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Abstract

We analyze the impact of status preferences on technological progress and long-run

economic growth within an R&D-based framework. For this purpose, we extend the standard

relative wealth approach by allowing the various assets held by households to differ with

respect to their status relevance. Relative wealth preferences imply that the effective rate of

return on saving in the form of a particular asset is the sum of its market rate of return and its

status-related extra return. We show that the status relevance of shares issued by entrants to

finance the purchase of new technologies is of crucial importance for long-run growth: First,

an increase in the intensity of the quest for status raises the steady-state economic growth

rate only if the status-related extra return of these shares is strictly positive. Second, for any

given degree of status consciousness, the long-run economic growth rate depends positively

on the relative status relevance of shares issued by entrants. Third, while the decentralized

long-run economic growth rate is less than its socially optimal counterpart in the standard

model, wealth externalities reduce this distortion.

JEL classification: D31, D62, O10, O30.

Keywords: Status concerns, relative wealth, technological progress, long-run economic

growth, social optimality.
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Wealth is like sea-water; the more we drink, the thirstier we become.

(Arthur Schopenhauer)

1 Introduction

The idea that individuals derive utility not only from absolute consumption, leisure, or wealth

but also from their social status is by now well established. It has long been recognized that

individuals compare themselves with each other and that they derive extra felicity from out-

performing their peers. For example, Adam Smith wrote in The Wealth of Nations that “With

the greater part of rich people, the chief enjoyment of riches consists in the parade of riches”

and John Stuart Mill stated in his Essay on Social Freedom that “Men do not desire merely

to be rich, but to be richer than other men”. This all too human trait is also backed by em-

pirical evidence: Clark and Oswald (1998) and Luttmer (2005) find, by analyzing 5,000 British

workers and 8,000 US households, respectively, that self-reported happiness and life satisfaction

are lower if, ceteris paribus, neighbors an/or colleagues are better off. Their results are statisti-

cally and economically significant and robust against various re-specifications of the regressions.

Luttmer (2005) concludes that the most promising explanation for his result is the presence of a

psychological externality that leads individuals to derive utility from their own status in relation

to the status of others. For further empirical support of status concerns see McBride (2001)

and Boyce et al. (2010).

In theoretical macroeconomic models, the implications of the quest for status on private

consumption, saving, work effort, and the optimal design of distortionary taxation/subsidization

have been analyzed extensively.1 With respect to the analysis of long-run economic growth,

however, status-related models did not yet lead to substantially new insights. The reason

is that status preferences have no impact on the long-run balanced growth path in standard

neoclassical growth models, regardless of whether status is determined by relative consumption

or by relative wealth. While AK type of growth models imply that status preferences of the

relative wealth type have an effect on long-run economic performance, i) many implications of

the AK model are refuted by the available empirical evidence (cf. Aghion and Howitt, 2009,

pp. 56–60) implying that it is not a suitable framework for the analysis of long-run economic

growth, ii) there is only one asset (physical capital) in the AK framework, which rules out growth

effects due to the possibility that individuals attach different status weights to different forms

of assets such as physical capital and shares, iii) AK models do not leave an explanatory role

for technological progress, which has been identified as the main driver of long-run economic

growth (Acemoglu, 2009, pp. 402–403). Nowadays, multi-sector R&D-based growth models

with two types of assets, physical capital and shares, are used to analyze the driving forces of

1For the relative consumption specification or more general specifications of consumption externalities see, for
example, Abel (1990, 2005), Gaĺı (1994), Harbough (1996), Carroll et al. (1997), Rauscher (1997), Grossmann
(1998), Fisher and Hof (2000), Ljungqvist and Uhlig (2000), Liu and Turnovsky (2005), Turnovsky and Monteiro
(2007), Fisher and Heijdra (2009), and Strulik (2015). For the relative wealth specification see, for example,
Corneo and Jeanne (1997, 2001a,b), Futagami and Shibata (1998), Fisher and Hof (2005, 2008), Van Long and
Shimomura (2004), and Fisher (2010). For frameworks that allow for both specifications see Tournemaine and
Tsoukis (2008), Ghosh and Wendner (2014), Ghosh and Wendner (2015), and Wendner (2015).
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technological change and long-run economic growth. We therefore aim to extend this literature

to adequately capture the impact of the quest for status on long-run economic performance.

The contribution of our paper is twofold: First, we close an important gap in the literature by

introducing relative wealth preferences into the generic R&D-based growth model of the Romer

(1990) type and by analyzing the implications of status concerns for technological progress

and growth. To the best of our knowledge this has not been attempted before. Using a

semi-endogenous growth model of the Jones (1995) type instead of the Romer (1990) type

would not change the basic mechanisms and channels that we identify because all of our results

would be present during the transition toward the long-run balanced growth path.2 Second,

we extend the standard relative wealth approach by allowing for the possibility that the assets

held by households differ with respect to their status relevance. This extension is inspired by

psychological research on whether various categories of items differ with respect to their degree

of positionality.3 As we will see, the differential status effect of traditional physical capital

versus those of shares used by entrants to purchase new technologies is of crucial importance

for long-run economic growth and has the potential to explain the superior growth patterns of

countries in which entrants/startups have better access to new funds.

The introduction of generalized relative wealth preferences into the Romer (1990) model

implies that the effective rate of return on saving in the form of a particular asset is the sum

of its standard market rate of return and its status-related extra return. In both the Euler

equation for consumption and in the no-arbitrage condition, the rental rate of physical capital

and the market rate of return of shares issued by entrants are replaced by the corresponding

effective rates of return. Hence, the status-seeking motive leads to a rise in the common steady-

state effective rate of return of all assets as long as the positive effects of the status-related

extra returns are not perfectly offset by the decrease in the market rates of return associated

with a higher saving rate. The resulting stronger incentive to save causes the demand for both

physical capital and shares issued by entrants to grow at a higher rate. Since the purchase of

new technologies by entrants is financed through equity, this raises the demand for R&D. The

faster-growing demand for new technologies is in turn satisfied by an increase in employment

in the research sector, which leads to an acceleration of technological progress and to faster

economic growth.

The main implications of the introduction of generalized relative wealth preferences can

be summarized as follows: First, an increase in the intensity of the quest for status raises the

steady-state economic growth rate as long as the possession of shares issued by entrants matters

for social status. If, however, solely the relative holdings of physical capital are status-relevant,

then the status-augmented Romer (1990) model yields the same long-run balanced growth rate

as the standard Romer (1990) model. Second, for any given degree of status consciousness

both the fraction of wealth held in the form of shares and the long-run economic growth rate

depend positively on the relative status weight of shares issued by entrants. Third, while in the

standard Romer (1990) model the decentralized long-run economic growth rate is less than its

2See Trimborn et al. (2008), and Prettner and Trimborn (2016) for the numerical analysis of the transitional
dynamics of semi-endogenous growth models.

3See for example Solnick and Hemenway (1998, 2005); Solnick et al. (2007), Johansson-Stenman and Martins-
son (2006), and Hillesheim and Mechtel (2013).
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socially optimal counterpart, the wealth externalities are able to counterbalance this distortion

provided that the effect of shares on status is large enough.

The paper is structured as follows. In Section 2 we introduce the basic assumptions with

respect to status preferences and derive the status-augmented versions of i) the Euler equation

for consumption, ii) the no-arbitrage condition with respect to the rates of return of physical

capital and shares issued by entrants, and iii) the transversality conditions of the representative

household’s optimization problem. In addition, we present the three sectors of the production

side of the economy and derive the system of differential equations that governs the dynamic

evolution of the economy. Section 3 contains the main results with respect to the impact of the

quest for status on long-run growth and with respect to the importance of the status-relevance

of shares in this context. In Section 4 we discuss the results and conclude.

2 The model

2.1 Basic assumptions

Consider a modern knowledge-based economy with three sectors in the vein of Romer (1990)4:

final goods production, intermediate goods production, and R&D. These sectors employ two

production factors, physical capital and labor. Homogeneous labor is employed in the final goods

sector and in the R&D sector (for simplicity we refer to labor employed in final goods production

as “workers” and to labor employed in R&D as “scientists”). The final goods sector produces a

single homogeneous commodity that is used either as consumption good or as physical capital.

The varieties produced by the intermediate goods sector are used as inputs in the production

of the final good. The R&D sector develops patents for intermediate goods, which are sold to

the new firms that enter intermediate goods production. To put it differently, an entrant into

the intermediate goods sector has to purchase a new intermediate-specific patent from the R&D

sector as a fixed up-front investment to be able to start the production process. These up-front

investments are financed by issuing shares that are bought by the households in the economy,

which, in turn, receive the associated dividend income and may experience valuation gains.5

There exists a continuum of homogeneous households of mass one. The flow budget con-

straint of the representative household has the following form:

K̇ + pZŻ = rK +DZ + wL− C, (1)

where K denotes physical capital employed by incumbent firms, r is the rental rate of physical

capital, Z is the number of shares issued by entrants up to time t, pZ denotes the price of these

shares, D refers to the dividend payments per share, L is exogenously given supply of labor,

w is the real wage rate, C refers to consumption, and for any variable x the derivative with

4For the sake of simplicity, we follow the literature on horizontal innovations. Similar effects would, however,
also be present in case of vertical innovations. For R&D-based growth models in general see Romer (1990),
Grossman and Helpman (1991), Aghion and Howitt (1992), Jones (1995), Kortum (1997), Segerström (1998),
Peretto (1998), Young (1998), Howitt (1999), Dalgaard and Kreiner (2001), Strulik (2005), Bucci (2008), and
Strulik et al. (2013). For extensive surveys see Gancia and Zilibotti (2005) and Aghion and Howitt (2005).

5See, for example, Lehmann-Hasemeyer and Streeb (2016) for the importance of the stock market for innovative
firms.
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respect to time t is denoted by ẋ ≡ dx/dt.6

Individuals earn labor income and asset income. The former is given by wL, while the latter

consists of capital income rK and dividend payments DZ. For simplicity and without loss of

generality, we ignore the depreciation of physical capital. To summarize, the right-hand side

of the flow budget constraint refers to total saving, while the left-hand side shows that total

saving is either used for investments in physical capital or for purchasing the shares that are

newly issued by entrants into the intermediate goods sector to finance the patents of the new

technologies needed to start production.

In contrast to the standard framework, we employ status preferences to account for the

fact that one’s own felicity also depends on the comparison with others. More specifically, we

assume that instantaneous utility u of the representative consumer depends not only on her

consumption C, but also on her status S, i.e., the utility function has the form u = u (C, S),

where we assume the following:

∂u

∂C
> 0,

∂2u

∂C2
< 0,

∂u

∂S
> 0,

∂2u

∂S2
< 0,

∂2u

∂C2

∂2u

∂S2
−
(

∂2u

∂C∂S

)2

≥ 0, (2)

∂

(
∂u

∂S

/
∂u

∂C

)
∂C

> 0,

∂

(
∂u

∂S

/
∂u

∂C

)
∂S

< 0, (3)

lim
C→0

∂u (C, S)

∂C
=∞, lim

C→∞

∂u (C, S)

∂C
= 0. (4)

Assumption (2) signifies that the representative consumer derives positive but diminishing

marginal utility from both consumption and status. Moreover, the utility function u is jointly

concave in C and S. According to (3), the marginal rate of substitution of status for consump-

tion (∂u/∂S) / (∂u/∂C) depends positively on C and negatively on S. These properties are

normality conditions with respect to status and consumption. Finally, (4) introduces standard

Inada conditions with respect to the marginal utility of consumption.

With respect to status S, two alternative specifications are employed in the literature. In

the relative consumption approach, status S is determined by a comparison of own consumption

with average consumption of a reference group. In models with homogeneous agents, average

consumption of the total household sector serves as the benchmark. In the relative wealth

approach the determination of status rests on a comparison of own wealth with average wealth.

We focus our attention on the latter approach, because, as we already explained, this allows

us to analyze the differential status effects of physical capital versus shares issued by entrants,

which is of crucial importance for long-run growth.

A crucial and distinctive feature of our model is that the components of wealth are allowed

to differ with respect to their effect on social status. More specifically, we assume that

S = S
(
Ω, Ω̄

)
,

∂S

∂Ω
> 0,

∂2S

∂Ω2
≤ 0,

∂S

∂Ω̄
< 0, (5)

6Note that the derivative of total wealth K + pZZ with respect to time t is obtained by adding the valuation
gains of shares ṗZZ on both sides of the flow budget constraint (1) such that K̇ + pZŻ + ṗZZ = rK + DZ +
ṗZZ + wL− C.
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where

Ω ≡ φKK + φZpZZ and Ω̄ ≡ φKK̄ + φZpZZ̄ (6)

are the status-relevant measures of own wealth and average economy-wide wealth, respectively.

The parameter φZ ≥ 0 is the status weight of shares issued by entrants to purchase new

technologies from the R&D sector. The parameter φK ≥ 0 refers to the status weight of

physical capital employed by incumbent intermediate firms. For simplicity, it is often assumed

in the literature that households own the physical capital. Non-entrepreneurial households rent

it out to firms, while entrepreneurial households might also employ it in their own firms. A

common hypothesis of the psychological status literature is that the observability/visibility of

an item exerts a significant positive effect on its degree of positionality. Hence, if households

literally own physical capital, then the observability/visibility aspect implies that this possession

entails a stronger status effect than the ownership of shares. Think in this context of owning

the Empire State Building or other commercial properties and renting out their office space

to firms. This interpretation would give rise to the parameter specification φK > φZ . The

alternative assumption is that physical capital is in the possession of firms. Households supply

the funds that are required for its purchase either directly (via financial markets) or indirectly

(via banks). In case that firms finance investment through bank loans or corporate bonds,

implying that rK has to be interpreted as interest income, it is plausible that the ownership

of shares exerts a higher status effect than financial claims held in the form of loans or bonds.

A rationale for the superiority of shares is that savings accounts or corporate bonds are often

considered as conservative, uninspiring, or even dull forms of wealth. This interpretation would

imply the parameter specification φK < φZ . Even if incumbent firms finance the purchase of

physical capital through equity, these shares need not be as status relevant as those issued by

startups. One may, in this context, think of innovation-friendly societies in which the segment of

shares that is associated with technological progress is more status relevant or more fashionable

than other shares so that φK < φZ . In such societies it could even be a social norm to act in

a way that fosters progress (a suitable example might be the US). However, the opposite could

be true in conservative societies in which people are afraid of the potential negative effects

and dangers of innovation (examples for this might include some European countries) and as

a result prefer claims against incumbent firms implying that φK > φZ . The standard relative

wealth approach in which all assets are treated as equally status relevant is obtained by setting

φK = φZ = 1 so that Ω is identical to the standard definition of wealth as given by K + pZZ.

This specification would, for instance, fit to situations in which households are able to assess the

total magnitude of wealth held by other households, but don’t have any detailed information

about the compositions of their portfolios.

In our comprehensive theoretical analysis we allow for all of the relative status cases men-

tioned above. It will become clear that the long-run economic growth rate depends crucially

upon the relative status relevance of shares issued by entrants. Our generalization therefore

yields additional insights that cannot be obtained in the standard relative wealth approach in

which all assets are of equal importance with respect to status or in an AK growth model in

which only one asset exists.

In (5) we assume that status S = S
(
Ω, Ω̄

)
increases in own wealth Ω, with marginal status
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being non-increasing, and decreases in average wealth Ω̄. The latter implies negative wealth

externalities. In the status literature it is common practice to restrict attention to symmetric

equilibria in which identical agents make identical choices such that Ω = Ω̄ holds along an

equilibrium path. With respect to symmetric situations, we follow Fisher and Hof (2005) and

assume that the following condition holds:

S (Ω,Ω) = χ = constant, for Ω > 0. (7)

Assumption (7) ensures that our approach corresponds to a pure relative wealth specification

because the flow of utility is independent of the level of wealth Ω along any symmetric equilib-

rium path, i.e., u [C, S (Ω,Ω)] = u (C,χ).7 It is easily verified that two standard specifications

of the status literature, the difference specification

S
(
Ω, Ω̄

)
= ϕ

(
Ω− Ω̄

)
, ϕ′ > 0, ϕ′′ ≤ 0 (8)

and the ratio specification

S
(
Ω, Ω̄

)
= ϕ

(
Ω/Ω̄

)
, ϕ′ > 0, ϕ′′ ≤ 0 (9)

satisfy Assumption (5) and Assumption (7).

By optimally choosing the time paths of C, K̇, and Ż, the representative household maxi-

mizes overall utility as given by ∫ ∞
0

e−ρtu
[
C, S

(
Ω, Ω̄

)]
dt,

where ρ > 0 denotes the time-preference rate, subject to the flow budget constraint (1), the

definitions of Ω and Ω̄ as given by (6), and the initial conditions K (0) = K0 and Z (0) = Z0. A

crucial feature of this optimization problem is that the representative household takes the time

paths of w, r, pZ , D, and Ω̄ as given. This is due to the fact that in a continuum of households

each single household has mass zero and its choices do not affect aggregate variables.

A detailed analysis of this optimization problem is provided in Appendix A. Here we

only mention the three aspects with respect to which the symmetric equilibrium of the status-

augmented model differs from the equilibrium of the standard Romer (1990) model.

The first modification is that the no-arbitrage condition between saving in terms of physical

capital and saving in terms of shares that holds in the standard Romer (1990) model

r =
D

pZ
+
ṗZ
pZ

(10)

has to be replaced by

r + εK (C,Ω, χ, φK) =
D

pZ
+
ṗZ
pZ

+ εZ (C,Ω, χ, φZ) (11)

7Note that absolute wealth Ω would play a role along symmetric equilibrium paths if the instantaneous utility
function u (C, S) was replaced by u (C,Ω, S).
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where

εK (C,Ω, χ, φK) ≡MRS (C,Ω, χ)× φK , (12)

εZ (C,Ω, χ, φZ) ≡MRS (C,Ω, χ)× φZ , (13)

MRS (C,Ω, χ) ≡ ∂u (C,χ)

∂S

∂S (Ω,Ω)

∂Ω

[
∂u (C,χ)

∂C

]−1
. (14)

On the left-hand side of (11), r + εK is the effective rate of return of wealth accumulation

in the form of physical capital, where r is the market rental rate of physical capital, while

εK (C,Ω, χ, φK) as defined in (12) is the status-related extra return of physical capital. On the

right-hand side of (11), (D + ṗZ) /pZ + εZ is the effective rate of return of wealth accumulation

in the form of shares, where the market return (D + ṗZ) /pZ results from dividend payments

and valuation gains, while εZ (C,Ω, χ, φZ) as defined in (13) is the status-related extra return

of shares. The term MRS (C,Ω, χ) defined in (14) is the marginal rate of substitution of

status-relevant own wealth Ω for consumption C as perceived by the representative agent in a

symmetric state in which Ω = Ω̄ holds. Taking into account that φK is the weight of physical

capital in the status-relevant measure of wealth, Ω = φKK + φZpZZ, it follows that εK =

MRS × φK is the symmetric MRS of own physical capital K for consumption C. Analogously,

εZ = MRS × φZ is the symmetric MRS of own shares Z for consumption C. The economic

interpretation of εK given above can also be verified as follows: From the perspective of the

representative household, an increase in own physical capital K by a marginal unit causes the

status-relevant measure of wealth Ω to increase by φK units. Since i) the household takes

average wealth as given, and ii) Ω = Ω̄ holds at the outset of our thought experiment, this

increase in Ω by φK units causes status S to rise by [∂S (Ω,Ω) /∂Ω]φK units and felicity u

to increase by [∂u (C,χ) /∂S] [∂S (Ω,Ω) /∂Ω]φK units. Dividing the latter expression by the

marginal utility of own consumption, ∂u (C,χ) /∂C, we obtain the amount of consumption C

that the status-conscious household is willing to give up in exchange for an increase in K by a

marginal unit. Analogous considerations can be used for the interpretation of εZ .

It can be shown that the partial derivatives of MRS (C,Ω, χ) exhibit the following prop-

erties: i) The normality assumption with respect to status given by the first inequality in (3)

implies that ∂MRS/∂C > 0; ii) under the ratio specification of the status function (9) we obtain

∂MRS/∂Ω < 0. The difference specification (8) implies that ∂MRS/∂Ω = 0 holds. Already at

this point it is obvious that this property of the difference specification rules out the existence of

a balanced growth path, because permanent growth would lead to ever-increasing status-related

extra returns of physical capital and shares, εK and εZ .

The second modification as compared to Romer (1990) refers to the Euler equation for

consumption. In the standard framework, where u = u (C), it holds that

Ċ

C
= σ (C) (r − ρ) , with σ (C) ≡ − u′ (C)

Cu′′ (C)
.
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In our case this has to be replaced by

Ċ

C
= σS (C,χ)

[
r + εK (C,Ω, χ, φK)− ρ

]
, (15)

where, according to Assumption (7), χ = constant = S (Ω,Ω), for Ω > 0. The term σS (C,χ)

in which the superscript “S” refers to “status” is the effective elasticity of intertemporal sub-

stitution under relative wealth preferences in a symmetric equilibrium as given by

σS (C,χ) ≡ −∂u (C,χ)

∂C

[
C
∂2u (C,χ)

∂C2

]−1
. (16)

For a given value of the rental rate of capital r, the modified Euler equation implies the follow-

ing: the higher the status-related component of the effective rate of return, εK , the higher is

the growth rate of consumption Ċ/C. In other words, the willingness to substitute future con-

sumption for present consumption increases, implying that individuals save more. In a general

macroeconomic equilibrium as analyzed below, r is determined endogenously. It is therefore

possible that the positive impact of εK > 0 on the effective rate of return r+ εK is partially or

even completely offset by a fall in the market rate of return r.

