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Restrictions Search for Panel VARs

Preliminary version - January 2016

Abstract

Panel vector autoregressive (PVAR) models can include several countries and vari-
ables in one system and thus are well suited for global spillover analyses. However,
PVARs require restrictions to ensure the feasibility of the estimation. The present
paper uses a selection prior for a data-based restriction search. It introduces the
stochastic search variable selection for PVAR models (SSVSP) as an alternative esti-
mation procedure for PVARs. This extends Koop’s and Korobilis’s stochastic search
specification selection (S4) to a restriction search on single elements. The SSVSP
allows to incorporate dynamic and static interdependencies as well as cross-country
heterogeneities. It uses a hierarchical prior to search for data-supported restrictions.
The prior differentiates between domestic and foreign variables, thereby allowing a
less restrictive panel structure. Absent a matrix structure for restrictions, a Monte
Carlo simulation shows that SSVSP outperforms S4. Furthermore, this is validated
by performing a forecast exercise for G7 countries.

Keywords: stochastic search variable selection, PVAR
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1 Introduction

Intensified international good and knowledge flows as well as trade agreements show
the importance of international interdependencies among economies. With these
inter-linkages spillovers in real and financial variables across countries are essential.
Shocks are likely to propagate internationally with asymmetric effects across various
economies. Global spillover analyses require taking both the interdependencies and
heterogeneities across countries into account. Analyses disregarding country specific
information and global dependencies could end up with biased results on spillover
effects and transmission channels.1

A tool which is able to consider dynamic and static global interdependencies
as well as cross-section heterogeneities is the unrestricted Panel vector autoregres-
sive (PVAR) model. In PVAR models lagged foreign variables can impact domestic
variables, meaning that dynamic interdependencies exist. Static interdependencies
between two variables of two countries occur if the covariance between the two is
unequal zero. Finally, the PVAR accounts for heterogeneity across countries since
the coefficient matrices can vary across economies. This strength of PVARs comes at
the cost of a large number of parameters to estimate. To overcome this problem the
researcher has to set restrictions on the PVAR.2 Papers implementing PVAR models
often use assumptions on homogeneity and no dependencies to ensure the feasibility
of the estimation. Others follow the cross sectional shrinkage approach proposed by
Canova and Ciccarelli (2009) which factorize the coefficients. A third and straightfor-
ward way of setting restrictions is to use the panel structure in the data by assuming
that there only exist interdependencies between and heterogeneities across countries
for specific country and variable combinations. The aim of this paper is to do a
data-based restriction search by using a selection prior.

The paper specifies a selection prior for PVAR models which differentiates be-
tween domestic and foreign variables for each country. The algorithm based on the
selection prior will search for dynamic interdependencies by checking whether the
impact of lagged foreign variables is zero. Further, it will assess static interdependen-
cies and use the restrictions as additional zero restrictions on a recursive identified

1Compare to Canova and Ciccarelli (2009), Canova and Ciccarelli (2013), Luetkepohl (2014) or
Georgiadis (2015).

2PVAR models are easily estimable in the case where independence and homogeneity across the
panel units are assumed. Estimation procedures are described in Canova and Ciccarelli (2013) and
Breitung (2015).
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structural PVAR model. This will be done by searching for zero restrictions on
the upper triangular decomposition matrix of the covariance matrix. Finally, the
algorithm searches for homogeneity between coefficients of domestic variables of dif-
ferent countries. It follows closely the selection prior for PVAR models of Koop and
Korobilis (2015), which is called stochastic search specification selection (S4), but
extends the approach from a matrix wide search to single elements as George et al.
(2008) do it in their stochastic search variable selection (SSVS) for VAR models. In
order to distinguish my algorithm from S4 and SSVS I call the algorithm stochastic
search variable selection for PVAR models (SSVSP).

The SSVSP extends the estimation procedure for PVAR models and thus con-
tributes to the existing literature on PVARs. The paper adds to the selection prior
literature, in particular by the extension of the S4 algorithm. By implementing
their prior on country matrices Koop and Korobilis assume a specific panel struc-
ture. Namely, that all variables of one country are treated in the similar way being
either restricted or not. My prior allows for a less restrictive panel structure. It does
not restrict variables on a country basis but searches for dynamic and static inter-
dependencies for each foreign variable as well as for homogeneity for each domestic
variable. Thus, the underlying panel structure separates variables in domestic and
foreign but not the foreign variables on a country basis.

This less restrictive panel structure has the advantages that, firstly, the SSVSP
prior has a wider range for empirical application than has the more rigid S4. Es-
pecially, applications including financial and real variables can benefit from a less
restrictive form since the SSVSP can incorporate variable specific restrictions. The
prior allows, for example, for the possibility that only foreign financial variables have
a dynamic impact on a domestic variable while real variables have no impact. Sec-
ondly, the SSVSP is able to provide a clear ranking of posterior probabilities which
variables to include in the model and which coefficients are homogeneous for each
equation. Doing the restriction search for matrices has the problem that the deci-
sion for excluding a single variable depends on the results for a matrix-wide search.
Thirdly, compared to the commonly used Litterman prior for Large Bayesian VAR
models which assumes a specific shrinkage depending on the lag number the SSVSP
differentiates between domestic and foreign variables and thus takes a panel struc-
ture into account.3

3Besides PVARs large Bayesian VAR and Global VAR models are also potential tools to analyze
international spillovers. Detailed descriptions of the two models can be find in Banbura et al.
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These advantages are reflected by the results of a Monte Carlo simulation and
a forecasting exercise. Firstly, the results of the Monte Carlo studies show that
when a more flexible panel structure is present, the SSVSP outperforms the S4.
Furthermore, the SSVSP is accurate in the selection of the restrictions displayed in
the posterior probabilities for no interdependencies and homogeneity. Secondly, the
results of the empirical application demonstrates that the SSVPS gives improved
forecasting results compared to the S4. Dynamic and static interdependencies are
found between countries’ interest rates. Especially variables of the United States
and Japan have no static interdependencies with the remaining G7 countries and
coefficients of the domestic variables are heteogeneous compared to other economies.
In addition, the impulse responses to a shock in the US interest rate show reliable
results. Overall, the results are encouraging about the use of the SSVSP for PVAR
models.

2 Literature

So far, the literature uses basically two ways to overcome the curse-of-dimensionality
problem in PVAR models. One strand of the literature using PVAR models make
the assumptions of homogeneity, no dynamic or static interdependencies.4 These
assumptions should be based on a solid theory. One common restriction is block
exogeneity based on the small-open-economy assumption. The second strand of
literature follows the cross sectional shrinkage approach proposed by Canova and
Ciccarelli (2009).5 The authors factorize the coefficients into at least a common, a
country-specific, and a variable-specific factor whereby they reduce the number of
coefficients to be estimated.

For global spillover analyses exogeneity, homogeneity, or no dependence assump-
tions are hard to justify. However, using the estimation strategy of Canova and

(2010), Pesaran et al. (2004) or Dees et al. (2007). However, these two kinds of models come with
some limitations. Large Bayesian VAR models are limited in terms of neglecting the existence of a
panel dimension in the data. BVAR models usually assume identical priors for each country. Thus,
large BVAR models are especially applicable for analyzing intra-country spillovers including a large
number of variables. Global VARs, however, are restrictive in the way that they impose a particular
structure on interdependencies by the chosen weights for aggregating the foreign component. GVAR
models are especially useful for studies focusing on aggregated impacts or on spillovers from one
large economy.

4Examples are Love and Zicchino (2006) assuming homogeneity and no dynamic interdepen-
dencies or Ciccarelli et al. (2013) restricting for no dynamic interdependencies.

5Examples are Canova et al. (2012) or Ciccarelli et al. (2012).
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Ciccarelli (2009) complicates the structural shock identification since their model
has two potential types of impulses. The first type is an impulse to the factors, the
other one to the variables. These two types come from the estimated evolution of
the factors and from the regression in which the coefficients depend on a number of
factors. To be able to focus only on impulses to the variables, the impulse response
analysis has to be done conditional on shocks to the factors and vice versa. This
paper will follow a different approach to estimate the PVAR model by using a se-
lection prior. An advantage of this prior is that it can easily account for the panel
structure in the data and can handle an over-parameterized unrestricted model as
well as a large number of restricted models.

