Ḋ (t) = µ (D (t) − E). The parameters are estimated
with great precision from gerontological data. Dalgaard and Strulik (2014a) stipulate that health investments
influence E. For health deficit accumulation to work empirically, the cross-section estimate for E should thus be
interpreted as the average level in the sample in question, see Dalgaard and Strulik (2014a) for details.
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subject to (1)–(4), the initial conditions D(0) = D0, R(0) = R0 and terminal health deficits

D(T ) = D̄. The parameter ρ is the discount rate of future utility and T is the age of death. This

is a deterministic free terminal value problem. Individuals control through their expenditure

plan the accumulation of health deficits and therewith their age of death, which occurs when D̄

health deficits have been accumulated. The main question here is whether adapting individuals

spend more or less on health and thus expire sooner or later. In Section 3 below we extend

the model towards imperfect control by assuming that the stock of accumulated health deficits

affects “only” the probability of survival.

The Hamiltonian associated with problem (1)–(5) reads

H = u(w − ph,D,R) + λDµ(D −Ahγ − a) + λRθ(D −R),

in which λD and λR are the co-state variables (shadow prices) of health deficits and reference

health, respectively. We distinguish 3 types of individuals:

• non-adapting (benchmark): θ = 0

• naive: θ > 0, λR = 0

• sophisticated: θ > 0, λR ≥ 0.

For non-adapting types, the reference stock does not change with changing health, i.e. θ = 0 and

therefore R ≡ R(0) holds. For naive types, the reference stock changes but individuals fail to

take the impact of their health status on the reference stock into account in their calculus. This

means that naive individuals anticipate that R increases when they age and thus, θ > 0 holds.

However, they do not take into account that their health status D affects the reference stock,

i.e. they act as if R changes exogenously. Consequently, the shadow price of the reference stock

is zero in their calculus, λR = 0. Sophisticated types, in contrast, realize their adaptive behavior

and take it into account in their consumption and health spending decision and therefore θ > 0

and λR ≥ 0 holds.

The optimal solution fulfills the first order conditions

p

(
R

D

)α
c−σ = −λDµAγhγ−1 (6)

− α
(
R

D

)α ũ(c)

D
+ λDµ+ λRθ = λDρ− λ̇D (7)

α

(
R

D

)α ũ(c)

R
− λRθ = λRρ− λ̇R. (8)
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Condition (6) requires that the marginal benefit from an additional unit of health expenditure

on the right hand side equals the marginal costs in terms of foregone utility from consumption

on the left hand side. To see that, notice that health deficits are a “bad” such that the associated

shadow price λD is negative. An additional unit of health expenditure reduces health deficits by

µAγhγ−1 (compared to laissez faire), the utility of which is evaluated by λD, i.e. the contribution

of an additional health deficit to the objective function. Condition (7) requires that the shadow

prices of deficits changes according to the contribution of an additional unit of D to the objective

function. For non-adapting as well as for naive types the term λRθ equals zero, albeit for different

reasons. For non-adapting types the reference stock is constant and hence θ = 0, while for naive

types, the reference stock has no impact on the shadow price of health deficits, and hence

λR = 0. Condition (8) applies only to sophisticated types and requires that the shadow price

of the reference stock changes according to the contribution of an additional unit of R to the

objective function. Additionally, the optimal solution fulfils the terminal condition H(T ) = 0

for all types, and the solution for sophisticated types additionally fulfils the terminal condition

λR(T ) = 0.

2.2. Calibration. The solution solves the dynamic system (1), (2), (7), and (8), taken into

account the static equations (4) and (6) and the initial and terminal conditions. In order to

obtain the numerical solution we specify the parameters of the model. Since the biological

parameters are estimated with high precision, there are no degrees of freedom. We take the

estimate µ = 0.043 from Mitnitski et al. (2002a), implying that aging individuals develop 4.3

percent more health deficits per year. From Mitnitski et al.’s (2002a) regression analysis we

back out D(0) = 0.0274 as the relevant initial value for a 20 years old and D̄ = 0.1 55.5 years

later; the average life-expectancy of a 20 year old U.S. American male in the year 2000 was 55.5

years (i.e. death at 75.5; NVSS, 2012). Following Dalgaard and Strulik (2014a) we identify a by

assuming that before 1900 the role of technology in the repair of health deficits of adults was

virtually zero. Matching the life expectancy of a 20 years old U.S. American in 1900 (which

was 42 years; NCHS, 1980) we estimate a = 0.013. Secondly, we set γ = 0.19 as estimated

by Dalgaard and Strulik (2014a), normalize p = 1, set w to 35320 (the average annual pay for

U.S. workers in the year 2000; BLS, 2011), and adjust A such that the reference individual (a

non-adapting U.S. American) expires at age 75.5. This provides the estimate A = 0.0014.
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Turning towards the utility function we begin with a modest impact of health on utility

by setting α = 0.1. This means that an unexpected increase of health deficits from D0 by

one standard deviation reduces the marginal utility from consumption by 5.4 percent.6 This

value is below the mean estimate of Finkelstein et al. (2013) who find that a one-standard

deviation increase of chronic diseases is associated with a 11% decline in the marginal utility

of consumption (with a 95% confidence band from 2.7% to 16.8%). We later consider a larger

impact of health on marginal utility. Finally we set σ such that all types of individuals on average

spend 13.1 percent of their income on health. This value matches the health expenditure share

of GDP in the U.S. in the year 2000 (World Bank, 2015). It leads to the estimate σ = 1.05,

a value that accords well with recent estimates of the intertemporal elasticity of substitution,

suggesting that the “true” value of σ is probably close to unity (e.g. Chetty et al., 2006).