The third modification concerns the transversality conditions. In the standard model they

are given by

lim
t→∞

{
exp

[
−
∫ t

0
r(v)dv

]
K

}
= 0, lim

t→∞

{
exp

[
−
∫ t

0
[r(v)] dv

]
pZZ

}
= 0, (17)

such that the present values of wealth held in the form of physical capital and shares must

converge to zero as time goes to infinity. In the model with relative wealth preferences, the

market rate of return r is replaced by the effective rate of return r + εK such that

limt→∞

{
exp

[
−
∫ t
0

[
r(v) + εK(v)

]
dv
]
K
}

= 0,

limt→∞

{
exp

[
−
∫ t
0

[
r(v) + εK(v)

]
dv
]
pZZ

}
= 0,

(18)

where εK(v) = εK [C(v),Ω(v), χ, φK ].

2.2 Production side

The production side of the economy follows the standard R&D-based growth literature so that

our description will be short and focused on the main parts that we need in the subsequent

analysis.

The final goods sector consists of a continuum of perfectly competitive firms of mass one,

each of which produces the same single good by employing the same technology. The production

function of the representative firm is given by

Y = L1−α
Y

∫ A

0
xαi di, (19)
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where Y is output, LY denotes labor input, and xi is the amount of the intermediate good of

type i ∈ [0, A] used in final goods production. In this context, A refers to the technological

frontier, i.e., the spectrum of patents for specific varieties i that has already been discovered by

R&D in the past. For simplicity, the elasticities of output with respect to the various types of

intermediate goods are identical and given by α ∈ (0, 1). Since, by assumption, the mass of firms

equals one, output and labor input of the representative firm coincide with GDP and aggregate

employment in the final goods sector, respectively. The perfectly competitive representative

firm takes both the real wage wY in the final goods sector and the real prices of intermediate

goods pi as given and maximizes profits by choosing the inputs LY and xi. The corresponding

first-order conditions (FOCs) are

wY = (1− α)L−αY

∫ A

0
xαi di = (1− α)

∫ A

0

(
xi
LY

)α
di, (20)

pi = αL1−α
Y x

−(1−α)
i = α

(
xi
LY

)−(1−α)
. (21)

These conditions require that each input is utilized up to the point at which its marginal product

equals its real price (i.e., its price in terms of the final good). From (20) and (21) it follows that

– in a general equilibrium – the remuneration of workers equals (1− α) percent of real revenue

Y , while α percent are used to pay for the intermediate goods.

Entrants into the intermediate goods sector have to purchase the patent of a new technology

from the R&D sector as up-front investment before they can produce the corresponding patent-

specific differentiated intermediate good. The incumbent firms i ∈ [0, A] in the intermediate

goods sector employ a single variable production factor, physical capital, which it either rents

from private households or finances through bonds or loans. The production function is assumed

to be linear and, without loss of generality, the productivity of physical capital is normalized to

one such that xi = ki. Taking into account this linear production function and the first-order

condition for the optimal input of xi in the final goods sector [see (21)], operating profits of

intermediate goods producers can be written as

πi = pixi − rxi = αL1−α
Y xαi − rxi.

Profit-maximization implies that prices are set according to the rule

pi =
1

α
r, (22)

where the rental rate r represents marginal cost and (1/α) > 1 is the gross markup we are

familiar with from Dixit and Stiglitz (1977). Hence, firms have a certain degree of price setting

power and operating profits will be positive. This price setting policy implies that production

xi and input of physical capital ki in the intermediate goods sector depend negatively on the

rental rate r and positively (in a linear way) on employment in the final goods sector LY :

xi = ki =

(
α2

r

)1/(1−α)
LY . (23)
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The same is true for operating profits:

πi = (1− α)α(1+α)/(1−α)r−α/(1−α)LY . (24)

Since all incumbent firms i ∈ [0, A] make identical choices, we can drop the index i in the

subsequent analysis and use the notation p, x, k, and π instead.

The R&D sector employs scientists LA to discover new technologies in the form of blueprints

A according to the production function

Ȧ = λALA, (25)

where λ refers to the productivity of scientists. There is perfect competition in the research

sector such that R&D firms take both the real price of blueprints pA and the real wage of

scientists wA as given. Since the production function (25) is linear in LA, the profit of the

representative R&D firm (pAλA− wA)LA is linear in LA, too. Hence, the existence of profit-

maximizing production plans with LA > 0 requires that scientists are paid their marginal

product, i.e.,

pAλA = wA. (26)

2.3 Market clearing and equilibrium dynamics

We close the model by introducing the market clearing conditions for all markets. Afterwards

we derive a system of differential equations that governs the dynamic evolution of the economy

in a symmetric macroeconomic equilibrium. In such an equilibrium households maximize utility,

firms maximize profits, and all market clearing conditions are satisfied. The word “symmetric”

means that households – being identical in every respect – and firms – facing identical cost and

demand functions – make identical choices.

Equilibrium in the labor market requires that the wage rates earned in the final goods sector

and in the R&D sector are equal because labor is homogenous. In addition, the sum of labor

inputs in these two sectors must equal the exogenously given labor supply of households:

wY = wA = w and LY + LA = L. (27)

Equilibrium in the rental market for physical capital requires that the supply of capital (K) is

equal to the aggregate capital input of firms in the intermediate goods sector (Ak). Using (23),

this condition can be written as

K = Ak = A

(
α2

r

)1/(1−α)
LY . (28)

Equilibrium in the stock market requires that all previously and newly issued shares are held by

households. The normalization of the number of shares that are issued by a single intermediate

firm to 1 yields Z = A and Ż = Ȧ. Since all firms in the intermediate goods sector earn identical

profits, their shares will have the same price in equilibrium. From the no-arbitrage condition
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under status preferences (11) it follows that the common price of shares at time t is given by

pZ (t) =

∫ ∞
t

exp

{
−
∫ τ

t
[r (v) + Γ (v)] dv

}
D (τ) dτ,

where

Γ ≡ εK (C,Ω, χ, φK)− εZ (C,Ω, χ, φZ) = MRS (C,Ω, χ) (φK − φZ) . (29)

Future dividend payments are discounted by r + Γ ≡ r + εK − εZ , i.e., the sum of the market

rental rate r and the difference between the status-related extra returns of wealth accumulation

in the form of physical capital and shares, εK−εZ . If φK = φZ , the extra returns εK and εZ are

equal, such that the formula for the calculation of the fundamental value of a stock simplifies

to the standard expression in Romer (1990).

New entrants into the intermediate goods sector have to buy a new technology in the form

of a patent at price pA the purchase of which is financed by issuing a new share. Due to free

entry, competition between new entrants will cause pA to reach the highest possible level. Since

the price of a share attains its maximum if the operating profit is fully distributed in the form

of dividends, we have that D = π holds in equilibrium and the share price is given by

pA (t) = pZ (t) =

∫ ∞
t

exp

{
−
∫ τ

t
[r (v) + Γ (v)] dv

}
π (τ) dτ, (30)

where Γ is defined by (29). Differentiating (30) with respect to time t, we obtain the following

differential equation for the evolution of the price of patents:

ṗA
pA

= r +MRS (C,Ω, χ) (φK − φZ)− π

pA
. (31)

Substituting various results derived above into the flow budget constraint of the represen-

tative household (1), we show in the Supplement that the market for final goods is also in

equilibrium, i.e.,

Y = C + K̇, (32)

such that output of final goods is either consumed or used for investment in physical capital.

Putting all the information together, we show in the Supplement that the dynamic evolution

of the four variables A, K, LA, and C is governed by the following system of differential
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equations:

Ȧ

A
= λLA, (33)

K̇

K
=

[
K

A (L− LA)

]−(1−α)
− C

K
, (34)

Ċ

C
= σS (C,χ)

{
α2

[
K

A (L− LA)

]−(1−α)
+ εK (C,Ω, χ, φK)− ρ

}
, (35)

L̇A = (L− LA)

{
− (1− α)

[
K

A (L− LA)

]−(1−α)
+
C

K
+ λLA

−λ (L− LA) +
εK (C,Ω, χ, φK)− εZ (C,Ω, χ, φK)

α

}
, (36)

where

Ω = φKK + φZ
(1− α)A

λ

[
K

A (L− LA)

]α
(37)

holds in (35) and (36). Inspection of the system (33)–(37) reveals that, as in the standard

framework of Romer (1990), we need to impose additional structure on the preferences to

ensure the existence of a balanced growth path (BGP). The BGP is defined as a stationary

equilibrium in which the variables A, K, C, and Ω grow at the same constant rate

g∗ =
(
Ȧ/A

)∗
=
(
K̇/K

)∗
=
(
Ċ/C

)∗
=
(

Ω̇/Ω
)∗

> 0,

while the variables LA, K/ [A (L− LA)], C/K, and

C

Ω
=

C

K

φK + φZ
1− α

λ (L− LA)

[
K

A (L− LA)

]−(1−α) (38)

remain unchanged at their steady-state levels L∗A, {K/ [A (L− LA)]}∗, (C/K)∗, and (C/Ω)∗.

A crucial element of the derivation of the differential equations (34)–(36) is the fact that the

variables r, p, π, w/A, pA, and Y/K can be expressed as functions of K/ [A (L− LA)] and

(L− LA). Hence, along the BGP we are looking for, these variables are constant, while aggregate

output, per capita output, and wages grow at rate g∗.

In the rest of the paper we restrict our attention to specifications of the instantaneous utility

function u (C, S) and the status function S
(
Ω, Ω̄

)
such that i) the symmetric effective elasticity

of intertemporal substitution under relative wealth preferences does not depend on C, i.e.,

∂σS (C,χ)

∂C
= 0, (39)

and ii) the symmetric marginal rate of substitution of status-relevant own wealth Ω for con-

sumption C, MRS (C,Ω, χ), can be expressed as a function of C/Ω. Since we are also interested

in analytical solutions, we employ the stronger assumption that MRS (C,Ω, χ) depends linearly
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on C/Ω such that

MRS = η × C

Ω
η > 0, (40)

where η represents the intensity of the quest for status of the representative consumer. The

sign of η follows from the already mentioned fact that ∂MRS/∂C > 0 holds because of the

normality of status. Equation (40) implies that the status-related extra returns εK and εZ are

linear functions of C/Ω:

εK = φKη ×
C

Ω
, εZ = φZη ×

C

Ω
. (41)

The structure that we impose by (39) and (40) on u (C, S) and S
(
Ω, Ω̄

)
is rather mild. In

the Supplement we show that the quite general specification of relative wealth preferences given

by

u (C, S) = V [g (C)h (S)] , S = S
(
Ω, Ω̄

)
,

satisfies the properties (39) and (40) if i) the instantaneous utility function has the form

u (C, S) =
1

1− θ

{[
Cξh (S)

]1−θ
− 1

}
, ξ > 0, θ > 0, 1 + ξ (θ − 1) > 0 (42)

where h (S) > 0 and h′ (S) > 0, and ii) the status function exhibits the ratio specification

S
(
Ω, Ω̄

)
= ϕ

(
Ω/Ω̄

)
, ϕ′ > 0, ϕ′′ ≤ 0. (43)

These specifications of u (C, S) and S
(
Ω, Ω̄

)
imply that χ = S (Ω,Ω) = ϕ (1) and

σS =
1

1 + ξ (θ − 1)
> 0, (44)

MRS = η × C

Ω
, η ≡ β

ξ
> 0, β ≡ h′ [ϕ (1)]ϕ′ (1)

h [ϕ (1)]
=
h′ (χ)ϕ′ (1)

h (χ)
> 0. (45)

For ξ = 1 these results simplify to σS = 1/θ and η = β.

Substituting (41) into (35) and (36) yields

Ċ

C
= σS

{
α2

[
K

A (L− LA)

]−(1−α)
+ φKη

C

Ω
− ρ

}
, (46)

L̇A = (L− LA)

{
− (1− α)

[
K

A (L− LA)

]−(1−α)
+
C

K
+ λLA − λ (L− LA) +

(φK − φZ) η

α

C

Ω

}
,

(47)

where C/Ω is given by (38).

In the following we analyze the system that consists of the differential equations (33), (34),

(46), and (47). To determine the BGP, we replace Ȧ/A, K̇/K, and Ċ/C by the common growth

rate g and set L̇A = 0. From the differential equation (33) and the labor market equilibrium

condition (27), it follows that

L∗A =
g∗

λ
, L∗Y = L− L∗A =

λL− g∗

λ
. (48)
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The production function for new blueprints and the labor market equilibrium condition imply

that any rise in the common growth rate g∗ requires a reallocation of labor from the final goods

sector to the R&D sector, i.e., an increase in L∗A and a corresponding decrease in L∗Y .

The differential equation (34), which results from the equilibrium condition of the market

for final goods, implies that(
Y

K

)∗
=

[(
A

K

)∗
(L− L∗A)

]1−α
= g∗ +

(
C

K

)∗
. (49)

Substituting (48) and (49) into the differential equations (46) and (47) and taking into account

Equation (38), we derive a two-dimensional system of equations in the two variables g∗ and

(C/K)∗ (see Appendix B):

−
(
1− α2σS

)
g∗ + σS

α2 +
φKη

φK+
φZ (1− α)

λL− g∗

[
g∗ +

(
C

K

)∗]

(
C

K

)∗
= σSρ, (50)

(1 + α) g∗ +
1

α

α2 +
(φK − φZ) η

φK+
φZ (1− α)

λL− g∗

[
g∗ +

(
C

K

)∗]

(
C

K

)∗
= λL. (51)

Equation (50) is a representation of the steady-state version of the Euler equation for consump-

tion,

g∗ = σS
[
r∗ +

(
εK
)∗ − ρ] , (52)

which is obtained by expressing the rental rate r∗ and the status-related extra return of wealth

accumulation in the form of real capital (εK)∗ as functions of g∗ and (C/K)∗ and taking into

account that (Ċ/C)∗ = g∗. From a technical point of view, Equation (51) yields combinations

of g∗ and (C/K)∗ that exhibit the property that L̇A = 0. For the economic interpretations it

will be of crucial importance that Equation (51) is equivalent to the steady-state version of the

no-arbitrage condition

r∗ +
(
εK
)∗

= (π/pA)∗ +
(
εZ
)∗
, (53)

which is obtained by expressing r∗, (εK)∗, the dividend yield (π/pA)∗, and the status-related

extra return of wealth accumulation in the form of shares (εZ)∗ as functions of g∗ and (C/K)∗

and taking into account that (ṗA/pA)∗ = 0.8

In the Supplement we analyze the existence, uniqueness, and stability properties of the

BGP. If an economically meaningful equilibrium exists, it is unique. The saddle-point stability

is proved analytically for the special cases in which i) shares and capital are equally status

relevant or ii) shares are irrelevant for status. For the general case, we illustrate the saddle

point stability numerically.

8The equivalence of (51) and (53) is not obvious at first glance. In the Supplement we show that i) the differen-
tial equation for pA given by (31) is the starting point for the derivation of the differential equation for LA given

by (47) and ii) Equation (47) is equivalent to L̇A = (L− LA)
{

1/α
[
r + εK −

(
π/pA + εZ

)]
− K̇/K + Ȧ/A

}
.

Setting L̇A = 0 and taking into account that (K̇/K)∗ = (Ȧ/A)∗ = g∗, we obtain (53).
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3 The long-run economic effects of the quest for status

In the following we analyze the dependence of the BGP on the status parameter η. This

parameter is an important determinant of the status-related extra returns εK = φKη × (C/Ω)

and εZ = φZη × (C/Ω). More precisely, we consider modifications in the specification of

status preferences that cause variations in η, but leave the effective elasticity of intertemporal

substitution σS unchanged. In the context of the general CIES preferences (42) and (43) and

the resulting expressions for σS and η as given by (44) and (45), respectively, this implies that

we consider variations in β, while leaving ξ unchanged. This thought experiment should be

interpreted as the comparison between the balanced growth paths of two economies that differ

only with respect to the status parameter η (high-η-economy or more status conscious economy

versus low-η-economy or less status conscious economy).

Before we start with the analysis, we want to stress a crucial feature of our framework that

is important for the interpretation of our results but which is absent in the standard Romer

(1990) model. From the steady-state versions of the Euler equation for consumption, g∗ =

σS
[
r∗ + (εK)∗ − ρ

]
, and the no-arbitrage relation, r∗ + (εK)∗ = (π/pA)∗ + (εZ)∗, it is obvious

that a rise in the steady-state growth rate g∗ requires an increase in both the effective rate of

return on physical capital, r∗+(εK)∗, and the effective rate of return on shares, (π/pA)∗+(εZ)∗.

The most important aspect of the model with status preferences is that the market rates of

return r∗ and (π/pA)∗ and the effective rates of return r∗ + (εK)∗ and (π/pA)∗ + (εZ)∗ may

move in opposite directions in response to variations in the status parameter η. The production

function of the R&D sector, Ȧ = λALA, implies that g∗ = λL∗A. Hence, a higher growth rate

requires more scientists in the R&D sector. In any (stationary and non-stationary) equilibrium,

the following positive relation between the dividend yield and employment in the final goods

sector holds (for a proof see the Supplement):

π/pA = αλLY = αλ (L− LA) . (54)

It follows that (π/pA)∗ = α (λL− g∗), i.e., for given values of α, λ, and L, there is an inverse

relation between the steady-state value of the dividend yield (π/pA)∗ and the steady-state value

of the common growth rate g∗. This result, together with the Euler equation for consumption

and the no-arbitrage relation, implies the following: A stronger quest for status (higher η) can

only be associated with a higher common growth rate g∗ if there is an increase in the status-

related extra return of shares (εZ)∗ that is only partially compensated by a decrease in the

dividend yield (π/pA)∗. In this case both effective rates of return (on physical capital and on

shares) are higher and so is the growth rate.

First, we analyze the special case φK = φZ = 1 in which the status-relevant measure of

wealth Ω equals the standard definition of wealth. In this case physical capital and shares

are equally relevant for status such that status-related extra returns coincide at any time t.

From the steady-state version of the no-arbitrage equation (53) it then follows that, along the

BGP, the market rates of return on physical capital and shares are equal, i.e., r∗ = (π/pA)∗.

Altogether, we are able to state the following proposition for this case.

Proposition 1. If φZ = φK = 1, the BGP exhibits the following properties:
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i) The solutions for g∗ and (C/K)∗ are given by

g∗ =
σS [(α+ η)λL− ρ]

1 + σS [α+ η (1 + α)]
,

(
C

K

)∗
=
λL− (1 + α) g∗

α
=

(
1− α2σS

)
λL+ (1 + α)σSρ

α {1 + σS [α+ η (1 + α)]}
.

The solution for (C/K)∗ is economically sensible if(
C

K

)∗
> 0⇔ g∗ <

λL

1 + α
⇔
(
1− α2σS

)
λL+ (1 + α)σSρ > 0. (55)

The steady-state growth rate g∗ is strictly positive if and only if the representative house-

hold is sufficiently patient in the sense that

ρ < (α+ η)λL. (56)

ii) If (55) holds, then g∗ depends positively on the status parameter η

∂g∗

∂η
=

ασS

1 + [α+ η (1 + α)]σS

(
C

K

)∗
> 0,

while the other endogenous variables exhibit the following dependence on η:

∂v∗

∂η
< 0 for v =

C

K
,
C

Y
,
C

Ω
, LY ,

Y

K
, r, p,

π

pA
,

∂v∗

∂η
> 0 for v = LA,

x

LY
, x, εK , εZ , r + εK ,

π

pA
+ εZ , pA,

w

A
,

sgn

(
∂π∗

∂η

)
= sgn (2α− 1) .

iii) The composition of wealth does not depend on the status parameter η:(
K

K + pAA

)∗
= α,

(
pAA

K + pAA

)∗
= 1− α.

Proof. See Appendix C.2.

In the following we provide the economic interpretation of the results described in this

proposition. If φZ = φK = 1, any economically sensible BGP exhibits the property that the

common growth rate g∗ (of consumption, physical capital, the number of shares, the mass of

intermediate goods, output of final goods, the representative household’s wealth, and of real

wages) depends positively on the status parameter η. A crucial feature of the case φZ = φK = 1

is that the identical effective rates of return r∗+(εK)∗ and (π/pA)∗+(εZ)∗ also depend positively

on the status parameter η. As mentioned above, this results from the fact that a rise in η leads

to an increase in the identical status-related components (εK)∗ and (εZ)∗ that is only partially

offset by the fall in the identical market rates of return, r∗ and (π/pA)∗. According to the Euler
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equation for consumption, the rise in the effective rate of return r∗+(εK)∗ implies an increase in

the growth rate of private consumption (Ċ/C)∗ = g∗. In other words, the greater η, the steeper

the consumption path chosen by the representative household, i.e., the higher the willingness

to substitute future consumption for current consumption. The resulting changes in the saving

behavior imply that the growth rate of the representative household’s wealth increases. In

contrast to its growth rate, the composition of wealth does not depend on η because α percent

is held in the form of physical capital, while 1− α percent is held in the form of shares.

Since physical capital holdings grow at a higher rate, the capital input in the intermediate

goods sector also has to grow at a higher rate. In the high-η-economy, firms in the intermediate

goods sector face a lower rental rate of physical capital r∗, i.e., a lower marginal cost, and

hence they will charge a lower price for their products as determined by p∗ = (1/α)× r∗. The

lower price of intermediate goods p∗ induces the representative firm of the final goods sector to

produce with a higher intensity of intermediate goods. This increase in (x/LY )∗ originates from

both an increase in the common input of each existing variety of intermediate goods x∗ and a

fall in labor input L∗Y . The latter effect allows for the sectoral reallocation of labor from final

goods production to R&D that is necessary to achieve a faster rate of technological progress.