The selection prior literature started with the paper of George and McCulloch
(1993) who developed the prior for multiple regression models. The procedure, which
the authors called stochastic search variable selection (SSVS), selects the variables
which should be included in the regression model. This is done by using a hierar-
chical prior for the coefficients of the right hand side variables. The variables which
should be included in the model occur more frequently while sampling from the con-
ditional posterior distributions in the Gibbs sampler. George et al. (2008) developed
the SSVS further and extend it to the use for VAR models. They set a hierarchical
prior on the autoregressive coefficients and find the elements which equal zero. Addi-
tionally, the authors use the prior for structural identification. They decompose the
covariance matrix into two upper triangular matrices and let the SSVS algorithm
find additional zero restrictions by searching for the elements of the decomposition
matrix which are zero. Korobilis (2008) and Jochmann et al. (2010) show that fore-
cast performance is improved for VAR models when using SSVS. The first paper
uses SSVS in a factor model including a large number of macroeconomic variables
for the United States. The second paper allows for structural breaks. Using data for
the United States the authors show that forecasts improve mainly due to the usage
of SSVS and not due to the consideration of structural breaks. Korobilis (2013)
extend the selection priors further to nonlinear set-ups.

Koop and Korobilis (2015) are the first ones to develop a selection prior for
PVAR models. Their stochastic search specification selection (S4) builds closely
on George et al. (2008) but adds a restriction search for homogeneity of domestic
autoregressive coefficients across countries. Further, in contrast to SSVS they do
the restriction search on whole matrices including all variables of one country and
thus assume a specific matrix panel structure. Therefore, the authors called their
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procedure specification search. Koop and Korobilis show with their Monte Carlo
simulation that S4 performs better than the OLS estimates. On average, the S4 es-
timates are closer to the true vales than the OLS estimates. Using data for sovereign
bond yield, industrial production, and bid-ask spread for euro area countries from
January 1999 to December 2012, they show that the model fit improves when taking
the characteristics of a panel model into account compared to a BVAR model with-
out restriction search. Thus, the results of Koop and Korobilis (2015) show clearly
that a prior for the PVAR model has to account for the panel dimension in the
data. Korobilis (2015) comes to the same conclusion. He compares different prior
specifications for PVAR models. For larger PVAR models priors taking the panel
dimension into account deviate less from the true values than other VAR priors. In
addition, these priors with a panel dimension improve the forecasting performance
which he shows for the same empirical application as in Koop and Korobilis (2015).
For small samples, however, the Bayesian shrinkage priors cannot outperform the
OLS estimates.

One main drawback of S4 is that the results loose detailedness since the S4 algo-
rithm is done for matrices. Koop and Korobilis assume a specific country grouping
of the restrictions. The authors can only make statements about interdependencies
and heterogeneities between the countries but not which variables are the drivers
behind the linkages and country specific coefficients. But this detailedness is essen-
tial for further interpretation of results. Doing the restriction search for matrices
can also lead to the exclusion of potentially important variables since decisions can
only be made for whole matrices. The SSVSP makes instead a restriction search for
each variable and can thus give evidence for exclusion of a single lag of a variable. In
addition, Korobilis (2015) shows that the absolute deviation from the true value is
lower for SSVS than for S4 in a set-up where country grouping for restrictions does
not hold. This result adds to the argument for restriction search on single elements.

One problematic issue is that the SSVS requires the SUR form of a VAR model
leading to the inversion of large matrices. This leads to a computationally demand-
ing algorithm for medium and large size VARs.6 To overcome this problem Koop
(2013) develops a natural conjugate selection prior for VARs. Here, no MCMC
methods must be used. However, the natural conjugate selection prior comes with
two disadvantages.7 Firstly, each variable can only be either included or excluded

6Koop (2013) and Korobilis (2013) elaborate further on this issue.
7Koop (2013) explains the disadvantages of the natural conjugate prior in detail.
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in the whole VAR system. Secondly, the natural conjugate specification requires a
specific covariance prior. Thus, no restriction search is possible for the covariance
elements of the VAR. Hence, for my purpose being able to include static interde-
pendencies and to allow for dynamic interdependencies which are not homogeneous
across countries the natural conjugate SSVS prior is no alternative. Instead, I accept
the computational burden for having a differentiated prior which is able to account
for the characteristics of a PVAR model, which should be less of a problem with
increasing computational capacities.

3 PVAR Restrictions

A PVAR model for country i at time t with i = 1, ..., N and t = 1, ..., T is given by

yit = Ai1Yt−1 + Ai2Yt−2 + ...+ AipYt−p + uit, (1)

where Yt−1 = (y′1t−1, ..., y
′
Nt−1)

′ and yit denotes a vector of dimension [G× 1].8 The
number of variables is defined as G. All Aip have dimension [G × NG] for lag
p = 1, ..., P . The index i denotes that the matrices are country specific for country
i. The uit are uncorrelated over time and normally distributed with mean zero and
covariance matrix Σii. The covariance matrix between errors of different countries
is defined as E(uitu

′
jt) = Σij ∀ i 6= j with dimension [G×G].

The PVAR model for all N countries can then be written as

Yt = A1Yt−1 + A2Yt−2 + ...+ ApYt−p + Ut. (2)

The Yt and Ut are [NG× 1]-vectors. The Ut is normally distributed with mean zero
and covariance matrix Σ which is of dimension [NG×NG]. The [NG×NG]-matrix
Ap is defined as

Ap =



α11
11 · · · α1k

1j · · · α1G
1N

... . . . ... . . . ...
αl1i1 · · · αlkij · · · αlGiN
... . . . ... . . . ...

αG1
N1 · · · αGkNj · · · αGGNN


.

8This specification does not include a constant but can be extended to include it.
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The element αlkij refers to the coefficient of variable k of country j in the equation of
variable l of country i. Thus, it measures the impact of variable k of country j on
variable l of country i.

A simple example will make the notation of α clear. Assume we have a PVAR
with one lag including 3 countries and 2 variables (N = 3, G = 2). The A matrix
will have the following form:

A1 =



α11
11 α12

11 α11
12 α12

12 α11
13 α12

13

α21
11 α22

11 α21
12 α22

12 α21
13 α22

13

α11
21 α12

21 α11
22 α12

22 α11
23 α12

23

α21
21 α22

21 α21
22 α22

22 α21
23 α22

23

α11
31 α12

31 α11
32 α12

32 α11
33 α12

33

α21
31 α22

31 α21
32 α22

32 α21
33 α22

33


,

where the first two rows are the equations for country 1, row 3 and 4 are the equations
for country 2, and the last two rows belong to country 3. Then α21

13, for example,
measures the impact of variable 1 of country 3 on variable 2 of country 1.

A structural form of the PVAR model is derived by decomposing the covariance
matrix Σ into Σ = Ψ−1

′
Ψ−1 where Ψ is a upper triangular matrix. Therefore, the

structural identification is based on a recursive order. An element ψlkij of the upper
triangular matrix Ψ defines the static relation between variable l of country i and
variable k of country j.

This structural PVAR model can account for dynamic interdependencies (DI),
static interdependencies (SI), and cross-section heterogeneities (CSH).9 Firstly, the
model allows lagged variables of foreign countries to have an impact on domestic
variables. Secondly, there are static interdependencies between two variables of two
countries if the element of the upper triangular decomposition matrix of the covari-
ance matrix is equal to zero. Thus, the search for static interdependencies allows
for a data-based structural identification of a PVAR model using additional zero re-
strictions on top of a recursive order. Thirdly, the PVAR accounts for heterogeneity
across countries since the Aip matrices can vary across countries.

This strength of PVARs to account for interdependencies and heterogeneities
comes at the costs of many parameters to estimate. The unrestricted PVAR model
has (NG)2P parameters of the A-matrix and NG(NG+1)

2
parameters of Σ to esti-

9Canova and Ciccarelli (2013) provide a survey of the PVAR restrictions.
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mate. To overcome this problem the researcher has to set restrictions on the PVAR.
A straightforward way of setting restrictions is to use the panel structure in the data.
Thus, to expect that there only exist interdependencies between and heterogeneities
across countries for specific country and variable combinations. We would for exam-
ple expect that the short term interest rate of the United States has an impact on
the interest rate of the Eurozone or that a strong GDP growth in France has also an
impact on German exports. On the other hand, we would assume that the Cana-
dian GDP growth does not influence the short term interest rate of the Eurozone
and that Japanese GDP growth is independent of changes in Italian’s GDP growth.
We would also expect that the sign and magnitude of an impact of Portugal’s and
Spain’s GDP growth on their domestic GDP growth is fairly similar while it would
differ from the impact of United States’s GDP growth.