For the benchmark run we set the speed of adjustment of the health reference stock θ to

0.3. This means that about 60% of an initial gap between actual health and reference health

are closed after 3 years and 82 percent are closed after 7 years. This value is a compromise

between the values suggested by empirical estimates on the speed of health adaptation (Wu,

2001; Oswald and Powdthavee, 2008; Pagan-Rodriguez, 2010). We consider faster adjustment

in the sensitivity analysis. For the benchmark run we set the initial reference stock R0 to

D0, implying the normalizing assumption that utility from consumption for all three types of

individuals is unaffected by health at the initial state of best health.

2.3. Results. Figure 1 shows results for the age trajectories of health expenditure, health

deficits, and instantaneous utility for the basic run.7 Blue (solid) lines represent the non-

adapting types, red (dashed) lines represent naive types, and green (dash-dotted) lines represent

sophisticated types. Instantaneous utility is measured relative to initial utility of non-adapting

individuals. Health expenditure is increasing with age and highest for the oldest individuals,

in line with the empirical observation (e.g. Meara et al., 2004) and in contrast to the predic-

tions by the Grossman model with or without adaptive behavior (Grossman, 1972; Gjerde et

al., 2005). The perhaps most surprising result is that naive types spend the most on health,

live the healthiest life, and die latest. Total discounted life time spending on health of naive

6According to Mitnitski et al. (2001) the standard deviation of most health deficits in the frailty index is
around 0.4/µ̃, in which µ̃ is the mean of the particular deficit. The mean frailty index from (1) for individuals
between 19 and 79 years is about 0.05 with a standard deviation of about 0.02.

7A description of the solution method can be found in the Appendix.

8



types is almost 8 percent above that of non-adaptive types. They die at age 75.8, i.e. about 3

months later than non-adaptive types. The reason is, that naive types live a happier life than

non-adapting types. With aging and health deterioration, utility of non-adaptive types declines

relatively quickly whereas adaptive types manage to live a happier life by adjusting their health

ambitions to the deteriorating health level. Since life is more worthwhile at any point of time,

naive types spend more on health in order to live longer and outlive non-adapting types.

Figure 1: Health Adaptation: Benchmark Run
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Blue (solid) lines: non-adaptive type. Red (dashed) lines: naive type. Green (dash-dotted) lines: sophisticated
type. Utility is instantaneous utility relative to initial utility of a non-adapting individual.

Sophisticated types, like naive types, benefit in their life time utility from adjusting health

reference stocks. In contrast to naive types, however, they understand that they will adapt to

deteriorating health and thus spend less on health during most of their life. Total discounted

life time spending on health of sophisticated types is more than 24 percent below that of naive

types and more than 18 percent below that of non-adaptive types. Consequently their health

declines fastest and they live the shortest life. They die at age 74.8, i.e. a year before naive types

and 7 months before non-adaptive types. Yet, sophisticated types enjoy life more. Spending less

on health allows them to spend more on consumption such that instantaneous utility is above

the trajectory of non-adaptive types and, except of the time near death, also above the utility

of naive types.8

Life time utility V of sophisticated types exceeds that of non-adaptive types by 2 percent and

that of naive types by 0.05 percent. When we use the same base utility uc(0) across individuals,

these figures can also be interpreted as relative differences in the value of life, a measure that

8 In the present context, the original Dalgaard and Strulik (2014a) model can be conceptualized as covering
the special case of infinite speed of adaptation such that R = D at all times. It predicts that instantaneous utility
is constant over the life time since consumption is constant (for r = ρ) and health matters only for longevity but
not for the experience of current utility.
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assigns a monetary value to life time utility (see below). Perhaps surprisingly, whether adapting

individuals understand their adaptive behavior or not makes little difference for life-time utility

although it affects health behavior quite strongly.

We next analyze in Table 1 the sensitivity of results. These experiments can also be seen

as numerical results on the comparative statics of the model. The table shows for naive and

sophisticated types the deviation of the solution from non-adaptive types in percent. Results

are shown for discounted life time health expenditure, the length of life, and the life-time utility.

The first row re-iterates results from the benchmark run. The second row considers a higher

weight of health in utility. A value of α = 0.2 means that marginal utility from consumption

declines by 10.5 percent when health deficits increase by one standard deviation, a value close

to Finkelstein et al.’s point estimate. Naturally, the behavior and outcomes for adaptive types

differ more strongly from that for non-adaptive types when health matters more. Naive types

spend 12 percent more on health and live almost one percent longer than non-adaptive types

while sophisticated types spend 28 percent less on health and their live expectancy declines by

more than 2 percent. Again the value of life for both adapting types is similar and about 4

percent larger than for non-adaptive types.

Table 1: Sensitivity Analysis

life time h life expect. welfare

case naive sophis naive sophis naive sophis

1) benchmark 7.67 -18.49 0.53 -1.30 2.09 2.14
2) α = 0.2 12.17 -28.22 0.88 -2.13 3.79 3.94
3) θ = 0.5 7.87 -20.32 0.54 -1.44 2.26 2.32
4) ∆w = 50% 7.31 -19.26 0.61 -1.62 1.96 2.02
5) ∆A = 50% 5.34 -24.78 1.35 -5.52 1.18 1.33

All values as deviation in percent from the optimal solution for a non-adapting individual;
life time h is the discounted life time expenditure on health; life expect. is life expectancy
at 20; welfare is life time utility as in (5); A = 0.0014, σ = 1.05.