As explained above, the number of shares that are held by individuals and issued by the

firms to finance the purchase of new technologies grows faster in the high-η-economy. The price

of shares and therefore also the price of new technologies depends positively on η, while there

is no growth in the price of new technologies along the BGP. The reason for the level effect is

the following. Since the status-related extra returns of both savings vehicles are equal in case

of φK = φZ = 1, the dividends financed by operating profits are discounted with the rental

rate of physical capital, r∗. The rise in η implies a fall of the rental rate of physical capital,

which guarantees a rise in the net present value of profits and therefore of the price of shares

and patents, irrespective of the fact that the dependence of operating profits π∗ upon η is

ambiguous.9 New entrants in the intermediate goods sector have to pay a higher price for the

patents in the high-η-economy. However, since the effective rate of return on shares is higher in

the high-η-economy, its inhabitants are more willing to acquire the associated shares, in spite

of the lower dividend yield.

Now we show why the R&D sector has to charge a higher price for the blueprints in the

high-η economy. The rise in the intermediate goods intensity in the final goods sector implies

an increase in the marginal product of labor and, hence, a rise in the ratio of the real wage to

the mass of varieties (w/A)∗. Since the technology of the R&D sector is linear and we have

perfect competition, the equilibrium has to be characterized by p∗A = λ−1 (w/A)∗ and profits in

the R&D sector are zero. In the high-η-economy, each value of A is associated with a higher

real wage. Moreover, the real wage also grows faster.

Finally, we show why the results of the proposition are consistent with the market clearing

condition of the final goods sector, Y = C + K̇, and the implied relation g∗ = (K̇/K)∗ =

(Y/K)∗ − (C/K)∗ = [1− (C/Y )∗] (Y/K)∗. An increase in η raises the growth rate of physical

capital because the reduction of (Y/K)∗ is smaller then the reduction of (C/K)∗. In other

words, the rise in the economy-wide savings rate [1− (C/Y )∗] is only partially compensated

9Recall that an increase in η reduces p∗ and raises x∗. Altogether we have: sgn(∂π∗/∂η) =sgn(2α− 1).
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by the fall in (Y/K)∗. The reason for the fall of (Y/K)∗ is in turn given by the increase in

the intermediate goods intensity of the final goods sector and the associated fall in the average

product of the aggregate input of intermediate goods [Y/ (Ax)]∗ = (Y/K)∗.

Next we turn our attention to the special case φK = 1 and φZ = 0 in which wealth held in

the form of shares is irrelevant for status, εZ = 0. The steady-state version of the no-arbitrage

equation simplifies to r∗ +
(
εK
)∗

= (π/pA)∗. Hence, along the BGP, the rental rate of physical

capital is less than the dividend yield, i.e., r∗ < (π/pA)∗. Moreover, to calculate the fundamental

price of shares, future dividend payments are discounted by using the effective rate of return on

physical capital, r∗ + (εK)∗. Altogether, we are able to state the following proposition for this

case.

Proposition 2. If φZ = 0 and φK = 1, the BGP exhibits the following properties:

i) The solutions for g∗ and (C/K)∗ are given by

g∗ =
σS (αλL− ρ)

1 + ασS
,(

C

K

)∗
=
α [λL− (1 + α) g∗]

α2 + η
=
α
[(

1− α2σS
)
λL+ (1 + α)σSρ

]
(1 + ασS) (α2 + η)

.

The solution for (C/K)∗ is economically sensible if(
C

K

)∗
> 0⇔ g∗ <

λL

1 + α
⇔
(
1− α2σS

)
λL+ (1 + α)σSρ > 0. (57)

The steady-state growth rate g∗ is strictly positive if and only if the representative house-

hold is sufficiently patient in the sense that

ρ < αλL. (58)

ii) The growth rate g∗ is independent of the status parameter η,

∂g∗

∂η
= 0

and this independence is also true for the following variables:

∂v∗

∂η
= 0 for v = LA, LY , r + εK ,

π

pA
, εZ .

The other endogenous variables exhibit the following dependence on η:

∂v∗

∂η
< 0 for v =

C

K
,
C

Ω
,
C

Y
,
Y

K
, r, p,

∂v∗

∂η
> 0 for v =

x

LY
, x, π, εK , pA,

w

A
.
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iii) The composition of wealth exhibits the following properties:

∂ [K/ (K + pAA)]∗

∂η
> 0,

(
K

K + pAA

)∗∣∣∣∣
η=0

= α, lim
η→∞

(
K

K + pAA

)∗
< 1.

Proof. See Appendix C.3.

The striking feature of the case φZ = 0 and φK = 1 is that the growth rate g∗ is independent

of the status parameter η. The technology used in the research sector and labor market clearing

imply that employment in the R&D sector and in the final goods sector, L∗A and L∗Y , respectively,

are also independent of η. This result does not come as a surprise. In interpreting Equation

(54), π/pA = αλLY = αλ (L− LA), we already stressed that a stronger quest for status (higher

η) can only be associated with a higher common growth rate g∗ if there is an increase in the

status-related extra return of shares (εZ)∗ that is only partially compensated by a decrease in

the dividend yield (π/pA)∗. However, if φZ = 0, then εZ = 0, so that the required increase in

(εZ)∗ cannot occur.

A rise in η leads to an increase in the status-related component of saving in the form

of physical capital (εK)∗ that is perfectly offset by the fall in the rental rate r∗ so that the

effective rate of return on physical capital remains unchanged. From the Euler equation for

consumption it follows that the growth rate of private consumption (Ċ/C)∗ = g∗ remains

unchanged, too. In other words, along the BGP, the willingness to substitute future consumption

for current consumption is independent of the status parameter η. The no-arbitrage equation

r∗ + (εK)∗ = (π/pA)∗ implies that the dividend yield (π/pA)∗ is also independent of η. Note

that a rise in η leaves the growth rate of wealth unchanged, but alters the composition of wealth

in favor of physical capital.

In the high-η-economy, firms in the intermediate goods sector are confronted with a lower

rental rate of physical capital (similar to the case φK = φZ = 1). The resulting lower price

of intermediate goods induces the representative firm of the final goods sector to choose a

higher intermediate goods intensity. This increase of (x/LY )∗ originates in an increase of x∗,

i.e., the input of each existing variety increases. In contrast to the case of φK = φZ = 1,

employment in final goods production remains unchanged. For the aggregate physical capital

input K = Ak∗ = Ax∗ we have that each value of A is associated with a higher value of

K in the high-η-economy but that the growth rate of physical capital is the same as in the

low-η-economy.

In contrast to the case φK = φZ = 1, operating profits of an intermediate goods producing

firm, π∗ = (1− α) p∗x∗, depend positively on η because the percentage change of x∗ overcom-

pensates the percentage change of p∗. For the fundamental price of shares we also have an

unambiguous result: The assumptions φK = 1 and φZ = 0 imply that the stream of divi-

dend payments is not discounted with the rental rate r∗ but with the effective rate of return

r∗ + (εK)∗. Since ∂[r∗ + (εK)∗]/∂η = 0, the higher dividends are discounted at the same rate

such that the fundamental value of shares increases. New entrants into the intermediate goods

sector are therefore able to pay for the patents by issuing more expensive shares. In contrast

to the case of φZ = φK = 1, the number of shares that are held by the individuals grows with
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the same rate in the high-η-economy and in the low-η economy.

Again we have argued that the price for patents that new entrants in the intermediate goods

sector pay depends positively on η. Analogous to the previous case, firms in the R&D sector in

the high-η-economy have to charge higher prices because they are confronted with higher real

wages. Regarding the growth rate of real wages, g∗, there is, however, no difference between the

high-η-economy and the low-η-economy. Analogous to the case φK = φZ = 1 we have that the

ratio of the real wage to the mass of varieties (w/A)∗ increases because the intermediate goods

intensity in the final goods sector (x/LY )∗ rises and the corresponding increase in the marginal

product of labor implies a higher economy-wide wage.

From the market clearing condition of the final goods market, Y = C+K̇, and the associated

condition g∗ = (K̇/K)∗ = (Y/K)∗ − (C/K)∗ = [1− (C/Y )∗] (Y/K)∗ , we get the following

additional information: An increase of η does not affect the growth rate of physical capital

because (Y/K)∗ and (C/K)∗ fall by the same amount. In other words, the increase in the

economy-wide savings rate [1− (C/Y )∗] is fully compensated by a fall of (Y/K)∗. The reduction

of (Y/K)∗ can be derived in analogy to the case φK = φZ = 1 because of the rise of the

intermediate goods intensity in the final goods sector.

Next, we dwell more on the importance of φZ . In this context, we allow for both 0 < φZ ≤
φK and φZ > φK , i.e., shares of entrants might be less or more status relevant than physical

capital employed by incumbents (or the assets that were used to finance its purchase).

The effects of ceteris paribus changes in η are summarized in Proposition 4, which is stated

and proven in the Supplement because most of the results given in Proposition 1 for the special

case φZ = φK carry over to situations in which either 0 < φZ < φK or φZ > φK holds. In

particular, the growth rate g∗, the average propensity to save 1 − (C/Y )∗, and the effective

rates of return r∗ +
(
εK
)∗

and (π/pA)∗ +
(
εZ
)∗

depend positively on the status parameter η

regardless of whether shares are less or more status relevant than physical capital. However,

the results for (Y/K)∗ and the variables that depend crucially upon (Y/K)∗ cease to be valid if

the relative status relevance of shares φZ/φK exceeds a critical value that is greater than unity.

Finally, we show that a rise in η alters the composition of wealth in favor of shares if φZ > φK

and in favor of physical capital if φK > φZ , while K/ (K + pAA) = α holds for φZ = φK . Since

these modifications do not affect the main result with respect to economic growth we do not

discuss the details here. Instead, we proceed with the effects of ceteris paribus changes in the

relative status importance of shares.

Proposition 3. If φK > 0 and φZ ≥ 0, then the growth rate g∗ depends positively on the

relative status weight of shares, i.e.,
∂g∗

∂φZ
> 0.

Moreover, the following endogenous variables exhibit an unambiguous dependence on φZ :

∂v∗

∂φZ
> 0 for v =

C

K
,
Y

K
, p, r, LA, r + εK ,

π

pA
+ εZ , εZ ,

∂v∗

∂φZ
< 0 for v =

x

LY
, LY , x, π,

w

A
, pA,

π

pA
,

K

K + pAA
.

Proof. See Appendix C.4.
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We now turn to the economic interpretation of the results summarized in Proposition 3. A

ceteris paribus rise in φZ implies that private households re-adjust their portfolio by shifting

wealth from physical capital holdings toward shares. The market rate of return on physical

capital, r∗, rises, while the market rate of return on shares, (π/pA)∗, falls. However, the rise

of the status-related extra return of shares, (εZ)∗ = φZη × (C/Ω)∗, more than offsets the fall

in the dividend yield so that the effective rate of return on shares, (π/pA)∗ + (εZ)∗, depends

positively on φZ . The no-arbitrage condition implies that the effective rate of return on physical

capital also depends positively on φZ . According to the Euler equation for consumption, the

rise in the effective rate of return implies an increase in the growth rate of private consumption,

(Ċ/C)∗ = g∗. In other words, the consumption path chosen by the representative household

becomes steeper. The common growth rate of total wealth and its components, physical capital

and shares, increases. Hence, while the proportion of physical capital decreases, its growth rate,

(K̇/K)∗ = g∗, increases.

In the high-φZ-economy firms in the intermediate goods sector face a higher rental rate of

physical capital, r∗, and hence they will charge a higher price for their products according to

the mark-up pricing rule, p∗ = (1/α)× r∗. The higher value of p∗ causes the representative firm

of the final goods sector to choose a lower intensity of intermediate goods, (x/LY )∗. Since the

high-φZ-economy exhibits a higher common growth rate, g∗, employment in the R&D sector,

L∗A, is also higher, while the opposite is true for employment in the final goods sector, L∗Y . Since

both (x/LY )∗ and L∗Y depend negatively on φZ , the identical input of the different varieties

x∗ depends negatively on φZ , too. To put it differently: Production and employment of each

variety is lower but the stock of varieties grows at a faster rate, (Ȧ/A)∗ = g∗. In the high-φZ-

economy, firms in the intermediate goods sector face lower profits, π∗ = (1− α) p∗x∗, because

the increase in the price p∗ is overcompensated by a decrease in the number of units sold, x∗.

The fall in x∗ implies that each firm in the intermediate goods sector uses less physical capital,

k∗ = x∗. Since the stock of varieties grows faster, also the aggregate stock of physical capital

grows at a higher rate.

In the high-φZ-economy, the lower ratio of intermediate goods to labor, (x/LY )∗, implies a

lower marginal product of labor. Consequently, the ratio of the real wage to the mass of varieties,

(w/A)∗, is also lower, while, by contrast, the growth rate of the real wage, (ẇ/w)∗ = g∗, is higher.

The lower level of (w/A)∗ together with the linear technology in the research sector and perfect

competition imply that the price of blueprints, p∗A, is lower. Since it holds that pZ = pA in

equilibrium, shares are also cheaper. An increase in φZ leads to a decrease of the dividend yield,

(π/pA)∗, because π∗ decreases by a larger percentage value than p∗A. As explained above, the

rise in φZ implies that the composition of the household’s portfolio shifts in favor of shares.

Furthermore, the growth rate of the stock of shares, (Ż/Z)∗ = (Ȧ/A)∗ = g∗, rises.

Finally, inspired by Corneo and Jeanne (1997, 2001a) we end our detailed analysis with a

remark on the social optimality of the decentralized long-run growth rate. The standard Romer

(1990) model exhibits the well-known property that the decentralized long-run economic growth

rate is less than its socially optimal counterpart due to several distortions. In our paper the

quest for status acts so as to increase the decentralized long-run economic growth rate provided

that shares are status relevant, i.e., φZ > 0. A necessary condition for the perfect replication of
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the socially optimal BGP is that the status relevance of shares exceeds that of physical capital,

i.e., φZ > φK > 0. More specifically, we can show that if φK > 0 and (η, φZ) = (η̃, ς̃φK), where

ς̃ > 1 and η̃ are uniquely determined constants, then the decentralized BGP equals its socially

optimal counterpart in the absence of any government intervention. For details see Proposition

5 given in the Supplement.10 Please note that the condition (η, φZ) = (η̃, ς̃φK) can only be

satisfied by pure coincidence, since η, φK , and φZ are exogenously given status parameters.

4 Conclusions

In this paper we introduced status preferences into an R&D-based economic growth model

with three sectors of production (final goods, intermediate goods, and blueprints) to analyze

the impact of status concerns on technological progress and on long-run economic growth. In

contrast to the standard relative wealth approach used in the status literature, we allowed for

the possibility that the components of household’s wealth differ with respect to their status

relevance. The introduction of the generalized relative wealth preferences implies that the

effective rate of return of saving in the form of a particular asset is the sum of its standard market

rate of return and its status-related extra return. In both the Euler equation for consumption

growth and in the no-arbitrage condition, the rental rate of physical capital and the market

rate of return of shares have to be replaced by the corresponding effective rates of return.

First, we analyzed the effects of an increase in the intensity of the quest for status, i.e., a

rise in the marginal rate of substitution (MRS) of status-relevant own wealth for consumption.

This rise affects the economy by raising the extra returns of all assets that are status relevant.

As long as this impact effect is not perfectly offset by a decrease in the corresponding market

rate of return, the common steady-state effective rate of return of all assets rises. The resulting

stronger incentive to save causes the demand for shares and hence for new technologies to grow

at a higher rate, which fosters technological progress. According to the underlying production

technology in the R&D sector, the acceleration of technological progress is ultimately due to an

increase in the employment of scientists. Altogether, these effects induce the common long-run

growth rate to rise.

One of our main results is that the effects of an increase in the intensity of the quest for status

on the common growth rate depend crucially upon the status relevance of shares. We started

with two special cases in which explicit solutions for all variables can be easily calculated: i)

if physical capital and shares are equally status relevant, then the status-related extra returns

of these two assets are identical. A rise in the intensity of the quest for status causes the

common growth rate to rise unambiguously. This result is due to the fact that the rise in the

status-related extra return of physical capital and shares is only partially compensated by the

decrease in the rental rate and the dividend yield so that the common effective rate of return

of the two assets increases; ii) if wealth held in the form of shares is irrelevant for status, then

the status-related extra return of shares equals zero. A rise in the MRS of status-relevant own

wealth for consumption causes the extra return of physical capital to increase. But since this

rise is perfectly offset by a fall in the rental rate of capital, the effective rate of return of real

10In the Supplement we derive the socially optimal solution, calculate the values of η̃ and ς̃, and discuss the
resulting properties of the decentralized BGP in detail.
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capital and, hence, the common growth rate remain unchanged. While the growth rate of the

representative household’s wealth remains unchanged, the composition of wealth is altered in

favor of physical capital. Finally, we considered the case in which wealth held in the form

of shares and in the form of physical capital are relevant for status. In this (realistic) case

an increase in the intensity of the quest for status causes the common growth rate to rise

irrespective of the relative status relevance of shares.

Second, we kept the intensity of the quest for status constant and analyzed the implications

of an increase in the relative status relevance of shares. Private households adjust their portfolio

by shifting wealth from physical capital holdings (or bonds/loans) to shares. The rental rate

of capital rises, while the dividend yield falls. However, this fall in the dividend yield is more

than offset by the rise in the status-related extra return of shares so that the effective rate of

return of shares rises. The no-arbitrage condition implies that the effective rate of return of

physical capital rises, too. Consequently, the common growth rate along the BGP increases.

The consumption path chosen by the representative household becomes steeper. While the

proportion of shares increases, not only shares, but also physical capital are accumulated at a

higher rate. Altogether the differential status effect of traditional physical capital versus those

of shares is one potential channel to explain the superior growth patterns of countries in which

entrants/startups have better access to new funds such as the United States.

A final interesting feature of our framework is that, while the standard R&D-based economic

growth model of Romer (1990) exhibits the property that the decentralized long-run growth rate

is unambiguously smaller than its socially optimal counterpart, the externality resulting from

relative wealth preferences reduces the influence of the other distortions provided that shares

matter for status: However, as long as the status relevance of shares does not significantly

exceed that of physical capital, neither the perfect replication of the socially optimal growth

rate nor excessive growth can occur.

With respect to further research we would like to mention two promising avenues: First,

from a public economics point of view it would be interesting to analyze how the socially

optimal taxation/subsidization is influenced by the introduction of relative wealth preferences

and the possibility that the various assets differ with respect to their relative status relevance.