Therefore, for some coefficients the following restrictions can be found in the
data:

1. No dynamic interdependencies (DI): no lagged impact from variable l of
country i to variable k of country j if αlk1,ij = ... = αlkp,ij = 0 for j 6= i

2. No static interdependencies (SI): no static relation between variable l of
country i to variable k of country j if ψlkij = 0 for j 6= i

3. No cross-section heterogeneities (CSH): homogeneous coefficient across
the economies if αlkp,jj = αlkp,ii for j 6= i and ∀p = 1, ..., P

We can define [(NG−G)NG] DI, [(N(N − 1)/2)G2] SI, and [(N(N − 1)/2)G2] CSH
restrictions.10 The essential part is now to find out for which country and variable
combinations these restrictions hold. The SSVSP algorithm is able to search for
the PVAR restrictions which are supported by the data. The SSVSP of this paper
follows closely Koop and Korobilis (2015).

4 Selection Prior for PVAR

The stochastic search variable selection algorithm for PVARs works with the unre-
stricted PVAR model. The full unrestricted model with one lag can be rewritten
as

Yt = Zt−1α + Ut, (3)
10Note that while SI restrictions are symmetric this must not be the case for DI restrictions.
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where α is the vectorized matrix A1 and Zt−1 = (ING ⊗ Yt−1). In the following,
the PVAR model is simplified to a model including only one lag. If the researcher
includes several lags, the restriction search for dynamic interdependencies would give
a guidance which lags should be included in the model. Thus, the DI restriction
search can be used as a lag length selection criterion.

The basic idea of a selection prior is that the selection of a variable is done by
a hierarchical prior. Each element of α is drawn from a mixture of two Normal
distributions centering around the restriction either with a small or large variance.
Depending on a hyperparameter, γ, which is Bernoulli distributed the coefficient
shrinks to the restriction (small variance case) or is estimated with a looser prior
(larger variance case). Thus, the algorithm imposes soft restrictions by allowing for
a small variance. In contrast to Koop and Korobilis (2015) the restriction search is
done for each single element and not on the whole matrices including all variables
of one country. A Gibbs sampler is used to obtain the posterior distributions.

The SSVSP algorithm has now specific priors for the parameters of A1 and of the
covariance matrix building in the DI, SI, and CSH restrictions. The DI restrictions
require restrictions on the coefficients of the lagged foreign endogenous variables.
The DI prior is given by

αlkij | γlkDI,ij ∼ (1− γlkDI,ij)N (0, τ 21 ) + γlkDI,ijN (0, τ 22 )

γlkDI,ij ∼ Bernoulli(πlkDI,ij).

The prior distribution of αlkij is conditional on the hyperparameter γlkDI,ij. This hy-
perparameter has a distribution itself. That is why the prior is called a hierarchical
prior. γlkDI,ij is Bernoulli distributed.11 Thus, it takes either the value one or zero.
If γlkDI,ij is equal to zero, αlkij is drawn from the first part of the Normal distribution
with mean zero and variance τ 21 . If γlkDI,ij is equal to one, αlkij is drawn from the sec-
ond part of the Normal distribution with mean zero and variance τ 22 . The values of
τ 21 and τ 22 have to be chosen such that τ 21 is smaller than τ 22 . Thus, if γlkDI,ij = 0, the
prior is tight in the sense that the parameter is shrunk to zero. Whereas the prior is
loose for γlkDI,ij = 1 since the prior variance is larger. Hence, if γlkDI,ij = 0, no dynamic
interdependency is supported by the data and the coefficient will be estimated with
a small variance around zero. Going back to the simple 3-country-2-variable exam-

11How πlk
DI,ij is set is described in detail in the Appendix. This holds also for the CSH and SI

prior.
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ple the coefficients of A which are checked for dynamic interdependencies are now
marked with DI:

A1 =



DI DI DI DI

DI DI DI DI

DI DI DI DI

DI DI DI DI

DI DI DI DI

DI DI DI DI


.

The covariance matrix of the PVAR model is decomposed into two upper tri-
angular matrices Ψ, Σ = Ψ−1

′
Ψ−1. This ensures a recursive order to identify the

structural shocks of the PVAR model. The SI prior is set on the elements of the
upper triangular matrix. If SI restrictions are found, the structural PVAR is overi-
dentified since additional zero restrictions can be set on top of the recursive ordering.
The SSVSP prior is a data-based method to structurally identify the system. It has
the drawback that the identification is limited since it only allows a recursive struc-
ture. A clear advantage of this decomposition is that it assures that by construction
every simulated Σ is positive definite.12

The prior for SI restrictions follows the same logic as the DI prior:

ψlkij | γlkSI,ij ∼ (1− γlkSI,ij)N (0, κ21) + γlkSI,ijN (0, κ22)

γlkSI,ij ∼ Bernoulli(πlkSI,ij).

The prior is for all j 6= i. To assure positive variance elements, the (ψkkii )2 are gamma
distributed, (ψkkii )2 ∼ G(a, b). The elements for the same country, ψlkii for l 6= k, are
normally distributed with mean zero and variance κ22. All ψlkij elements (j 6= i)
are drawn from the specified hierarchical prior. Thus, the parameters are drawn
from a weighted Normal distribution with weights γlkSI,ij ∈ {0, 1}. The parameter
κ21 is smaller than κ22. Thus, if γlkSI,ij is equal to zero, the parameter shrinks to zero
showing that the data support no static interdependency. The SI restrictions are
symmetric. Back to the example, the following elements of the covariance matrix

12Compare also to Koop and Korobilis (2015).

10



are checked for static interdependencies:

Ψ =



SI SI SI SI

SI SI SI SI

SI SI

SI SI


.

The selection prior can also easily be used to estimate only the reduced form of a
PVAR model by not defining the Ψ-matrix and not searching for static interdepen-
dency restrictions but by assuming a standard distribution for the PVAR variance,
e.g. a Inverted Wishart distribution.

Searching for homogeneity across countries is not as straight forward as the zero
restrictions for dynamic and static interdependencies. The main contribution of
Koop and Korobilis (2015) is exactly the development of a procedure how to search
for CSH restrictions. The CSH prior is given by

αlkjj | γwCSH ∼ (1− γwCSH)N (αlkii , ξ
2
1) + γwCSHN (0, ξ22)

γwCSH ∼ Bernoulli(πwCSH).

The prior is for all j 6= i. There are (N(N−1)/2)G2 = K combinations of coefficient
which are checked for homogeneity. The index w = 1, ..., K refers to a specific
combination. Again, ξ21 is smaller than ξ22 . The main difference to the DI and SI
prior is that instead of shrinking the parameter to zero in the first part of the Normal
distribution the mean is equal to the coefficient for which homogeneity is checked.
Going back to my 3-country-2-variables example the coefficients which are marked
with CSH are checked for homogeneity:

A1 =



CSH CSH

CSH CSH

CSH CSH

CSH CSH

CSH CSH

CSH CSH


.
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The algorithm checks for example whether the coefficient of the first variable of
country 1 (in the equation of the first variable for country 1) is equal to the coefficient
of the first variable of country 2 (in the equation of the first variable for country 2),
same between country 1 and 3 as well as 3 and 2. Thus, for the first variable in the
equation of the same variable three combinations are checked for homogeneity. The
restrictions are α11

11 = α11
22, α11

11 = α11
33, and α11

22 = α11
33.

To be able to check all possible combinations, I follow Koop and Korobilis (2015)
who define a selection matrix

Γ =
K∏
w=1

Γw.

The number of Γw matrices equals the number of possible combinations to check for
homogeneity, w = 1, ..., K. Each Γw has the dimension [NG × NG]. The matrix
Γw is an identity matrix with two exceptions. The diagonal element at the position
αlkjj is set equal to γwCSH and the off-diagonal element referring to the element αlkii is
set equal to (1− γwCSH). Back to my example, if we check α11

11 = α11
22, the restriction

matrix is an identity matrix of dimension [NG × NG] = [36 × 36]. The element
in the first row and first column is replaced by γ1CSH and the element in the 15th
row and frist column, referring to the position of α11

22 in the vectorized A matrix, by
(1 − γ1CSH). If γ1CSH equals zero, α11

11 and α11
22 are homogeneous. If all coefficients

are heterogeneous, all Γw are identity matrices. To impose the CSH restrictions the
posterior mean of α is multiplied by the selection matrix Γ.

The outcome of the algorithm can be interpreted in two ways.13 Based on the
results of the algorithm the researcher can select one specific restricted PVAR model.
Hence, the algorithm is used as a model selection criterion. The posterior probabil-
ities γDI , γSI , γCSH give the information whether a variable is included in the model
or not and whether it is homogeneous or not. These probabilities are calculated as
the proportion of γDI , γSI , or γCSH draws which equal one over all draws. Based
on the estimated γDI , γSI , γCSH values it is possible to provide a ranking for DI, SI
and CSH restrictions. The posterior probabilities γDI , γSI , γCSH can be sorted in
descending order. The researcher can set the restrictions successively starting with
the variable for which the posterior probability of γDI , γSI , or γCSH being zero is
highest or for which the probability being one is lowest. The researcher can set the
restrictions successively until the model with the best fit is found.