The third row of Table 1 considers a higher speed of adjustment for reference health. When

θ = 0.5, 78 percent of the initial gap between health and reference health are closed after 3

years (97 percent after 7 years). Despite this (implausibly) high speed, results deviate only

slightly from the benchmark run. Apparently, results are relatively insensitive to the speed of

adjustment. It is the feature of adjustment as such and not so much the speed at which it happens

that matters. Case 4) demonstrates that results are largely insensitive to income variation. Of
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course, everybody lives substantially longer given the higher income, but relatively speaking,

results differ only marginally from the benchmark run.

In the fifth row of Table 1 we consider the impact of medical advances. An increase of A by

50 percent would be accomplished, for example, if medical technology improves by 1 percent

per year for 40 years. The improving health technology has a very powerful impact on the

age at death, which raises by 18.6 years to 94.1 for non-adaptive types. For adaptive types,

technological progress increases the deviation of life expectancy from that of non-adaptive types

but it reduces the deviation in experienced welfare. The dominating effect appears to be the

overall increasing life expectancy and not so much the increasing differences between individuals.

Naive types live 1.3 percent longer and sophisticated types 5.5 percent shorter than non-adaptive

types but the excess value of life gained from adaptation reduces to somewhat above 1 percent

for both adaptive types.

3. Adapting to Negative Health Shocks and Positive Health Interventions

In order to discuss adaptation to a severe health shock we assume that D0 increases unex-

pectedly by 50%, i.e. without adjustment of R0, which is kept at benchmark level. Although the

initial deviation of health deficits (of 1.37 percentage points) from benchmark could be regarded

as modest, it has severe impact on successive health deficit accumulation such that individuals

die more than 20 years earlier (at age 51.2 in the case of non-adaptive types). The experiment

thus represents a chronic, gradually disabling, and eventually deadly disease like, for example

Huntington disease (Oster et al., 2013).

Life-time trajectories are shown in Figure 2. As a response to the bad health diagnosis, all

individuals increase health expenditure. In particular sophisticated individuals increase health

expenditure quite strongly, implying that their life expectancy deviates now relatively little from

that of non-adapting individuals. Despite the small differences in longevity, adaptive types are

able to experience a higher value life, about 6 percent above that of non-adaptive types. The

panel on the right hand side of Figure 2 shows why. It depicts the utility of the 3 types relative

to initial benchmark utility, i.e. relative to utility before the health shock. While utility drops

down initially by about the same amount for all 3 types, utility of adaptive types recovers quickly

despite of further deteriorating health and it returns to almost benchmark utility at age 30 (10

years after the health shock).
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Figure 2: Adjustment after Bad Health Shock at Age 20
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As benchmark but D0 50 percent higher, without adjustment of R0 (20 years shorter life). Blue (solid) lines:

non-adaptive type. Red (dashed) lines: naive type. Green (dash-dotted) lines: sophisticated type.

We next use the model in order to assess the impact of health shocks on quality adjusted

life years (QALY) and the value of life. The QALY measures an individual’s length of life

weighted by a valuation of the health-related quality of life. QALYs are an important instrument

in the cost benefit analysis of public health projects and one important question is on whose

preferences their computation should be based (Dolan, 2000). While in practice the quality of the

possible states of health (the QALY weights) are evaluated by the general public, scholars debate

whether it would be preferable to use instead the evaluation of the persons who are actually

experiencing a specific state of health, i.e. the patients who would benefit from a state-specific

health intervention (e.g. Dolan, 2000; Menzel et al., 2002). The use of patient preferences,

however, appears less compelling in the presence of adaptation. Since patients have largely

adapted to their condition, they may rate their situation only insignificantly lower than the

state of best health (e.g. Nord et al., 2009). The question arises whether adaption should be

taken into account in QALY computation and, on a more general level, whether QALYs provide

a reasonable proxy to assess the actual welfare change experienced by patients after health

interventions.

In order to illustrate these issues with the model at hand we first compute the QALY according

the conventional method. The corresponding QALY weight for a specific state with D health

deficits is given by (D0/D)α, i.e. the evaluation of these health deficits relative to the state of

best health D0. The QALY is then the weighted “sum” of life years, i.e.
∫ T
t [D0/D(τ− t)]αdτ . In

Table 2, the first two triplets of columns show life expectancy at 20 and the conventional QALY

for our calibrated benchmark individuals. Since the conventional QALY ignores adaptation,

the QALYcon numbers use the same weight (D0/D)α, irrespective of the type of the individual.
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The largest QALY is obtained for naive individuals because they live the longest life (see the

discussion above).

The third triplet of columns in Table 2 shows QALYs when the adaptation process is taken

into account. Here we modified the QALY weights for adapting and non-adapting types to

(R/D)α, in which R is the adjusting reference state of health. The QALY is thus obtained as∫ T
t [R(τ − t)/D(τ − t)]αdτ . Due to adaptation both naive and sophisticated types experience

now a substantially greater QALY, which comes close to actual life years, reported in the first

triple of columns. Most importantly, the ranking in terms of QALYs changes with the method of

computation, from naive–non-adapting–sophisticated according to the conventional measure to

naive-sophisticated–non-adapting when adaptation to deteriorating health is taken into account.

Another remarkable observation is that the sophisticated type is never leading the ranking.