Second, one could abandon the representative agent framework and allow for the heterogeneity

of households. This could yield useful insights when analyzing the driving forces behind wealth

disparities and assessing the conditions and policies under which the poor do not fall too far

behind the rich.
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Appendix

A The representative household’s optimization problem

We dismantle the flow budget constraint (1) into two differential equations for the state variables

K and Z:

K̇ = rK + wL+DZ − pZQ− C, (A.1)

Ż = Q. (A.2)

The representative individual chooses time paths for C and Q so as to maximize lifetime utility

given by ∫ ∞
0

e−ρtu
[
C, S

(
Ω, Ω̄

)]
dt,

where

Ω ≡ φKK + φZpZZ and Ω̄ ≡ φKK̄ + φZpZZ̄, (A.3)

subject to the differential equations (A.1) and (A.2) and the two initial conditions K (0) = K0

and Z (0) = Z0, where K0 and Z0 are exogenously given. The representative household takes

the time paths of r, w, pZ , D, K̄, and Z̄ as given. The current value Hamiltonian is

H = u
[
C, S

(
φKK + φZpZZ, φKK̄ + φZpZZ̄

)]
+ µK (rK + wL+DZ − pZQ− C) + µZQ,

where the costate variables µK and µZ denote the shadow price of physical capital and shares,

respectively. The necessary optimality conditions for an interior optimum are

µK =
∂u
(
C, S

(
Ω, Ω̄

))
∂C

, (A.4)

µZ = µKpZ , (A.5)

µ̇K = ρµK −

[
∂u
(
C, S

(
Ω, Ω̄

))
∂S

∂S
(
Ω, Ω̄

)
∂Ω

φK + µKr

]
, (A.6)

µ̇Z = ρµZ −

[
∂u
(
C, S

(
Ω, Ω̄

))
∂S

∂S
(
Ω, Ω̄

)
∂Ω

φZpZ + µKD

]
, (A.7)

where Ω and Ω̄ are given by (A.3). The transversality conditions are given by

lim
t→∞

e−ρtµKK = 0 and lim
t→∞

e−ρtµZZ = 0. (A.8)
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Since the Hamiltonian is jointly concave in C, Q, K, and Z, the transversality conditions ensure

that the necessary optimality conditions are also sufficient. Using (A.4) and (A.6) we obtain

µ̇K
µ̇K

= −

r +

∂U
(
C, S

(
Ω, Ω̄

))
∂S

∂S
(
Ω, Ω̄

)
∂Ω

φK

∂u
(
C, S

(
Ω, Ω̄

))
∂C

− ρ

 . (A.9)

From (A.5) it follows that

µ̇Z = µ̇KpZ + µK ṗZ . (A.10)

Substituting (A.4), (A.5), and (A.10) into (A.7) it follows that

µ̇K
µK

= −

 ṗZpZ +
D

pZ
+

∂u
(
C, S

(
Ω, Ω̄

))
∂S

∂S
(
Ω, Ω̄

)
∂Ω

φZ

∂u
(
C, S

(
Ω, Ω̄

))
∂C

− ρ

 . (A.11)

Equations (A.9) and (A.11) yield two alternative representations of µ̇K/µK . The required

equality of the right-hand sides of (A.9) and (A.11) yields the no-arbitrage relation of the

economy with relative wealth preferences:

r +

∂U
(
C, S

(
Ω, Ω̄

))
∂S

∂S
(
Ω, Ω̄

)
∂Ω

φK

∂u
(
C, S

(
Ω, Ω̄

))
∂C

=
ṗZ
pZ

+
D

pZ
+

∂u
(
C, S

(
Ω, Ω̄

))
∂S

∂S
(
Ω, Ω̄

)
∂Ω

φZ

∂u
(
C, S

(
Ω, Ω̄

))
∂C

. (A.12)

In any symmetric situation, Ω = Ω̄ holds. Moreover, due to Assumption (7), we also have

S(Ω, Ω̄) = S (Ω,Ω) = χ for all Ω > 0, where χ is an exogenously given constant. Equations

(A.4), (A.9), and (A.12) simplify to

µK =
∂u (C,χ)

∂C
, (A.13)

µ̇K
µK

= −
[
r + εK (C,Ω, χ, φK)− ρ

]
, (A.14)

r + εK (C,Ω, χ, φK) =
D

pZ
+
ṗZ
pZ

+ εZ (C,Ω, χ, φZ) , (A.15)

where

εK (C,Ω, χ, φK) ≡MRS (C,Ω, χ)× φK , (A.16)

εZ (C,Ω, χ, φZ) ≡MRS (C,Ω, χ)× φZ , (A.17)

MRS (C,Ω, χ) ≡ ∂u (C,χ)

∂S

∂S (Ω,Ω)

∂Ω

[
∂u (C,χ)

∂C

]−1
. (A.18)

Note that (A.15) is equal to the no-arbitrage relation (11) as given in the main text, while

the definitions (A.16)-(A.18) coincide with the definitions εK , εZ , and MRS [see Equations
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(12)–(14)]. From (A.13) it follows that

µ̇K
µK

= C
∂2u (C,χ)

∂C2

[
∂u (C,χ)

∂C

]−1
× Ċ

C
. (A.19)

Using (A.14) and (A.19), we obtain the Euler equation for consumption of a decentralized

economy populated by households with relative wealth preferences:

Ċ

C
= σS (C,χ)

[
r + εK (C,Ω, χ, φK)− ρ

]
, (A.20)

where

σS (C,χ) ≡ −∂u (C,χ)

∂C

[
C
∂2u (C,χ)

∂C2

]−1
. (A.21)

Note that (A.20) and (A.21) are equivalent to (15) and (16) as given in the main text. Using

(A.5), the transversality conditions (A.8) can be written as

lim
t→∞

e−ρtµKK = 0, lim
t→∞

e−ρtµKpZZ = 0. (A.22)

Integration of (A.14) yields

µK (t) = µK (0) eρt exp

[
−
∫ t

0

[
r(v) + εK (C(v),Ω(v), χ, φK)

]
dv

]
.

The assumption that ∂u (C,χ) /∂C > 0 together with (A.13) implies that µK (t) > 0 for t ≥ 0.

Hence, the transversality conditions (A.22) are equivalent to

lim
t→∞

{
exp

[
−
∫ t

0

[
r(v) + εK(v)

]
dv

]
K

}
= 0,

lim
t→∞

{
exp

[
−
∫ t

0

[
r(v) + εK(v)

]
dv

]
pZZ

}
= 0,

where εK(v) = εK [C(v),Ω(v), χ, φK ]. Note that these conditions are identical to the conditions

(18) as given in the main text.

B The derivation of (50) and (51)

The dynamic evolution of the variables K, C, A, and LA is governed by the four differential

equations (33), (34), (46), (47), where C/Ω is given by (38). It is easily verified from these five

equations that a BGP exhibits the following properties:

LA = constant,
A

K
= constant,

C

K
= constant,

Ċ

C
=
K̇

K
=
Ȧ

A
= constant.

Denote the steady-state value of a variable x by x∗ and the common steady-state growth rate of

C, K, and A by g∗ = (Ȧ/A)∗ = (K̇/K)∗ = (Ċ/C)∗. Using (33), (34), (46), (47), and (38), we

can show that g∗, L∗A, (A/K)∗, (C/K)∗, and (C/Ω)∗ are determined by the following system of
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equations:

g∗ = λL∗A, (B.1)

g∗ =

[(
A

K

)∗
(L− L∗A)

]1−α
−
(
C

K

)∗
, (B.2)

g∗ = σS

{
α2

[(
A

K

)∗
(L− L∗A)

]1−α
+ φKη

(
C

Ω

)∗
− ρ

}
, (B.3)

0 = − (1− α)

[(
A

K

)∗
(L− L∗A)

]1−α
+

(
C

K

)∗
+ λL∗A

− λ (L− L∗A) +
(φK − φZ) η

α
×
(
C

Ω

)∗
, (B.4)

(
C

Ω

)∗
=

(
C

K

)∗
φK + φZ

1− α
λ
(
L− L∗A

) [(A
K

)∗ (
L− L∗A

)]1−α . (B.5)

From (B.1) and (B.2) it follows that

L∗A =
g∗

λ
, L− L∗A = L∗Y =

λL− g∗

λ
, (B.6)[(

A

K

)∗
(L− L∗A)

]1−α
=

(
Y

K

)∗
= g∗ +

(
C

K

)∗
. (B.7)

Substituting (B.6) and (B.7) into (B.5) yields

(
C

Ω

)∗
=

(
C

K

)∗
φK + φZ

1− α
λL− g∗

[
g∗ +

(
C

K

)∗] . (B.8)

Substituting (B.6)-(B.8) into (B.3) and (B.4) and applying simple transformations, we obtain

the following system of equations that determines g∗ and (C/K)∗:

−
(
1− α2σS

)
g∗ + σS

α2 +
φKη

φK+
φZ (1− α)

λL− g∗

[
g∗ +

(
C

K

)∗]

(
C

K

)∗
= σSρ,

(1 + α) g∗ +
1

α

α2 +
(φK − φZ) η

φK+
φZ (1− α)

λL− g∗

[
g∗ +

(
C

K

)∗]

(
C

K

)∗
= λL.

These two equations are identical to (50) and (51). �
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C Proofs of Propositions 1 – 3

C.1 The steady-state values of the endogenous variables

First, g∗ and (C/K)∗ are obtained by solving (50)–(51). Second, L∗A, L∗Y , and (Y/K)∗ are

determined by substituting the solutions for g∗ and (C/K)∗ into (48)–(49):

L∗A =
g∗

λ
, L∗Y = L− L∗A =

λL− g∗

λ
, (C.1)(

Y

K

)∗
= g∗ +

(
C

K

)∗
. (C.2)

Third, using (19), (21), (22), (23), (24), (26), (27), (28), (38), (41), (52), (53), (54), and various

equations given in the supplement, the steady-state values of the other endogenous variables

can be expressed as functions of g∗, (C/K)∗, L∗A, L∗Y , and (Y/K)∗:

(
K

A

)∗ 1

L∗Y
=

(
K

A

)∗ 1

L− L∗A
=

[(
Y

K

)∗]−1/(1−α)
, (C.3)

r∗ = α2

[(
K

A

)∗ 1

L− L∗A

]−(1−α)
= α2

(
Y

K

)∗
, (C.4)

p∗ =
1

α
× r∗ = α

(
Y

K

)∗
, (C.5)

x∗ = k∗ =

(
α2

r∗

)1/(1−α)
L∗Y =

λL− g∗

λ

[(
Y

K

)∗]−1/(1−α)
, (C.6)

(
x

LY

)∗
=

[(
Y

K

)∗]−1/(1−α)
, (C.7)

π∗ = (1− α)αL∗Y

[(
Y

K

)∗]−α/(1−α)
= (1− α)α

λL− g∗

λ

[(
Y

K

)∗]−α/(1−α)
, (C.8)

p∗A =
(1− α)

λ

(
α2

r∗

)α/(1−α)
=

1− α
λ

[(
Y

K

)∗]−α/(1−α)
, (C.9)(

π

pA

)∗
= αλL∗Y = α (λL− g∗) , (C.10)

(w
A

)∗
= λp∗A = (1− α)

[(
Y

K

)∗]−α/(1−α)
, (C.11)(

C

Ω

)∗
=

(C/K)∗

φK + φZ
1− α
λL− g∗

(
Y

K

)∗ , (C.12)

(
C

Y

)∗
=

(C/K)∗

(Y/K)∗
=

(C/K)∗

g∗ + (C/K)∗
, (C.13)

r∗ +
(
εK
)∗

= α2

(
Y

K

)∗
+

φKη (C/K)∗

φK + φZ
1− α
λL− g∗

(
Y

K

)∗ =
1

σS
g∗ + ρ, (C.14)
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(
π

pA

)∗
+
(
εZ
)∗

= α (λL− g∗) +
φZη (C/K)∗

φK + φZ
1− α
λL− g∗

(
Y

K

)∗ =
1

σS
g∗ + ρ, (C.15)

(
εK
)∗

=
φKη (C/K)∗

φK + φZ
1− α
λL− g∗

(
Y

K

)∗ =
1

σS
g∗ + ρ− α2

(
Y

K

)∗
, (C.16)

(
εZ
)∗

=
φZη (C/K)∗

φK + φZ
1− α
λL− g∗

(
Y

K

)∗ =
1 + ασS

σS
g∗ + ρ− αλL, (C.17)

(
K

K + pAA

)∗
=

1

1 +
1− α
λL∗Y

(
Y

K

)∗ =
1

1 +
1− α
λL− g∗

(
Y

K

)∗ . (C.18)

C.2 Proof of Proposition 1

Proof of i): Setting φZ = φK = 1 in (50) and (51) yields

−
(
1− α2σS

)
g∗ + σS

α2 +
η

1 +
(1− α)

λL− g∗

[
g∗ +

(
C

K

)∗]

(
C

K

)∗
= σSρ,

(1 + α) g∗ + α

(
C

K

)∗
= λL.

Solving this system of two equations for g∗ and (C/K)∗, we obtain:

g∗ =
σS [(α+ η)λL− ρ]

1 + σS [α+ η (1 + α)]
, (C.19)

(
C

K

)∗
=
λL− (1 + α) g∗

α
=

(
1− α2σS

)
λL+ (1 + α)σSρ

α {1 + σS [α+ η (1 + α)]}
. (C.20)

From (C.19) and (C.20) the validity of the conditions (55) and (56) is immediately clear.

Proof of ii): The partial derivative of g∗ with respect to η is given by

∂g∗

∂η
=
σS
{(

1− α2σS
)
λL+ (1 + α)σSρ

}
{1 + σS [α+ η (1 + α)]}2

=
ασS

1 + [α+ η (1 + α)]σS

(
C

K

)∗
, (C.21)

where the second representation is obtained by using (C.20). If (55) holds, then (C/K)∗ > 0

and
∂g∗

∂η
> 0 and

∂ (C/K)∗

∂η
= −1 + α

α

∂g∗

∂η
< 0. (C.22)

From (C.19), (C.20), and (C.1)–(C.2) it follows that

L∗A =
g∗

λ
, L∗Y =

λL− g∗

λ
,

(
Y

K

)∗
=
λL− g∗

α
. (C.23)
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Using (C.20), (C.23), and (C.4)–(C.17) the steady-state values of the remaining endogenous

variables can be expressed as functions of g∗ solely:

r∗ = α (λL− g∗) , p∗ = λL− g∗,

x∗ =
α1/(1−α)

λ
(λL− g∗)−α/(1−α) ,

(
x

LY

)∗
=

(
λL− g∗

α

)−1/(1−α)
,

p∗A =
1− α
λ

(
λL− g∗

α

)−α/(1−α)
,

(w
A

)∗
= (1− α)

(
λL− g∗

α

)−α/(1−α)
,

π∗ =
(1− α)α1/(1−α)

λ
(λL− g∗)−(2α−1)/(1−α) ,

(
π

pA

)∗
= α (λL− g∗) ,(

C

Ω

)∗
= λL− (1 + α) g∗,

(
C

Y

)∗
=
λL− (1 + α) g∗

λL− g∗
,

r∗ +
(
εK
)∗

=

(
π

pA

)∗
+
(
εZ
)∗

=
1

σS
g∗ + ρ,

(
εK
)∗

=
(
εZ
)∗

=
1 + ασS

σS
g∗ − αλL+ ρ.

Taking into account that ∂g∗/∂η > 0 holds [see (C.22)], it is obvious from the equations given

above that

∂v∗

∂η
< 0 for v =

C

K
,
C

Y
,
C

Ω
, LY ,

Y

K
, r, p,

π

pA
,

∂v∗

∂η
> 0 for v = LA,

x

LY
, x, εK , εZ , r + εK ,

π

pA
+ εZ , pA,

w

A
,

sgn

(
∂π∗

∂η

)
= sgn (2α− 1) .

These results prove the validity of the assertions made in part ii) of Proposition 1.

Proof of iii): Using (C.23) and (C.18), we finally obtain(
K

K + pAA

)∗
=

[
1 +

1− α
λL− g∗

λL− g∗

α

]−1
= α⇒

(
pAA

K + pAA

)∗
= 1− α. �

C.3 Proof of Proposition 2

Proof of i): Setting φZ = 0 in (50) and (51) yields

−
(
1− α2σS

)
g∗ + σS

(
α2 + η

)(C
K

)∗
= σSρ,

(1 + α) g∗ +
1

α

(
α2 + η

)(C
K

)∗
= λL.
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Solving this system of two equations for g∗ and (C/K)∗, we obtain

g∗ =
σS (αλL− ρ)

1 + ασS
, (C.24)(

C

K

)∗
=
α
[(

1− α2σS
)
λL+ (1 + α)σSρ

]
(1 + ασS) (α2 + η)

. (C.25)

The validity of the conditions (57) and (58) is immediately clear.

Proof of ii): Equations (C.24) and (C.25) imply that

∂g∗

∂η
= 0 and

∂ (C/K)∗

∂η
< 0. (C.26)

From (C.1)–(C.17) it follows that the variables L∗A, L∗Y , (π/pA)∗, r∗ +
(
εK
)∗

, (π/pA)∗ +
(
εZ
)∗

,

and
(
εZ
)∗

can be expressed as functions of g∗ solely. Hence, taking into account that ∂g∗/∂η = 0

[see (C.26)] we obtain

∂v∗

∂η
= 0 for v = LA, LY , r + εK , π/pA, ε

Z , (π/pA) + εZ .

The result with respect to εZ can also be inferred directly from the fact that εZ = 0 for φZ = 0.

Using (C.2) and (C.26) we obtain

∂ (Y/K)∗

∂η
=
∂g∗

∂η
+
∂ (C/K)∗

∂η
=
∂ (C/K)∗

∂η
< 0. (C.27)

From (C.1)–(C.17) it also follows that the variables r∗, p∗, (x/LY )∗, p∗A, and (w/A)∗ can be

expressed as functions of (Y/K)∗ solely. It is verified at a glance that

∂v∗

∂ (Y/K)∗

{
> 0, for v = r, p,

< 0, for v = x/LY , pA, w/A.

Hence, using the fact that ∂ (Y/K)∗ /∂η < 0 [see (C.27)], we obtain

∂v∗

∂η

{
< 0, for v = r, p,

> 0, for v = x/LY , pA, w/A.

The variables x∗, π∗, and
(
εK
)∗

can be expressed as functions of both g∗ and (Y/K)∗, where

∂v∗

∂ (Y/K)∗
< 0 for v = x, π, εK .

Taking into account that ∂g∗/∂η = 0 [see (C.26)] and ∂ (Y/K)∗ /∂η < 0 [see (C.27)] we get

∂v∗

∂η
> 0 for v = x, π, εK .
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Setting φZ = 0 in (C.12) yields (C/Ω)∗ = (1/φK) (C/K)∗. Hence,

∂ (C/Ω)∗

∂η
=

1

φK

∂ (C/K)∗

∂η
< 0.

Finally, using (C.13) and taking into account that ∂g∗/∂η = 0 and ∂ (C/K)∗ /∂η < 0 [see

(C.26)], we obtain(
C

Y

)∗
=

(C/K)∗

g∗ + (C/K)∗
⇒ ∂ (C/Y )∗

∂η
=

g∗

[g∗ + (C/K)∗]
2

∂ (C/K)∗

∂η
< 0.

The validity of the assertions made in part ii) of proposition 2 is now easily verified by summa-

rizing the results derived above in the following compact way:

∂v∗

∂η
= 0 for v = LA, LY , r + εK ,

π

pA
, εZ ,

∂v∗

∂η
< 0 for v =

C

K
,
C

Ω
,
C

Y
,
Y

K
, r, p,

∂v∗

∂η
> 0 for v =

x

LY
, x, π, εK , pA,

w

A
.

Proof of iii) Using (C.24), (C.25), (C.1), and (C.2) we obtain

L∗Y = L− L∗A =
λL+ σSρ

λ (1 + ασS)
,

(
Y

K

)∗
=

(
1 + ησS

)
αλL+ (α− η)σSρ

(1 + ασS) (α2 + η)
.

Substituting these results into (C.18) yields(
K

K + pAA

)∗
=

[
1 +

1− α
λL∗Y

(
Y

K

)∗]−1
(C.28)

=

(
α2 + η

) (
λL+ σSρ

)
α (λL+ σSρ) + η {[1 + ασS (1− α)]λL+ ασSρ}

. (C.29)

Differentiating (C.28) with respect to η and taking into account that ∂ (Y/K)∗ /∂η < 0 and

∂L∗Y /∂η = 0, we obtain

∂ [K/ (K + pAA)]∗

∂η
= −

[
1 +

1− α
λL∗Y

(
Y

K

)∗]−2 1− α
λL∗Y

× ∂ (Y/K)∗

∂η
> 0.

It is obvious from (C.29) that (
K

K + pAA

)∗∣∣∣∣
η=0

= α.

Moreover, recalling that g∗ is strictly positive if and only if ρ < αλL holds, we obtain

lim
η→∞

(
K

K + pAA

)∗
=

λL+ σSρ

λL+ σSρ+ (1− α)σS (αλL− ρ)
< 1.
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These results prove the validity of all assertions made in part iii) of Proposition 2. �

C.4 Proof of Proposition 3

Introducing the definition c ≡ C/K, equations (50) and (51) can be written as

M1 (g∗, c∗, η, φK , φZ) = 0 and M2 (g∗, c∗, η, φK , φZ) = 0,

where

M1 ≡ −
(
1− α2σS

)
g∗ + σS

α2 +
φKη

φK+
φZ (1− α)

λL− g∗
(g∗ + c∗)

 c∗ − σSρ,

M2 ≡ (1 + α) g∗ +
1

α

α2 +
(φK − φZ) η

φK+
φZ (1− α)

λL− g∗
(g∗ + c∗)

 c∗ − λL.
In the Supplement we show that quite weak assumptions are sufficient for the existence of a

unique solution

g∗ = Πg (η, φK , φZ) , c∗ = Πc (η, φK , φZ) ,

that is economically meaningful in the sense that g∗ > 0 and c∗ > 0. The partial derivatives of g∗

and c∗ with respect to the status parameters can be derived by means of implicit differentiation:

∂g∗

∂par
=

1

Ψ

(
∂M2

∂c∗
∂M1

∂par
− ∂M1

∂c∗
∂M2

∂par

)
, par = η, φK , φZ ,

∂c∗

∂par
=

1

Ψ

(
−∂M2

∂g∗
∂M1

∂par
+
∂M1

∂g∗
∂M2

∂par

)
, par = η, φK , φZ ,

where

Ψ ≡ ∂M1

∂c∗
∂M2

∂g∗
− ∂M1

∂g∗
∂M2

∂c∗
. (C.30)

Note that the partial derivatives of M1 and M2 are evaluated at

(g∗, c∗, η, φK , φZ) = (Πg (η, φK , φZ) ,Πc (η, φK , φZ) , η, φK , φZ) .

In other words, we consider the following expressions: ∂Mj/∂ω|M1=M2=0, ω = g∗, c∗, and par.
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It can be shown by tedious calculations that

∂M1

∂g∗
= −

(
1− α2σS

)
− ηφKφZ (1− α)σSc∗ (λL+ c∗)

[φK(λL− g∗) + φZ (1− α) (g∗ + c∗)]2
, (C.31)

∂M1

∂c∗
= α2σS +

ηφKσ
S (λL− g∗) [φK(λL− g∗) + φZ (1− α) g∗]

[φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
, (C.32)

∂M2

∂g∗
= (1 + α)− η (φK − φZ)φZ (1− α) (λL+ c∗) c∗

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
, (C.33)

∂M2

∂c∗
= α+

η (φK − φZ) (λL− g∗) [φK (λL− g∗) + φZ (1− α) g∗]

α [φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]2
. (C.34)

Unfortunately, if φZ > φK , then the sign of ∂M2/∂c
∗ cannot be determined immediately.

However, using the fact that

M2 = 0⇔ η (φK − φZ) (λL− g∗)
φK (λL− g∗) + φZ (1− α) (g∗ + c∗)

=
α [λL− (1 + α) g∗ − αc∗]

c∗

we can show that

∂M2

∂c∗
=
φZα (1− α) (c∗)2 + [φK(λL− g∗) +φZ (1− α) g∗] [λL− (1 + α) g∗]

c∗ [φK(λL− g∗) +φZ (1− α) (g∗ + c∗)]
(C.35)

holds at the steady state. From (C.31), (C.32), and (C.35) it follows that

∂M1

∂g∗
< 0,

∂M1

∂c∗
> 0,

∂M2

∂c∗
> 0 (C.36)

holds at the steady state, regardless of whether 0 < φZ ≤ φK or 0 < φK < φZ .