13Compare to the general survey in Koop and Korobilis (2010) or the specific explanation for
the S4 in Koop and Korobilis (2015).
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Another way to do the selection is via a threshold value. The selection prior lit-
erature often uses 0.5 as a threshold value to determine whether a restriction is set.
Using the results as a model selection criterion shows particularly well the strong
advantages of the SSVSP prior for PVAR compared to the S4. While Koop and
Korobilis (2015) can only make statements about including or excluding a whole
country, based on the SSVSP it is possible to make clear decisions on exclusion for
every single variable. Using the SSVS of George et al. (2008) would also allow the
researcher to make clear statements about single variables, but it neglects the pos-
sibility of cross-sectional homogeneities as an important characteristic of PVARs.
Alternatively, the outcome of the algorithm can be used as a Bayesian model aver-
aging (BMA) result. Thus, the posterior means averaged over all draws are taken as
coefficient estimates. Since each draw leads to a specific restricted model, the BMA
results average over all possible restricted models.

5 Monte Carlo Simulation

5.1 Simulation Set-up

In order to evaluate the prior I have conducted two Monte Carlo simulations. I will
compare the results using SSVSP with the S4 algorithm and OLS estimates.14 Both
Monte Carlo simulations include 3 countries, 2 variables, and 1 lag. Assume for an
international spillover analysis that dynamic and static interdependencies and cross-
sectional heterogeneities exist for specific variable and country combinations. Firstly,
assume that country 2 has a dynamic impact on country 1 and country 1 on country
3. Country 3 does not impact the other two countries dynamically. Coefficients
are homogeneous between country 2 and 3. Static interdependencies exist between
country 1 and 2. This example has a clear country grouping structure. Hence, all
variables of one country have either an impact on all variables of a second country
or not. The same holds for homogeneity across countries. A scenario like this is
given by the first Monte Carlo simulation where the following parameter values are

14I simulated 100 samples, each with a length of 100. The Gibbs sampler is done with 55000
draws of which 5000 draws are disregarded as draws of the burn-in-phase. For each of the 100
samples the OLS estimates are calculated. The OLS estimates which are used in the further
analysis are the mean values of the OLS estimates over the 100 simulated samples. The prior
hyperparameters which are used in the Monte Carlo simulations are given in the Appendix. The
calculation is based on a further development of the MATLAB code provided by Koop and Korobilis
(https://sites.google.com/site/dimitriskorobilis/matlab/panel_var_restrictions).
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set:

Atrue1 =



0.8 0 0.2 0.2 0 0

0 0.7 0.3 0.3 0 0

0 0 0.6 0.5 0 0

0 0 0 0.5 0 0

0.3 −0.4 0 0 0.6 0.5

0.2 0.4 0 0 0 0.5


,Ψtrue =



1 0 0.5 0.5 0 0

0 1 0.5 0.5 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

Separating A1 and Ψ into [2×2] matrices which include only variables of one country
shows the clear country grouping structure.

Secondly, assume that the interdependency and homogeneity structure is not
automatically similar for all variables of one country. Hence, a less restrictive panel
structure exists. Thus, the first variable of country 2 and 3 has a dynamic impact on
country 1’s variables, but not the second variable of the foreign countries. Assume
that variable 1 of country 3 is dynamically influenced by both variables of country
1 while there exists no such interdependency structure for variable 2. Static inter-
dependencies and homogeneity across coefficients also only exist for special country
and variable pairs. The second Monte Carlo simulation builds in these properties
and has the following true parameters:

Atrue1 =



0.8 0 0.2 0 0.2 0

0 0.7 0.2 0 0.2 0

0 0 0.6 0.5 0 0

0 0 0 0.3 0 0

0.3 −0.4 0 0 0.6 0.5

0 0 0 0 0 0.5


,Ψtrue =



1 0 0.5 0 0 0

0 1 0 0.5 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

Here, the interdependency structure between the countries and homogeneity across
parameters varies across variables. There is no clear country grouping.

The performance of each estimator is checked via the Absolute Percentage De-
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Table 1: Absolute Percentage Deviation

Simulation 1 Simulation 2

A Ψ A Ψ
SSVSP 0.038 0.0873 0.036 0.0523

S4 0.037 0.1346 0.045 0.0865
OLS 0.095 0.1037 0.092 0.0822

viation (APD) statistic15:

APD =
1

(NG)2

(NG)2∑
i=1

| αi − αtruei | .

The statistic measures the absolute deviation of the estimated coefficient αi from
the true value αtruei . The estimated coefficient is a BMA result. Furthermore, the
accuracy of the SSVSP to find the restrictions is checked. This is done by comparing
the restrictions’ probabilities to the true values. Thus, the probabilities that αlkij = 0,
ψlkij = 0, and αlkjj = αlkii are compared among themselves and in relation to the true
values. These posterior probabilities are calculated as the proportion of γlkDI,ij, γlkSI,ij,
and γwCSH draws which equal zero averaged over all Gibbs sampler draws and all
simulated samples. The higher the proportion of γ draws which equal zero is, the
higher the probability is that no dynamic and no static interdependencies exist and
coefficients are homogeneous.

5.2 Results

The results of the Monte Carlo study demonstrate that, firstly, when a particular
matrix panel structure exists in the data, the SSVSP and S4 perform equally good.
Secondly, when a less restrictive panel structure is present, the SSVSP outperforms
the S4. Thirdly, the SSVSP accurately selects the restrictions. This is validated
by the higher posterior probabilities for no interdependencies and homogeneity for
parameters which are truly zero or homogeneous compared to the probabilities for
non-zero and heterogeneous parameters.

As table 1 shows, the estimated coefficients from S4 are on average slightly
15Koop and Korobilis (2015) and Korobilis (2015) use both mean deviation statistics to evaluate

the performance of estimators in Monte Carlo simulations.
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closer to the true values compared to SSVSP for the first simulation.16 The APD
for S4 takes a lower value, APDS4 = 0.037, compared to the value for the SSVSP,
APDSSV SP = 0.038. This result was expected since the underlying panel structure
of simulation one is the structure the S4 is designed for. For the second simulation,
where a less restrictive panel structure is present, the results from SSVSP outper-
form the results from S4. The estimated coefficients from SSVSP deviate less from
the true values, APDSSV SP = 0.036, than the estimates of S4, APDS4 = 0.045.
For the estimated Ψ matrix the deviations of SSVSP estimates from the true values
are lower than for the S4 estimates. This holds for simulation one and two. In
most cases the estimated coefficients from the selection priors are closer to the true
parameter than the OLS coefficients for both simulations. This indicates that the
use of a prior which incorporates the panel structure in the data is beneficial.

Furthermore, the SSVSP algorithm is accurate in selecting the restrictions. This
is true because posterior probabilities that no interdependencies exist are higher for
true zero values compared to the probabilities for true non-zero values. The pos-
terior probabilities for αlkij = 0 and ψlkij = 0 are shown in table 2. The true values
of the simulations are presented in bolt, probabilities for the restrictions in italic.
Results for simulation one are shown in the left column, results for simulation two
in the right column. Looking at simulation one, probabilities that αlkij = 0 are con-
siderably higher for true zero parameters than for true non-zero values. The first
are in a range between 0.68 and 0.90 while the latter one are between 0.03 and 0.35.
For example, the probability for no dynamic impact of country 2 on country 1 for
variable 2, shown in the second row of the table, is 0.08 for variable 1 and 0.16 for
variable 2. The true values, each 0.3, show that dynamic interdependencies exist.
The variable 2 of country 3, however, has no dynamic impact on country 1, shown
by the zero values. The algorithm finds here a substantially higher probability for no
dynamic interdependencies with values of 0.86 for variable 1 and 0.76 for variable 2.
Turning to simulation two, if no dynamic interdependencies occur in truth, shown
by zero values for the parameters, the probabilities that αlkij = 0 are between 0.60
and 0.87. These values are all higher than the probabilities for the parameters which
dynamically affect the dependent variables. These probability values are between
0.01 and 0.37.

