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A Sample Selection Model for Fractional Response

Variables

Abstract

This paper develops a sample selection model for fractional response variables, i.e., variables

taking values between zero and one. It is shown that the proposed model is consistent with the

nature of the fractional response variable, i.e., it generates predictions between zero and one. A

simulation study shows that the model performs well in finite samples and that competing mod-

els, the Heckman selection model and the fractional probit model (without selectivity), generate

biased estimates. An empirical application to the impact of education on women’s perceived

probability of job loss illustrates that the choice of an appropriate model is important in prac-

tice. In particular, the Heckman selection model and the fractional probit model are found to

underestimate (in absolute terms) the impact of education on the perceived probability of job

loss.

Keywords: Fractional probit model, Fractional response variable, Sample selection bias, Sam-

ple selection model

JEL codes: C24, C25
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1 Introduction

Since Heckman’s (1979) seminal paper on the sample selection bias problem, the issue of

non-random sample selectivity is well-known to economists. In particular, it is known that

estimates are generally biased when the estimation sample is a non-random sample from

the overall population. In this paper I develop a sample selection model for fractional

response (dependent) variables. This study extends a recent paper by Schwiebert and

Wagner (2015), who proposed a generalized two-part model for fractional response variable

with excess zeros. The model developed in Schwiebert and Wagner (2015) is conceptually

similar to the model considered in this paper, but this paper focuses on the issue of sample

selectivity in the spirit of Heckman (1979) while Schwiebert and Wager (2015) focus on

two-part modeling issues.

Fractional response variables are variables which take values between zero and one.

Such variables include true fractions, e.g. the share of exports in total sales (Wagner,

2001), but also other variables bounded between zero and one, e.g. the perceived proba-

bility that a certain event (like job loss) occurs.

In case of continuous dependent variables, the Heckman sample selection model can

be used to correct for the potential non-random sample selectivity. Heckman (1979)

showed that augmenting the linear regression equation with an inverse Mills ratio term

and estimating this augmented regression equation by ordinary least squares (OLS) yields

unbiased estimates of the parameters of interest. One might raise the question why the

Heckman selection model cannot also be used in case of fractional response (dependent)

variables. The reason is that the Heckman selection model assumes an underlying linear

relationship between the dependent variable and the explanatory variables. The linear-

ity assumption is however not appropriate when the dependent variable is a fractional

response variable, since a linear model generates predictions which might fall outside the

range of the fractional response variable, i.e., the [0, 1]-interval.

To illustrate this issue, assume for the moment that there is no sample selectivity.

Suppose that y denotes the fractional response variable, x is a vector of explanatory

variables and β a vector of corresponding parameters. In a linear model, it is assumed
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that the mean of y conditional on x is given by

E[y|x] = x′β. (1)

After estimating this model, say by OLS, the predictions generated by the model are

characterized by ŷ = x′β̂, where ŷ is the prediction of the dependent variable y and β̂ is

the OLS estimate of β. When y is a fractional response variable, however, it cannot be

guaranteed that these predictions are bounded between zero and one, which should be

the case for a fractional response variable. In other words, a linear model is not consistent

with the fractional nature of the dependent variable. The same critique applies to the

Heckman selection model, which assumes a linear underlying population model.

Papke and Wooldridge (1996) developed a model which is suitable for fractional re-

sponse variables. They however did not consider sample selectivity issues. Their idea is

to specify the conditional mean of y given x as follows:

E[y|x] = G(x′β), (2)

where G(·) is a cumulative distribution function (cdf). Since a cdf is bounded between

zero and one, this model generates predictions which are consistent with the nature of

the fractional response variable. When the cdf is the logistic cdf, the model is known as

the fractional logit model; when the cdf is the standard normal cdf, it is known as the

fractional probit model. However, as in case of the linear model both fractional logit and

fractional probit models will give biased estimates when non-random sample selectivity is

an issue.

The sample selection model for fractional response variables developed in this paper

combines elements from the Heckman selection model and the fractional probit model.

In particular, the model incorporates potential non-random sample selectivity in a way

which is consistent with the fractional nature of the dependent variable. It is shown that

the assumptions made on the impact of selection on the fractional response variable imply

that the underlying population model is a fractional probit model, which is consistent with
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the nature of the fractional response variable. Moreover, the assumptions imply that when

there is no non-random sample selectivity, the model also reduces to the fractional probit

model. The point is that no matter whether there is a sample selection bias problem

or not, the model will always be consistent with the fractional nature of the dependent

variable.