From (C.30), (C.33), and (C.36) it is obvious that

φZ ≥ φK ⇒
∂M2

∂g∗
> 0⇒ Ψ > 0. (C.37)

To determine the sign of Ψ for the case φZ < φK we make use of the fact that Ψ can be

expressed as

Ψ =
η
[
φK
(
1 + ασS

)
− φZ

(
1− α2σS

)]
(λL− g∗) [φK (λL− g∗) + φZ (1− α) g∗]

α [φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]2

+ α
(
1 + σSα

)
+

ηφ2Z (1− α)α2σSc∗ (λL+ c∗)

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
. (C.38)

Equation (C.38) implies that

φZ < φK ⇒ φK
(
1 + ασS

)
− φZ

(
1− α2σS

)
> 0⇒ Ψ > 0. (C.39)

From (C.37) and (C.39) it follows that

Ψ > 0 for φZ ≥ 0. (C.40)
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To analyze the effects of changes in φZ , we substitute

∂M1

∂φZ
= − ηφK (1− α)σSc∗ (λL− g∗) (g∗ + c∗)

[φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
< 0,

∂M2

∂φZ
= −ηφKc

∗ (λL− g∗) [(λL− g∗) + (1− α) (g∗ + c∗)]

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
< 0

into the general representation of the solutions. This yields

∂g∗

∂φZ
=

1

Ψ

φKησ
Sc∗ (λL− g∗)2

{
φK
(
α2 + η

)
(λL− g∗) +φZ (1− α)

[
α2 (g∗ + c∗) +ηg∗

]}
α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]3

,

∂c∗

∂φZ
=

1

Ψ

φKηc
∗ (λL− g∗)

[(
1 + σSα

)
(1− α) (g∗ + c∗) +

(
1− α2σS

)
(λL− g∗)

]
α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2

+
1

Ψ

φKφZη
2 (1− α)σS (c∗)2 (λL− g∗) (λL+ c∗)

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]3
.

These solutions imply that

φK > 0 ⇒ ∂g∗

∂φZ
> 0 and

∂c∗

∂φZ
> 0. (C.41)

From (C.1), (C.9), (C.13), (C.14), and (C.16) it follows that the variables L∗A, L∗Y , (π/pA)∗,

r∗ +
(
εK
)∗

, (π/pA)∗ +
(
εZ
)∗

, and
(
εZ
)∗

can be expressed as functions of g∗ solely, where

∂v∗

∂g∗

{
> 0 for v = LA, r + εK , (π/pA) + εZ , εZ ,

< 0 for v = LY , π/pA.

Hence, using the fact that ∂g∗/∂φZ > 0 [see (C.41)], we obtain

∂v∗

∂φZ

{
> 0 for v = LA, r + εK , (π/pA) + εZ , εZ ,

< 0 for v = LY , π/pA.

From (C.41) and (C.2) it follows that

∂ (Y/K)∗

∂φZ
=
∂g∗

∂φZ
+
∂c∗

∂φZ
> 0. (C.42)

From (C.1)–(C.17) it follows that the variables r∗, p∗, (x/LY )∗, p∗A, (w/A)∗ can be expressed

as functions of (Y/K)∗ solely, where

∂v∗

∂ (Y/K)∗

{
> 0 for v = r, p,

< 0 for v = x/LY , pA, w/A.

Hence, using the fact that ∂ (Y/K)∗ /∂φZ > 0 [see (C.42)], we obtain

∂v∗

∂φZ

{
> 0 for v = r, p,

< 0 for v = x/LY , pA, w/A.
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Equations (C.6), (C.8), and (C.18) imply that the variables x∗, π∗, and [K/ (K + pAA)]∗ can

be expressed as functions of both g∗ and (Y/K)∗, where

∂v∗

∂g∗
< 0 for v = x, π,

K

K + pAA
,

∂v∗

∂ (Y/K)∗
< 0 for v = x, π,

K

K + pAA
.

Taking into account that ∂g∗/∂φZ > 0 and ∂ (Y/K)∗ /∂φZ > 0, we obtain

∂v∗

∂φZ
< 0 for v = x, π,

K

K + pAA
.

The results derived above prove the validity of the assertions made in Proposition 3. �
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Supplement

D The decentralized equilibrium: further results

D.1 Derivation of Equation (32)

From the flow budget constraint of the representative household (1) it follows that

K̇ = rK + wL+DZ − C − pZŻ.

Using i) the labor market equilibrium condition, L = LY + LA, ii) the normalization of the

number of shares, Z = A (⇒ Ż = Ȧ), iii) the equilibrium condition of the market for blueprints,

pA = pZ , and iv) the assumption that the operating profit of firms in the intermediate goods

sector is fully distributed in the form of dividends at any time t, D (t) = π (t), we obtain

K̇ = rK + w (LY + LA)− C + πA− pAȦ.

Employing i) the equilibrium condition of the rental market of real capital, K = Ak, ii) the

fact that the identical operating profit of the firms in the intermediate goods sector is equal to

π = px − rk, and iii) the production function for blueprints of the representative firm in the

R&D sector, Ȧ = λALA, we get

K̇ = rAk + wLY + wLA − C + (px− rk)A− pAλALA
= (wLY +Apx)− C − (pAλALA − wLA) .

Perfect competition in the R&D sector and in the final goods sector implies pAȦ − wLA =

pAλALA − wLA = 0 and wLY +Apx = Y , such that

K̇ = Y − C. (D.1)

Obviously, (D.1) is equivalent to (32) as given in the main text. �

D.2 Derivation of Equation (34)

Using that firms in the intermediate goods sector produce identical quantities in Equation (19)

implies that

Y = L1−α
Y

∫ A

0
xα di = L1−α

Y Axα = (ALY )1−α (Ax)α . (D.2)

Taking into account that xi = ki for i ∈ [0, A], we obtain ki = k for i ∈ [0, A], where k = x.

From k = x and K = Ak it then follows that Ax = Ak = K. Substituting this into (D.2) and

using L = LY + LA, we obtain

Y = Kα (ALY )1−α = Kα [A (L− LA)]1−α . (D.3)
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Using (D.3) and Y = K̇ + C, we finally get

K̇

K
=
Y

K
− C

K
=

[
K

A (L− LA)

]−(1−α)
− C

K
. (D.4)

Obviously, (D.4) is equivalent to (34) as given in the main text. �

D.3 Derivation of Equation (35)

Solving (28) for r and taking into account that L = LY + LA, we obtain

r = α2

(
K

ALY

)−(1−α)
= α2

[
K

A (L− LA)

]−(1−α)
. (D.5)

Substituting (D.5) into (15) yields

Ċ

C
= σS (C,χ)

{
α2

[
K

A (L− LA)

]−(1−α)
+ εK (C,Ω, χ, φK)− ρ

}
. (D.6)

The differential equation (D.6) is identical to (35) as given in the main text. �

D.4 Derivation of Equation (37)

Taking into account that Z = A and pA = pZ hold in equilibrium, (6) implies

Ω = φKK + φZpZZ = φKK + φZpAA. (D.7)

Equation (26) and the labor market equilibrium condition (27) imply that

pA =
1

λ

w

A
.

The first order condition of the representative firm in the final goods sector with respect to the

choice of labor input (20) together with the labor market equilibrium condition (27) and the

fact thatxi = x for i ∈ [0, A] holds, implies that

w = (1− α)

∫ A

0

(
xi
LY

)α
di = (1− α)A

(
x

LY

)α
.

Using x = k and K = Ak, we obtain

x

LY
=

k

LY
=

Ak

ALY
=

K

ALY
=

K

A (L− LA)
. (D.8)

The last three results imply
w

A
= (1− α)

[
K

A (L− LA)

]α
, (D.9)

and

pA =
1− α
λ

[
K

A (L− LA)

]α
. (D.10)
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Substituting (D.10) into (D.7) yields

Ω = φKK + φZ
(1− α)A

λ

[
K

A (L− LA)

]α
. (D.11)

Obviously, (D.11) is equivalent to (37) as given in the main text. �

D.5 Derivation of Equations (54) and (36)

Using pA = pZ and D (t) = π (t), we obtain from (11) that

r + εK (C,Ω, χ, φK) =
π

pA
+
ṗA
pA

+ εZ (C,Ω, χ, φZ) . (D.12)

From (24) and (D.5) it follows that

π = (1− α)α(1+α)/(1−α)r−α/(1−α)LY = (1− α)α

[
K

A (L− LA)

]α
LY . (D.13)

Using (D.13), (D.10), and L = LY + LA, we get

π

pA
= αλLY = αλ (L− LA) . (D.14)

Note that (D.14) equals (54) as given in the main text.

From (D.10) it follows that

ṗA
pA

= α
K̇

K
− αȦ

A
+ α

L̇A
L− LA

. (D.15)

Substituting (D.15) into (D.12) yields

L̇A = (L− LA)

{
1

α

[
r + εK −

(
π

pA
+ εZ

)]
− K̇

K
+
Ȧ

A

}
, (D.16)

where εK = εK (C,Ω, χ, φK) and εZ = εZ (C,Ω, χ, φZ). Substituting (D.5), (D.14), (34) [=

(D.4)], and (33) into (D.16), we obtain

L̇A = (L− LA)

{
− (1− α)

[
K

A (L− LA)

]−(1−α)
+
C

K
+ λLA

−λ (L− LA) +
εK (C,Ω, χ, φK)− εZ (C,Ω, χ, φK)

α

}
. (D.17)

The differential equation (D.17) is identical to (36) as given in the main text. �

D.6 Derivation of (44) and (45)

The instantaneous utility function as given by (42),

u (C, S) =
1

1− θ

{[
Cξh (S)

]1−θ
− 1

}
, ξ > 0, θ > 0, 1 + ξ (θ − 1) > 0,
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where h (S) > 0 and h′ (S) > 0, and the ratio specification of the status function as given by

(43),

S
(
Ω, Ω̄

)
= ϕ

(
Ω/Ω̄

)
, ϕ′ > 0, ϕ′′ ≤ 0,

exhibit the following properties:

∂u (C, S)

∂C
= ξCξ(1−θ)−1 [h (S)]1−θ > 0,

∂u (C, S)

∂S
= Cξ(1−θ) [h (S)]−θ h′ (S) > 0,

∂2u (C, S)

∂C2
= − [1 + ξ (θ − 1)] ξCξ(1−θ)−2 [h (S)]1−θ < 0,

S (Ω,Ω) = ϕ (Ω/Ω) = ϕ (1) ≡ χ,

∂S
(
Ω, Ω̄

)
∂Ω

= ϕ′
(
Ω/Ω̄

)
×
(
1/Ω̄

)
,

∂S (Ω,Ω)

∂Ω
= ϕ′ (1) (1/Ω) .

Evaluating the partial derivatives of the instantaneous utility function U at (C, S) = (C,χ) =

(C,ϕ (1)) and substituting the resulting expressions as well as the result for ∂S (Ω,Ω) /∂Ω into

the definitions of σS (C,χ) and MRS (C,Ω, χ) as given by (14) and (16), respectively, we obtain:

σS (C,χ) ≡ −∂u (C,χ)

∂C

[
C
∂2u (C,χ)

∂C2

]−1
=

1

1 + ξ (θ − 1)
, (D.18)

MRS (C,Ω, χ) ≡ ∂u (C,χ)

∂S

∂S (Ω,Ω)

∂Ω

[
∂u (C,χ)

∂C

]−1
=

1

ξ

h′ (ϕ (1))ϕ′ (1)

h (ϕ (1))
× C

Ω
. (D.19)

Equation (D.18) implies that the symmetric effective elasticity of intertemporal substitution

under relative wealth preferences does not depend on C, i.e., ∂σS (C,χ) /∂C = 0. From (D.19)

it follows that the symmetric marginal rate of substitution of status-relevant own wealth Ω for

consumption C, MRS (C,Ω, χ), depends linearly on (C/Ω):

MRS (C,Ω, χ) = η × C

Ω
, where η ≡ β

ξ
> 0, β ≡ h′ [ϕ (1)]ϕ′ (1)

h [ϕ (1)]
=
h′ (χ)ϕ′ (1)

h (χ)
> 0.

Consequently, εK and εZ depend linearly on (C/Ω), too:

εK = φKη ×
C

Ω
, and εZ = φZη ×

C

Ω
.

The results given above prove the validity of (44) and (45). �

E The BGP – Existence, Uniqueness and its Dependence on

the Status Parameters

E.1 Existence and Uniqueness of the Steady State

E.1.1 Preliminaries

From (50) and (51) it follows that the steady state values g∗ and c∗, where

c ≡ C/K, (E.1)
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satisfy the equations

M1

(
g∗, c∗, η, φK , φZ ,σ

S , ρ, λ, L, α
)

= 0, (E.2)

M2

(
g∗, c∗, η, φK , φZ ,σ

S , ρ, λ, L, α
)

= 0, (E.3)

where

M1 ≡ −
(
1− α2σS

)
g∗ + σS

α2 +
φKη

φK+
φZ (1− α)

λL− g∗
(g∗ + c∗)

 c∗ − σSρ, (E.4)

M2 ≡ (1 + α) g∗ +
1

α

α2 +
(φK − φZ) η

φK+
φZ (1− α)

λL− g∗
(g∗ + c∗)

 c∗ − λL. (E.5)

We analyze the conditions for the existence of a unique, economically meaningful solution

(g∗, c∗). From (E.2)–(E.5) it follows that

g∗ = Πg
(
η, φK , φZ ,σ

S , ρ, λ, L, α
)
,

c∗ = Πc
(
η, φK , φZ ,σ

S , ρ, λ, L, α
)
.

Moreover, we study the effects of changes in the status parameters η, φK , and φZ on g∗ and c∗.

For this reason, we will use a simplified general representation of the steady state values:

g∗ = Πg (η, φK , φZ) , (E.6)

c∗ = Πc (η, φK , φZ) . (E.7)

These results are the starting point for a complete analysis of the properties of the BGP.

E.1.2 Special Case φZ = 0

First, we analyze the special case in which shares issued by entrants – in contrast to physical

capital used by incumbents – do not matter for status, i.e., φZ = 0 and φK > 0. Setting φZ = 0

in (E.4) and (E.5) it is easily verified that both M1 = 0 and M2 = 0 imply a linear relation

between c∗ and g∗:

c∗|M1=0 =
σSρ+

(
1− α2σS

)
g∗

σS (α2 + η)
,

c∗|M2=0 =
α [λL− (1 + α) g∗]

α2 + η
.

(E.8)

The graphical representation of these results in the (g∗, c∗)-plane (see Figure 1) exhibits the

following properties:

i) The straight line that corresponds to M1 = 0 (henceforth, the M1 = 0-line) is positively

sloped if and only if

1− α2σS > 0⇔ σS < 1/α2. (E.9)

In this paper we assume that (E.9) holds. Note that this assumption is quite weak. For instance,
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if α = 1/3, then 1/α2 = 9.

ii) The straight line that corresponds to M2 = 0 (henceforth, the M2 = 0-line) is nega-

tively sloped. From L∗Y = (λL− g∗) /λ > 0 and L∗A = g∗/λ > 0 it follows that economically

meaningful rates of growth satisfy the condition

0 < g∗ < λL. (E.10)

In order to ensure that not only L∗Y > 0 and L∗A > 0, but also c∗ > 0 holds, we have to restrict

the analysis to situations in which

0 < g∗ <
λL

1 + α
(E.11)

holds. Assumption (E.11) is slightly stronger than assumption (E.10). However, we can easily

show that it is not at all restrictive. From L∗A = g∗/λ > 0 it follows that condition (E.11) is

equivalent to

0 <
L∗A
L

<
1

1 + α
(E.12)

Condition (E.12) requires that the labor input of the R&D sector is less than 100/ (1 + α)

percent of total labor input. From α ∈ (0, 1) it follows that 100/ (1 + α) > 50. For instance,

if α = 1/3, then 100/ (1 + α) = 75. Hence, condition (E.12) is not at all restrictive because

it allows for an unrealistically high employment share of the R&D sector and hence for an

excessive growth rate.

FIGURE 1: Φz=0
η2>η1

c*

 αλL
α2+η

   ρ
α2+η

M2=0|η2

M1=0|η1
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1−α2σ s

 σ s(αλL−ρ)
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Figure 1: BGP determination of c∗ and g∗ in case of φZ = 0

To ensure that there exists an economically meaningful steady state, i.e., a point of intersec-

tion of the M1 = 0-line and the M2 = 0-line in which g∗ > 0 and c∗ > 0 , we have to introduce
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a further assumption. Taking into account that

c∗|M1=0 =


0 for g∗ = − σSρ

1− α2σS
ρ

α2 + η
for g∗ = 0

(1 + α)σSρ+
(
1− α2σS

)
λL

(1 + α) (α2 + η)σS
for g∗ =

λL

1 + α

c∗|M2=0 =


αλL

α2 + η
for g∗ = 0

0 for g∗ =
λL

1 + α

it can be verified at first glance from a graphical representation (see Figure 1) that this missing

assumption is given by
ρ

α2 + η
<

αλL

α2 + η
⇔ αλL− ρ > 0. (E.13)

Assumption (E.13) implies that the negatively sloped M2 = 0-line intersects the vertical axis

at a point that is above the point at which the positively sloped M1 = 0-line intersects. At

g∗ = λL/ (1 + α) the M2 = 0-line intersects the horizontal axis, while the M1 = 0-line assumes

a strictly positive value.

The unique steady-state values that correspond to φZ = 0 are given by

g∗ =
σS (αλL− ρ)

1 + ασS
, c∗ =

α
[(

1− α2σS
)
λL+ (1 + α)σSρ

]
(1 + ασS) (α2 + η)

. (E.14)

E.1.3 General Case φZ > 0

It can be shown by tedious calculations that M1 = 0 implies the following quadratic equation:

Ω2 (c∗)2 + Ω1c
∗ + Ω0 = 0,

where

Ω2 ≡ α2σSφZ (1− α) , (E.15)

Ω1 ≡ φK
(
α2 + η

)
σS (λL− g∗)− φZ (1− α)

[(
1− 2α2σS

)
g∗ + σSρ

]
, (E.16)

Ω0 ≡ −
[(

1− α2σS
)
g∗ + σSρ

]
[φK (λL− g∗) + φZ (1− α) g∗] . (E.17)

It is obvious that Ω2 > 0. From (E.10) and (E.9) it follows that Ω0 < 0. Hence, it is clear that

the quadratic equation has a negative and a positive root. (The validity of this assertion is, for

instance, verified at first glance by a graphical representation of the quadratic equation). Since

only the positive root makes sense from an economic point of view, we obtain

c∗|M1=0 =
−Ω1 +

√
Ω2
1 − 4Ω2Ω0

2Ω2
. (E.18)
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From (E.15)–(E.17) it follows that

Ω2 = Ω2 (φZ , ...) > 0, Ω1 = Ω1 (g∗, φK , φZ , η, ...) , Ω0 = Ω0 (g∗, φK , φZ , ...) < 0.

Hence, it is clear that

c∗|M1=0 = Ξ1 (g∗, φK , φZ , η, ...) > 0, (E.19)

where Ξ1 is defined as the right-hand side of (E.18). The graphical representation of (E.19) in

the (g∗, c∗)-plane will be called M1 = 0-curve.

In the special case in which physical capital is irrelevant for status (φK = 0) and φZ > 0,

we obtain the following linear relation between c∗ and g∗ that is unaffected by changes in η or

φZ :

c∗|M1=0 =

(
1− α2σS

)
g∗ + σSρ

α2σS
.

Hence, if φK = 0, then the M1 = 0-line is positively sloped and its position depends neither on

η nor on φZ .

The analysis of the general case in which φK > 0 and φZ > 0 holds, is much more compli-

cated. In order to derive the signs of the partial derivatives of (E.18) with respect to g∗, φK , φZ ,

and η we can either differentiate (E.18) with respect to these variables and thereby taking into

account (E.15)–(E.17) or make use of the fact that

M1

(
g∗,Ξ1 (g∗, φK , φZ , η, ...) , η, φK , φZ

)
= 0

holds and apply the implicit function theorem. It can be shown by tedious calculations that

∂M1

∂g∗
= −

(
1− α2σS

)
− ηφKφZ (1− α)σSc∗ (λL+ c∗)

[φK(λL− g∗) + φZ (1− α) (g∗ + c∗)]2
< 0, (E.20)

∂M1

∂c∗
= α2σS +

ηφKσ
S (λL− g∗) [φK(λL− g∗) + φZ (1− α) g∗]

[φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
> 0, (E.21)

∂M1

∂η
=

φKσ
Sc∗ (λL− g∗)

φK (λL− g∗) +φZ (1− α) (g∗ + c∗)
> 0, (E.22)

∂M1

∂φK
=

ηφZσ
S (1− α) c∗ (λL− g∗) (g∗ + c∗)

[φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
> 0, (E.23)

∂M1

∂φZ
= − ηφK (1− α)σSc∗ (λL− g∗) (g∗ + c∗)

[φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
< 0. (E.24)

Using these results we obtain

∂c∗

∂g∗

∣∣∣∣
M1=0

= −

∂M1

∂g∗

∣∣∣∣
M1=0

∂M1

∂c∗

∣∣∣∣
M1=0

> 0,
∂c∗

∂η

∣∣∣∣
M1=0

= −

∂M1

∂η

∣∣∣∣
M1=0

∂M1

∂c∗

∣∣∣∣
M1=0

< 0,
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∂c∗

∂φK

∣∣∣∣
M1=0

= −

∂M1

∂φK

∣∣∣∣
M1=0

∂M1

∂c∗

∣∣∣∣
M1=0

< 0,
∂c∗

∂φZ

∣∣∣∣
M1=0

= −

∂M1

∂φZ

∣∣∣∣
M1=0

∂M1

∂c∗

∣∣∣∣
M1=0

> 0.