The SSVPS also selects accurately the SI restrictions in both simulations. This
is true since, for both simulations the probabilities that ψlkij = 0 are higher for true

16SSVSP estimates for A, Ψ, and Σ for both simulations are given in the Appendix.
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Table 2: Accuracy - DI and SI restrictions

Simulation 1 Simulation 2

DI restricions DI restricions
- - 0.2 0.2 0 0 - - 0.2 0 0.2 0

0.29 0.35 0.87 0.81 0.37 0.60 0.31 0.64
- - 0.3 0.3 0 0 - - 0.2 0 0.2 0

0.08 0.16 0.86 0.76 0.33 0.68 0.29 0.69
0 0 - - 0 0 0 0 - - 0 0

0.71 0.74 0.87 0.75 0.82 0.76 0.81 0.70
0 0 - - 0 0 0 0 - - 0 0

0.75 0.78 0.90 0.79 0.82 0.75 0.82 0.69
0.3 -0.4 0 0 - - 0.3 -0.4 0 0 - -
0.15 0.03 0.79 0.68 0.18 0.01 0.79 0.67
0.2 0.4 0 0 - - 0 0 0 0 - -
0.27 0.05 0.77 0.69 0.87 0.75 0.85 0.72

SI restrictions SI restrictions
- - 0.50 0.50 0 0 - - -0.5 0 0 0

0.59 0.55 0.75 0.81 0.51 0.95 0.79 0.95
- - -0.50 -0.50 0 0 - - 0 -0.5 0 0

0.57 0.52 0.76 0.75 0.91 0.20 0.86 0.91
- - - - 0 0 - - - - 0 0

0.89 0.89 0.91 0.91
- - - - 0 0 - - - - 0 0

0.91 0.91 0.92 0.92

True values are in bolt, probabilities for restrictions, p(αlk
ij = 0) and p(ψlk

ij = 0), are in italic.

zero compared to non-zero parameters. The results for simulation one show that
probabilities are in a range of 0.75 and 0.91 for zero values while for the existing
static interdependencies between country 1 and 2 for both variables probabilities are
between 0.52 and 0.59. For simulation two the probabilities for no static interdepen-
dencies, between 0.79 and 0.95, are clearly higher for the true zero values compared
to the probabilities for non-zero values, 0.51 and 0.20.

Moreover, the SSVSP is mostly accurate in the selection of the cross-section het-
erogeneity restrictions. The results for p(αlkjj = αlkii ) are presented in table 3. For
both simulations probabilities that the coefficients are homogeneous are higher for
true homogeneous coefficients. However, especially for true values which are close to
each other but not equal probabilities for homogeneity are relatively high with values
around 0.5. For example, α11

22 = α11
33, true values 0.6 and 0.6, has a higher posterior
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Table 3: Accuracy - CSH restrictions

Simulation 1 Simulation 2

coefficients true αlkjj true αlkii p(αlkjj = αlkii ) true αlkjj true αlkii p(αlkjj = αlkii )

α11
11 = α11

22 0.8 0.6 0.60 0.8 0.6 0.66
α21
11 = α21

22 0 0 0.71 0 0 0.78
α12
11 = α12

22 0 0.5 0.16 0 0.5 0.24
α22
11 = α22

22 0.7 0.5 0.50 0.7 0.3 0.29
α11
11 = α11

33 0.8 0.6 0.61 0.8 0.6 0.66
α21
11 = α21

33 0 0 0.73 0 0 0.80
α12
11 = α12

33 0 0.5 0.16 0 0.5 0.25
α22
11 = α22

33 0.7 0.5 0.55 0.7 0.5 0.39
α11
22 = α11

33 0.6 0.6 0.79 0.6 0.6 0.77
α21
22 = α21

33 0 0 0.79 0 0 0.79
α12
22 = α12

33 0.5 0.5 0.65 0.5 0.5 0.56
α22
22 = α22

33 0.5 0.5 0.64 0.3 0.5 0.49

Probabilities for CSH restrictions, p(αlk
jj = αlk

ii ), are in italic.

probability for homogeneity, 0.79 for simulation one and 0.77 for simulation two,
than the clearly heterogeneous coefficients α12

11 and α12
33, 0 and 0.5, with probabilities

of 0.16 for simulation one and 0.25 for simulation two. However, the coefficients α11
11

and α11
33, with true values 0.8 and 0.6, which differ but are close to each other, have

a relatively high posterior probability for homogeneity, 0.61 for simulation one and
0.66 for simulation two.

6 Empirical Application

6.1 Data and Procedure

I now apply the SSVSP to a simple empirical application. The analysis consists of
three key macroeconomic variables: the growth rate of industrial production (IP),
a CPI growth rate (CPI), and a short term interest rate (IR). The model includes
the G7 countries. The application can be used to study cross-country spillovers in
macroeconomic variables. The variables can show synchronized business cycles or
spillovers from monetary policy. The data are from the OECD and have monthly
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frequency from 1990:1 to 2015:2. The PVAR model includes one lag.17

The variables are ordered in a recursive way. Thus, the upper triangular matrix
Ψ has the following simplified form focusing on the country order:

CA

I

UK

F

J

D

US



× × × × × × ×
× × × × × ×
× × × × ×

0 × × × ×
× × ×
× ×
×


.

For each country the three macroeconomic variables are included. The industrial
production growth rate is ordered first, CPI growth rate second, and the short term
interest rate third. The recursive country ordering is based on the openness of a
country. Openness is measured based on yearly import and export data for the
economies. The higher the trade of a country is, the more open it is. The coun-
tries are ranged in ascending order meaning that the most open country, the United
States, is ordered last. Thus, US variables can influence all other countries contem-
poraneously but are not affected by the variables of the remaining G7 countries.

Using the empirical application as an example, the SSVSP is validated based on
it’s forecasting performance, on a ranking of restriction probabilities, and on an im-
pulse response analysis. At first, forecasts are provided for 12 horizons for the period
beginning from January 2005 to the end of the sample.18 I use the reduced from
of the PVAR model to conduct the forecasts. Therefore, no SI restriction search is
done and the covariance matrix is drawn from an Inverted Wishart distribution. The
forecasts are evaluated using the mean squared forecast error (MSFE). The error is
calculated as the difference between the estimated forecast and the true value given
by the data. Furthermore, the posterior probabilities for a restriction are ranked
and the lowest and highest probabilities are presented. Finally, a impulse response
analysis is conducted based on the recursive identification system.

17The hyperparameters of the prior distributions are set like in the Monte Carlo simulations.
Detailed information is given in the Appendix.

18The forecasts for the included 21 variables are generated iteratively. Forecasts start conditional
on the data from January 1990 to December 2004.
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Table 4: MSFEs for SSVSP relative to S4

horizon 1 2 3 4 5 6 7 8 9 10 11 12

IP_CA 0.98 0.98 0.95 1.00 0.95 0.92 0.94 0.93 0.92 0.92 0.93 0.95
CPI_CA 0.87 0.95 0.86 0.90 0.83 0.82 0.83 0.81 0.82 0.86 0.84 0.96
IR_CA 1.00 0.82 0.91 0.93 0.94 0.89 0.91 0.87 0.88 0.86 0.84 0.86
IP_I 0.99 1.01 0.98 0.99 0.99 0.97 0.99 0.96 0.98 0.97 0.95 0.94
CPI_I 1.03 0.78 0.82 0.82 0.84 0.80 0.78 0.77 0.76 0.71 0.79 0.82
IR_I 1.03 1.03 1.07 1.03 1.03 1.00 1.01 1.01 1.02 0.99 0.98 0.97
IP_UK 0.89 0.97 0.94 0.95 0.95 0.94 0.90 0.96 0.90 0.92 0.88 0.96
CPI_UK 0.71 0.85 0.93 0.84 0.83 0.89 0.96 0.80 0.82 0.83 0.99 0.86
IR_UK 1.00 0.99 0.97 0.99 1.01 1.05 1.00 1.03 1.03 1.04 1.01 1.06
IP_F 0.76 0.97 0.93 0.95 0.90 0.86 0.90 0.86 0.86 0.85 0.85 0.84
CPI_F 0.65 0.84 0.89 0.81 0.79 0.86 0.82 0.75 0.84 0.81 0.91 1.04
IR_F 1.03 0.87 0.94 0.99 0.97 0.95 0.95 0.95 0.95 0.94 0.94 0.95
IP_J 0.99 1.01 1.00 0.99 1.02 0.99 0.99 1.00 1.01 0.96 0.97 0.96
CPI_J 0.91 0.97 0.93 0.98 1.01 1.01 1.01 0.94 0.95 0.99 0.97 1.00
IR_J 0.97 0.78 0.76 0.79 0.78 0.77 0.76 0.77 0.77 0.79 0.78 0.77
IP_D 0.91 1.07 1.01 0.94 1.08 0.90 0.95 0.98 0.92 0.89 0.94 0.93
CPI_D 0.60 0.88 0.94 0.88 1.12 0.86 0.98 0.95 0.82 1.03 0.93 0.93
IR_D 0.94 0.91 0.96 0.97 0.99 0.96 1.00 1.03 1.00 1.01 0.99 0.98
IP_US 1.00 0.99 1.01 1.03 1.00 1.01 1.02 1.00 1.00 1.03 1.00 1.00
CPI_US 1.00 1.00 1.00 1.01 0.98 1.00 1.00 0.97 0.97 0.98 1.00 0.98
IR_US 1.00 0.98 0.96 0.98 0.98 1.03 0.97 0.99 0.98 1.00 0.99 1.01

MSFEs are given relative to S4, MSFE<1 are in bold. Σ drawn from Inverted Wishart distribution.