A simulation study is provided which illustrates that the proposed model yields esti-

mates being different from the Heckman selection model, indicating that the assumption

of a linear model characterizing the underlying overall population is not appropriate in

case of fractional response variables. This paper also contains an empirical application to

study the impact of education on women’s perceived probability of job loss. As indicated

above, the perceived probability that a certain event – like job loss – occurs, can also

be interpreted as a fractional response variable, although the term “fractional” might be

misleading. Since the perceived probability of job loss is only observed for women who are

working, the observed sample can be considered a non-random sample from the overall

population of women. Thus, a sample selection model for fractional response variables

appears to be an appropriate modeling device.

The fractional probit or logit model has been introduced by Papke and Wooldridge

(1996) and has been extended to panel data by Papke and Wooldridge (2008). Wooldridge

(2010) describes how to estimate a fractional response model in the presence of endogenous

explanatory variables. A survey on fractional response models is provided by Ramalho et

al. (2011). Ramalho et al. (2011) also consider two-part models for cases when there is

a large portion of observations located at the bounds of the fractional response variable.

The fractional response model has often been used in empirical applications; examples

include Papke and Wooldridge (1996; 2008), Wagner (2001), Ramalho et al. (2011) and

Gallani, Krishnan and Wooldridge (2015).

The paper is organized as follows. Section 2 proposes the sample selection model for

fractional response variables and discusses issues of specification, estimation and inference.

Section 3 provides simulation evidence on the finite sample properties of the estimator

of the model and shows how this model performs in comparison with competing models.
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Section 4 contains the empirical application of the model to real data. Finally, Section 5

concludes the paper.

2 Econometric Model

For explanatory purposes, I will first show how the issue of sample selectivity is dealt

with in the Heckman (1979) selection model. As in the introduction, let y denote the

dependent variable and x the vector of covariates with corresponding parameter vector

β. Heckman (1979) assumes that the population model is characterized by the following

linear relationship:

y∗ = x′β + ε. (3)

Here, y∗ denotes a latent dependent variable and ε is the error term. The observed

dependent variable y is related to y∗ as follows:

y =















y∗ if z = 1

“missing” otherwise

. (4)

The variable z is a selection indicator; if z = 1, y is observed and otherwise y is not ob-

served (“missing”). The selection process determining z is characterized by the following

selection equation:

z = 1[w′γ + u > 0], (5)

where w is a vector of covariates and γ an associated vector of parameters; u is the error

term. Non-random sample selection occurs when ε and u are dependent. The crucial

assumption of the Heckman selection model is







ε

u






∼ N













0

0






,







σ2 ρσ

ρσ 1












, (6)
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i.e., that ε and u are jointly normally distributed with correlation ρ. If the correlation

coefficient ρ is different from zero, an ordinary least squares estimation of the equation

y = x′β + ε (7)

will give inconsistent estimates of β. However, Heckman (1979) showed that – based on

the bivariate normality assumption on the error terms – OLS estimation of the augmented

regression equation

y = x′β + βλλ(w
′γ) + v, (8)

yields consistent estimates of β. Here, βλ ≡ ρσ is a parameter, λ(w′γ) ≡ φ(w′γ)/Φ(w′γ)

is the inverse Mills ratio term and v denotes the error term of the augmented regression

equation; moreover, φ(·) is the standard normal probability density function (pdf) and

Φ(·) is the standard normal cdf.

Unfortunately, in case of fractional response variables it is not possible to derive a

sample selection model from an underlying population model, at least not in the way

Heckman (1979) proceeded. Since the dependent variable y is only observed if the selection

indicator z is equal to one, estimation of a sample selection model requires a specification

of the conditional mean E[y|x, w, z = 1]. In the Heckman selection model,

E[y|x, w, z = 1] = x′β + βλλ(w
′γ) (9)

follows from the linear specification of the underlying population model and the bivariate

normality assumption on the error terms.

To develop a sample selection model for fractional response variables, I proceed in

the opposite way. Instead of specifying an underlying population model and imposing

an assumption on the joint distribution of error terms, I directly specify the conditional

mean E[y|x, w, z = 1]. The selection process is assumed to be described by the same

selection equation as in the Heckman selection model. In particular, I make the following
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assumption:

Assumption 1:

(a) E[y|x, w, z = 1] = Φ2(x′β,w′γ,ρ)
Φ(w′γ)

, where Φ2(·, ·, ρ) denotes the bivariate standard nor-

mal distribution with correlation ρ;

(b) Pr(z = 1|w) = Φ(w′γ).