The QALYs, irrespective of method, suggest that being sophisticated is a disadvantage in terms

of quality adjusted life years. The QALY computation, however, ignores that, at any instant

of their life, sophisticated types experience the highest utility from consumption. To consider

this aspect in our analysis, we report the value of life in the final triplets of columns in Table

2. The value of life is the monetary expression of aggregate utility experienced during life

whereby instantaneous utility is converted by the unit value of an “util”, i.e. by initial marginal

utility, such that V OL =
∫ T
0 e−ρτu[c(τ), D(τ), R(τ)]dτ)/uc[c(0), D(0), R(0)]. The benchmark

calibration predicts a VOL at age 20 of about $ 6.5 million for the non-adapting type and

a VOL of about $ 7 million for the sophisticated type. In terms of VOL the ranking of the

three types is as expected: the sophisticated type comes first and naive and non-adapting types

follow. In order of magnitude the VOL figures of Table 2 correspond well with Murphy and

Topel’s (2006, Fig. 3) estimate of a VOL of $ 7 million at age 25.

In the center part of Table 2 we consider a larger impact of the state of health on utility by

setting α = 2 (and re-estimating σ = 1.015 to match the health expenditure data). Since health

plays a larger role, the model predicts a lower VOL and lower QALYs, irrespective of the method

of computation. The reversal in the ranking of individuals, however is preserved. Sophisticated

types receive the lowest conventional QALY, the second highest new QALY, and the highest

VOL. As shown in the bottom part of Table 2, these observations are also robust against variation

of the speed at which the reference stock of health adjusts (the speed of adaptation).
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Table 2: Results: QALYs, VOLs, and Health Shocks

life expect. (in years) QALYcon (in years) QALYnew (in years) VOL (in Mio $)

case non naive sophis non naive sophis non naive sophis non naive sophis

1) benchmark 55.50 55.80 54.79 52.46 52.74 51.75 52.46 55.40 54.38 6.54 6.59 7.02

2) ∆D20 = +0.5 ∗D0 -24.27 -24.49 -23.58 -23.81 -24.02 -23.13 -23.81 -24.47 -23.56 -1.07 -0.87 -0.93
3) ∆D65 = +0.5 ∗D0 –5.53 -5.64 -5.41 -4.94 -5.03 -4.81 -4.94 -5.60 -5.37 -0.087 -0.096 -0.100

4) ∆D20 = −0.05 ∗D0 4.73 4.80 4.36 4.75 4.82 4.38 4.75 4.81 4.36 0.11 0.07 0.08
5) ∆D65 = −0.35 ∗D0 4.86 4.86 4.64 4.43 4.45 4.24 4.43 4.88 4.67 0.059 0.062 0.068

α = 0.2

1) benchmark 55.50 55.99 54.37 49.97 50.43 48.87 49.97 55.23 53.61 5.19 5.27 5.82

2) ∆D20 = +0.5 ∗D0 -24.40 -24.77 -23.32 -23.54 -23.90 -22.49 -23.54 -24.73 -23.29 -1.03 -0.73 -0.81
3) ∆D65 = +0.5 ∗D0 -5.54 -5.64 -5.25 -4.49 -4.58 -4.23 -4.49 -5.66 -5.27 -0.065 -0.078 -0.088

4) ∆D20 = −0.05 ∗D0 4.87 5.00 4.31 4.90 5.02 4.33 4.90 5.00 4.31 0.12 0.06 0.07
5) ∆D65 = −0.35 ∗D0 4.80 4.94 4.56 4.03 4.17 3.79 4.03 4.90 4.51 0.044 0.050 0.057

θ = 0.5

1) benchmark 55.50 55.81 54.71 52.46 52.75 51.67 52.46 55.55 54.45 6.54 6.59 7.06

2) ∆D20 = +0.5 ∗D0 -24.27 -24.50 -23.51 -23.81 -24.04 -23.06 -23.81 -24.49 -23.50 -1.07 -0.85 -0.91
3) ∆D65 = +0.5 ∗D0 -5.53 -5.64 -5.37 -4.94 -5.03 -4.78 -4.94 -5.61 -5.35 -0.088 -0.096 -0.104

4) ∆D20 = −0.05 ∗D0 4.73 4.81 4.33 4.75 4.83 4.34 4.75 4.81 4.33 0.110 0.067 0.072
5) ∆D65 = −0.35 ∗D0 4.86 4.85 4.67 4.43 4.45 4.25 4.43 4.88 4.68 0.058 0.062 0.068

Life expect. is life expectancy at 20, QALYcon are quality adjusted life years neglecting adaptation. QALYnew
are quality adjusted life years taking adaptation to deteriorating health into account. VOL is the value of
life at age 20. In case of α = 0.2, we estimate σ = 1.015.

The QALYs associated with the severe health shock discussed earlier are reported in line 2 of

Table 2. When individuals experience an exogenous increase of health deficits by 50 percent at

age 20, their life time shortens by about 25 years. The impact on longevity is largest for naive

types, second largest for non-adapting types, and lowest for sophisticated types. This ordering

is preserved when life years are quality adjusted, irrespective of whether adaptation is taken into

account or not. The results for QALYcon can be interpreted as the QALY reported by individuals

imagining but not experiencing the shock (the general public) while the QALYnew provides

the actually experienced QALY (the patients). The good news here is that the quantitative

adjustment of QALYs for adaptation is relatively small (in line with Groot, 2000) and that the

ranking of types does not vary across methods.

These results, however, are not robust. In line 3 of Table 2 we consider a health shock of the

same magnitude experienced at age 65. Here, sophisticated types experience the lowest reduction

in quality adjusted life years according to the conventional method and the second highest

reduction when adaptation is taken into account. Yet another ranking of types is obtained

with respect to the value of life. When the bad health shock is experienced at age 20, non-

adapting types suffer the greatest loss of VOL (about $ 1 million). This perhaps expected
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outcome is reversed when the bad health shock is experienced at age 65 where sophisticated

types experience the greatest loss of VOL (about $ 100,000). The intuition for the reversal is

that the shock happens sufficiently close to death such that there is insufficient time left to

adapt to the worsening situation. At the same time, sophisticated types response strongest with

increasing health expenditure (see above). This strongly lowers consumption at every instant

after the shock, which is the dominating effect on the VOL when there is insufficient time

until death for adaptation to take hold. As shown in the center and bottom part of the table,

these conclusion are robust against varying importance of health in utility and varying speed of

adaptation.