6.2 Results

The results of the empirical application demonstrate three key findings. Firstly, the
SSVSP gives improved forecasting results compared to the S4. Secondly, the ranking
of the posterior probabilities for the restrictions indicates that domestic interest rates
evolve unaffected by lagged foreign industrial production growth rates, validated by
high posterior probabilities for no dynamic interdependencies. The interest rate of a
country depends likely on foreign interest rates dynamically and statically. No static
interdependencies with and heterogeneity compared to the remaining G7 countries
are in particular found for variables of the United States and Japan. Thirdly, the
impulse response analysis supports the reliability of the results. In the following the
key findings are explained in more detail.

The forecasts of SSVSP outperform the forecasts of S4. Taking all 12 forecast
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Table 5: Ranking of 10 highest restriction probabilities

DI SI CSH

α p(αlkij = 0) ψ p(ψlkij = 0) α p(αlkjj = αlkii )

αCPI,IPI,F 1.00 ψIP,IPJ,US 0.99 αCPI,IPF,F = αCPI,IPJ,J 1.00

αIR,IPJ,D 1.00 ψIP,CPIJ,US 0.99 αIR,IPJ,J = αIR,IPD,D 1.00

αIR,IPI,J 1.00 ψIP,IRJ,US 0.99 αIR,IPF,F = αIR,IPJ,J 1.00

αIR,IPF,I 1.00 ψIP,IPJ,D 0.99 αIR,IPCA,CA = αIR,IPJ,J 1.00

αIR,IPJ,F 1.00 ψIP,CPIJ,D 0.99 αIR,IPCA,CA = αIR,IPD,D 1.00

αIR,IPD,F 1.00 ψIP,IRJ,D 0.99 αIR,IPD,D = αIR,IPUS,US 1.00

αIR,IPUS,J 1.00 ψIP,IRD,US 0.99 αCPI,IPI,I = αCPI,IPF,F 1.00

αIR,IPUS,D 1.00 ψIP,CPII,D 0.99 αIR,IPUK,UK = αIR,IPJ,J 1.00

αIR,IPUK,F 1.00 ψCPI,IPD,US 0.99 αCPI,IPF,F = αCPI,IPD,D 1.00

αCPI,IPF,J 1.00 ψIP,IRI,F 0.99 αCPI,IPJ,J = αCPI,IPD,D 1.00

10 highest probabilities are presented for DI, SI, and CSH restrictions.

horizons into account, in 77.3% of the cases the SSVSP performs better than S4,
meaning that the MSFEs relative to S4 are below one, marked in bold in table 4.
The MSFEs are considerably below one with notable many values below or around
0.8. This means that improvements of the forecast performance using SSVSP are
in many cases above 20%. Moreover, values above one are only slightly above one,
with a largest MSFE of 1.08. These findings emphasize that forecasts of SSVSP
clearly outperform the forecasts of S4. However, it is noteworthy that the forecast
performance relative to OLS is weak for both selection priors.19 The SSVSP per-
forms in 23.41 % of the cases better than OLS, indicated by 59 MSFEs below one
relative to OLS. For the S4 this is only the case in 27 out of 252, thus in 10.71%.
Hence, the forecast performance of the SSVSP still outperforms the performance of
S4. However, OLS has its limitations in large systems. The feasability of OLS is
problematic while the selection priors are able to handle larger systems due to their
shrinkage property.

19Results are given in the Appendix.

21



Table 6: Ranking of 10 lowest restriction probabilities

DI SI CSH

α p(αlkij = 0) ψ p(ψlkij = 0) α p(αlkjj = αlkii )

αIR,IRCA,I 0.00 ψIR,IRCA,F 0.00 αCPI,CPID,D = αCPI,CPIUS,US 0.00

αIR,IRF,D 0.00 ψCPI,CPICA,US 0.00 αIP,IRF,F = αIP,IRJ,J 0.06

αIR,IRI,D 0.01 ψCPI,CPIUK,F 0.00 αIP,IPD,D = αIP,IPUS,US 0.06

αIP,IRD,UK 0.01 ψIR,IRUK,D 0.00 αIP,IRI,I = αIP,IRJ,J 0.07

αIP,IRF,UK 0.03 ψIR,IRD,US 0.00 αIP,IRCA,CA = αIP,IRJ,J 0.07

αCPI,CPIF,US 0.04 ψIR,IRUK,US 0.00 αCPI,CPIF,F = αCPI,CPIUS,US 0.07

αIP,IRCA,US 0.04 ψIR,IRCA,US 0.00 αIP,IRUK,UK = αIP,IRJ,J 0.08

αIP,IRF,US 0.04 ψCPI,CPICA,F 0.00 αIP,IRJ,J = αIP,IRD,D 0.09

αIP,IPF,US 0.05 ψCPI,CPIUK,J 0.00 αIP,IRJ,J = αIP,IRUS,US 0.09

αIR,IRCA,J 0.05 ψCPI,CPIF,D 0.00 αCPI,CPIJ,J = αCPI,CPID,D 0.10

10 lowest probabilities are presented for DI, SI, and CSH restrictions.

The ranking of restriction probabilities shows that restrictions are especially sup-
ported for the industrial production variable and for variables of the United States
and Japan.20 Table 5 provides the ten highest posterior probabilities for no DI, no
SI and homogeneity. In detail, the results show that the probabilities are high that
no dynamic impacts of foreign lagged IP on interest rates exist. Thus, interest rates
movements are not influenced by lagged foreign industrial production. Furthermore,
the probabilities are high that no static interdependencies exist between the United
States’ as well as Japan’s variables and the remaining G7 countries. Additionally,
industrial production seems to be fairly independent from other variables, shown by
the high probabilities for no static interdependencies between IP and other variables.
Finally, the probabilities for homogeneity of coefficients are especially high for the
industrial production variables in other equations.

In comparison, the lowest probabilities for the restrictions are found for combi-
nations of the same variable. Results are shown in table 6. Lagged foreign interest

20Detailed results for all parameters are given in the Appendix.
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Figure 1: Responses of US variables to a shock to US interest rate

Solid line shows response, dotted lines present upper 84% and lower 16%.

rates seem to affect domestic interest rates. Furthermore, US variables have a dy-
namic impact on other countries’ variables. Both findings are supported by a low
probabilities for no dynamic interdependencies. The evidence is high that static
interdependencies exist between countries’ CPIs and between interest rates. Low
probabilities for homogeneity are found for variables of the United States and of
Japan. Thus, the two countries seem to behave differently compared to the remain-
ing countries.

The impulse response analysis sheds light on the reliability of the findings. Ex-
emplary, I will take a closer look at the responses to a shock to the US interest rate,
presented in figure 1 for US variables and in figure 2 for foreign interest rates. A
contractionary US monetary policy, shown by an increase in the US interest rate,
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Figure 2: Responses of foreign interest rates to a shock to US interest rate

Solid line shows response, dotted lines present upper 84% and lower 16%.
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leads to a rise in US CPI. The response of industrial production growth is insignif-
icant. The increase of inflation in response to a tightening in the monetary policy
is in line with the price puzzle. The price puzzle - first mentioned by Sims (1992)
- refers to this result contradicting theoretical models and empirical findings which
would claim that a rise in the interest rate leads to a decline in inflation. The puz-
zle is expected for VAR models which just include industrial production growth,
inflation, and a short term interest rate and have a structural identification based
on a recursive system. The foreign interest rates immediately raise in response to
a tightening in the US monetary policy. The increases in the interest rates are
lower, below 0.5, than the initial raise in the US interest rate, which is normalized
to one. The UK interest rate is initially affected most, followed by the Canadian
and German interest rate responses. After around two horizons the effect of the US
shock is insignificant for the interest rate of the United Kingdom, Germany, and
Italy. The responses of the interest rates of Japan and France are lowest. For Japan
the response is insignificant after the first horizon while for France the response is
insignificant for all horizons. The raise in the Canadian interest rate lasts longest
and comes to zero after six horizons. To sum up, the impulse repose functions show
that the results based on SSVSP are reliable.