Here, ρ is different from the correlation coefficient defined in the Heckman selection

model, but it is also an indicator of non-random sample selectivity. Note that Assumption

1 (b) implies that the selection equation is of the probit type, as in the Heckman selection

model.

While Assumption 1 is sufficient to estimate the model, it is not clear what is actually

being estimated – i.e., what is the interpretation of β? The interpretation of γ is quite

straightforward, it contains the coefficients from the selection equation. A sensible inter-

pretation of β however requires an additional assumption on the conditional mean of y

given z = 0:

Assumption 2: E[y|x, w, z = 0] = Φ2(x′β,−w′γ,−ρ)
Φ(−w′γ)

.

With this additional assumption it follows that:

Theorem 1: Suppose that Assumption 1 and 2 hold. Then, the underlying population

model is characterized by E[y|x, w] = Φ(x′β).

Proof:

E[y|x, w] = Pr(z = 0|w) · E[y|x, w, z = 0] + Pr(z = 1|w) · E[y|x, w, z = 1]

= Φ2(x
′β,−w′γ,−ρ) + Φ2(x

′β, w′γ, ρ)

= Φ(x′β).

�

Hence, the population model is a fractional probit model and β are the corresponding

coefficients associated with this model. Since the fractional probit model is consistent

with the nature of the fractional response dependent variable, the parameter vector β has

a clear and economically appealing interpretation.

7



The specification of the conditional means in Assumptions 1 (a) and 2 may still seem

to be arbitrary. The specification has several advantages, however, which makes it eco-

nomically and statistically appealing. First, both conditional means are very similar

to conditional probabilities; indeed, it can be shown that both conditional means are

bounded between zero and one, so that they are consistent with the nature of the frac-

tional response dependent variable. Second, when the correlation parameter ρ is equal to

zero, both conditional means reduce to Φ(x′β). Hence, in case of no non-random sample

selectivity, both conditional means reduce to the fractional probit model of the underlying

population, as it should be. This is also true for the Heckman selection model, since when

ρ = 0 it follows that βλ = 0 and so the inverse Mills ratio term cancels out. Third, as

shown above, the specification identifies a well-defined underlying population model – the

fractional probit model – which is consistent with the nature of the fractional response

dependent variable.

The specific form of the conditional mean E[y|x, w, z = 1] can also be motivated as

follows. If y was a binary variable and related to x′β and ε as y = 1[x′β + ε > 0], and

if ε and u were jointly normally distributed with unit variances and correlation ρ, the

conditional probability that y = 1 given z = 1 would exactly equal E[y|x, w, z = 1] as

defined in Assumption 1. This parallels the motivation of the fractional probit model, since

in that model the conditional mean E[y|x] could also be interpreted as the conditional

probability that y = 1 if y was a binary variable.

After developing the sample selection model for fractional response variables, I now

discuss issues regarding specification, estimation and inference. The first issue concerns

the variables in x and w. As in the Heckman selection model, an exclusion restriction is

required for proper identification, i.e., w should contain at least one variable which is not

included in x. Put differently, the variable excluded from x should affect the dependent

variable y only indirectly via the selection process, but should not have a direct impact on

y. Actually the model proposed above is identified by the functional form assumptions on

the conditional means. However, imposing an exclusion restriction is highly recommended

since in empirical practice it is often not convincing to identify parameters from functional
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form assumptions alone.

The proposed model can be estimated by quasi maximum likelihood (QML); see

Gourieroux, Monfort and Trognon (1984) for a general treatment and Papke andWooldridge

(1996) for a description in the context of fractional response models. The log-likelihood

function of the sample selection model for fractional response variables is given by

logL(θ) =
n
∑

i=1

li(θ) ≡
n
∑

i=1

{(1− zi) log(1− Φ(w′

iγ)) + zi log Φ(w
′

iγ)

+zi

[

(1− yi) log

(

1−
Φ2(x

′

iβ, w
′

iγ; ρ)

Φ(w′

iγ)

)

+ yi log
Φ2(x

′

iβ, w
′

iγ; ρ)

Φ(w′

iγ)

]}

, (10)

where θ = (β ′, γ′, ρ)′ denotes the parameter vector to be estimated, i indexes individuals

and n is the sample size. An advantage of QML is that only the conditional means given

above – and not the full distribution – have to be correctly specified in order to obtain

consistent estimates of the model parameters. The QML estimator θ̂ has an asymptotic

normal distribution and its estimated asymptotic variance matrix is of the sandwich-type

(White, 1982), i.e.