Next, with case 3 and 4, we consider positive health shocks. Case 4) reduces health deficits

at age 20 by 5 percent. Since this health intervention is experienced early in life, it has a quite

significant impact on subsequent health and on longevity. Life expectancy increases by about

4.7 years and, again, the largest improvement is experienced by naive types. The ranking is

preserved for quality-adjusted life years, with non-adapting and sophisticated types on second

and third place, respectively. Sophisticated types, however, experience again the largest change

in VOL. The conclusion here would be that using conventional QALYs (of non-patients) does not

bias the assessment of the health intervention vis a vis the QALY of patients (taking adaptation

into account). Nevertheless, ignoring adaption overestimates largely the welfare improvements of

the intervention. The predicted change in VOL is about 1/3 larger when adaptation is ignored.

In line 5 we investigate a large positive health innovation at age 65. We have deliberately

chosen the size of the shock (of 35 percent of D0) such that the gain in longevity is about the

same as for the smaller shock in young age, namely around 4.7 years. Going from QALYcon to

QALYnew we see that the reversal in rankings across types emerges again. More importantly,

comparing case 5 and 4, we see also a reversal across health interventions. Suppose a choice has

to be made between two public health project (of the same cost); one benefiting young persons

by reducing their health deficits by 5 percent, the other benefitting old persons by reducing their

deficits by 35 percent. Using the conventional QALY (based on preferences of non-patients) we

would prefer the young-patients project (4.82 > 4.45) whereas using the new QALY (based on

preferences of the patients) we would prefer to invest in the old-patients project (4.88 > 4.81).

The reason for the reversal is that adaptation plays a dominant role for the intervention early
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in life but a much smaller role for the late-life intervention because, in the latter case, there is

not sufficient life time left for adaptation to take hold.

The conclusion is that, although the size of the QALYs does not differ by much with respect

to the computational method (with or without adaptation), it may well be that the health

practitioners’ nightmare comes true: the identification of the most preferred project depends on

the choice of whose preferences are used for QALY computation. As seen from the center part

of the table, for this specific set of health innovations, the reversal is not obtained when the

state of health affects utility more strongly (for α = 0.2). This does not mean, however, that

the reversal disappears in general. Actually, we can find for any weight of health in the utility

function a set of health innovations that generate a reversal. Another conclusion from the QALY

analysis is that it is not true, as sometimes suspected, that (full) adaptation of patients to their

condition implies that they would not appreciate a public health intervention improving their

health (see, for example, the discussion in Nord, 2009). In case of naive adaptation, the opposite

is true. In terms of QALYs, irrespective of their computation, naively adapting persons benefit

more from a health intervention than non-adapting persons. Firstly, naive persons experience

a positive surprise in their health condition. Secondly, and more importantly, they fail to take

into account that they would adapt to their better health and continue to invest strongly in

health such that they live longer than non-adapting types. This behavior increases their QALY

further at the extensive margin, in the life-years dimension.

4. Model Extensions

4.1. Uncertain Survival. We next consider robustness of results with respect to extending the

model to uncertain survival. In so doing, we utilize the fraction of health deficits accumulated

by a person in order to predict his or her survival probability. This approach captures well

the biological approach to aging, which aspires to replace age as a proximate determinant of

death by the loss of bodily function as a deep determinant (“Only if we can substitute the

operation of the actual physiological mechanism for time we have a firm idea of what we are

talking about.”, Arking, 2006, p. 10). As in Strulik (2015b), we assume that the unconditional

survival probability at age t, denoted by S(t), depends on the accumulated health deficits at

that age, we then impose a particular parametrization of this function, feed in the estimates
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from Mitnitski et al. (2002a) on the association between age and health deficits, and predict the

association of age and survival, which is confronted with estimates of S(t) from life tables.

A parsimonious representation of the survival function is given by the logistic function:

S(D) =
1 + ω

1 + ωeξD
. (9)

The survival probability is unity at the state of best health (D = 0) and declines with first

increasing and then decreasing rate as more health deficits are accumulated. The panel on the

left hand side of Figure 3 shows the association between D and S implied by (9) for ω = 0.02 and

ξ = 40. The middle panel shows the association between age and accumulated deficits estimated

by Mitnitski et al. (2002a) for 19-75 years old Canadian men (R2 = 0.95). When we feed these

data into the S(D(t)) function, we get the “reduced form”, S(t), which shows survival as a

function of age. The implied functional relationship is shown on the right hand side of Figure

3. Stars in the panel on the right hand side indicate the survival probability estimated from life

tables for U.S. American men 1975-1999, taken from Strulik and Vollmer (2013). The model’s

prediction fits the data reasonably well. The model predicts a life expectancy of 55.3 for a 20

years old (death at 75.3) while it was actually 55.5 for our reference American in the year 2000

(see Section 3).

Figure 3: Health-Dependent Survival and Survival by Age
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S(t) is the unconditional probability to survive to age t. Left: assumed function S(D). Middle: Estimated
association D(t) (Mitnitski et al., 2002a). Right: Predicted (line) and estimated (stars) association between
age and survival probability (estimate from Strulik and Vollmer (2013). Implied life expectancy at 20: 55.3
years.