7 Concluding Remarks

This paper introduces the SSVSP as an extension of Koop’s and Korobilis’s S4.
The SSVSP is an alternative estimation procedure for PVARs which is able to fully
incorporate dynamic and static interdependencies as well as cross-country hetero-
geneities. It allows for a flexible panel structure since it distinguishes only between
domestic and foreign variables. Using a hierarchical prior the SSVSP searches for
the restrictions which are supported by the data.

The results of the Monte Carlo simulations show that when a less restrictive panel
structure is present, the SSVSP outperforms the S4. The average deviation of the es-
timated parameters from the true values is less for the SSVSP, APDSSV SP = 0.036,
than for S4, APDS4 = 0.045. In most cases, OLS estimates deviate more from the
ture values than the estimates of the selection priors. Thus, using a prior which is
able to account for a panel structure is beneficial. Furthermore, the accuracy of the
SSVSP in selecting the restrictions is proofed by the posterior probabilities for no
interdependencies and homogeneity.
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The results of the empirical application are summarized in three main findings.
Firstly, compared to the S4 the SSVPS gives improved forecasting results. Secondly,
posterior probabilities for DI and SI restrictions show that interest rates likely de-
pend on foreign interest rates. Variables of the United States and Japan have no
static interdependencies with the remaining G7 countries and are heterogeneous.
Thirdly, responses to a shock in the US interest rate are in line with expected re-
sponse functions.

The SSVSP prior can be further developed. The SI restriction search is a first
way for structural identification in a data based way but it comes with the limitation
of building on a recursive system. For just identified systems the BMA result of the
reduced form can be used combined with the clear mapping between reduced form
covariance matrix and a short run restriction matrix to obtain the structural form.
For overidentified systems, however, the draws of the coefficient matrices have to be
directly from the structural form. This means a selection prior for A conditional on
a restriction matrix A0 has to be stated and a valid Gibbs sampler has to be derived.

One critical issue is the selection of hyperparameters. In my specification the hy-
perparameters are fixed for all parameters which are estimated. George et al. (2008)
propose a default semi-automatic approach to select the hyperparameters. The val-
ues are not fixed but vary for each coefficient. For example τ1,i = c1

√
var(αi) and

τ2,i = c2
√
var(αi) whereby c1 = 0.1 and c2 = 10. The var(αi) is the estimated vari-

ance of the OLS estimate for αi in a model without restriction search. The κ and
ξ are set in an equal manner. Trying this approach leads to hyperparameters which
tend to be so small, that the majority of values are drawn from the loose part of
the prior. Koop and Korobilis (2015) specify distributions for the hyperparameters.
This allows them to have varying hyperparameters. However, the distributions for
the hyperparameters also depend on hyperparameters which have to be specified.

To sum up, the findings of the conducted Monte Carlo simulations and the ex-
emplary empirical application encourage the use of the SSVSP to estimate PVAR
models. However, the recursive structural identification as well as the specified hy-
perparameters leave room for further improvements.
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Gibbs Sampler Algorithm

Step 1:
Sample α from a Normal posterior conditional on Σ, γDI , γCSH .

α | Σ, γDI , γCSH ∼ N (Γµα, Vα),

where Vα = ((D′D)−1 + Σ−1 ⊗ X ′X)−1 with X = Yt−1 and µα = Vα((Σ−1 ⊗
X ′X)αOLS). D is a diagonal matrix with D = diag(h1111, ..., h

GG
NN). The value of

h depends on γDI and γCSH : hlkij =

τ1, if γlkDI,ij = 0

τ2, if γlkDI,ij = 1
for the parameters where

DI restriction search is done (i 6= j) and hlkjj =

ξ1, if γwCSH = 0

ξ2, if γwCSH = 1
for the block di-

agonal parameters where CSH restriction search is done. αOLS is the OLS estimate
of α. The posterior mean is restricted with the selection matrix Γ.

Step 2:
Update γDI and γCSH from Bernoulli distribution:

γlkDI,ij ∼ Bernoulli(πlkDI,ij)

πlkDI,ij =
u2lkDI,ij

u1lkDI,ij + u2lkDI,ij

γwCSH ∼ Bernoulli(πwCSH)

πwCSH =
v2wCSH

v1wCSH + v2wCSH
.

Hereby, u1lkDI,ij = F (αlkij | 0, τ 21 )probDI and u2lkDI,ij = F (αlkij | 0, τ 22 )(1− probDI). F ()

denotes the p.d.f. of the Normal distribution with mean zero and variance τ 21 or
τ 22 evaluated at αlkij . The parameter probDI is set equal to 0.5. This shows that a
priori the researcher assumes that it is equally likely that a dynamic interdependency
between two variables of country i and j exists or does not exist. v1wCSH = F (αlkjj |
αlkii , ξ

2
1)probCSH and v2wCSH = F (αlkjj | 0, ξ22)(1 − probCSH). Again, probCSH is set

equal 0.5. Depending on γwCSH the elements in Γw are updated.
Step 3:

Update Σ = Ψ−1
′
Ψ−1 and γSI . The variance elements, ψkkii , are drawn from a
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Gamma distribution:
(ψkkii )2 ∼ G(a+ 0.5 ∗ T,Bn),

where n = 1, ..., NG and

Bn =

b+ 0.5SSEnn n = 1

b+ 0.5(SSEnn − s′n(Sn−1 + (R′R)−1)−1sn) n = 2, ..., NG
.

Note that ψ11
11 is assigned to B2, ψ22

11 to B2, ..., and ψGGNN to BNG. T is defined as
the length of the time series and SSE as the sum of squared residuals. Sn is the
upper-left n × n submatrix of SSE, and sn = (s1n, ..., sn−1,n)′ contains the upper
diagonal elements of SSE. R is a diagonal matrix with R = diag(r1111, ..., r

GG
NN). The

value of r depend on γSI : rlkij =

κ1, if γlkSI,ij = 0

κ2, if γlkSI,ij = 1
.

Define the vector ψ = (ψ11
12, ..., ψ

GG
N−1,N)′. Thus, ψ contains the covariance elements,

ψlkij for all i 6= j and has the dimension nSI × 1, where nSI = 1, .., NSI and NSI is
the length equal to the number of SI restrictions. The elements of ψ are updated
from a Normal distribution:

ψnSI
| α, ψ, γSI ∼ N (µnSI

, VnSI
).

Hereby, µnSI
= −ψkkii (SnSI−1 + (R′R)−1)−1snSI

and VnSI
= (SnSI−1 + (R′R)−1)−1.

The element ψkkii is the variance element in the same row of Psi as ψlkij = ψnSI
for

all i 6= j. The off-diagonal elements of the covariance matrix which belong to one
country are drawn from a Normal distribution with mean zero and variance κ2.

Hyperparameter

Table 7: Hyperparameters

τ1 τ2 ξ1 ξ2 κ1 κ2 a b

0.2 4 0.2 4 0.3 4 0.01 0.01

The comparison of the different prior is also based on these specific hyperparam-
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eters. A value of τ1 = 0.2 and τ2 = 4 means that the variance of the tight prior
equals 0.04 and 16 for the loose prior. The criterion that the variance of the first
part of the Normal distribution is smaller than the second part is clearly fulfilled.
Several other specification are also checked. The accuracy of the algorithm in select-
ing the restrictions varies with the specification of the hyperparameters. If τ1, κ1,
and ξ1 are chosen too small, the majority of values is drawn from the second part of
the Normal distribution (γ equals one with a very high probability). Still, γ equals
more often one in the cases no restriction is set in the true specification of the Monte
Carlo simulation. Values for hyperparameters smaller or equal 0.1 prove to be too
small resulting in the mentioned difficulties. George et al. (2008) propose a default
semi-automatic approach to selecting the hyperparameters. The values are not fixed
but vary for each coefficient. For example τ1,i = c1

√
var(αi) and τ2,i = c2

√
var(αi)

whereby c1 = 0.1 and c2 = 10. var(αi) is a OLS estimated of the variance of the
coefficient in an unrestricted model. κ and ξ are set in an equal manner. Trying
this approach also leads to hyperparameters smaller than 0.1.