Est.Asy.V ar.(θ̂) =

(

−
n
∑

i=1

∂2li(θ̂)

∂θ∂θ′

)

−1( n
∑

i=1

∂li(θ̂)

∂θ

∂li(θ̂)

∂θ′

)(

−
n
∑

i=1

∂2li(θ̂)

∂θ∂θ′

)

−1

. (11)

Standard errors of the estimated parameters can be derived from this matrix in the usual

way.

As described above, a correlation parameter of ρ = 0 means that there is no non-

random sample selection. In that case, the sample selection model for fractional response

variables reduces to the fractional probit model. In case of QML estimation, a Wald

test is the easiest way to test for the absence of non-random sample selectivity. The null

hypothesis is ρ = 0, and testing amounts to a simple significance test of ρ.

3 Simulation Evidence

This section contains simulation evidence on the finite sample properties of the QML

estimator of the sample selection model for fractional response variables. It also provides
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evidence on the bias of estimates from the Heckman selection model and the fractional

probit model when the sample selection model for fractional response variables is the true

data generation model.

The simulated data are generated as follows. The selection equation is assumed to be

zi = 1(γ0 + γ1wi1 + γ2wi2 + ui > 0), (12)

i = 1, . . . , n, where the ui’s are i.i.d. draws from a standard normal distribution. The

explanatory variables wi1 and wi2 are generated according to

wi1 = vi + η1i (13)

wi2 = vi + η2i, (14)

where the vi’s, η1i’s and η2i’s are also i.i.d. draws from a standard normal distribution.

Thus, the explanatory variables are assumed to exhibit some correlation, which is quite

realistic in applications.

The next step is to generate the fractional response variable y. Conceptually, I proceed

as described in the last section, by specifying the conditional mean E[y|x, w, z = 1] as

follows:

E[yi|xi, wi, zi = 1] =
Φ2(β0 + β1xi, γ0 + γ1wi1 + γ2wi2; ρ)

Φ(γ0 + γ1wi1 + γ2wi2)
, (15)

where xi = wi1 for all i = 1, . . . , n. Note that wi2 affects the conditional mean only through

the selection process. This is the exclusion restriction needed for proper identification of

the parameters.

Based on the specification of the conditional mean, the fractional response variable y

can be generated. It is convenient to use the beta distribution for the generation of y,

since draws from a beta distribution are bounded between zero and one, which is required

for a fractional response variable. A further advantage of the beta distribution is that

it can be parameterized in terms of its mean, so that the assumption on the conditional
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mean given above can be implemented quite easily. The beta distribution parameterized

in terms of its mean is given by

f(y;µ, ψ) =
Γ(ψ)

Γ(µψ)Γ((1− µ)ψ)
yµψ−1(1− y)(1−µ)ψ−1, (16)

where µ denotes the mean, ψ is a shape parameter and Γ(·) is the gamma function (see

Ramalho et al., 2011, p. 25). Thus, y can be generated according to the rule

yi















“is missing” if zi = 0

∼ f(yi;
Φ2(β0+β1xi,γ0+γ1wi1+γ2wi2;ρ)

Φ(γ0+γ1wi1+γ2wi2)
, ψ) if zi = 1

. (17)

The true values of the parameters are assumed to be: β0 = −1, β1 = 0.5, γ0 = 0,

γ1 = γ2 = 1, ψ = 10. The dependence parameter ρ is set to the values 0, 0.3 and 0.7 in

order to analyze the estimator performance for different degrees of dependence.

Sample sizes of 500, 1,000 and 2,000 are considered. Each simulation comprises 1,000

repetitions. Over these repetitions, the mean of the parameter estimates and the associ-

ated root mean squared error (RMSE) are calculated.

