Schünemann, Johannes; Strulik, Holger; Trimborn, Timo

Conference Paper
Going from Bad to Worse: Adaptation to Poor Health, Health Spending, Longevity, and the Value of Life

Beiträge zur Jahrestagung des Vereins für Socialpolitik 2016: Demographischer Wandel - Session: Newborns, Mortality and Longevity, No. F09-V1

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

Suggested Citation: Schünemann, Johannes; Strulik, Holger; Trimborn, Timo (2016) : Going from Bad to Worse: Adaptation to Poor Health, Health Spending, Longevity, and the Value of Life, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2016: Demographischer Wandel - Session: Newborns, Mortality and Longevity, No. F09-V1, ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft, Kiel und Hamburg

This Version is available at:
http://hdl.handle.net/10419/145571

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Abstract. Unhealthy persons adapt to their bad state of health and persons in bad health are usually happier than estimated by healthy persons. In this paper we investigate how adaptation to a deteriorating state of health affects health spending, life expectancy, and the value of life. We set up a life cycle model in which individuals are subject to physiological aging, calibrate it with data from gerontology, and compare behavior and outcomes of adapting and non-adapting individuals. While adaptation generally increases life-time utility (by about 2 percent), its impact on health behavior and longevity depends crucially on whether individuals are aware of their adaptive behavior, i.e. whether they adapt in a naive or sophisticated way. We also compute the QALY change implied by health shocks and discuss whether and how adaptation influences results and the desirability of positive health innovations.

Keywords: Health, Adaption, Aging, Longevity, Health Care Demand, Value of Life, QALYs.

JEL: D91, J17, J26, I12.

* We would like to thank Carl-Johan Dalgaard, Volker Grossmann, Casper Hansen, Klaus Prettner, and Asger Wingender for discussion and helpful comments.
1. Introduction

From the gerontological viewpoint, the human life cycle can be characterized as the continuous deterioration of physiological fitness. Most human functions and capabilities are in decline from early adulthood onwards (Case and Deaton, 2005; Skirbekk, 2004; Nair, 2005). Human aging, understood as “the intrinsic, cumulative, progressive, and deleterious loss of function that eventually culminates in death” (Arking, 2006), has a deep foundation in evolutionary biology (Fries, 1980; Gavrilov and Gavrilova, 1991; Robson and Kaplan, 2007) and, at the current state of medical technology, it can at best be delayed, but not avoided. So it seems to be fortunate that aging humans are able to adapt to this sad state of affairs. However, at closer inspection, doubts may arise. Couldn’t it be that quick adaptation to worsening health induces us to invest less in health maintenance and repair and thus to live a shorter and perhaps overall unhappier life than we could without adaptation?

Assessing the impact of adaptation on health behavior, longevity, and happiness with the means of lab or field experiments is difficult if not impossible because of the missing counterfactual (i.e. the same individual without the illness). With the help of economic theory and the design of an appropriate computational experiment an assessment is relatively straightforward. In this paper we propose such a computational experiment. We set up a life cycle model of human aging, in which deliberate health investments reduce the speed of aging and thus the age of death, calibrate the model with gerontological data, and compare behavior and outcomes for adapting and non-adapting individuals.

Inspired by the economics and psychology of time preference (Strotz, 1955; Rabin, 1998) we distinguish two types of adaptation: sophisticated types understand how their actual health and health behavior influences their adaptation whereas naive types take the adaptation process as given (as a function of time or age).\footnote{In the original literature these terms were applied to hyperbolical time discounting: sophisticated types were conceptualized as those individuals who understand the time inconsistency or their decisions based on hyperbolic discounting. Here, we focus on adaptation processes and neglect additional problems stemming from inconsistent decision making.} We find, perhaps surprisingly, that naive adaptation is conducive to a healthier and longer life. Sophisticated types, on the other hand, spend less on health and live shorter than otherwise identical non-adapting types. We use these results and compute the implied value of life. We find, again perhaps surprisingly, that both naive and sophisticated types experience about the same life-time utility and that both types experience a
significantly higher life-time utility than non-adapting types. We explain the economic intuition behind these results.

Since the seminal study of Brickman et al. (1978), comparing happiness of paraplegics and lottery winners, the medical and economics literature has provided ample evidence that humans adapt to health problems and rate their happiness or quality of life much higher than predicted by unaffected persons anticipating negative health events (e.g. Wu, 2001; Albrecht and Devlieger, 1999; Riis et al., 2005). This seems to be true for mild nuisances like acne (Baron et al. 2003) as well as for severe disability (Oswald and Powdthavee, 2008). Adaptation after a severe health shock is gradual and perhaps complete. Oswald and Powdthavee (2008) estimate approximately 30 percent (50 percent) hedonic adaptation 3 years after the onset of severe (modest) disability and they could not reject the hypothesis of complete adaptation after 6 years. Using a large panel of individuals observed from 1984 to 2006, Pagan-Rodriguez (2010) finds gradual adaptation to disability and cannot reject the hypothesis of complete adaptation after 7 years.

The observations that healthy persons underestimate the happiness of sick persons and that sick persons believe they would be happier if they had never been sick (Boyd et al., 1990; Riis et al., 2005) indicates that people are not fully aware of there adaptive behavior. It indicates naive rather than sophisticated adaptation. The available evidence suggests also that adaptation to bad health is “genuine” and not driven by an overoptimistic assessment of one’s health and survival probabilities (Wu, 2001) and that the misprediction of healthy people of their adaptive capabilities is hard to explain by focussing illusion (Ubel et al., 2001; Baron et al., 2003). While most studies focus on adaptation after severe health shocks, we are here mostly (but not exclusively) interested in the gradual and progressive decline of health that comes with age. In this context it is interesting to observe that many empirical studies document that aggregate measures of happiness or wellbeing do not decline (by much) over the life cycle (e.g. Costa et al., 1987; Diener and Suh, 1998; Deaton, 2007).

The model that we set up below in order to discuss the effects of adaptation to deteriorating health is particularly suitable for this purpose since it is based on the notion of aging as progressive health deficit accumulation. It is easy to see that the alternative paradigm, the Grossman (1972) model, is less suitable. It is based on health capital accumulation and the assumption that health capital depreciates at a given (potential age-specific) rate $d(t)$ such that individuals with health capital $H(t)$ lose health $d(t)H(t)$ through health depreciation. The health capital
model thus assumes that of two persons of the same age \(t \) the one in better health, i.e. with more health capital \(H(t) \), loses more health in the next period. This counterfactual assumption leads to counterfactual predictions. For example, without further amendments, the health capital model predicts eternal life (Case and Deaton, 2005; Strulik, 2015a) and when death is enforced by design, the model usually predicts that health investments decline in old age and near death (Wagstaff, 1986; Zweifel and Breyer, 1997; Strulik, 2015a). Health capital depreciation also implies that health shocks in early life (or in utero) have a vanishing impact on health in old age while actually the opposite is observed (Almond and Currie, 2011; Case and Deaton, 2005). Most importantly, health capital is a latent variable, unknown to doctors and medical scientists, a fact that confounds any serious calibration of the model. The health deficit model developed by Dalgaard and Strulik (2014a), in contrast, avoids these shortcomings. Due to its gerontological foundation it can be calibrated straightforwardly using the so-called frailty index (Mitnitski et al., 2002a,b). Since the calibration provides no degrees of freedom, the model can be used to assess health issues quantitatively. In the present context it will be used to assess the impact of adaptation on health investment, aging, wellbeing, longevity, quality adjusted life expectancy (QALY), and the value of life.\(^2\)