Estimates - Monte Carlo Simulation

The simulation is done with 100 samples, each with a length of 100. The Gibbs
sampler has 55000 draws of which 5000 draws are disregarded as draws in the burn-
in-phase. The estimated parameters for the first Monte Carlo Simulation based on
the SSVSP prior are the following:

ASSV SP1 =



0.61 0.09 0.20 0.19 −0.03 0.01

0.01 0.50 0.31 0.29 −0.03 −0.01

0.00 0.01 0.52 0.46 −0.01 −0.04

−0.01 −0.01 −0.02 0.39 0.00 −0.01

0.28 −0.39 −0.03 −0.02 0.52 0.46

0.22 0.38 −0.03 −0.03 −0.03 0.41
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ΨSSV SP =



0.70 −0.03 0.03 0.23 0.10 −0.10

0.00 0.76 0.31 0.46 0.02 −0.02

0.00 0.00 0.91 0.01 0.08 0.01

0.00 0.00 0.00 1.01 −0.22 −0.25

0.00 0.00 0.00 0.00 1.27 0.27

0.00 0.00 0.00 0.00 0.00 1.15



ΣSSV SP =



1.42 0.16 −0.39 −0.48 0.21 0.19

0.16 1.50 −0.41 −0.52 0.14 0.25

−0.39 −0.41 1.70 0.54 0.09 0.11

−0.48 −0.52 0.54 1.61 0.00 −0.01

0.21 0.14 0.09 0.00 1.35 0.17

0.19 0.25 0.11 −0.01 0.17 1.32


The estimated values for the second Monte Carlo Simulation are given by:

ASSV SP1 =



0.55 0.12 0.18 0.00 0.20 −0.02

0.00 0.54 0.18 −0.02 0.19 −0.01

0.00 −0.03 0.51 0.43 0.00 −0.01

−0.02 0.00 −0.01 0.27 0.01 −0.01

0.26 −0.43 −0.01 0.00 0.51 0.44

−0.01 −0.01 0.00 0.00 0.00 0.39
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ΨSSV SP =



0.78 0.00 0.00 0.00 0.00 0.00

0.00 0.72 0.00 0.00 0.00 0.00

0.00 0.00 0.89 0.00 0.00 0.00

0.00 0.00 0.00 0.83 0.00 0.00

0.00 0.00 0.00 0.00 1.01 0.00

0.00 0.00 0.00 0.00 0.00 1.10



ΣSSV SP =



1.77 0.23 −0.45 −0.01 0.30 0.01

0.23 1.27 0.01 −0.50 0.13 0.02

−0.45 0.01 1.36 0.03 0.00 0.00

−0.01 −0.50 0.03 1.31 0.00 0.01

0.30 0.13 0.00 0.00 1.30 0.02

0.01 0.02 0.00 0.01 0.02 1.07


Empirical Application

The Gibbs sampler has 55000 draws of which 5000 draws are disregarded as draws
in the burn-in-phase. Posterior probabilities of restrictions are the γ draws equal to
zero over all draws. MSFEs of SSVSP and SSSS relative to OLS. Values below one
indicate a performance of the estimator better than OLS.
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Table 8: MSFEs for SSVSP relative to OLS

horizon 1 2 3 4 5 6 7 8 9 10 11 12

IP_CA 1.00 0.98 1.02 0.95 0.98 1.06 1.09 1.05 1.10 1.13 1.13 1.14

CPI_CA 1.05 1.02 1.05 1.06 1.03 1.01 1.02 1.04 1.04 1.03 0.95 0.97

IR_CA 1.10 1.15 1.15 1.25 1.32 1.39 1.39 1.45 1.41 1.47 1.40 1.38

IP_I 1.12 0.98 1.03 1.04 1.10 1.10 1.07 1.15 1.12 1.12 1.09 1.10

CPI_I 1.25 1.03 1.00 1.03 1.01 0.99 1.03 1.00 1.00 0.99 0.98 0.99

IR_I 1.41 1.28 1.28 1.41 1.39 1.41 1.41 1.38 1.40 1.32 1.35 1.39

IP_UK 1.07 0.99 0.98 1.04 1.06 1.05 1.04 1.06 1.02 1.03 1.03 1.02

CPI_UK 0.99 0.98 1.04 1.02 0.99 0.99 1.05 0.99 1.02 1.00 1.04 0.95

IR_UK 1.06 1.03 0.98 1.01 1.03 1.09 1.09 1.07 1.06 1.09 1.03 1.01

IP_F 1.02 0.99 1.01 0.98 1.03 1.06 1.00 1.07 1.03 1.01 1.01 0.97

CPI_F 1.04 1.01 1.01 1.02 1.03 1.01 1.02 1.01 1.02 1.00 1.00 1.01

IR_F 1.59 1.16 1.12 1.21 1.28 1.42 1.42 1.43 1.46 1.42 1.42 1.41

IP_J 0.99 1.00 1.01 1.01 1.02 1.03 1.01 1.01 1.00 0.98 0.98 1.01

CPI_J 1.04 0.99 1.00 1.00 1.01 1.02 1.01 1.01 1.01 1.00 1.03 1.01

IR_J 3.59 3.08 3.00 2.93 3.07 3.20 3.00 3.33 3.07 2.93 2.71 2.73

IP_D 0.99 1.04 0.98 1.01 1.02 1.03 1.04 1.05 1.02 1.01 1.03 0.99

CPI_D 1.00 1.02 0.97 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.04 0.97

IR_D 1.38 1.13 1.02 0.97 0.97 1.00 0.99 0.98 0.96 1.00 0.99 0.98

IP_US 1.00 0.97 0.98 0.97 1.02 1.00 1.02 1.02 1.02 1.04 1.04 1.02

CPI_US 1.00 1.00 1.01 1.04 1.03 1.01 1.04 1.05 1.03 1.01 0.99 0.99

IR_US 1.00 1.00 0.99 1.00 1.01 1.00 1.03 1.02 1.03 1.03 1.03 1.02

MSFEs are given relative to OLS, MSFE<1 are in bold. Σ drawn from Inverted Wishart distribution.
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Table 9: MSFEs for S4 relative to OLS

horizon 1 2 3 4 5 6 7 8 9 10 11 12

IP_CA 1.03 1.00 1.07 0.95 1.03 1.14 1.16 1.13 1.20 1.23 1.21 1.20

CPI_CA 1.20 1.07 1.23 1.17 1.23 1.23 1.23 1.28 1.26 1.20 1.13 1.01

IR_CA 1.10 1.40 1.26 1.34 1.41 1.56 1.53 1.66 1.60 1.70 1.66 1.61

IP_I 1.13 0.98 1.05 1.05 1.10 1.14 1.08 1.20 1.15 1.15 1.14 1.17

CPI_I 1.21 1.31 1.22 1.26 1.20 1.24 1.33 1.30 1.32 1.40 1.24 1.21

IR_I 1.37 1.25 1.19 1.37 1.35 1.41 1.40 1.36 1.37 1.33 1.38 1.43

IP_UK 1.21 1.02 1.04 1.10 1.12 1.12 1.15 1.10 1.13 1.12 1.18 1.06

CPI_UK 1.39 1.15 1.13 1.22 1.20 1.11 1.09 1.23 1.25 1.21 1.05 1.11

IR_UK 1.06 1.04 1.01 1.02 1.03 1.04 1.09 1.03 1.02 1.05 1.02 0.95

IP_F 1.34 1.02 1.09 1.04 1.14 1.24 1.12 1.25 1.20 1.19 1.19 1.15

CPI_F 1.59 1.21 1.13 1.26 1.31 1.17 1.24 1.34 1.21 1.23 1.10 0.97

IR_F 1.54 1.34 1.20 1.23 1.32 1.50 1.50 1.50 1.54 1.51 1.50 1.48

IP_J 1.00 0.98 1.01 1.01 1.00 1.04 1.02 1.00 0.99 1.03 1.01 1.06

CPI_J 1.14 1.03 1.07 1.02 1.01 1.01 1.00 1.07 1.06 1.02 1.06 1.01

IR_J 3.71 3.92 3.92 3.73 3.93 4.13 3.93 4.33 4.00 3.71 3.50 3.53

IP_D 1.10 0.97 0.97 1.08 0.94 1.14 1.10 1.07 1.11 1.14 1.10 1.06

CPI_D 1.67 1.15 1.03 1.14 0.89 1.18 1.02 1.05 1.23 0.97 1.12 1.04

IR_D 1.46 1.25 1.06 1.00 0.97 1.04 0.99 0.95 0.96 0.99 1.00 1.00

IP_US 1.00 0.98 0.98 0.94 1.02 0.99 1.00 1.02 1.02 1.01 1.03 1.02

CPI_US 1.00 1.00 1.01 1.03 1.04 1.01 1.03 1.07 1.06 1.03 0.99 1.01

IR_US 1.00 1.02 1.03 1.02 1.03 0.97 1.06 1.03 1.05 1.03 1.04 1.02

MSFEs are given relative to OLS, MSFE<1 are in bold. Σ drawn from Inverted Wishart distribution.
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