The notation ∂M1/∂ω|M1=0 expresses the fact that the partial derivative of M1 with respect to

ω is evaluated at (g∗, c∗, η, φK , φZ) =
(
g∗,Ξ1 (g∗, φK , φZ , η, ...) , η, φK , φZ

)
. Hence, the M1 = 0-

curve is positively sloped. A rise in η or φK causes the M1 = 0-curve to shift downwards, while

a rise in φZ leads to an upward shift.

Next, we will discuss the properties of the M2 = 0-curve. It can be shown that M2 = 0

implies the following quadratic equation:

Λ2 (c∗)2 + Λ1c
∗ + Λ0 = 0, (E.25)

where

Λ2 ≡ α2φZ (1− α) , (E.26)

Λ1 ≡
[
(φK − φZ)

(
α2 + η

)
− φZα (1− 2α)

]
(λL− g∗) + 2α2φZ (1− α) g∗, (E.27)

Λ0 ≡ −α [φK(λL− g∗) + φZ (1− α) g∗] [λL− (1 + α) g∗] . (E.28)

It is obvious that Λ2 > 0. From (E.10) and (E.9) it follows that Λ0 < 0. Hence, it is clear

that the quadratic equation has a negative and a positive root. Since only the positive root is

economically meaningful we obtain

c∗|M2=0 =
−Λ1 +

√
Λ2
1 − 4Λ2Λ0

2Λ2
. (E.29)

From (E.26)–(E.28) it follows that

Λ2 = Λ2 (φZ , ...) > 0, Λ1 = Λ1 (g∗, φK , φZ , η, ...) , Λ0 = Λ0 (g∗, φK , φZ , ...) < 0.

Hence, it is clear that

c∗|M2=0 = Ξ2 (g∗, φK , φZ , η, ...) > 0, (E.30)

where Ξ2 is defined as the right-hand side of (E.29). The graphical representation of (E.30) in

the (g∗, c∗)-plane will be called M2 = 0-curve.

In the special case in which φK = φZ (see Figure 2) we obtain the following linear relation

between c∗ and g∗:

c∗|M2=0 =
λL− (1 + α) g∗

α
. (E.31)

Obviously, the M2 = 0-line is negatively sloped and its position does not depend on η. The

M2 = 0-line intersects the positively sloped M1 = 0-curve at

g∗ =
σS [(α+ η)λL− ρ]

1 + σS [α+ η (1 + α)]
, c∗ =

(
1− α2σS

)
λL+ (1 + α)σSρ

α {1 + σS [α+ η (1 + α)]}
. (E.32)
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FIGURE 2: ΦK=ΦZ

η2>η1
c*

λL
α M1=0|η1

M1=0|η2

M2=0

λL
1+α

g*

Figure 2: BGP determination of c∗ and g∗ in case of φZ = φK

In the general case in which φK 6= φZ holds, the analysis of the M2 = 0-curve is much more

complicated. To derive the signs of the partial derivatives of (E.30), c∗|M2=0 = Ξ2 (g∗, φK , φZ , η, ...),

with respect to g∗, φK , φZ , and η we can either differentiate (E.29) with respect to these vari-

ables and thereby taking into account (E.26)–(E.28) or make use of the fact that

M2

(
g∗,Ξ2 (g∗, φK , φZ , η, ...) , η, φK , φZ

)
= 0

holds and apply the implicit function theorem. It can be shown by tedious calculations that

∂M2

∂g∗
= (1 + α)− η (φK − φZ)φZ (1− α) (λL+ c∗) c∗

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
, (E.33)

∂M2

∂c∗
= α+

η (φK − φZ) (λL− g∗) [φK (λL− g∗) + φZ (1− α) g∗]

α [φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]2
, (E.34)

∂M2

∂η
=

(φK − φZ) c∗ (λL− g∗)
α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]

, (E.35)

∂M2

∂φK
=
ηφZc

∗ (λL− g∗) [(λL− g∗) + (1− α) (g∗ + c∗)]

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
> 0, (E.36)

∂M2

∂φZ
= −ηφKc

∗ (λL− g∗) [(λL− g∗) + (1− α) (g∗ + c∗)]

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
< 0. (E.37)

It is easily verified that

M2 = 0⇔ η (φK − φZ) (λL− g∗)
φK (λL− g∗) + φZ (1− α) (g∗ + c∗)

=
α [λL− (1 + α) g∗ − αc∗]

c∗
. (E.38)
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Using this result we obtain

∂M2

∂c∗

∣∣∣∣
M2=0

=
φZα (1− α) (c∗)2 + [φK(λL− g∗) +φZ (1− α) g∗] [λL− (1 + α) g∗]

c∗ [φK(λL− g∗) +φZ (1− α) (g∗ + c∗)]
. (E.39)

The notation ∂M2/∂ω|M2=0 expresses the fact that the partial derivative of M2 with respect to

ω is evaluated at (g∗, c∗, η, φK , φZ) =
(
g∗,Ξ2 (g∗, φK , φZ , η, ...) , η, φK , φZ

)
. This transformation

shows that
∂M2

∂c∗

∣∣∣∣
M2=0

> 0

regardless of whether φZ ≤ φK or φZ > φK holds.

The properties of theM2 = 0-curve are given by the following partial derivatives of c∗|M2=0 =

Ξ2 (g∗, φK , φZ , η, ...):

∂c∗

∂g∗

∣∣∣∣
M2=0

= −

∂M2

∂g∗

∣∣∣∣
M2=0

∂M2

∂c∗

∣∣∣∣
M2=0

⇒ sgn

(
∂c∗

∂g∗

∣∣∣∣
M2=0

)
= −sgn

(
∂M2

∂g∗

∣∣∣∣
M2=0

)
,

∂c∗

∂η

∣∣∣∣
M2=0

= −

∂M2

∂η

∣∣∣∣
M2=0

∂M2

∂c∗

∣∣∣∣
M2=0

⇒ sgn

(
∂c∗

∂η

∣∣∣∣
M2=0

)
= −sgn

(
∂M2

∂η

∣∣∣∣
M2=0

)
= −sgn (φK − φZ) ,

∂c∗

∂φK

∣∣∣∣
M2=0

= −

∂M2

∂φK

∣∣∣∣
M2=0

∂M2

∂c∗

∣∣∣∣
M2=0

< 0,
∂c∗

∂φZ

∣∣∣∣
M2=0

= −

∂M2

∂φZ

∣∣∣∣
M2=0

∂M2

∂c∗

∣∣∣∣
M2=0

> 0.

A rise in φZ causes the M2 = 0-curve to shift upwards, while a rise in φK leads to a downward

shift. A rise in η causes the M2 = 0-curve to shift downwards if φK > φZ , while an upward

shift obtains if φK < φZ .

With respect to the slope of the M2 = 0-curve things are more complicated. The M2 = 0-

curve is negatively sloped if and only if ∂M2/∂g
∗|M2=0 > 0. From (E.33) it follows that

φZ ≥ φK is sufficient for ∂M2/∂g
∗|M2=0 > 0. Moreover, it is obvious that ∂M2/∂g

∗|M2=0 > 0

also holds for φZ < φK as long as η is sufficiently small. Unfortunately, we were not able to

give an analytical proof that this property also holds for “large” values of η. We tried several

illustrations. Irrespective of the magnitude of η we obtained a negatively sloped M2 = 0-curve.

Figure 3 supports the general validity of this result. In Figure 3 we depicted the M2 = 0-curves

that correspond to the special cases φZ = 0 and φZ = φK > 0 [see (E.8) and (E.31)]:

c∗|M2=0;φZ=0 =
α [λL− (1 + α) g∗]

α2 + η
,

c∗|M2=0;φZ=φK
=
λL− (1 + α) g∗

α
.
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Both curves intersect the horizontal axis at g∗ = λL/ (1 + α). Since

c∗|M2=0;φZ=0 =
α2

α2 + η
c∗|M2=0;φZ=φK

holds, the M2 = 0-curve that corresponds to φZ = 0 is flatter than its φZ = φK-counterpart.

From ∂c∗/∂φZ |M2=0 > 0 it follows that if 0 < φZ < φK , then the resulting M2 = 0|0<φZ<φK -

curve (dashed line) lies above the M2 = 0|φZ=0-curve and below the M2 = 0|φZ=φK
-curve.

FIGURE 3c*

λL
1+α

g*

M2=0|ΦZ=0

M2=0|ΦZ=ΦK

M2=0|0<ΦZ<ΦK

Figure 3: BGP determination of c∗ and g∗ in the general case

Figures 1–3 might give the erroneous impression that the M2 = 0-curve always intersects

the horizontal axis at g∗ = λL/ (1 + α). This property is true for 0 ≤ φZ ≤ φK , but might

cease to be valid if φZ > φK holds provided that η is sufficiently large. More specifically, for

the limiting case g∗ → λL/ (1 + α) we obtain

Λ0 → 0, Λ1 →
αλL

1 + α

[
(φK − φZ)

(
α2 + η

)
+ αφZ

]
so that the quadratic equation (E.25) simplifies to

α2φZ (1− α) (c∗)2 +
αλL

1 + α

[
(φK − φZ)

(
α2 + η

)
+ αφZ

]
c∗ = 0.

Solving for c∗ we obtain the following two roots:

c∗ = 0, c∗ = −
[
(φK − φZ)

(
α2 + η

)
+ αφZ

]
αλL

(1 + α)α2φZ (1− α)
.

The economically meaningful solution of the quadratic equation (E.25) exhibits the property
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that c∗ > 0 holds for g∗ < λL/ (1 + α), and that c∗ converges to a nonnegative value for

g∗ → λL/ (1 + α). This, in turn, implies that the function (E.29) has the following properties:

lim
g∗→λL/(1+α)

c∗|M2=0 =


0 for Θ> 0,

−
[
(φK − φZ)

(
α2 + η

)
+ αφZ

]
αλL

(1 + α)α2φZ (1− α)
> 0 for Θ< 0,

where

Θ ≡ (φK − φZ)
(
α2 + η

)
+ αφZ .

Hence, if

η > α (1− α) and φZ >
φK
(
α2 + η

)
η − α (1− α)

hold, then Θ< 0 so that the M2 = 0-curve does not intersect the horizontal axis at g∗ =

λL/ (1 + α).

The main message of the considerations made above can be expressed as follows: If the

positively sloped M1 = 0-curve and the negatively sloped M2 = 0-curve intersect, then the

point of intersection is the unique steady state. In other words, if a steady state exists, then it

is unique.

E.2 The effect of changes in η and φZ

E.2.1 The effect of changes in η in the special cases φZ = 0 and φZ = φK

Special case φZ = 0: The steady-state values g∗ and c∗ are given by (E.14),

g∗ =
σS (αλL− ρ)

1 + ασS
, c∗ =

α
[(

1− α2σS
)
λL+ (1 + α)σSρ

]
(1 + ασS) (α2 + η)

.

It is obvious that a rise in the status parameter η causes c∗ to decrease, but leaves g∗ unchanged:

∂g∗

∂η
= 0,

∂c∗

∂η
= −

α
[(

1− α2σS
)
λL+ (1 + α)σSρ

]
(1 + ασS) (α2 + η)2

< 0.

In graphical terms (see Figure 1), a rise in η (from η1 to η2) causes the negatively sloped M2 = 0-

line to rotate counterclockwise and the positively sloped M1 = 0-line to rotate clockwise around

the corresponding points of intersection with the horizontal axis. The rotating M1 = 0- and

M2 = 0-lines always intersect at the same growth rate g∗ irrespective of the magnitude of

the status parameter η. The effects of changes in η on the steady-state values of the other

endogenous variables is summarized in Proposition 2.

Special case φZ = φK : The steady-state values g∗ and c∗ are given by (E.32),

g∗ =
σS [(α+ η)λL− ρ]

1 + σS [α+ η (1 + α)]
, c∗ =

(
1− α2σS

)
λL+ (1 + α)σSρ

α {1 + σS [α+ η (1 + α)]}
.

Assumption (E.13) ensures that g∗ > 0. Assumption (E.9) is sufficient for c∗ > 0. According to

(C.22) a rise in the status parameter η causes g∗ to increase and c∗ to decrease. The validity
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of this result is easily confirmed by the graphical analysis (see Figure 2). A rise in η (from η1

to η2) causes the positively sloped M1 = 0-curve to shift downwards, while the position of the

negatively sloped M2 = 0-line remains unchanged. Consequently, g∗ rises, while c∗ falls. The

effects of changes in η on the steady-state values of the other endogenous variables is summarized

in Proposition 1.

E.2.2 The effects of changes in η and φZ in the general case φZ > 0

The solutions (E.6) and (E.7), g∗ = Πg (η, φK , φZ) and c∗ = Πc (η, φK , φZ), satisfy (E.2)–(E.5)

so that

M1 (Πg (η, φK , φZ) ,Πc (η, φK , φZ) , η, φK , φZ) = 0,

M2 (Πg (η, φK , φZ) ,Πc (η, φK , φZ) , η, φK , φZ) = 0.

It is obvious that the partial derivatives are determined by the following system of equations:

∂M1

∂g∗
∂g∗

∂var
+
∂M1

∂c∗
∂c∗

∂var
+
∂M1

∂var
= 0, var = η, φK , φZ ,

∂M2

∂g∗
∂g∗

∂var
+
∂M2

∂c∗
∂c∗

∂var
+
∂M2

∂var
= 0, var = η, φK , φZ .

Please note that the partial derivatives of M1 and M2 are evaluated at (g∗, c∗, η, φK , φZ) =

(Πg (η, φK , φZ) ,Πc (η, φK , φZ) , η, φK , φZ). In other words, we consider the following expres-

sions: ∂Mj/∂ω|M1=M2=0, ω = g∗, c∗, η, φK , and φZ . Solving for ∂g∗/∂var and ∂c∗/∂var we

obtain
∂g∗

∂var
=

1

Ψ

(
∂M2

∂c∗
∂M1

∂var
− ∂M1

∂c∗
∂M2

∂var

)
, (E.40)

∂c∗

∂var
=

1

Ψ

(
−∂M2

∂g∗
∂M1

∂var
+
∂M1

∂g∗
∂M2

∂var

)
, (E.41)

where

Ψ ≡ ∂M1

∂c∗
∂M2

∂g∗
− ∂M1

∂g∗
∂M2

∂c∗
. (E.42)

The partial derivatives of M1 and M2 are given by (E.20)–(E.24) and (E.33)–(E.37). Recall

that in (E.40), (E.41), and (E.42) these partial derivatives of M1 and M2 are evaluated at

(g∗, c∗, η, φK , φZ) = (Πg (η, φK , φZ) ,Πc (η, φK , φZ) , η, φK , φZ).

It follows from (E.20), (E.21), and (E.39) that

∂M1

∂g∗
< 0,

∂M1

∂c∗
> 0,

∂M2

∂c∗
> 0 (E.43)

hold at the steady state. From (E.33) it is obvious that

φZ ≥ φK ⇒
∂M2

∂g∗
> 0. (E.44)

Using (E.42)–(E.44) we obtain

φZ ≥ φK ⇒ Ψ > 0. (E.45)
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In order to determine the sign of Ψ for the case φZ < φK we make use of the fact that Ψ can

be expressed as

Ψ =
η
[
φK
(
1 + ασS

)
− φZ

(
1− α2σS

)]
(λL− g∗) [φK (λL− g∗) + φZ (1− α) g∗]

α [φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]2

+ α
(
1 + σSα

)
+

ηφ2Z (1− α)α2σSc∗ (λL+ c∗)

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
. (E.46)

Equation (E.46) implies that

φZ < φK ⇒ φK
(
1 + ασS

)
− φZ

(
1− α2σS

)
> 0⇒ Ψ > 0. (E.47)

From (E.45) and (E.47) it follows that

Ψ > 0 for φZ ≥ 0. (E.48)

The effects of changes in φZ on the steady state are summarized in Proposition 3. The effects

of changes in η on the BGP are described by the following proposition that is not included in

the main text.

Proposition 4. If φZ > 0, then changes in the intensity of the quest for status as measured by

the parameter η affect the BGP as follows:

∂g∗

∂η
> 0,

∂v∗

∂η
> 0 for v = LA, ε

K , εZ , r + εK ,
π

pA
+ εZ ,

∂v∗

∂η
< 0 for v = LY ,

C

Y
,
π

pA
,

sgn

[
∂ (C/K)∗

∂η

]
= −sgn

[
φK
(
1 + ασS

)
− φZ

(
1− α2σS

)]
,

sgn

(
∂v∗

∂η

)
= −sgn

[
φK
(
1 + ασS

)
− φZ

]
for v =

Y

K
, r, p,

sgn

(
∂v∗

∂η

)
= sgn

[
φK
(
1 + ασS

)
− φZ

]
for v =

x

LY
, pA,

w

A
,

sgn

(
∂ [K/ (K + pAA)]∗

∂η

)
= sgn (φK − φZ) .

Proof: Substitution of (E.20), (E.21), (E.22), (E.33), (E.34), and (E.35) into (E.40) and

(E.41) yields

∂g∗

∂η
=

1

Ψ

φZασ
Sc∗ (λL− g∗)

φK (λL− g∗) +φZ (1− α) (g∗ + c∗)
, (E.49)

∂c∗

∂η
= − 1

Ψ

[
φK
(
1 + ασS

)
− φZ

(
1− α2σS

)]
c∗ (λL− g∗)

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]
. (E.50)
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Using the last two equations and (C.2) we obtain

∂ (Y/K)∗

∂η
=
∂g∗

∂η
+
∂c∗

∂η
= − 1

Ψ

[
φK
(
1 + ασS

)
− φZ

]
c∗ (λL− g∗)

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]
. (E.51)

From (E.49), (E.50), and (E.51) it follows that

∂g∗

∂η
> 0 for φZ > 0,

sgn

(
∂c∗

∂η

)
= −sgn

[
φK
(
1 + ασS

)
− φZ

(
1− α2σS

)]
,

sgn

[
∂ (Y/K)∗

∂η

]
= −sgn

[
φK
(
1 + ασS

)
− φZ

]
.

The last results together with (C.1)–(C.17) imply that

∂L∗A
∂η

=
1

λ

∂g∗

∂η
=

1

Ψ

φZασ
Sc∗ (λL− g∗)

λ [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]
> 0,

∂L∗Y
∂η

= −
∂L∗A
∂η

= − 1

Ψ

φZασ
Sc∗ (λL− g∗)

λ [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]
< 0,

∂r∗

∂η
= α2∂ (Y/K)∗

∂η
= − 1

Ψ

α
[
φK
(
1 + ασS

)
− φZ

]
c∗ (λL− g∗)

φK (λL− g∗) +φZ (1− α) (g∗ + c∗)
,

∂p∗

∂η
= α

∂ (Y/K)∗

∂η
= − 1

Ψ

[
φK
(
1 + ασS

)
− φZ

]
c∗ (λL− g∗)

φK (λL− g∗) +φZ (1− α) (g∗ + c∗)
,

∂ (x/LY )∗

∂η
= − 1

1− α

[(
Y

K

)∗]−(2−α)/(1−α) ∂ (Y/K)∗

∂η
,

∂ (π/pA)∗

∂η
= −α∂g

∗

∂η
< 0,

∂p∗A
∂η

= −α
λ

[(
Y

K

)∗]−1/(1−α) ∂ (Y/K)∗

∂η
,

∂ (w/A)∗

∂η
= −α

[(
Y

K

)∗]−1/(1−α) ∂ (Y/K)∗

∂η
,

∂
[
r∗ +

(
εK
)∗]

∂η
=

1

σS
∂g∗

∂η
=

1

Ψ

φZαc
∗ (λL− g∗)

φK (λL− g∗) +φZ (1− α) (g∗ + c∗)
> 0,

∂
[
(π/pA)∗ +

(
εZ
)∗]

∂η
=

1

σS
∂g∗

∂η
=

1

Ψ

φZαc
∗ (λL− g∗)

φK (λL− g∗) +φZ (1− α) (g∗ + c∗)
> 0,

∂
(
εK
)∗

∂η
=

1

σS
∂g∗

∂η
− α2∂ (Y/K)∗

∂η
=

1

Ψ

φK
(
1 + ασS

)
αc∗ (λL− g∗)

φK (λL− g∗) +φZ (1− α) (g∗ + c∗)
> 0,

∂
(
εZ
)∗

∂η
=

1 + ασS

σS
∂g∗

∂η
=

1

Ψ

φZ
(
1 + ασS

)
αc∗ (λL− g∗)

φK (λL− g∗) +φZ (1− α) (g∗ + c∗)
> 0.