In a related earlier study, Gjerde et al. (2005) applied the Grossman model to health adaptation. Facing the difficulties entailed by the health capital approach concerning calibration and predictive quality, they presented their study as a first attempt to formalize adaptation processes in a health context. Moreover, they focussed on the apparently less relevant case of sophisticated adaptation. Here, we build on the health deficit model and provide a serious calibration of the model with actual data. This allows us to assess the quantitative importance of health adaptation for experienced utility and the value of life, which in turn allows us to draw conclusions on the quantitative role of adaptation processes in the evaluation of, for example, public health projects.\(^3\)

\(^2\)Earlier quantitative studies using the health deficit model were concerned with the Preston curve (Dalgaard and Strulik, 2014a), the education gradient (Strulik, 2015), and the long-term evolution of the age at retirement (Dalgaard and Strulik, 2012).

\(^3\)Moreover, the specification of the adaptation process differs (mildly) across the studies. Whereas our analysis uses the well-established formulation of adaption according to Ryder and Heal’s (1973) reference stock model, Gjerde et al. (2005) use a more idiosyncratic formulation. The two formulations, however, are structurally similar, with a single parameter governing the speed of adjustment of a health reference stock (or subjective health, respectively) to changing actual health.
The paper is organized as follows. Section 2 presents a simple deterministic model of health deficit accumulation for 3 different types of individuals: non-adapting, naive, and sophisticated. In this simple model the only life cycle decision is how to spend a given income stream on consumption and health care. We calibrate the model for a reference U.S. American (a white 20 year old male in the year 2000) and evaluate how adaptive behavior affects health expenditure, longevity, and the value of life. We discuss the robustness of these results regarding a larger weight of health in utility and a higher speed of adaptation. We also discuss how results change with improving medical technology and increasing income. In Section 3 we discuss the adaptation process after a severe health shock as well as the impact of positive health interventions. We compute the implied change of quality adjusted life years (QALYs) with and without adaptation, whereby the former could be interpreted as the actual QALY change experienced by patients and the latter as the QALY change expected by un-treated individuals. In Section 4 we extend the model to uncertain survival and a savings decision and show that all results from the basic model are preserved qualitatively with only minor quantitative changes. Section 5 concludes.

2. The Basic Model

2.1. Setup. Consider an individual who derives utility from consumption and from being in good health. The actual (objective) state of health is measured by the accumulated health deficits D. By subjectively evaluating the state of health the individual compares actual health with a reference state of health R. Utility declines in the number of accumulated health deficits and rises in the state of reference health. For non-adapting individuals the reference state of health is a given constant (the state of best health). For adapting individuals, the reference state of health adjusts to the actual state of health according to

$$\frac{dR}{dt} ≡ \dot{R} = \theta(D - R), \quad (1)$$

in which t is age and θ controls the speed of adaptation.4

We normalize initial age to zero (which will be age 20 in the calibration). In order to flesh out the basic mechanism as clearly as possible, we assume for the benchmark model that survival is deterministic. Following Dalgaard and Strulik (2014a), individuals accumulate health deficits

4Our treatment of adaptation as adjusting reference stock is inspired by the modeling of gradual adaption and habit formation in macroeconomics and economic growth (Ryder and Heal, 1973; Carroll et al. 2000).
as they age in the following way:

\[
\dot{D} = \mu(D - Ah^\gamma - a),
\]

in which \(\mu\) is the “natural” rate of aging. Health deficit accumulation can be slowed down by health expenditure \(h\). The parameters \(A\) and \(\gamma\) control the state of medical technology \(A > 0\), \(0 < \gamma < 1\), and \(a\) captures environmental influences. As shown in Dalgaard and Strulik (2014a) the law of health deficit accumulation has a deep foundation in gerontology and its parameters can be calibrated using the so called frailty index.\(^5\)

Following Finkelstein et al. (2013) we consider the health state as a shifter of the utility function of consumption \(\hat{u}(c)\) such that both utility and marginal utility of consumption are negatively affected by bad health. Specifically we assume that instantaneous utility is given by

\[
u(c, D, R) = \left(\frac{R}{D}\right)^{\alpha} \cdot \hat{u}(c), \quad \text{with } \hat{u}(c) = \begin{cases}
\frac{c^{1-\sigma} - 1}{1-\sigma} & \text{for } \sigma \neq 1 \\
\log(c) & \text{for } \sigma = 1.
\end{cases}
\]

The parameter \(\alpha\) controls by how much an additional health deficit shifts the utility function down. The variable \(R\) captures the effect of adaptation. In case of spontaneous and perfect adaptation, \(R = D\) at all ages and utility remains unaffected by deteriorating health.

By allocating expenditure for consumption \(c\) and health care \(h\) the individual maximizes utility over his or her remaining life-time. For simplicity we consider a constant flow of income over the life time. This simple setup is helpful for an understanding how health adaptation affects behavior. In Section 3 we introduce capital income and a savings decision. The budget constraint is given by

\[
w = c + ph,
\]

in which \(w\) is the flow of income and \(p\) is the relative price of health care. The individual takes income and price parametrically. Summarizing, the individual maximizes life-time utility

\[
V = \int_0^T e^{-\rho t} u(c, D, R)dt,
\]

\(^5\) Mitnitski et al. (2002a) demonstrate that there is a strong exponential association of health deficit accumulation with age, \(D(t) = E + Be^{\mu t}\), that is, in flow form, \(\dot{D}(t) = \mu(D(t) - E)\). The parameters are estimated with great precision from gerontological data. Dalgaard and Strulik (2014a) stipulate that health investments influence \(E\). For health deficit accumulation to work empirically, the cross-section estimate for \(E\) should thus be interpreted as the average level in the sample in question, see Dalgaard and Strulik (2014a) for details.
subject to (1)–(4), the initial conditions $D(0) = D_0$, $R(0) = R_0$ and terminal health deficits $D(T) = \bar{D}$. The parameter ρ is the discount rate of future utility and T is the age of death. This is a deterministic free terminal value problem. Individuals control through their expenditure plan the accumulation of health deficits and therewith their age of death, which occurs when \bar{D} health deficits have been accumulated. The main question here is whether adapting individuals spend more or less on health and thus expire sooner or later. In Section 3 below we extend the model towards imperfect control by assuming that the stock of accumulated health deficits affects “only” the probability of survival.

The Hamiltonian associated with problem (1)–(5) reads

$$H = u(w - ph, D, R) + \lambda_D \mu(D - Ah^\gamma - a) + \lambda_R \theta(D - R),$$

in which λ_D and λ_R are the co-state variables (shadow prices) of health deficits and reference health, respectively. We distinguish 3 types of individuals:

- **non-adapting (benchmark):** $\theta = 0$
- **naive:** $\theta > 0$, $\lambda_R = 0$
- **sophisticated:** $\theta > 0$, $\lambda_R \geq 0$.