As mentioned above, also the Heckman selection model and the fractional probit model

are used to generate estimates. The purpose is to show evidence on the bias generated

by models which do not properly account for the fractional nature of the dependent

variable (the Heckman selection model) or the potential non-random sample selectivity

(the fractional probit model). The Heckman selection model assumes that the underlying

population model is given by

y∗i = β0 + β1xi + εi, (18)

while the frational probit model assumes that

E[yi|xi] = E[yi|xi, zi = 1] = Φ(β0 + β1xi). (19)

Note that both assumptions are wrong with respect to the data generation process.
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Since the estimated parameters in β are not comparable across models, the simulation

results also include evidence on the marginal effects of an increase in x on the dependent

variable y in the underlying population model. In case of the Heckman selection model, the

underlying population model is linear, hence the marginal effect is simply the coefficient

of x, β1; in case of the sample selection model for fractional response variables and the

fractional probit model, the underlying population model is characterized by

E[yi|xi, wi1, wi2] = Φ(β0 + β1xi). (20)

Thus, the marginal effect of an increase in x is

MEi =
∂E[yi|xi, wi1, wi2]

∂x
=
∂Φ(β0 + β1xi)

∂x
(21)

for a given observation i. The average marginal effect is then given by

ME =
1

n

n
∑

i=1

MEi. (22)

This average marginal effect is also calculated in each repetition and for each model.

Over the repetitions, the mean of the average marginal effect is calculated as well as the

corresponding standard deviation.

The estimates for the Heckman selection model are generated using the two-step es-

timation approach. That is, in a first step the selection equation is estimated by probit

and these estimates are used to calculate the inverse Mills ratio term. In a second step,

the regression equation is augmented by the inverse Mills ratio term and estimated by

OLS. Alternatively, the full model could have been estimated in one step by applying the

maximum likelihood method. However, the two-step estimator requires fewer assump-

tions than the maximum likelihood estimator. In particular, the error terms ε and u

need not be bivariate normally distributed, but it suffices that E[ε|u] = δu for some fixed

parameter δ and u ∼ N (0, 1) (see Wooldridge, 2010, p. 803). Due to these less restrictive

assumptions, the two-step approach seems to be more appropriate when the dependent
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variable is a fractional response variable rather than a continuous variable.

The simulation results are given in Tables 1-3. Table 1 contains the results for ρ = 0,

Table 2 for ρ = 0.3 and Table 3 for ρ = 0.7. I begin with the finite sample properties

of the QML estimator of the sample selection model for fractional response variables. As

can be seen from Tables 1-3, the model parameters are estimated well for all sample sizes,

irrespective of the degree of dependence. Moreover, as expected, the RMSE’s decline

with increasing sample size. Also, the marginal effects are virtually identical for different

degrees of dependence, which would have been expected since the underlying population

model does not depend on the degree of dependence.

Now I investigate what happens if the Heckman selection model or the fractional probit

model, respectively, are used for estimation. Tables 1-3 show that the estimates of the

selection equation parameters are estimated well when the Heckman selection model is

used. This is no coincidence, since in the Heckman selection model the selection equation

is assumed to be of the probit type, which is indeed true. The remaining parameters are

biased, but they are not really comparable with those from the sample selection model

for fractional response variables. However, the marginal effects are comparable. Tables

1-3 show that the marginal effects obtained from the Heckman model substantially differ

from the marginal effects derived from the true model, the sample selection model for

fractional response variables. Moreover, the difference becomes larger when the degree

of dependence increases. These simulation results thus indicate that the results from

the Heckman selection model are biased when the true underlying model is the sample

selection model for fractional response variables. This suggests that it is important to

properly account for the fractional nature of the dependent variable.

Considering the results from the fractional probit model, Table 1 shows that the

parameter estimates and marginal effects are identical to those from the sample selection

model for fractional response variables. Note that no estimates are given for the selection

equation parameters, since in case of the fractional probit model it is assumed that there is

no non-random sample selectivity. Since there is indeed no non-random sample selectivity

when ρ = 0 (Table 1), it is not surprising that the fractional probit model yields the same
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estimates as the sample selection model for fractional response variables. However, as

dependence increases, the parameter estimates become different and also the marginal

effects begin to differ. This indicates that that the results from the fractional probit

model are biased when non-random sample selectivity is an issue.

In summary, the simulation results show that the QML estimator of the sample selec-

tion model for fractional response variables performs well in finite samples. Furthermore,

the results also show that an application of the Heckman selection model, which does

not account for the fractional nature of the dependent variable, or the fractional probit

model, which does not account for the potential non-random sample selectivity, leads to

biased estimation results, particularly to biased marginal effects. This suggests that it

is important in practice to use a sample selection model for fractional response variables

when (i) the dependent variable is a fractional response variable and (ii) non-random

sample selectivity is an issue.