To determine the effects of changes in η on the wealth share of physical capital [K/ (K + pAA)]∗
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we use (C.2), (C.18), (E.49), and (E.51):

∂ [K/ (K + pAA)]∗

∂η
= −

1− α
(λL− g∗)2

(
Y

K

)∗ ∂g∗
∂η

+
1− α
λL− g∗

∂ (Y/K)∗

∂η[
1 +

1− α
λL− g∗

(
Y

K

)∗]2
=

1

Ψ

(1− α) c∗ (λL− g∗)
[λL− g∗ + (1− α) (c∗ + g∗)]2

×

×
{[
φK
(
1 + ασS

)
− φZ

]
(λL− g∗)− φZα2σS (c∗ + g∗)

}
α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]

. (E.52)

Since this representation of the result is not very informative, we rewrite it. Since the steady

state values g∗ and c∗ satisfy both M1 = 0 and M2 = 0, where M1 and M2 are defined by

(E.4) and (E.5), the following equations can be easily derived for η > 0, φK > 0, φZ > 0, and

φZ 6= φK :

c∗

φK+
φZ (1− α)

λL− g∗
(g∗ + c∗)

=

(
1− α2σS

)
g∗ − α2σSc∗ + σSρ

ηφKσS
,

c∗

φK+
φZ (1− α)

λL− g∗
(g∗ + c∗)

=
α [λL− (1 + α) g∗ − αc∗]

(φK − φZ) η
.

From (C.2) and (C.12) it follows that the identical left-hand sides of these two equations equal

(C/Ω)∗. Using the fact that the right-hand sides have to be identical, too, we obtain the

following relations:

c∗ =
−
[
φK
(
1 + ασS

)
− φZ

(
1− α2σS

)]
g∗ + αφKσ

SλL− (φK − φZ)σSρ

α2σSφZ
, (E.53)

c∗ + g∗ =
−
[
φK
(
1 + ασS

)
− φZ

]
g∗ + αφKσ

SλL− (φK − φZ)σSρ

α2σSφZ
. (E.54)

If φZ = φK > 0 holds, then M2 = 0 implies that

c∗ =
λL− (1 + α) g∗

α
, c∗ + g∗ =

λL− g∗

α
.

If φK = 0, then it follows from M1 = 0 that

c∗ =

(
1− α2σS

)
g∗ + σSρ

α2σS
, c∗ + g∗ =

g∗ + σSρ

α2σS
.

These results show that (E.53) and (E.54) also hold for φK = 0 and φZ = φK > 0. Using
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(E.54), Equation (E.52) can be rewritten as

∂ [K/ (K + pAA)]∗

∂η
=

1

Ψ

(φK − φZ) (1− α)

[λL− g∗ + (1− α) (c∗ + g∗)]2
×

×
c∗ (λL− g∗)

(
λL+ σSρ

)
α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]

. (E.55)

It is obvious that

sgn

(
∂ [K/ (K + pAA)]∗

∂η

)
= sgn (φK − φZ) . (E.56)

To determine the effects of changes in η on the average propensity to consume (C/Y )∗, we

use (C.2), (C.12), (E.49), and (E.51):

∂ (C/Y )∗

∂η
= [(Y/K)∗]

−2
[
∂c∗

∂η

(
Y

K

)∗
− c∗∂ (Y/K)∗

∂η

]

= − 1

Ψ

{[
φK
(
1 + ασS

)
− φZ

]
g∗ + φZα

2σS (c∗ + g∗)
}
c∗ (λL− g∗)

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)] (c∗ + g∗)2
. (E.57)

Using (E.54), Equation (E.57) can be rewritten as

∂ (C/Y )∗

∂η
= − 1

Ψ

[
φKσ

S (αλL− ρ) + φZσ
Sρ
]
c∗ (λL− g∗)

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)] (c∗ + g∗)2
< 0. (E.58)

Note that Assumption (E.13), αλL− ρ > 0, is sufficient for the positive sign of the numerator

so that ∂ (C/Y )∗ /∂η < 0 holds. Equation (E.58), in turn, implies that the average propensity

to save depends positively on η:

∂ [1− (C/Y )∗]

∂η
=

1

Ψ

[
φKσ

S (αλL− ρ) + φZσ
Sρ
]
c∗ (λL− g∗)

α [φK (λL− g∗) +φZ (1− α) (g∗ + c∗)] (c∗ + g∗)2
> 0.

The results given above can be summarized as follows:

∂v∗

∂η
> 0 for v = g, LA, ε

K , εZ , r + εK ,
π

pA
+ εZ ,

∂v∗

∂η
< 0 for v = LY ,

C

Y
,
π

pA
,

sgn

(
∂c∗

∂η

)
= −sgn

[
φK
(
1 + ασS

)
− φZ

(
1− α2σS

)]
,

sgn

(
∂v∗

∂η

)
= −sgn

[
φK
(
1 + ασS

)
− φZ

]
for v =

Y

K
, r, p,

sgn

(
∂v∗

∂η

)
= sgn

[
φK
(
1 + ασS

)
− φZ

]
for v =

x

LY
, pA,

w

A
,

sgn

(
∂ [K/ (K + pAA)]∗

∂η

)
= sgn (φK − φZ) . �
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F The stability properties of the steady state

F.1 The derivation of the Jacobian and the conditions for saddlepoint sta-

bility

The dynamic evolution of the variables K, C, A, and LA is governed by the four differential

equations (33), (34), (46), (47), where C/Ω is given by (38). For convenience, we restate these

equations here:

Ȧ

A
= λLA, (F.1)

K̇

K
=

[
K

A (L− LA)

]−(1−α)
− C

K
, (F.2)

Ċ

C
= σS

{
α2

[
K

A (L− LA)

]−(1−α)
+ φKη

C

Ω
− ρ

}
, (F.3)

L̇A = (L− LA)

{
− (1− α)

[
K

A (L− LA)

]−(1−α)
+
C

K
+ λLA − λ (L− LA) +

(φK − φZ) η

α

C

Ω

}
(F.4)

with

C

Ω
=

C

K

φK + φZ
1− α

λ (L− LA)

[
K

A (L− LA)

]−(1−α) . (F.5)

Introducing the definitions

c ≡ C

K
, a ≡ A

K
, (F.6)

we obtain [
K

A (L− LA)

]−(1−α)
= a1−α (L− LA)1−α ,

C

Ω
=

c

φK + φZ (1− α)λ−1a1−α (L− LA)−α
.

Using the last two equations, the differential equations (F.2)–(F.4) can be written as follows:

K̇

K
= a1−α (L− LA)1−α − c, (F.7)

Ċ

C
= σS

[
α2a1−α (L− LA)1−α +

φKηc

φK + φZ (1− α)λ−1a1−α (L− LA)−α
− ρ
]
, (F.8)

L̇A = (L− LA)
{
− (1− α) a1−α (L− LA)1−α + 2λLA − λL

+

[
1 +

(φK − φZ) ηα−1

φK + φZ (1− α)λ−1a1−α (L− LA)−α

]
c

}
. (F.9)
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Substituting (F.1), (F.7), and (F.8) into

ċ

c
=
Ċ

C
− K̇

K
and

ȧ

a
=
Ȧ

A
− K̇

K

yields the following differential equations for c and a:

ċ = c
{
−
(
1− σSα2

)
a1−α (L− LA)1−α

+

[
1 +

σSφKη

φK + φZ (1− α)λ−1a1−α (L− LA)−α

]
c− σSρ

}
, (F.10)

ȧ = a
[
λLA − a1−α (L− LA)1−α + c

]
. (F.11)

The differential equations (F.10), (F.9), and (F.11) have the following general form:

ċ = ċ (c, LA, a) , L̇A = L̇A (c, LA, a) , ȧ = ȧ (c, LA, a) .

The steady-state values c∗, L∗A, and a∗ satisfy the following equations:

0 = ċ (c∗, L∗A, a
∗) , 0 = L̇A (c∗, L∗A, a

∗) , 0 = ȧ (c∗, L∗A, a
∗) .

To discuss the stability properties of the steady state, we have to calculate the Jacobian

M =

 m11 m12 m13

m21 m22 m23

m31 m32 m33

 ≡



∂ċ

∂c

∂ċ

∂LA

∂ċ

∂a

∂L̇A
∂c

∂L̇A
∂LA

∂L̇A
∂a

∂ȧ

∂c

∂ȧ

∂LA

∂ȧ

∂a



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(c,LA,a)=(c∗,L∗

A,a
∗)

.

The characteristic polynomial of the Jacobian M is given by

0 = z3 − trace (M) z2

+ (m11m22 −m12m21 +m11m33 −m13m31 +m22m33 −m23m32) z

−det (M) , (F.12)

where

trace (M) = m11 +m22 +m33, (F.13)

det (M) = m11m22m33 −m11m23m32 +m12m23m31

−m12m21m33 +m13m21m32 −m13m22m31. (F.14)

It is well known that the roots of the characteristic polynomial z1, z2, and z3 satisfy the following
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equations:

trace (M) = z1 + z3 + z2, (F.15)

det (M) = z1z2z3. (F.16)

Since the system of the three differential equations involves two jump variables (c ≡ C/K

and LA) and one state variable (a ≡ A/K), the steady state (c∗, L∗A, a
∗) exhibits saddlepoint

stability if one of the three roots is a negative real number, while the two other roots are either

positive real numbers or complex numbers with positive real parts. From (F.15) and (F.16) it

follows that a sufficient (but not necessary) condition for saddlepoint stability is given by

det (M) < 0 and trace (M) > 0. (F.17)

Proof: i) If all three roots are real numbers, then the condition det (M) = z1z2z3 < 0 implies

either that one root is strictly negative, while the other two roots are strictly positive (z1 < 0,

z2 > 0, and z3 > 0) or that all three roots are strictly negative (z1 < 0, z2 < 0, and z3 < 0).

Obviously, the condition trace(M) = z1 + z3 + z2 > 0 rules out the latter case. ii) If only one

out of the three roots is real, while the two other roots are a complex number z2 = δ1 + δ2i

and its complex conjugate z3 = δ1 − δ2i, δ2 6= 0, then the condition det (M) = z1
(
δ21 + δ22

)
< 0

implies that the real number is strictly negative (z1 < 0), while the real part of the complex

number and its complex conjugate, Re(z2) = Re(z3) = δ1, may be of either sign. In this case,

the condition trace(M) = z1 + 2δ1 > 0 rules out that Re(z2) = Re(z3) = δ1 ≤ 0. iii) From i)

and ii) it follows that if the condition “det (M) < 0 and trace(M) > 0” is satisfied, then one of

the three roots is a negative real number (z1 < 0), while the two other roots are either positive

real numbers (z2 > 0 and z3 > 0) or a complex number z2 = δ1 + δ2i and its complex conjugate

z3 = δ1 − δ2i, with Re(z2) = Re(z3) = δ1 > 0. This, in turn, implies that “det (M) < 0 and

trace(M) > 0” is a sufficient condition for saddlepoint stability. �

The stable arm of the linearized system is given by c (t)

LA (t)

a (t)

 =

 c∗

L∗A
a∗

+D1

 e11

e21

1

 ez1t,

where (e11, e21, 1)T denotes an eigenvector of the Jacobian M that corresponds to the eigenvalue

z1 < 0, and where D1 is an undetermined coefficient. From the initial condition a (0) = a0 ≡
A (0) /K (0) it follows that D1 = a0 − a∗.

The eigenvector (e11, e21, 1)T satisfies the following system of equations expressed in matrix

form:  m11 m12 m13

m21 m22 m23

m31 m32 m33


 e11

e21

1

 = z1

 e11

e21

1

 .
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Simple transformations yield the following three equations for the determination of two variables:

(m11 − z1) e11 +m12e21 = −m13,

m21e11 + (m22 − z1) e21 = −m23,

m31e11 +m32e21 = − (m33 − z1) .

There exists a unique solution for e11 and e21 that can be expressed in three equivalent ways:

e11 =
−m13 (m22 − z1) +m12m23

(m11 − z1) (m22 − z1)−m12m21

=
m12 (m33 − z1)−m13m32

(m11 − z1)m32 −m12m31

=
m23m32 − (m22 − z1) (m33 − z1)

(m22 − z1)m31 −m21m32
,

e21 =
−m23 (m11 − z1) +m13m21

(m11 − z1) (m22 − z1)−m12m21

=
m13m31 − (m11 − z1) (m33 − z1)

(m11 − z1)m32 −m12m31

=
(m33 − z1)m21 −m23m31

(m22 − z1)m31 −m21m32
.

The stable arm exhibits the following properties:

a (t)− a∗ = (a0 − a∗) ez1t,

c (t)− c∗ = (a0 − a∗) e11ez1t = e11 [a (t)− a∗] ,

LA (t)− L∗A = (a0 − a∗) e21ez1t = e21 [a (t)− a∗] .

The last three equations imply that

c (t)− c∗ =
e11
e21

[LA (t)− L∗A] .

This equation describes the comovement of LA (t) and c (t) during the transitional dynamics.

By tedious calculations it can be shown that the elements of the Jacobian are given by the

following expressions:

m11 =

[
1 +

σSφKη

φK + φZ (1− α)λ−1 (a∗)1−α
(
L− L∗A

)−α
]
c∗,
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m12 = (1− α) c∗ (a∗)1−α (L− L∗A)−α−1 ×

×

(1− σSα2
)

(L− L∗A)− ηφKφZασ
Sλ−1c∗[

φK + φZ (1− α)λ−1 (a∗)1−α
(
L− L∗A

)−α]2
 ,

m13 = − (1− α) c∗ (a∗)−α (L− L∗A)−α ×

×

(1− σSα2
)

(L− L∗A) +
ηφKφZ (1− α)σSλ−1c∗[

φK + φZ (1− α)λ−1 (a∗)1−α
(
L− L∗A

)−α]2
 ,

m21 = (L− L∗A)

[
1 +

(φK − φZ) ηα−1

φK + φZ (1− α)λ−1 (a∗)1−α
(
L− L∗A

)−α
]
,

m22 = (L− L∗A)
[
(1− α)2 (a∗)1−α (L− L∗A)−α + 2λ

]

−
(φK − φZ)φZη (1− α)λ−1c∗ (a∗)1−α (L− L∗A)−α[

φK+φZ (1− α)λ−1 (a∗)1−α
(
L− L∗A

)−α]2 ,

m23 = − (1− α)2 (a∗)−α (L− L∗A)2−α

−
(φK − φZ)φZηα

−1 (1− α)2 λ−1c∗ (a∗)−α (L− L∗A)1−α[
φK+φZ (1− α)λ−1 (a∗)1−α

(
L− L∗A

)−α]2 ,

m31 = a∗,

m32 = a∗
[
λ+ (1− α) (a∗)1−α (L− L∗A)−α

]
,

m33 = − (1− α) (a∗)1−α (L− L∗A)1−α .

From (50) and (51) or (E.2)–(E.5) it follows that the steady state values g∗ and c∗ ≡ (C/K)∗

satisfy the equations:

−
(
1− α2σS

)
g∗ + σS

α2 +
φKη

φK+
φZ (1− α)

λL− g∗
(g∗ + c∗)

 c∗ = σSρ, (F.18)

(1 + α) g∗ +
1

α

α2 +
(φK − φZ) η

φK+
φZ (1− α)

λL− g∗
(g∗ + c∗)

 c∗ = λL. (F.19)

Since this system of equations determines only the steady state values g∗ and c∗, it will be useful
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to express the elements of the Jacobian not as functions of c∗, L∗A, and a∗, but as functions of

g∗ and c∗ only. According to (F.11), the equation 0 = ȧ (c∗, L∗A, a
∗) implies that

(a∗)1−α (L− L∗A)1−α = λL∗A + c∗.

From the steady-state version of (F.1) it follows that

g∗ =
(
Ȧ/A

)∗
= λL∗A.

Using the last two equations we obtain the following representations for L∗A and a∗:

L∗A =
g∗

λ
,

a∗ =
λ (g∗ + c∗)1/(1−α)

λL− g∗
.

Using the last two equations, the elements of the Jacobian can be rewritten as:

m11 =

[
1 +

σSφKη (λL− g∗)
φK (λL− g∗) + φZ (1− α) (g∗ + c∗)

]
c∗,

m12 =
(1− α)λc∗ (g∗ + c∗)

λL− g∗

{
1− σSα2 − ηφKφZασ

Sc∗ (λL− g∗)
[φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]2

}
,

m13 = −(1− α) c∗ (λL− g∗)
λ (g∗ + c∗)α/(1−α)

{
1− σSα2 +

ηφKφZ (1− α)σSc∗ (λL− g∗)
[φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]2

}
,

m21 =
λL− g∗

λ

[
1 +

(φK − φZ) ηα−1 (λL− g∗)
φK (λL− g∗) + φZ (1− α) (g∗ + c∗)

]
,

m22 = (1− α)2 (g∗ + c∗) + 2 (λL− g∗)− (φK − φZ)φZη (1− α) c∗ (g∗ + c∗) (λL− g∗)
[φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]2

,

m23 = − (λL− g∗)2

λ2 (g∗ + c∗)α/(1−α)

{
(1− α)2 +

(φK − φZ)φZηα
−1 (1− α)2 c∗ (λL− g∗)

[φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]2

}
,

m31 =
λ (g∗ + c∗)1/(1−α)

λL− g∗
,

m32 =
λ2 (g∗ + c∗)1/(1−α)

(λL− g∗)2
[(λL− g∗) + (1− α) (g∗ + c∗)] ,

m33 = − (1− α) (g∗ + c∗) .
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Using these expressions it can be shown by tedious calculations that

trace (M) = c∗ + 2 (λL− g∗)− (1− α)α (g∗ + c∗)

+
φKησ

Sc∗ (λL− g∗)
φK (λL− g∗) +φZ (1− α) (g∗ + c∗)

+
φZ (φZ − φK) η (1− α) c∗ (λL− g∗) (g∗ + c∗)

[φK (λL− g∗) +φZ (1− α) (g∗ + c∗)]2
,

det (M) = − (1− α) c∗ (g∗ + c) (λL− g∗)×

×

{
α
(
1 + ασS

)
+

[(
1 + ασS

)
φK −

(
1− α2σS

)
φZ
]
η (λL− g∗)

α [φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]

−
φZη (1− α) c∗φK

(
1 + ασS

)
(λL− g∗)

α [φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]2

+
φ2Zη (1− α) c∗

[
(λL− g∗) + α2σS (g∗ + c∗)

]
α [φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]2

}
.

Using (E.54),

c∗ + g∗ =
−
[
φK
(
1 + ασS

)
− φZ

]
g∗ + αφKσ

SλL− (φK − φZ)σSρ

α2σSφZ
,

the last equation can be rewritten as

det (M) = − (1− α) c∗ (g∗ + c) (λL− g∗)×

×

{
α
(
1 + ασS

)
+

[(
1 + ασS

)
φK −

(
1− α2σS

)
φZ
]
η (λL− g∗)

α [φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]

−
(φK − φZ)φZη (1− α) c∗

(
λL+ σSρ

)
α [φK (λL− g∗) + φZ (1− α) (g∗ + c∗)]2

}
.

For the two special cases φK = φZ on the one hand and φZ = 0, φK > 0 on the other hand,

the saddlepoint stability of the steady state can be shown analytically. The stability analysis

of the remaining cases requires the use of numerical calculations.

F.2 The special case φK = φZ

From Proposition 1 it follows that if φK = φZ , then the steady state values g∗ and c∗ are given

by

g∗ =
σS [(α+ η)λL− ρ]

1 + σS [α+ η (1 + α)]
,

c∗ =
λL− (1 + α) g∗

α
=

(
1− α2σS

)
λL+ (1 + α)σSρ

α {1 + σS [α+ η (1 + α)]}
.
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The last equation implies that

c∗ + g∗ = α−1 (λL− g∗) .

Using these results, the expressions for the elements of the Jacobian in the special case φK = φZ

can be written as:

m11 =
(
1 + ηασS

)
c∗,

m12 =
(1− α)λc∗

α

[
1− σSα2 − ηα3σSc∗

λL− g∗

]
,

m13 = −(1− α)αα/(1−α)c∗ (λL− g∗)(1−2α)/(1−α)

λ

[
1− σSα2 +

η (1− α)α2σSc∗

λL− g∗

]
,

m21 =
λL− g∗

λ
,

m22 =
1 + α2

α
(λL− g∗) ,

m23 = −(1− α)2 αα/(1−α) (λL− g∗)(2−3α)/(1−α)

λ2
,

m31 =
λ (λL− g∗)α/(1−α)

α1/(1−α) ,

m32 =
λ2 (λL− g∗)α/(1−α)

α(2−α)/(1−α) ,

m33 = −(1− α) (λL− g∗)
α

.

These expressions imply that

trace (M) =
(
1 + ηασS

)
c∗ + (1 + α) (λL− g∗) ,

det (M) = − (1− α)
[(

1 + ασS
)

+ η (1 + α)σS
]
c∗ (λL− g∗)2 .

Taking into account that λL−g∗ = λ (L− L∗A) = λL∗Y > 0, it is obvious that trace(M) > 0 and

det (M) < 0. Hence, the sufficient condition for the saddlepoint stability of the steady state

(c∗, L∗A, a
∗) given by (F.17) is satisfied.

F.3 The special case φZ = 0 and φK > 0

From Proposition 2 or the equations given in (E.14) it follows that

g∗ =
σS (αλL− ρ)

1 + ασS
,

c∗ =
α [λL− (1 + α) g∗]

α2 + η
=
α
[(

1− α2σS
)
λL+ (1 + α)σSρ

]
(1 + ασS) (α2 + η)

.
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These two results imply that

c∗ + g∗ =
αλL− (α− η) g∗

α2 + η
=

(
1 + ησS

)
αλL+ (α− η)σSρ

(α2 + η) (1 + ασS)
,

λL− g∗ =
λL+ σSρ

1 + ασS
.