For non-adapting types, the reference stock does not change with changing health, i.e. $\theta = 0$ and therefore $R \equiv R(0)$ holds. For naive types, the reference stock changes but individuals fail to take the impact of their health status on the reference stock into account in their calculus. This means that naive individuals anticipate that R increases when they age and thus, $\theta > 0$ holds. However, they do not take into account that their health status D affects the reference stock, i.e. they act as if R changes exogenously. Consequently, the shadow price of the reference stock is zero in their calculus, $\lambda_R = 0$. Sophisticated types, in contrast, realize their adaptive behavior and take it into account in their consumption and health spending decision and therefore $\theta > 0$ and $\lambda_R \geq 0$ holds.

The optimal solution fulfills the first order conditions

$$p \left(\frac{R}{D} \right)^{\alpha} c^{-\sigma} = -\lambda_D \mu A\gamma h^{\gamma - 1}$$

$$- \alpha \left(\frac{R}{D} \right)^{\alpha} \frac{\tilde{u}(c)}{D} + \lambda_D \mu + \lambda_R \theta = \lambda_D \rho - \dot{\lambda}_D$$

$$\alpha \left(\frac{R}{D} \right)^{\alpha} \frac{\tilde{u}(c)}{R} - \lambda_R \theta = \lambda_R \rho - \dot{\lambda}_R.$$
Condition (6) requires that the marginal benefit from an additional unit of health expenditure on the right hand side equals the marginal costs in terms of foregone utility from consumption on the left hand side. To see that, notice that health deficits are a “bad” such that the associated shadow price λ_D is negative. An additional unit of health expenditure reduces health deficits by $\mu A\gamma h^{\gamma - 1}$ (compared to laissez faire), the utility of which is evaluated by λ_D, i.e. the contribution of an additional health deficit to the objective function. Condition (7) requires that the shadow prices of deficits changes according to the contribution of an additional unit of D to the objective function. For non-adapting as well as for naive types the term $\lambda_R \theta$ equals zero, albeit for different reasons. For non-adapting types the reference stock is constant and hence $\theta = 0$, while for naive types, the reference stock has no impact on the shadow price of health deficits, and hence $\lambda_R = 0$. Condition (8) applies only to sophisticated types and requires that the shadow price of the reference stock changes according to the contribution of an additional unit of R to the objective function. Additionally, the optimal solution fulfils the terminal condition $H(T) = 0$ for all types, and the solution for sophisticated types additionally fulfils the terminal condition $\lambda_R(T) = 0$.

2.2. **Calibration.** The solution solves the dynamic system (1), (2), (7), and (8), taken into account the static equations (4) and (6) and the initial and terminal conditions. In order to obtain the numerical solution we specify the parameters of the model. Since the biological parameters are estimated with high precision, there are no degrees of freedom. We take the estimate $\mu = 0.043$ from Mitnitski et al. (2002a), implying that aging individuals develop 4.3 percent more health deficits per year. From Mitnitski et al.’s (2002a) regression analysis we back out $D(0) = 0.0274$ as the relevant initial value for a 20 years old and $D = 0.1 55.5$ years later; the average life-expectancy of a 20 year old U.S. American male in the year 2000 was 55.5 years (i.e. death at 75.5; NVSS, 2012). Following Dalgaard and Strulik (2014a) we identify a by assuming that before 1900 the role of technology in the repair of health deficits of adults was virtually zero. Matching the life expectancy of a 20 years old U.S. American in 1900 (which was 42 years; NCHS, 1980) we estimate $a = 0.013$. Secondly, we set $\gamma = 0.19$ as estimated by Dalgaard and Strulik (2014a), normalize $p = 1$, set w to 35320 (the average annual pay for U.S. workers in the year 2000; BLS, 2011), and adjust A such that the reference individual (a non-adapting U.S. American) expires at age 75.5. This provides the estimate $A = 0.0014$.

7
Turning towards the utility function we begin with a modest impact of health on utility by setting $\alpha = 0.1$. This means that an unexpected increase of health deficits from D_0 by one standard deviation reduces the marginal utility from consumption by 5.4 percent.\footnote{According to Mitnitski et al. (2001) the standard deviation of most health deficits in the frailty index is around $0.4/\tilde{\mu}$, in which $\tilde{\mu}$ is the mean of the particular deficit. The mean frailty index from (1) for individuals between 19 and 79 years is about 0.05 with a standard deviation of about 0.02.} This value is below the mean estimate of Finkelstein et al. (2013) who find that a one-standard deviation increase of chronic diseases is associated with a 11% decline in the marginal utility of consumption (with a 95% confidence band from 2.7% to 16.8%). We later consider a larger impact of health on marginal utility. Finally we set σ such that all types of individuals on average spend 13.1 percent of their income on health. This value matches the health expenditure share of GDP in the U.S. in the year 2000 (World Bank, 2015). It leads to the estimate $\sigma = 1.05$, a value that accords well with recent estimates of the intertemporal elasticity of substitution, suggesting that the “true” value of σ is probably close to unity (e.g. Chetty et al., 2006).

For the benchmark run we set the speed of adjustment of the health reference stock θ to 0.3. This means that about 60% of an initial gap between actual health and reference health are closed after 3 years and 82 percent are closed after 7 years. This value is a compromise between the values suggested by empirical estimates on the speed of health adaptation (Wu, 2001; Oswald and Powdthavee, 2008; Pagan-Rodriguez, 2010). We consider faster adjustment in the sensitivity analysis. For the benchmark run we set the initial reference stock R_0 to D_0, implying the normalizing assumption that utility from consumption for all three types of individuals is unaffected by health at the initial state of best health.

2.3. Results. Figure 1 shows results for the age trajectories of health expenditure, health deficits, and instantaneous utility for the basic run.\footnote{A description of the solution method can be found in the Appendix.} Blue (solid) lines represent the non-adapting types, red (dashed) lines represent naive types, and green (dash-dotted) lines represent sophisticated types. Instantaneous utility is measured relative to initial utility of non-adapting individuals. Health expenditure is increasing with age and highest for the oldest individuals, in line with the empirical observation (e.g. Meara et al., 2004) and in contrast to the predictions by the Grossman model with or without adaptive behavior (Grossman, 1972; Gjerde et al., 2005). The perhaps most surprising result is that naive types spend the most on health, live the healthiest life, and die latest. Total discounted life time spending on health of naive
types is almost 8 percent above that of non-adaptive types. They die at age 75.8, i.e. about 3 months later than non-adaptive types. The reason is, that naive types live a happier life than non-adapting types. With aging and health deterioration, utility of non-adaptive types declines relatively quickly whereas adaptive types manage to live a happier life by adjusting their health ambitions to the deteriorating health level. Since life is more worthwhile at any point of time, naive types spend more on health in order to live longer and outlive non-adapting types.