Facing uncertain death, rational individuals calculate the expected utility from life-time

consumption by multiplying the instantaneous utility experienced at age t with the proba-

bility to survive to age t. Following Kamien and Schwartz (1980, Section 9, Part I), the

present value of expected utility experienced over the life cycle can then be represented as
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T∫
0

S(D)e−ρtu(c,D,R)dt, which replaces (5). This approach implies that individuals assess their

health and its implications for survival correctly, the only potential mistake that they make

regards life time utility due to failed anticipation of adaptation to deteriorating health. This

notion captures in a stylized way the evidence cited in the Introduction, which finds little sup-

port for the hypothesis that the high happiness of sick individuals could be explained by their

wrong assessment of their actual state of health.

Everything else is kept from the simple model such that the Hamiltonian associated with the

maximization problem becomes H = S(D)u(w− ph,D,R) + λDµ(D−Ahγ − a) + λRθ(D−R),

and the former first order conditions (6)–(8) modify to

pS(D)

(
R

D

)α
c−σ = −λDµAγhγ−1 (10)(

S′(D)− αS(D)

D

)(
R

D

)α
ũ(c) + λDµ+ λRθ = λDρ− λ̇D (11)

αS(D)

(
R

D

)α ũ(c)

R
− λRθ = λRρ− λ̇R (12)

with S(D) from (9).

Table 3: Results: Uncertain Survival

life time h life expect. welfare

case naive sophis naive sophis naive sophis

1) benchmark 6.12 -14.51 0.44 -0.99 1.94 1.98
2) α = 0.2 10.19 -22.88 0.77 -1.69 3.54 3.66
3) θ = 0.5 6.30 -15.97 0.45 -1.11 2.11 2.15
4) ∆w = 50% 5.80 -15.00 0.51 -1.25 1.81 1.85
5) ∆A = 50% 3.73 -18.91 1.31 -5.32 0.90 1.02

All values as deviation in percent from the optimal solution for a non-adapting individual;
life time h is the discounted life time expenditure on health; life expect. is life expectancy
at 20; welfare is life time utility as in (5); A = 0.00146, σ = 1.0. Other Parameters as for
Table 1.

Matching the data for a 20 years old U.S. American man, as described in Section 2 leads to

mild adjustments of the power of medical technology (now A = 0.00146 ) and the curvature

of the utility function (now σ = 1.0). All other parameters are kept from the simple model.

Additionally, we have ω = 0.02 and ξ = 40, as estimated with the help of Figure 3. Table 3

reports results for health spending, life expectancy, and welfare in the same style as Table 1 for

the simple model. The most salient feature is that all results from the simple model are preserved.

The difference between outcomes for adapting and non-adapting types are somewhat smaller,
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for both naive and sophisticated types, and across all computational experiments. Overall we

confirm the observation of Strulik (2015b), made in the context of no adaptation, that including

uncertain survival adds more realism (and complexity) but changes outcomes and predictions

only marginally.

4.2. Extension: Life Cycle Savings. We next introduce an endogenous savings decision.

This allows individuals to re-allocate funds for consumption or health care over time.9 The

budget constraint then becomes

k̇ = w + rk − c− ph, (13)

in which r is the interest rate and k are assets. Temporarily we return to the deterministic

model. For the benchmark run we assume that there is neither inheritance nor bequest, such

that k(0) = k0, k(T ) = k̄. Individuals maximize life time utility (5) subject to (1)–(3) and (13)

and boundary conditions for health deficits and assets.

From the first order conditions we obtain the modified Ramsey rule:

ċ

c
=
r − ρ+ α

(
Ṙ
R −

Ḋ
D

)
σ

. (14)

Notice that the standard Ramsey rule is obtained without health in the utility function (for

α = 0). With health in the utility function but without adaptation we observe a tendency for

consumption to decline, in particular in old age when Ḋ/D is large.10 Adaptation tends to

neutralize this effect. For the special case of spontaneous adaptation (i.e. R = D) the standard

Ramsey rule re-emerges.

Moreover, we obtain from the first order conditions:

ḣ

h
=

1

1− γ

(
r − ρ+

λ̇D
λD

)
, (15)

λ̇D
λD

= ρ− µ− µγAhγ−1cσ

p

[
α
ũ(c)

D
− λRθ

(
R

D

)−α]
. (16)

For the special case when health does not matter for utility (α = θ = 0), we obtain the health

Euler equation of Dalgaard and Strulik (2014a), according to which the age-profile of health care

9Most importantly, since individuals base their optimization calculus on permanent income, the solution would
not change by the introduction of an exogenous age of retirement or a more realistic hump-shaped age-income
profile (as long as it provides the same present value of life time income).

10This way deteriorating health may motivate a hump-shaped age-profile of consumption, see Strulik (2015c).
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expenditure is fully determined by the relative size of the interest rate r and the rate of aging

µ (λ̇D/λD = ρ− µ). The health Euler equation is very intuitive: if the interest rate exceeds the

rate of aging, it is desirable to save for health investments later in life (see Dalgaard and Strulik,

2014a, for details). Taking into account that health matters for instantaneous utility modifies

this result. As shown in (16), the growth rate of the shadow price for health deficits declines for

non-adapting and naive individuals (for α > 0 and λR = 0), implying that health expenditure

grows at a lower rate than estimated by Dalgaard and Strulik (2014a). For sophisticated types

(for λR > 0), on the other hand, the model predicts higher expenditure growth compared to

non-adaptive and naive types. These results are intuitively plausible. For non-adapting and

naive types, the health complementarity with consumption is all that matters. They expect

that consumption will provide less utility in a bad state of health (i.e. in old age) and thus

spend already relatively much on health early in life in order to delay aging. Sophisticated

types, in contrast, understand their adaptation to deteriorating health and thus allocate less

funds to health when they are young.