Using the results given above, the elements of the Jacobian corresponding to the special case

φZ = 0 and φK > 0 can be expressed as follows:

m11 =
(
1 + ησS

)
c∗,

m12 =

(
1− σSα2

)
(1− α)λc∗ (g∗ + c∗)

λL− g∗
,

m12 =

(
1− σSα2

)
(1− α)λc∗ (g∗ + c∗)

λL− g∗
,

m13 = −
(
1− σSα2

)
(1− α) c∗ (λL− g∗)

λ (g∗ + c∗)α/(1−α)
,

m21 =
α+ η

αλ
(λL− g∗) ,

m22 = (1− α)2 (g∗ + c∗) + 2 (λL− g∗) ,

m23 = − (λL− g∗)2

λ2 (g∗ + c∗)α/(1−α)
(1− α)2 ,

m31 =
λ (g∗ + c∗)1/(1−α)

λL− g∗
,

m32 =
λ2 (g∗ + c∗)1/(1−α)

(λL− g∗)2
[(λL− g∗) + (1− α) (g∗ + c∗)] ,

m33 = − (1− α) (g∗ + c∗) .

It can be shown that

trace (M) =

{
α
[(

1− α2σS
)

+ α (1 + α)
]

+ η
[(

1 + ασS
) (

1− α2σS
)

+ 1 + α3σS
]}
λL

(1 + ασS) (α2 + η)

+

{
4α2 + (1− α)2 α+ η

[
2 + α (1− α) + σSα (1 + α)

]}
σSρ

(1 + ασS) (α2 + η)
,

det (M) = −
(1− α)

(
α2 + η

) (
1 + ασS

)
α

c∗ (g∗ + c∗) (λL− g∗) < 0.

It is obvious that det (M) < 0. Assumption (E.9), 1− α2σS > 0, is sufficient for trace(M) > 0.

Hence, the sufficient condition for the saddlepoint stability of the steady state (c∗, L∗A, a
∗) given

by (F.17) is satisfied.
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F.4 The general case φZ > 0

We now analyze also situations in which neither φZ = 0 nor φZ = 1 holds. More specifically, in

the following illustrations we set φK = 1 and consider alternative values of φZ allowing for both

0 ≤ φZ ≤ φK and φZ > φK . In addition, we also consider alternative values of η. In contrast

to φZ and η we do not alter the rest of the parameters. The following parameter settings are

used for all illustrations:

α = 1/3, ξ = 1⇒ σS = 1/θ = 1/2, ρ = 0.02, L = 300× 106, λ = 5.0× 10−10.

The values in the following table correspond to the case η = 0.1:

φZ g∗ z1 z2 z3

0.0 1.29% −0.06640 0.12200 0.38946

0.1 1.37% −0.06560 0.12638 0.39522

0.2 1.46% −0.06535 0.13024 0.40329

0.3 1.53% −0.06567 0.13352 0.41331

0.4 1.59% −0.06653 0.13622 0.42464

0.5 1.65% −0.06778 0.13840 0.43659

0.6 1.70% −0.06930 0.14015 0.44856

0.7 1.74% −0.07096 0.14156 0.46013

0.8 1.77% −0.07266 0.14271 0.47104

0.9 1.80% −0.07434 0.14366 0.48117

1.0 1.82% −0.07595 0.14445 0.49049

2.0 1.95% −0.08736 0.14835 0.54946

10.0 2. 06% −0.10297 0.15182 0.62142

100.0 2.08% −0.10739 0.152 64 0.64091
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In the next table we set η = 0.5:

φZ g∗ z1 z2 z3

0.0 1.29% −0.04738 0.08198 0.31131

0.1 1.45% −0.04795 0.08713 0.30888

0.2 1. 64% −0.04851 0.09295 0.30680

0.3 1.84% −0.04909 0.09952 0.30553

0.4 2.07% −0.04977 0.10680 0.30587

0.5 2.33% −0.05071 0.11463 0.30908

0.6 2.59% −0.05217 0.12256 0.31694

0.7 2.86% −0.05453 0.12994 0.33126

0.8 3.10% −0.05809 0.136 18 0.35291

0.9 3. 32% −0.06286 0.14108 0.38092

1.0 3.50% −0.06856 0.144 84 0.41288

2.0 4.16% −0.11842 0.15902 0.66893

10.0 4.46% −0.17608 0.16759 0.95593

100.0 4.50% −0.18988 0.16921 1.02504

It is obvious that all cases considered in the two tables exhibit saddlepoint stability. Moreover,

both tables illustrate the statement of Proposition 3 that g∗ depends positively on φZ . Finally, a

comparison of the two tables illustrates the statement of Proposition 4 that g∗ depends positively

on η, regardless of whether 0 < φZ ≤ φK or φZ > φK .

G Decentralized versus socially planned solution of an economy

with relative wealth preferences

In this subsection we analyze whether there exists the theoretical possibility that the well-known

distortions of the standard R&D-based growth model of the Romer (1990) type are perfectly

offset by the externalities that result from relative wealth preferences so that the decentralized

solution coincides with its socially optimal counterpart. Our results can be summarized by the

following proposition:

Proposition 5. Suppose that the lifetime utility of the representative household is given by∫ ∞
0

e−ρt
(
C1−θ − 1

1− θ

)
dt, θ, ρ > 0,

in the standard economy and by

∫ ∞
0

e−ρt

(
[Ch (S)]1−θ − 1

1− θ

)
dt, S

(
Ω, Ω̄

)
= ϕ

(
Ω

Ω̄

)
, ϕ′ > 0, ϕ′′ ≤ 0,

in the economy with relative wealth preferences. Then the following results hold:

i) The socially optimal solution of the economy with relative wealth preferences coincides
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with the socially optimal solution of the economy with standard preferences.

ii) If φK > 0 and if the status parameters φZ and η happen to satisfy the conditions

φZ = ς̃φK , ς̃ ≡ 1 +
α (λL− ρ)

θ (1− α)λL
> 1,

η = η̃ ≡ (1− α) (θλL)2

[(θ − α)λL+ αρ] [(θ − 1)λL+ ρ]
,

then the BGP of the decentralized economy with relative wealth preferences coincides with

the BGP of the socially planned economy. More specifically, (η, φZ) = (η̃, ς̃φK) implies

that

g∗ =
λL− ρ
θ

= gP ,(
C

K

)∗
=

(θ − α)λL+ αρ

αθ
=

(
C

K

)P
,

(
Y

K

)∗
=
λL

α
=

(
Y

K

)P
,

L∗A =
λL− ρ
θλ

= LPA,

L∗Y =
(θ − 1)λL+ ρ

θλ
= LPY ,

r∗ = αλL >
α [(θ − 1)λL+ ρ]

θ
= (π/pA)∗ ,

(
εK
)∗

= (1− α)λL <
(1− α) θλL+ α (λL− ρ)

θ
=
(
εZ
)∗
,

r∗ +
(
εK
)∗

= (π/pA)∗ +
(
εZ
)∗

= λL,

holds, where x∗ denotes the steady-state value of x in the decentralized economy with

relative wealth preferences, while xP denotes the common steady state value of x in the

two socially planned economies.

Proof of i)

First, we analyze the socially optimal solution of the standard model without status prefer-

ences. The benevolent social planner maximizes lifetime utility of the representative household

given by ∫ ∞
0

e−ρt
(
C1−θ − 1

1− θ

)
dt (G.1)

by optimally choosing the time paths of C, xi, i ∈ [0, A], ki, i ∈ [0, A], LY , and LA by taking into
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account the production functions for the final good, the intermediate goods and new technologies

Y = L1−α
Y

∫ A

0
xαi di, (G.2)

xi = ki, i ∈ [0, A] , (G.3)

Ȧ = λLAA, (G.4)

the three resource constraints

LY + LA = L, (G.5)

K =

∫ A

0
ki di, (G.6)

K̇ = Y − C, (G.7)

and the two initial conditions

A (0) = A0, K (0) = K0. (G.8)

The symmetry assumptions that are employed in the production function for final goods (G.2)

and the production functions for the intermediate goods (G.3) imply that the optimal plan of

the social planner exhibits the following property:

xi = x, i ∈ [0, A] ,

ki = k = x, i ∈ [0, A] .

Substituting these equations into the resource constraint for aggregate capital input (G.6) we

obtain

K = Ak = Ax.

The last equations together with the resource constraint for employment (G.5) imply the fol-

lowing results for output of the final good:

Y = L1−α
Y

∫ A

0
xαi di = L1−α

Y Axα = (L− LA)1−αAkα = Kα [A (L− LA)]1−α . (G.9)

The results given above imply that the socially optimal paths of C, LA, K, and A can be

determined by means of the following relatively simple optimization problem: Maximize lifetime

utility of the representative household given by (G.1) by optimally choosing the time paths of

C and LA subject to the aggregate resource constraint

K̇ = Kα [A (L− LA)]1−α − C, (G.10)

the production function for blueprints (G.4), and the two initial conditions (G.8).
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The current value Hamiltonian is given by

H =
C1−θ − 1

1− θ
+ µK

{
Kα [A (L− LA)]1−α − C

}
+ µAλLAA.

The necessary optimality conditions for an interior solution are given by

∂H

∂C
= C−θ − µK = 0, (G.11)

∂H

∂LA
= −µK (1− α)A

[
K

A (L− LA)

]α
+ µAλA = 0, (G.12)

µ̇K = ρµK −
∂H

∂K
= −µK

{
α

[
K

A (L− LA)

]−(1−α)
− ρ

}
, (G.13)

µ̇A = ρµA −
∂H

∂A
= −µA

{
µK
µA

(1− α)

[
K

A (L− LA)

]α
(L− LA) + λLA − ρ

}
. (G.14)

The transversality conditions are given by

lim
t→∞

e−ρtµKK = 0, lim
t→∞

e−ρtµAA = 0. (G.15)

From the necessary optimality conditions (G.11)–(G.14) it follows that

µK = C−θ, (G.16)

µ̇K
µK

= −θ Ċ
C
, (G.17)

µA = µK (1− α)λ−1
[

K

A (L− LA)

]α
= (1− α)λ−1

[
K

A (L− LA)

]α
C−θ, (G.18)

µ̇A
µ̇A

= α
K̇

K
− αȦ

A
+

α

L− LA
L̇A − θ

Ċ

C
. (G.19)

Substituting (G.16)–(G.19) into (G.13)–(G.14) yields

Ċ

C
=

1

θ

{
α

[
K

A (L− LA)

]−(1−α)
− ρ

}
, (G.20)

α
K̇

K
− αȦ

A
+

α

L− LA
L̇A − θ

Ċ

C
= − (λL− ρ) . (G.21)

From (G.4) and (G.10) it follows that

K̇

K
=

[
K

A (L− LA)

]−(1−α)
− C

K
, (G.22)

Ȧ

A
= λLA. (G.23)

Substituting (G.20), (G.22), and (G.23) into (G.21), we obtain the following differential equation
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for employment in the R&D sector:

L̇A = (L− LA)

(
λLA −

λL

α
+
C

K

)
. (G.24)

Using (G.16) and (G.18), the transversality conditions (G.15) can be expressed as follows:

lim
t→∞

e−ρtC−θK = 0, lim
t→∞

e−ρt (1− α)λ−1
[

K

A (L− LA)

]α
C−θA = 0. (G.25)

The considerations made above show that the dynamic evolution of C, LA, K, and A in

the socially planned economy is determined by the four differential equations (G.20), (G.24),

(G.22), and (G.23), the initial conditions (G.8), and the transversality conditions (G.25).

This system exhibits the property that there exists a BGP characterized by the following

features:

LA = constant,
C

K
= constant,

K

A
= constant,

Ċ

C
=
K̇

K
=
Ȧ

A
= constant.

In the following we denote the steady-state values of an arbitrary variable x in the socially

planned economy by xP , where the superscript P stands for “Planner”. The four differential

equations (G.20), (G.24), (G.22), and (G.23) imply that

gP =
1

θ

α
[(

K

A

)P 1

L− LPA

]−(1−α)
− ρ

 ,

0 = λLPA −
λL

α
+

(
C

K

)P
,

gP =

[(
K

A

)P 1

L− LPA

]−(1−α)
−
(
C

K

)P
,

gP = λLPA,

where gP denotes the common growth rate of C, A, and K along the BGP. Solving for gP ,

(C/K)P , LPA, and (K/A)P we obtain

gP =
λL− ρ
θ

, (G.26)(
C

K

)P
=

(θ − α)λL+ αρ

αθ
, (G.27)

LPA =
λL− ρ
λθ

, (G.28)(
K

A

)P
=

(θ − 1)λL+ ρ

λθ

(
λL

α

)−1/(1−α)
. (G.29)
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From (G.5) and (G.9) it then follows that

LPY =
(θ − 1)λL+ ρ

λθ
, (G.30)

(
Y

K

)P
=

[(
K

A

)P 1

L− LPA

]−(1−α)
=
λL

α
. (G.31)

The transversality conditions (G.25) require that the expressions

e−ρtC−θK and e−ρt (1− α)λ−1 {K/ [A (L− LA)]}αC−θA

converge to zero for t→∞. Along the BGP the common constant rate of growth of these two

expressions is given by

−ρ− θgP + gP = −(θ − 1)λL+ ρ

θ
= −λLPY . (G.32)

From (G.26), (G.27), (G.28), (G.30), and (G.32) it then follows that if ρ satisfies the condition

that

(1− θ)λL < ρ < λL, (G.33)

then

gP > 0,

(
C

K

)P
> 0, LPA > 0, and LPY > 0

hold and both transversality conditions are satisfied.

Now we proceed with the socially optimal solution of an economy with relative wealth pref-

erences. A sensible comparison with the status-free economy in which the instantaneous utility

function is given by

u (C) =
C1−θ − 1

1− θ
,

requires that we restrict our attention to relative wealth preferences that are obtained by setting

ξ = 1 in (42):

u (C, S) =
[Ch (S)]1−θ − 1

1− θ
, S

(
Ω, Ω̄

)
= ϕ

(
Ω

Ω̄

)
, ϕ′ > 0, ϕ′′ ≤ 0.

According to (44) and (45) these specifications of u (C, S) and S
(
Ω, Ω̄

)
imply that

χ = S (Ω,Ω) = ϕ (1) , σS = 1/θ, η = β ≡ h′ [ϕ (1)]ϕ′ (1)

h [ϕ (1)]
. (G.34)

In contrast to the representative household of the decentralized economy, the benevolent social

planner takes into account the externalities resulting from relative wealth preferences. It is

optimal for the social planner to assign identical choices to households that are identical in

every respect so that Ωj = Ω̄ holds for each household j at any time t. Taking into account

that S (Ω,Ω) = ϕ (1) ≡ χ holds, the optimization problem of the social planner can be written
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as follows: Maximize lifetime utility of the representative consumer

∫ ∞
0

e−ρt

(
[Ch (χ)]1−θ − 1

1− θ

)
dt

by optimally choosing the time paths of C and LA and taking into account the economy’s re-

source constraint (G.10), the production function for blueprints (G.4), and the initial conditions

(G.8). It is easily verified that the optimal time paths of C, LA, K, and A (in contrast to the

time paths of the costate variables) are independent of the constant factor h (χ). Hence, regard-

less of whether we consider standard preferences or introduce relative wealth preferences, the

socially optimal time paths of C, LA, K, and A are determined by the four differential equa-

tions (G.20), (G.24), (G.22), and (G.23), the initial conditions (G.8), and the transversality

conditions (G.25). These results imply that the solutions for the steady-state values given by

(G.26)–(G.31) are also valid for the model with relative wealth preferences provided that ξ = 1.

In other words, the socially optimal solution of the economy with relative wealth preferences

coincides with the socially optimal solution of the economy with standard preferences.

Proof of (ii):

If ξ = 1 then σS = θ−1 and η = β [see (G.34)]. Setting σS = θ−1 in (50) and (51) yields

−
(
1− α2θ−1

)
g∗ + θ−1

α2 +
φKη

φK+
φZ (1− α)

λL− g∗

[
g∗ +

(
C

K

)∗]

(
C

K

)∗
= θ−1ρ, (G.35)

(1 + α) g∗ +
1

α

α2 +
(φK − φZ) η

φK+
φZ (1− α)

λL− g∗

[
g∗ +

(
C

K

)∗]

(
C

K

)∗
= λL. (G.36)

These two equations determine the steady-state values of g and (C/K) in the decentralized

economy with relative wealth preferences. From (G.26) and (G.27) it follows that the conditions

for social optimality are given by

g∗ = gP =
λL− ρ
θ

, (G.37)(
C

K

)∗
=

(
C

K

)P
=

(θ − α)λL+ αρ

αθ
. (G.38)

Substituting these two conditions into (G.35) and (G.36) we obtain

− (1− α)αθλL+
φKη [(θ − α)λL+ αρ]

φK + φZ
(1− α) θλL

α [(θ − 1)λL+ ρ]

= 0, (G.39)

α2 (λL− ρ) +
(φK − φZ) η [(θ − α)λL+ αρ]

φK + φZ
(1− α) θλL

α [λLθ − λL+ ρ]

= 0. (G.40)
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If φK = 0, then condition (G.39) simplifies to

− (1− α)αθλL = 0.

Obviously, this condition can never be satisfied. Hence, in the following we restrict our attention

to φK > 0. Introducing the definition

ς ≡ φZ
φK

,

conditions (G.39) and (G.40) can be rewritten as

− (1− α)αθλL+
η ((θ − α)λL+ αρ)

1+
ς (1− α) θλL

α ((θ − 1)λL+ ρ)

= 0,

α2 (λL− ρ) +
(1− ς) η ((θ − α)λL+ αρ)

1+
ς (1− α) θλL

α (λLθ − λL+ ρ)

= 0.

Solving these two equations for η and ς and denoting the solutions by η̃ and ς̃, we obtain

ς̃ = 1 +
α (λL− ρ)

θ (1− α)λL
> 1, (G.41)

η̃ =
(1− α) (θλL)2

[(θ − α)λL+ αρ] [(θ − 1)λL+ ρ]
. (G.42)

If (η, φZ) = (η̃, ς̃φK) happens to hold, then by definition both g∗ = gP and (C/K)∗ = (C/K)P

hold. Using (G.37)–(G.38), (G.41)–(G.42) as well as (C.1)–(C.18), we finally obtain(
Y

K

)∗
= g∗ +

(
C

K

)∗
=
λL

α
,

L∗A =
g∗

λ
=
λL− ρ
θλ

,

L∗Y = L− L∗A =
λL− g∗

λ
=

(θ − 1)λL+ ρ

θλ
,

r∗ = α2

(
Y

K

)∗
= αλL,(

π

pA

)∗
= αλL∗Y =

α [(θ − 1)λL+ ρ]

θ
,

(
C

Ω

)∗
=

(
C

K

)∗
φK+ς̃φK

1− α
λL− g∗

(
Y

K

)∗ =
[(θ − α)λL+ αρ] [(θ − 1)λL+ ρ]

φKθ2λL
,

(
εK
)∗

= φK η̃ ×
(
C

Ω

)∗
=

1

σS
g∗ − r∗ + ρ = (1− α)λL,

(
εZ
)∗

= ς̃φK η̃ ×
(
C

Ω

)∗
=

(1− α) θλL+ α (λL− ρ)

θ
,
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r∗ +
(
εK
)∗

=

(
π

pA

)∗
+
(
εZ
)∗

= λL,(
C

Y

)∗
=

(θ − α)λL+ αρ

θλL
= 1− α (λL− ρ)

θλL
,(

K

K + pAA

)∗
=

1

1 +
1− α
λL∗Y

(
Y

K

)∗ = α

(
1− (1− α) (λL− ρ)

(θ − α)λL+ αρ

)
< α.

While the effective rates of return of physical capital and shares are identical,

r∗ +
(
εK
)∗

= (π/pA)∗ +
(
εZ
)∗

= λL,

the market rates of return and the status related extra returns differ due to φZ = ς̃φK > φK :

r∗ = αλL >
α [(θ − 1)λL+ ρ]

θ
= (π/pA)∗ ,

(
εK
)∗

= (1− α)λL <
(1− α) θλL+ α (λL− ρ)

θ
=
(
εZ
)∗

�

Illustration:

Consider the values

α = 1/3, ξ = 1⇒ σS = 1/θ = 1/2, ρ = 0.02, L = 300× 106, λ = 5.0× 10−10.

Then we have

ς̃ = 1 +
α (λL− ρ)

θ (1− α)λL
≈ 1.22,

η̃ =
(1− α) (θλL)2

[(θ − α)λL+ αρ] [(θ − 1)λL+ ρ]
≈ 1.38.

If φZ = ς̃φK and η = η̃ happen to hold, then

g∗ = gP = 6.5× 10−2,

(
C

K

)∗
=

(
C

K

)P
= 0.385,

(
Y

K

)∗
= 0.45,

(
C

Y

)∗
= 85.56× 10−2,

L∗Y = 170000000.0, L∗A = 130000000.0,
L∗A
L

= 43.33× 10−2,

r∗ = 5.0× 10−2,

(
π

pA

)∗
= 2.83× 10−2,

(
εK
)∗

= 10.0× 10−2,
(
εZ
)∗

= 12.17× 10−2,

r∗ +
(
εK
)∗

=

(
π

pA

)∗
+
(
εZ
)∗

= 15.0× 10−2,
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(
K

K + pAA

)∗
= 22.08× 10−2,

z1 = −0.08623, z2 = 0.15703, z3 = 0.45178.

For this parameter setting (that can only hold by pure coincidence), the growth rates of the

socially planned economy and its decentralized counterpart are the same. Note that one eigen-

value of the Jacobian is negative and two are positive, which implies saddle-point stability of

the BGP.
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