Figure 1: Health Adaptation: Benchmark Run

Sophisticated types, like naive types, benefit in their life time utility from adjusting health reference stocks. In contrast to naive types, however, they understand that they will adapt to deteriorating health and thus spend less on health during most of their life. Total discounted life time spending on health of sophisticated types is more than 24 percent below that of naive types and more than 18 percent below that of non-adaptive types. Consequently their health declines fastest and they live the shortest life. They die at age 74.8, i.e. a year before naive types and 7 months before non-adaptive types. Yet, sophisticated types enjoy life more. Spending less on health allows them to spend more on consumption such that instantaneous utility is above the trajectory of non-adaptive types and, except of the time near death, also above the utility of naive types.8

Life time utility \(V \) of sophisticated types exceeds that of non-adaptive types by 2 percent and that of naive types by 0.05 percent. When we use the same base utility \(u_c(0) \) across individuals, these figures can also be interpreted as relative differences in the value of life, a measure that

8 In the present context, the original Dalgaard and Strulik (2014a) model can be conceptualized as covering the special case of infinite speed of adaptation such that \(R = D \) at all times. It predicts that instantaneous utility is constant over the life time since consumption is constant (for \(r = \rho \)) and health matters only for longevity but not for the experience of current utility.
assigns a monetary value to life time utility (see below). Perhaps surprisingly, whether adapting individuals understand their adaptive behavior or not makes little difference for life-time utility although it affects health behavior quite strongly.

We next analyze in Table 1 the sensitivity of results. These experiments can also be seen as numerical results on the comparative statics of the model. The table shows for naive and sophisticated types the deviation of the solution from non-adaptive types in percent. Results are shown for discounted life time health expenditure, the length of life, and the life-time utility. The first row re-iterates results from the benchmark run. The second row considers a higher weight of health in utility. A value of $\alpha = 0.2$ means that marginal utility from consumption declines by 10.5 percent when health deficits increase by one standard deviation, a value close to Finkelstein et al.’s point estimate. Naturally, the behavior and outcomes for adaptive types differ more strongly from that for non-adaptive types when health matters more. Naive types spend 12 percent more on health and live almost one percent longer than non-adaptive types while sophisticated types spend 28 percent less on health and their live expectancy declines by more than 2 percent. Again the value of life for both adapting types is similar and about 4 percent larger than for non-adaptive types.

Table 1: Sensitivity Analysis

<table>
<thead>
<tr>
<th>case</th>
<th>life time h</th>
<th>life expect.</th>
<th>welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>naive sophis</td>
<td>naive sophis</td>
<td>naive sophis</td>
</tr>
<tr>
<td>1) benchmark</td>
<td>7.67</td>
<td>0.53</td>
<td>2.09</td>
</tr>
<tr>
<td>2) $\alpha = 0.2$</td>
<td>12.17</td>
<td>0.88</td>
<td>3.79</td>
</tr>
<tr>
<td>3) $\theta = 0.5$</td>
<td>7.87</td>
<td>0.54</td>
<td>2.26</td>
</tr>
<tr>
<td>4) $\Delta w = 50%$</td>
<td>7.31</td>
<td>0.61</td>
<td>1.96</td>
</tr>
<tr>
<td>5) $\Delta A = 50%$</td>
<td>5.34</td>
<td>1.35</td>
<td>1.18</td>
</tr>
</tbody>
</table>

All values as deviation in percent from the optimal solution for a non-adapting individual; life time h is the discounted life time expenditure on health; life expect. is life expectancy at 20; welfare is life time utility as in (5); $A = 0.0014$, $\sigma = 1.05$.

The third row of Table 1 considers a higher speed of adjustment for reference health. When $\theta = 0.5$, 78 percent of the initial gap between health and reference health are closed after 3 years (97 percent after 7 years). Despite this (implausibly) high speed, results deviate only slightly from the benchmark run. Apparently, results are relatively insensitive to the speed of adjustment. It is the feature of adjustment as such and not so much the speed at which it happens that matters. Case 4) demonstrates that results are largely insensitive to income variation. Of
course, everybody lives substantially longer given the higher income, but relatively speaking, results differ only marginally from the benchmark run.

In the fifth row of Table 1 we consider the impact of medical advances. An increase of A by 50 percent would be accomplished, for example, if medical technology improves by 1 percent per year for 40 years. The improving health technology has a very powerful impact on the age at death, which raises by 18.6 years to 94.1 for non-adaptive types. For adaptive types, technological progress increases the deviation of life expectancy from that of non-adaptive types but it reduces the deviation in experienced welfare. The dominating effect appears to be the overall increasing life expectancy and not so much the increasing differences between individuals. Naive types live 1.3 percent longer and sophisticated types 5.5 percent shorter than non-adaptive types but the excess value of life gained from adaptation reduces to somewhat above 1 percent for both adaptive types.

3. Adapting to Negative Health Shocks and Positive Health Interventions

In order to discuss adaptation to a severe health shock we assume that D_0 increases unexpectedly by 50%, i.e. without adjustment of R_0, which is kept at benchmark level. Although the initial deviation of health deficits (of 1.37 percentage points) from benchmark could be regarded as modest, it has severe impact on successive health deficit accumulation such that individuals die more than 20 years earlier (at age 51.2 in the case of non-adaptive types). The experiment thus represents a chronic, gradually disabling, and eventually deadly disease like, for example Huntington disease (Oster et al., 2013).

Life-time trajectories are shown in Figure 2. As a response to the bad health diagnosis, all individuals increase health expenditure. In particular sophisticated individuals increase health expenditure quite strongly, implying that their life expectancy deviates now relatively little from that of non-adapting individuals. Despite the small differences in longevity, adaptive types are able to experience a higher value life, about 6 percent above that of non-adaptive types. The panel on the right hand side of Figure 2 shows why. It depicts the utility of the 3 types relative to initial benchmark utility, i.e. relative to utility before the health shock. While utility drops down initially by about the same amount for all 3 types, utility of adaptive types recovers quickly despite of further deteriorating health and it returns to almost benchmark utility at age 30 (10 years after the health shock).
We next use the model in order to assess the impact of health shocks on quality adjusted life years (QALY) and the value of life. The QALY measures an individual’s length of life weighted by a valuation of the health-related quality of life. QALYs are an important instrument in the cost benefit analysis of public health projects and one important question is on whose preferences their computation should be based (Dolan, 2000). While in practice the quality of the possible states of health (the QALY weights) are evaluated by the general public, scholars debate whether it would be preferable to use instead the evaluation of the persons who are actually experiencing a specific state of health, i.e. the patients who would benefit from a state-specific health intervention (e.g. Dolan, 2000; Menzel et al., 2002). The use of patient preferences, however, appears less compelling in the presence of adaptation. Since patients have largely adapted to their condition, they may rate their situation only insignificantly lower than the state of best health (e.g. Nord et al., 2009). The question arises whether adaption should be taken into account in QALY computation and, on a more general level, whether QALYs provide a reasonable proxy to assess the actual welfare change experienced by patients after health interventions.

In order to illustrate these issues with the model at hand we first compute the QALY according the conventional method. The corresponding QALY weight for a specific state with \(D \) health deficits is given by \((D_0/D)^\alpha \), i.e. the evaluation of these health deficits relative to the state of best health \(D_0 \). The QALY is then the weighted “sum” of life years, i.e. \(\int_t^T [D_0/D(\tau - t)]^\alpha d\tau \). In Table 2, the first two triplets of columns show life expectancy at 20 and the conventional QALY for our calibrated benchmark individuals. Since the conventional QALY ignores adaptation, the \(QALY_{con} \) numbers use the same weight \((D_0/D)^\alpha \), irrespective of the type of the individual.
The largest QALY is obtained for naive individuals because they live the longest life (see the discussion above).