Figure 4: Health Adaptation: Savings

20 40 60 80
4000

6000

8000

10000

12000

age

he
al

th
 s

pe
nd

in
g 

(h
)

20 40 60 80

0.9

0.95

1

age

ut
ili

ty
 (

u)

20 40 60 80
2.5

2.6

2.7

2.8

2.9

3
x 10

4

age

co
ns

um
pt

io
n 

(c
)

20 40 60 80
−2

0

2

4

6
x 10

4

age

ca
pi

ta
l s

to
ck

 (
k)

Blue (solid) lines: non-adaptive types. Red (dashed) lines: naive types. Green (dash-dotted) lines: sophisti-
cated types. Utility is instantaneous utility relative to initial utility of non-adapting individual.
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The life cycle trajectories for the three types are shown in Figure 4. The upper-left panel

confirms the inference from the first order conditions. Sophisticated types prefer a much steeper

age-profile of health expenditure. The lower left panel shows the interesting implications for

consumption. For non adapting types consumption deteriorates continuously during the life-

time due to the health-consumption complementarity. As evidenced in the lower right panel, it

is optimal for non-adapting types to go into debt early life in order to finance the desired high

level of consumption when in good health.

Adaptation, in contrast, leads to a much more balanced age-consumption profile. It is also

interesting to see that sophisticated types prefer a higher consumption level at any given age.

Naive types spend too much for health expenditure early in life because they fail to understand

their adaptation to deteriorating health.

Table 4 reports results from the sensitivity analysis. The main takeaway here is that the

consideration of savings modifies results from the benchmark model only marginally. This

holds true for all cases discussed and despite the relatively large differences with respect to the

allocation of funds over life shown in Figure 4.

Table 4: Results: Life Cycle Savings

life time h life expect. welfare

case naive sophis naive sophis naive sophis

1) benchmark 6.93 -16.53 0.52 -1.10 2.09 2.13
2) α = 0.2 10.24 -25.57 0.87 -1.72 3.78 3.89
3) θ = 0.5 7.15 -18.65 0.54 -1.27 2.31 2.37
4) ∆w = 50% 6.45 -17.01 0.60 -1.37 1.96 2.01
5) ∆A = 50% 4.50 -21.93 1.29 -4.56 1.20 1.34

All values as deviation in percent from the optimal solution for a non-adapting individual;
life time h is the discounted life time expenditure on health; life expect. is life expectancy
at 20; welfare is life time utility as in (5); A = 0.0013, σ = 1.13. Other Parameters as for
Table 1.

4.3. Extension: Life Cycle Savings & Uncertain Survival. Finally we combine the two

previous extensions and investigate the case of uncertain survival with endogenous savings. For

that purpose we assume perfect annuities such that the interest rate is given by the sum of

the rate of return on capital r plus the instantaneous mortality rate m = −Ṡ/S. Given the

annuity market, individuals inherit no wealth and leave no bequests. Capital left over at death

is distributed among the survivors by the annuity supplier. We thus implicitly assume that our

“Reference-American” is surrounded by sufficiently many other individuals of the same age. The
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adjusted budget constraint is given by

k̇ = w + (r +m)k − c− ph. (17)

The solution of the associated maximization problem leads to the modified Ramsey rule (14),

the shadow price equation (12), and the following equations of motion:

ḣ

h
=

1

1− γ

(
r +m− ρ+

λ̇D
λD

)
(18)

λ̇D
λD

= ρ− µ− µγAhγ−1cσ

pS(D)

(
R

D

)−α [(
α
S(D)

D
− ∂S(D)

∂D

)(
R

D

)α
ũ(c)− λRθ

]
, (19)

which together generalize the health Euler equation for the case of uncertain survival.

Results are shown in Table 5.A and 5.B. The most salient impression is again that the pres-

ence of uncertain survival and endogenous savings modifies the results for the simple case only

marginally. Overall, the deviation of outcomes for adapting types from non-adapting types is

reduced a bit further. The robust conclusion emerges that naive types spend about 6 percent

more on health and live about 0.3 percent longer than non-adapting types while sophisticated

types spend about 12 percent less on health and live about 0.5 percent shorter. Despite their

opposing response to adaptation both naive and sophisticated types experience life time utility

that is about 2 percent greater than that of non-adapting types. This difference is predicted to

decline with ongoing medical technological progress (case 5).

Table 5.A: Results: Life Cycle Savings & Uncertain Survival

life time h life expect. welfare

case naive sophis naive sophis naive sophis

1) benchmark 5.69 -12.24 0.34 -0.56 1.94 1.98
2) α = 0.2 8.96 -19.81 0.60 -0.92 3.54 3.64
3) θ = 0.5 5.85 -13.52 0.35 -0.63 2.11 2.15
4) ∆w = 50% 5.25 -12.55 0.40 -0.70 1.81 1.85
5) ∆A = 50% 3.23 -15.91 1.02 -2.95 0.96 1.05

All values as deviation in percent from the optimal solution for a non-adapting individual;
life time h is the discounted life time expenditure on health; life expect. is life expectancy
at 20; welfare is life time utility as in (5); A = 0.00135, σ = 1.085. Other Parameters as for
Table 1.

Finally, we have another look at QALYs and the value of life. In Table 5.B. we report results

for the benchmark case and for two health shocks discussed earlier. The main takeaway is that
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taking life-time uncertainty and capital accumulation into account leads to insignificant changes

in the quantitative results and confirms the qualitative conclusions derived in Section 3.