The third triplet of columns in Table 2 shows QALYs when the adaptation process is taken into account. Here we modified the QALY weights for adapting and non-adapting types to \((R/D)^\alpha\), in which \(R\) is the adjusting reference state of health. The QALY is thus obtained as \(\int_T^t [R(\tau - t)/D(\tau - t)]^\alpha d\tau\). Due to adaptation both naive and sophisticated types experience now a substantially greater QALY, which comes close to actual life years, reported in the first triple of columns. Most importantly, the ranking in terms of QALYs changes with the method of computation, from naive–non-adapting–sophisticated according to the conventional measure to naive-sophisticated–non-adapting when adaptation to deteriorating health is taken into account.

Another remarkable observation is that the sophisticated type is never leading the ranking. The QALYs, irrespective of method, suggest that being sophisticated is a disadvantage in terms of quality adjusted life years. The QALY computation, however, ignores that, at any instant of their life, sophisticated types experience the highest utility from consumption. To consider this aspect in our analysis, we report the value of life in the final triplets of columns in Table 2. The value of life is the monetary expression of aggregate utility experienced during life whereby instantaneous utility is converted by the unit value of an “util”, i.e. by initial marginal utility, such that \(VOL = \int_0^T e^{-\rho \tau} u[c(\tau), D(\tau), R(\tau)] d\tau / u_c[c(0), D(0), R(0)]\). The benchmark calibration predicts a VOL at age 20 of about $6.5 million for the non-adapting type and a VOL of about $7 million for the sophisticated type. In terms of VOL the ranking of the three types is as expected: the sophisticated type comes first and naive and non-adapting types follow. In order of magnitude the VOL figures of Table 2 correspond well with Murphy and Topel’s (2006, Fig. 3) estimate of a VOL of $7 million at age 25.

In the center part of Table 2 we consider a larger impact of the state of health on utility by setting \(\alpha = 2\) (and re-estimating \(\sigma = 1.015\) to match the health expenditure data). Since health plays a larger role, the model predicts a lower VOL and lower QALYs, irrespective of the method of computation. The reversal in the ranking of individuals, however is preserved. Sophisticated types receive the lowest conventional QALY, the second highest new QALY, and the highest VOL. As shown in the bottom part of Table 2, these observations are also robust against variation of the speed at which the reference stock of health adjusts (the speed of adaptation).
Table 2: Results: QALYs, VOLs, and Health Shocks

<table>
<thead>
<tr>
<th>case</th>
<th>life expect. (in years)</th>
<th>QALY<sub>con</sub> (in years)</th>
<th>QALY<sub>new</sub> (in years)</th>
<th>VOL (in Mio $)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>non naive sophis 55.50</td>
<td>non naive sophis 55.80</td>
<td>non naive sophis 54.79</td>
<td>non naive sophis 52.46</td>
</tr>
<tr>
<td>1) benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) ∆<sub>D<sub>20</sub></sub> = +0.5 * <sub>D</sub><sub>0</sub></td>
<td>-24.27</td>
<td>-24.49</td>
<td>-23.58</td>
<td>-23.81</td>
</tr>
<tr>
<td>3) ∆<sub>D<sub>65</sub></sub> = +0.5 * <sub>D</sub><sub>0</sub></td>
<td>-5.53</td>
<td>-5.64</td>
<td>-5.41</td>
<td>-4.94</td>
</tr>
<tr>
<td>4) ∆<sub>D<sub>20</sub></sub> = -0.05 * <sub>D</sub><sub>0</sub></td>
<td>4.73</td>
<td>4.80</td>
<td>4.36</td>
<td>4.75</td>
</tr>
<tr>
<td>5) ∆<sub>D<sub>65</sub></sub> = -0.35 * <sub>D</sub><sub>0</sub></td>
<td>4.86</td>
<td>4.86</td>
<td>4.64</td>
<td>4.43</td>
</tr>
</tbody>
</table>

Life expect. is life expectancy at 20. QALY_{con} are quality adjusted life years neglecting adaptation. QALY_{new} are quality adjusted life years taking adaptation to deteriorating health into account. VOL is the value of life at age 20. In case of α = 0.2, we estimate σ = 1.015.

The QALYs associated with the severe health shock discussed earlier are reported in line 2 of Table 2. When individuals experience an exogenous increase of health deficits by 50 percent at age 20, their life time shortens by about 25 years. The impact on longevity is largest for naive types, second largest for non-adapting types, and lowest for sophisticated types. This ordering is preserved when life years are quality adjusted, irrespective of whether adaptation is taken into account or not. The results for QALY_{con} can be interpreted as the QALY reported by individuals imagining but not experiencing the shock (the general public) while the QALY_{new} provides the actually experienced QALY (the patients). The good news here is that the quantitative adjustment of QALYs for adaptation is relatively small (in line with Groot, 2000) and that the ranking of types does not vary across methods.

These results, however, are not robust. In line 3 of Table 2 we consider a health shock of the same magnitude experienced at age 65. Here, sophisticated types experience the lowest reduction in quality adjusted life years according to the conventional method and the second highest reduction when adaptation is taken into account. Yet another ranking of types is obtained with respect to the value of life. When the bad health shock is experienced at age 20, non-adapting types suffer the greatest loss of VOL (about $1 million). This perhaps expected
outcome is reversed when the bad health shock is experienced at age 65 where sophisticated types experience the greatest loss of VOL (about $100,000). The intuition for the reversal is that the shock happens sufficiently close to death such that there is insufficient time left to adapt to the worsening situation. At the same time, sophisticated types response strongest with increasing health expenditure (see above). This strongly lowers consumption at every instant after the shock, which is the dominating effect on the VOL when there is insufficient time until death for adaptation to take hold. As shown in the center and bottom part of the table, these conclusion are robust against varying importance of health in utility and varying speed of adaptation.

Next, with case 3 and 4, we consider positive health shocks. Case 4) reduces health deficits at age 20 by 5 percent. Since this health intervention is experienced early in life, it has a quite significant impact on subsequent health and on longevity. Life expectancy increases by about 4.7 years and, again, the largest improvement is experienced by naive types. The ranking is preserved for quality-adjusted life years, with non-adapting and sophisticated types on second and third place, respectively. Sophisticated types, however, experience again the largest change in VOL. The conclusion here would be that using conventional QALYs (of non-patients) does not bias the assessment of the health intervention vis a vis the QALY of patients (taking adaptation into account). Nevertheless, ignoring adaption overestimates largely the welfare improvements of the intervention. The predicted change in VOL is about 1/3 larger when adaptation is ignored.

In line 5 we investigate a large positive health innovation at age 65. We have deliberately chosen the size of the shock (of 35 percent of D_0) such that the gain in longevity is about the same as for the smaller shock in young age, namely around 4.7 years. Going from $QALY_{con}$ to $QALY_{new}$ we see that the reversal in rankings across types emerges again. More importantly, comparing case 5 and 4, we see also a reversal across health interventions. Suppose a choice has to be made between two public health project (of the same cost); one benefiting young persons by reducing their health deficits by 5 percent, the other benefitting old persons by reducing their deficits by 35 percent. Using the conventional QALY (based on preferences of non-patients) we would prefer the young-patients project (4.82 > 4.45) whereas using the new QALY (based on preferences of the patients) we would prefer to invest in the old-patients project (4.88 > 4.81). The reason for the reversal is that adaptation plays a dominant role for the intervention early
in life but a much smaller role for the late-life intervention because, in the latter case, there is not sufficient life time left for adaptation to take hold.

The conclusion is that, although the size of the QALYs does not differ by much with respect to the computational method (with or without adaptation), it may well be that the health practitioners’ nightmare comes true: the identification of the most preferred project depends on the choice of whose preferences are used for QALY computation. As seen from the center part of the table, for this specific set of health innovations, the reversal is not obtained when the state of health affects utility more strongly (for $\alpha = 0.2$). This does not mean, however, that the reversal disappears in general. Actually, we can find for any weight of health in the utility function a set of health innovations that generate a reversal. Another conclusion from the QALY analysis is that it is not true, as sometimes suspected, that (full) adaptation of patients to their condition implies that they would not appreciate a public health intervention improving their health (see, for example, the discussion in Nord, 2009). In case of naive adaptation, the opposite is true. In terms of QALYs, irrespective of their computation, naively adapting persons benefit more from a health intervention than non-adapting persons. Firstly, naive persons experience a positive surprise in their health condition. Secondly, and more importantly, they fail to take into account that they would adapt to their better health and continue to invest strongly in health such that they live longer than non-adapting types. This behavior increases their QALY further at the extensive margin, in the life-years dimension.

4. Model Extensions

4.1. Uncertain Survival. We next consider robustness of results with respect to extending the model to uncertain survival. In so doing, we utilize the fraction of health deficits accumulated by a person in order to predict his or her survival probability. This approach captures well the biological approach to aging, which aspires to replace age as a proximate determinant of death by the loss of bodily function as a deep determinant (“Only if we can substitute the operation of the actual physiological mechanism for time we have a firm idea of what we are talking about.”, Arking, 2006, p. 10). As in Strulik (2015b), we assume that the unconditional survival probability at age t, denoted by $S(t)$, depends on the accumulated health deficits at that age, we then impose a particular parametrization of this function, feed in the estimates
from Mitnitski et al. (2002a) on the association between age and health deficits, and predict the association of age and survival, which is confronted with estimates of $S(t)$ from life tables.

A parsimonious representation of the survival function is given by the logistic function:

$$S(D) = \frac{1 + \omega}{1 + \omega e^{\xi D}}.$$ \hspace{1cm} (9)

The survival probability is unity at the state of best health ($D = 0$) and declines with first increasing and then decreasing rate as more health deficits are accumulated. The panel on the left hand side of Figure 3 shows the association between D and S implied by (9) for $\omega = 0.02$ and $\xi = 40$. The middle panel shows the association between age and accumulated deficits estimated by Mitnitski et al. (2002a) for 19-75 years old Canadian men ($R^2 = 0.95$). When we feed these data into the $S(D(t))$ function, we get the “reduced form”, $S(t)$, which shows survival as a function of age. The implied functional relationship is shown on the right hand side of Figure 3. Stars in the panel on the right hand side indicate the survival probability estimated from life tables for U.S. American men 1975-1999, taken from Strulik and Vollmer (2013). The model’s prediction fits the data reasonably well. The model predicts a life expectancy of 55.3 for a 20 years old (death at 75.3) while it was actually 55.5 for our reference American in the year 2000 (see Section 3).

Figure 3: Health-Dependent Survival and Survival by Age

$S(t)$ is the unconditional probability to survive to age t. Left: assumed function $S(D)$. Middle: Estimated association $D(t)$ (Mitnitski et al., 2002a). Right: Predicted (line) and estimated (stars) association between age and survival probability (estimate from Strulik and Vollmer (2013). Implied life expectancy at 20: 55.3 years.

Facing uncertain death, rational individuals calculate the expected utility from life-time consumption by multiplying the instantaneous utility experienced at age t with the probability to survive to age t. Following Kamien and Schwartz (1980, Section 9, Part I), the present value of expected utility experienced over the life cycle can then be represented as
\[\int_0^T S(D)e^{-\rho t} u(c, D, R) dt, \] which replaces (5). This approach implies that individuals assess their health and its implications for survival correctly, the only potential mistake that they make regards life time utility due to failed anticipation of adaptation to deteriorating health. This notion captures in a stylized way the evidence cited in the Introduction, which finds little support for the hypothesis that the high happiness of sick individuals could be explained by their wrong assessment of their actual state of health.

Everything else is kept from the simple model such that the Hamiltonian associated with the maximization problem becomes

\[H = S(D)u(w - ph, D, R) + \lambda_D \mu(D - Ah^\gamma - a) + \lambda_R \theta(D - R), \]

and the former first order conditions (6)–(8) modify to

\[pS(D) \left(\frac{R}{D} \right)^\alpha c^{-\sigma} = -\lambda_D \mu A\gamma h^{\gamma-1} \]

\[\left(S'(D) - \alpha \frac{S(D)}{D} \right) \left(\frac{R}{D} \right)^\alpha \tilde{u}(c) + \lambda_D \mu + \lambda_R \theta = \lambda_D \rho - \dot{\lambda}_D \]

\[\alpha S(D) \left(\frac{R}{D} \right)^\alpha \frac{\tilde{u}(c)}{R} - \lambda_R \theta = \lambda_R \rho - \dot{\lambda}_R \]

with \(S(D) \) from (9).

Table 3: Results: Uncertain Survival

<table>
<thead>
<tr>
<th>case</th>
<th>life time (h)</th>
<th>life expect.</th>
<th>welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>naive sophis naive sophis naive sophis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) benchmark</td>
<td>6.12</td>
<td>-14.51</td>
<td>0.44</td>
</tr>
<tr>
<td>2) (\alpha = 0.2)</td>
<td>10.19</td>
<td>-22.88</td>
<td>0.77</td>
</tr>
<tr>
<td>3) (\theta = 0.5)</td>
<td>6.30</td>
<td>-15.97</td>
<td>0.45</td>
</tr>
<tr>
<td>4) (\Delta w = 50%)</td>
<td>5.80</td>
<td>-15.00</td>
<td>0.51</td>
</tr>
<tr>
<td>5) (\Delta A = 50%)</td>
<td>3.73</td>
<td>-18.91</td>
<td>1.31</td>
</tr>
</tbody>
</table>

All values as deviation in percent from the optimal solution for a non-adapting individual; life time \(h \) is the discounted life time expenditure on health; life expect. is life expectancy at 20; welfare is life time utility as in (5); \(A = 0.00146, \sigma = 1.0 \). Other Parameters as for Table 1.

Matching the data for a 20 years old U.S. American man, as described in Section 2 leads to mild adjustments of the power of medical technology (now \(A = 0.00146 \)) and the curvature of the utility function (now \(\sigma = 1.0 \)). All other parameters are kept from the simple model. Additionally, we have \(\omega = 0.02 \) and \(\xi = 40 \), as estimated with the help of Figure 3. Table 3 reports results for health spending, life expectancy, and welfare in the same style as Table 1 for the simple model. The most salient feature is that all results from the simple model are preserved. The difference between outcomes for adapting and non-adapting types are somewhat smaller,
for both naive and sophisticated types, and across all computational experiments. Overall we confirm the observation of Strulik (2015b), made in the context of no adaptation, that including uncertain survival adds more realism (and complexity) but changes outcomes and predictions only marginally.