Table 5.B: Results Life Cycle Savings & Uncertain Survival: QALYs, VOLs, and Health Shocks

life expect. (in years) QALYcon (in years) QALYnew (in years) VOL (in Mio $)

case non naive sophis non naive sophis non naive sophis non naive sophis

1) benchmark 55.50 55.68 55.00 49.20 49.44 48.78 49.20 52.00 51.33 6.98 6.87 7.23
2) ∆D20 = +0.5 ∗D0 -23.20 -23.40 -22.80 -23.33 -23.52 -22.94 -23.34 -23.95 -23.36 -1.54 -1.30 -1.37
3) ∆D20 = −0.05 ∗D0 4.83 4.91 4.59 4.89 4.96 4.66 4.89 4.95 4.64 0.17 0.12 0.13

5. Conclusion

In this paper we developed a life cycle model in which human aging is based on a gerontological

foundation of health deficit accumulation and investigated the role of adaptation to deteriorating

health for health expenditure, life expectancy, and the value of life. We calibrated the model

for a 20 years old male U.S. American in the year 2000 and contrasted the outcome without

adaptation with those for otherwise identical individuals who adapt to deteriorating health in a

conscious (sophisticated) or unconscious (naive) way. Perhaps surprisingly, we found that naive

types invest the most in their health and live the longest. Their high health expenditure is

motivated by two mechanisms. Firstly, they are not aware of their adaptation to poor health,

which motivates health expenditure above that of sophisticated types. Secondly, due to their

adaptation, they lead a relatively happy life, in particular in old age. They thus have a strong

desire to extend it, which motivates health expenditure above that of non-adapting types.

Sophisticated types, in contrast, are predicted to invest the least in health and live the shortest

life. Yet, they experience the greatest value of life. Their awareness of adaptation to poor health

induces these individuals to put more emphasis on current consumption and to derive more

pleasure here and now at the expense of worse future health. The estimated value of life at age

20 is about 6 percent larger for sophisticated types than for naive types. The value of life of

naive types only marginally exceeds that of non-adapting types. The reason for this perhaps

unexpected result is that naive types, while living longer, consume less. Low consumption means

that the unit “util” is larger such that welfare in terms of monetary units is relatively low. In

terms “utils” welfare of naive types exceeds welfare of non-adapting types by about 2 percent.

We used the model to compute for the 3 different types QALYs and QALY changes elicited by

specific health innovations. We hope that this analysis sheds new light on the debate whether

public health projects should be evaluated on the basis of QALYs without adaptation (reflecting
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the evaluation of non-patients) or taken adaption into account. Our calibration suggest that the

quantitative difference incurred by taking adaptation into account is rather small. Nevertheless,

we observe that the method of QALY computation can decisively influence the evaluation of

projects. Moreover, according to our analysis, it is not true that (full) adaption to deteriorat-

ing health questions the desirability of public health projects designed to improve the health

conditions. In fact, the benefit from health interventions is predicted to be greatest under

naive adaptation. Naive types continue to invest strongly in their health although their health

condition improved, a behavior which is conducive to a long life and a high QALY.

Our framework could be extended and applied to investigate other life cycle decisions and

health behaviors. One extension could address the impact of health adaptation on retirement.

Under the assumption that the retirement decision is, among other things, determined by the

subjectively perceived health status, we would expect that adaptation to poor health leads to

later retirement for sophisticated agents but not necessarily for naive agents who may actually

aim at an early retirement. Through the retirement decision and the length of the working life we

would expect that health adaptation also affects the education decision and thus labor income.

Another potential extension could consider the role of adaptation for unhealthy consumption

and individual investments of time and effort in health promoting activities. In particular, it

would be interesting to investigate how individuals change their eating behavior when they adapt

to increasing body weight in a naive or sophisticated way.
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Appendix: Solution Method

The set of first order conditions including the initial and terminal conditions represent a con-

tinuous time, two-point boundary value problem with free terminal value. We numerically solve

for the optimal path of variables by using the Relaxation procedure (see Trimborn et al., 2008).

Since the procedure was designed to solve problems with a fixed endpoint, we modified it such

that it can handle problems with a free terminal time. Furthermore, we use a recently developed

method to ensure that non-negativity constraints for health investments and consumption hold

(see Trimborn, 2013, for details).

The idea of our modification of the Relaxation algorithm is to distinguish between age t of the

individual and computational time τ for which the solution is computed. While the domain of

t, [0, T ], is endogenous, the domain of τ is exogenous and normalized to the unit interval [0, 1].

We assume that t proceeds proportionally to τ , t = ψτ , with a constant ψ. Hence, the variable

ψ governs the terminal time by the equation T = ψ.

To illustrate our procedure in detail we denote the vector of variables by x and the set of first

order conditions represented by differential equations by dx/dt = f(x). Firstly, we have to take

into account that the algorithm solves for the path of the variables with respect to τ instead of

t. Hence, the set of differential equations modifies to

dx

dτ
=

dx

dt

dt

dτ
= f(x)ψ .

Secondly, we augment the set of variables by t and ψ, and the two differential equations

dt

dτ
= ψ

dψ

dτ
= 0 .

While the first differential equation establishes that t and τ are proportional with proportionality

factor ψ, the second one determines that ψ is a constant. Furthermore, we fix the starting time by

augmenting the initial conditions with the equation t(0) = 0. The terminal optimality condition

for the Hamiltonian requiring H(T ) = 0 implicitly determines the optimal stopping time and

therefore ψ.

The solution vector consists of the optimal values of x on a time mesh τ ∈ [0, 1] and a

corresponding time vector t enabling us to assign the solution x to the individual’s age t.
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