4.2. **Extension: Life Cycle Savings.** We next introduce an endogenous savings decision. This allows individuals to re-allocate funds for consumption or health care over time.\(^9\) The budget constraint then becomes

\[\dot{k} = w + rk - c - ph, \]

in which \(r\) is the interest rate and \(k\) are assets. Temporarily we return to the deterministic model. For the benchmark run we assume that there is neither inheritance nor bequest, such that \(k(0) = k_0, k(T) = \bar{k}\). Individuals maximize life time utility (5) subject to (1)–(3) and (13) and boundary conditions for health deficits and assets.

From the first order conditions we obtain the modified Ramsey rule:

\[\frac{\dot{c}}{c} = \frac{r - \rho + \alpha \left(\frac{\dot{R}}{R} - \frac{\dot{D}}{D} \right)}{\sigma}. \]

Notice that the standard Ramsey rule is obtained without health in the utility function (for \(\alpha = 0\)). With health in the utility function but without adaptation we observe a tendency for consumption to decline, in particular in old age when \(\dot{D}/D\) is large.\(^10\) Adaptation tends to neutralize this effect. For the special case of spontaneous adaptation (i.e. \(R = D\)) the standard Ramsey rule re-emerges.

Moreover, we obtain from the first order conditions:

\[\frac{\dot{h}}{h} = \frac{1}{1 - \gamma} \left(r - \rho + \frac{\dot{\lambda}_D}{\lambda_D} \right), \]

\[\frac{\dot{\lambda}_D}{\lambda_D} = \rho - \mu - \frac{\mu \gamma A h^{\gamma - 1} c^\sigma}{p} \left[\alpha \frac{\bar{u}(c)}{D} - \lambda_R \theta \left(\frac{R}{D} \right)^{-\alpha} \right]. \]

For the special case when health does not matter for utility (\(\alpha = \theta = 0\)), we obtain the health Euler equation of Dalgaard and Strulik (2014a), according to which the age-profile of health care

\(^9\)Most importantly, since individuals base their optimization calculus on permanent income, the solution would not change by the introduction of an exogenous age of retirement or a more realistic hump-shaped age-income profile (as long as it provides the same present value of life time income).

\(^10\)This way deteriorating health may motivate a hump-shaped age-profile of consumption, see Strulik (2015c).
expenditure is fully determined by the relative size of the interest rate r and the rate of aging $\mu (\dot{\lambda}_D / \lambda_D = \rho - \mu)$. The health Euler equation is very intuitive: if the interest rate exceeds the rate of aging, it is desirable to save for health investments later in life (see Dalgaard and Strulik, 2014a, for details). Taking into account that health matters for instantaneous utility modifies this result. As shown in (16), the growth rate of the shadow price for health deficits declines for non-adapting and naive individuals (for $\alpha > 0$ and $\lambda_R = 0$), implying that health expenditure grows at a lower rate than estimated by Dalgaard and Strulik (2014a). For sophisticated types (for $\lambda_R > 0$), on the other hand, the model predicts higher expenditure growth compared to non-adaptive and naive types. These results are intuitively plausible. For non-adapting and naive types, the health complementarity with consumption is all that matters. They expect that consumption will provide less utility in a bad state of health (i.e. in old age) and thus spend already relatively much on health early in life in order to delay aging. Sophisticated types, in contrast, understand their adaptation to deteriorating health and thus allocate less funds to health when they are young.

Figure 4: Health Adaptation: Savings

Blue (solid) lines: non-adaptive types. Red (dashed) lines: naive types. Green (dash-dotted) lines: sophisticated types. Utility is instantaneous utility relative to initial utility of non-adapting individual.
The life cycle trajectories for the three types are shown in Figure 4. The upper-left panel confirms the inference from the first order conditions. Sophisticated types prefer a much steeper age-profile of health expenditure. The lower left panel shows the interesting implications for consumption. For non adapting types consumption deteriorates continuously during the lifetime due to the health-consumption complementarity. As evidenced in the lower right panel, it is optimal for non-adapting types to go into debt early life in order to finance the desired high level of consumption when in good health.

Adaptation, in contrast, leads to a much more balanced age-consumption profile. It is also interesting to see that sophisticated types prefer a higher consumption level at any given age. Naive types spend too much for health expenditure early in life because they fail to understand their adaptation to deteriorating health.

Table 4 reports results from the sensitivity analysis. The main takeaway here is that the consideration of savings modifies results from the benchmark model only marginally. This holds true for all cases discussed and despite the relatively large differences with respect to the allocation of funds over life shown in Figure 4.

4.3. Extension: Life Cycle Savings & Uncertain Survival. Finally we combine the two previous extensions and investigate the case of uncertain survival with endogenous savings. For that purpose we assume perfect annuities such that the interest rate is given by the sum of the rate of return on capital \(r \) plus the instantaneous mortality rate \(m = -\dot{S}/S \). Given the annuity market, individuals inherit no wealth and leave no bequests. Capital left over at death is distributed among the survivors by the annuity supplier. We thus implicitly assume that our “Reference-American” is surrounded by sufficiently many other individuals of the same age. The
The adjusted budget constraint is given by
\[
\dot{k} = w + (r + m)k - c - ph. \tag{17}
\]

The solution of the associated maximization problem leads to the modified Ramsey rule (14), the shadow price equation (12), and the following equations of motion:
\[
\frac{\dot{h}}{h} = \frac{1}{1 - \gamma} \left(r + m - \rho + \frac{\dot{\lambda}_D}{\lambda_D} \right), \tag{18}
\]
\[
\frac{\dot{\lambda}_D}{\lambda_D} = \rho - \mu - \frac{\mu \gamma A h^{\gamma - 1} c^\sigma}{\rho S(D)} \left(\frac{R}{D} \right)^{-\alpha} \left[\left(\frac{\alpha S(D)}{D} - \frac{\partial S(D)}{\partial D} \right) \left(\frac{R}{D} \right)^{\alpha} \tilde{u}(c) - \lambda R \theta \right], \tag{19}
\]

which together generalize the health Euler equation for the case of uncertain survival.

Results are shown in Table 5.A and 5.B. The most salient impression is again that the presence of uncertain survival and endogenous savings modifies the results for the simple case only marginally. Overall, the deviation of outcomes for adapting types from non-adapting types is reduced a bit further. The robust conclusion emerges that naive types spend about 6 percent more on health and live about 0.3 percent longer than non-adapting types while sophisticated types spend about 12 percent less on health and live about 0.5 percent shorter. Despite their opposing response to adaptation both naive and sophisticated types experience life time utility that is about 2 percent greater than that of non-adapting types. This difference is predicted to decline with ongoing medical technological progress (case 5).

| Table 5.A: Results: Life Cycle Savings & Uncertain Survival |
|---|---|---|---|---|
| case | life time h | life expect. | welfare |
| | naive | sophis | naive | sophis | naive | sophis |
| 1) benchmark | 5.69 | -12.24 | 0.34 | -0.56 | 1.94 | 1.98 |
| 2) $\alpha = 0.2$ | 8.96 | -19.81 | 0.60 | -0.92 | 3.54 | 3.64 |
| 3) $\theta = 0.5$ | 5.85 | -13.52 | 0.35 | -0.63 | 2.11 | 2.15 |
| 4) $\Delta w = 50\%$ | 5.25 | -12.55 | 0.40 | -0.70 | 1.81 | 1.85 |
| 5) $\Delta A = 50\%$ | 3.23 | -15.91 | 1.02 | -2.95 | 0.96 | 1.05 |

All values as deviation in percent from the optimal solution for a non-adapting individual; life time h is the discounted life time expenditure on health; life expect. is life expectancy at 20; welfare is life time utility as in (5); $A = 0.00135, \sigma = 1.085$. Other Parameters as for Table 1.

Finally, we have another look at QALYs and the value of life. In Table 5.B. we report results for the benchmark case and for two health shocks discussed earlier. The main takeaway is that
taking life-time uncertainty and capital accumulation into account leads to insignificant changes in the quantitative results and confirms the qualitative conclusions derived in Section 3.

Table 5.B: Results Life Cycle Savings & Uncertain Survival: QALYs, VOLs, and Health Shocks

<table>
<thead>
<tr>
<th>case</th>
<th>life expect. (in years)</th>
<th>QALY_{non} (in years)</th>
<th>QALY_{soph} (in years)</th>
<th>VOL (in Mio $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) benchmark</td>
<td>non 55.50 55.68 55.00</td>
<td>non 49.20 49.44 48.78</td>
<td>non 49.20 52.00 51.33</td>
<td>6.98 6.87 7.23</td>
</tr>
<tr>
<td>2) (\Delta D_{20} = +0.5 * D_0)</td>
<td>naive -23.20 -23.40 -22.80</td>
<td>naive -23.33 -23.52 -22.94</td>
<td>naive -23.34 -23.95 -23.36</td>
<td>-1.54 -1.30 -1.37</td>
</tr>
<tr>
<td>3) (\Delta D_{20} = -0.05 * D_0)</td>
<td>sophis 4.83 4.91 4.59</td>
<td>sophis 4.89 4.96 4.66</td>
<td>sophis 4.89 4.95 4.64</td>
<td>0.17 0.12 0.13</td>
</tr>
</tbody>
</table>

5. Conclusion

In this paper we developed a life cycle model in which human aging is based on a gerontological foundation of health deficit accumulation and investigated the role of adaptation to deteriorating health for health expenditure, life expectancy, and the value of life. We calibrated the model for a 20 years old male U.S. American in the year 2000 and contrasted the outcome without adaptation with those for otherwise identical individuals who adapt to deteriorating health in a conscious (sophisticated) or unconscious (naive) way. Perhaps surprisingly, we found that naive types invest the most in their health and live the longest. Their high health expenditure is motivated by two mechanisms. Firstly, they are not aware of their adaptation to poor health, which motivates health expenditure above that of sophisticated types. Secondly, due to their adaptation, they lead a relatively happy life, in particular in old age. They thus have a strong desire to extend it, which motivates health expenditure above that of non-adapting types.

Sophisticated types, in contrast, are predicted to invest the least in health and live the shortest life. Yet, they experience the greatest value of life. Their awareness of adaptation to poor health induces these individuals to put more emphasis on current consumption and to derive more pleasure here and now at the expense of worse future health. The estimated value of life at age 20 is about 6 percent larger for sophisticated types than for naive types. The value of life of naive types only marginally exceeds that of non-adapting types. The reason for this perhaps unexpected result is that naive types, while living longer, consume less. Low consumption means that the unit “util” is larger such that welfare in terms of monetary units is relatively low. In terms “utils” welfare of naive types exceeds welfare of non-adapting types by about 2 percent.

We used the model to compute for the 3 different types QALYs and QALY changes elicited by specific health innovations. We hope that this analysis sheds new light on the debate whether public health projects should be evaluated on the basis of QALYs without adaptation (reflecting
the evaluation of non-patients) or taken adaption into account. Our calibration suggest that the quantitative difference incurred by taking adaptation into account is rather small. Nevertheless, we observe that the method of QALY computation can decisively influence the evaluation of projects. Moreover, according to our analysis, it is not true that (full) adaption to deteriorating health questions the desirability of public health projects designed to improve the health conditions. In fact, the benefit from health interventions is predicted to be greatest under naive adaptation. Naive types continue to invest strongly in their health although their health condition improved, a behavior which is conducive to a long life and a high QALY.

Our framework could be extended and applied to investigate other life cycle decisions and health behaviors. One extension could address the impact of health adaptation on retirement. Under the assumption that the retirement decision is, among other things, determined by the subjectively perceived health status, we would expect that adaptation to poor health leads to later retirement for sophisticated agents but not necessarily for naive agents who may actually aim at an early retirement. Through the retirement decision and the length of the working life we would expect that health adaptation also affects the education decision and thus labor income. Another potential extension could consider the role of adaptation for unhealthy consumption and individual investments of time and effort in health promoting activities. In particular, it would be interesting to investigate how individuals change their eating behavior when they adapt to increasing body weight in a naive or sophisticated way.
Appendix: Solution Method

The set of first order conditions including the initial and terminal conditions represent a continuous time, two-point boundary value problem with free terminal value. We numerically solve for the optimal path of variables by using the Relaxation procedure (see Trimborn et al., 2008). Since the procedure was designed to solve problems with a fixed endpoint, we modified it such that it can handle problems with a free terminal time. Furthermore, we use a recently developed method to ensure that non-negativity constraints for health investments and consumption hold (see Trimborn, 2013, for details).

The idea of our modification of the Relaxation algorithm is to distinguish between age t of the individual and computational time τ for which the solution is computed. While the domain of t, $[0, T]$, is endogenous, the domain of τ is exogenous and normalized to the unit interval $[0, 1]$. We assume that t proceeds proportionally to τ, $t = \psi \tau$, with a constant ψ. Hence, the variable ψ governs the terminal time by the equation $T = \psi$.

To illustrate our procedure in detail we denote the vector of variables by x and the set of first order conditions represented by differential equations by $\frac{dx}{dt} = f(x)$. Firstly, we have to take into account that the algorithm solves for the path of the variables with respect to τ instead of t. Hence, the set of differential equations modifies to

$$\frac{dx}{d\tau} = \frac{dx}{dt} \frac{dt}{d\tau} = f(x)\psi .$$

Secondly, we augment the set of variables by t and ψ, and the two differential equations

$$\frac{dt}{d\tau} = \psi$$
$$\frac{d\psi}{d\tau} = 0 .$$

While the first differential equation establishes that t and τ are proportional with proportionality factor ψ, the second one determines that ψ is a constant. Furthermore, we fix the starting time by augmenting the initial conditions with the equation $t(0) = 0$. The terminal optimality condition for the Hamiltonian requiring $H(T) = 0$ implicitly determines the optimal stopping time and therefore ψ.

The solution vector consists of the optimal values of x on a time mesh $\tau \in [0, 1]$ and a corresponding time vector t enabling us to assign the solution x to the individual’s age t.

25
References