4 Empirical Application

This section contains an empirical application of the proposed sample selection model for

fractional response variables to real data. Specifically, I consider the impact of education

on the perceived (subjective) probability of job loss. As described by Manski and Straub

(2000), job loss is “commonly assumed to be unanticipated by the worker and unaffected

by worker behavior on the job; the result of plant closings, elimination of positions, and

the like” (Manski and Straub, 2000, p. 467), and can therefore be interpreted as exogenous

job destruction (Manski and Straub, 2000, p. 467). I use data from the 2001 wave of the

German Socioeconomic Panel (SOEP). Respondents were asked how likely it was that

they lost their job within the next two years. Answers could be made in decimal steps,

i.e., 0%, 10%, 20%,..., 100%. Since the answers are bounded between 0% (=0) and 100%

(=1), the perceived probability of job loss is a fractional response variable.

Job loss leads to substantial pecuniary and non-pecuniary costs; see, e.g., Winkelmann

and Winkelmann (1998) and the references cited therein. Winkelmann and Winkelmann

(1998) also used SOEP data and found a large negative effect of unemployment on indi-
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vidual well-being. It can be expected that also a high perceived probability of job loss

has a similar (negative) effect on individual well-being.

Education typically raises the individual amount of human capital and thus increases

the employee’s value to the employer. Therefore, I expect that education reduces not only

the actual but also the perceived probability of job loss, since employees know their value

to some extent. If education decreases the perceived probability of job loss, education

may be interpreted as some kind of insurance against the non-pecuniary costs associated

with job insecurity. Since the non-pecuniary costs of unemployment are quite substantial

(Winkelmann and Winkelmann, 1998), it is highly interesting from an economic point of

view to investigate if education leads to a lower perceived probability of job loss and thus

reduces these costs.

In this application I analyze the impact of education on the perceived probability

of job loss for women only. In my sample about one third of women are not working.

Since the perceived probability of job loss is reported only by women who are working,

a regression of the perceived probability of job loss on education (and further covariates)

for those women may lead to a sample selection bias. Hence, a sample selection model

should be used. Due to the fractional nature of the dependent variable, the sample

selection model for fractional response variables developed in this paper seems to be an

appropriate modeling device. I compare the estimates from this model with the estimates

from the Heckman selection model and the fractional probit model to investigate to what

extent the models lead to different estimates.

The underlying population model has the perceived probability of job loss as the

dependent variable. Explanatory variables are (years of) education, age, age squared,

dummies for the state of residence, a dummy for foreign nationality, dummies for marital

status and the number of children. Age and age squared capture age-specific differences

in job loss probabilities, while the state dummies reflect state-specific labor market con-

ditions. People with foreign nationality may have different perceptions of job security

than German people and/or may face different labor market opportunities than German

people. Marital status and the number of children may affect the employer’s decision to
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lay people off in light of socially minded reasons, and the employee might know this.

Since non-random sample selectivity might be an issue, the next step is to set up a

selection equation which governs the probability that a woman is working. Explanatory

variables assumed to affect the selection process are the same covariates that appear in

the main equation, and an additional variable which is needed because of the exclusion

restriction. As described above, this variable should affect the perceived probability of

job loss only indirectly via the selection process, but should otherwise not have a direct

impact on the perceived probability of job loss. A variable which can be argued to

satisfy these requirements is the total household income minus the wage income of the

woman. I call this variable “additional income”. Additional income can be expected to

have an impact on the selection process: the higher the additional income, the lower the

material incentive to work. Furthermore, additional income is rather private information

and typically not available to the employer; thus, it should not affect the employer’s layoff

decisions. Hence, additional income should not affect the actual and perceived probability

of job loss directly, but only indirectly via the selection process.

My sample includes women in their prime working age, i.e., between 25 and 54 years

of age, who are not self-employed. Self-employed workers were excluded because it is

difficult to distinguish between voluntary quits and job losses in case of self-employed

workers (see Manski and Straub, 2000, p. 467). Summary statistics of the variables are

given in Table 4.

As mentioned above, estimates from three different models will be analyzed: the sam-

ple selection model for fractional response variables developed in this paper, the Heckman

selection model (two-step estimation) and the fractional probit model. While the Heck-

man selection model does not account for the fractional nature of the dependent variable,

the fractional probit model ignores the potential non-random sample selectivity. Since the

model parameters are not comparable and the focus of this application is on the impact

of education, I also computed the estimated marginal effect of education on the perceived

probability of job loss for all three models. As in the simulation study, this marginal effect

is the marginal effect of education in the underlying population model.
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The estimation results are given in Table 5. Table 5 includes the estimated parameters

of each model as well as the estimate of the correlation parameter ρ in case of the selection

models. Moreover, the marginal effect of education in the underlying population model

is reported. As described, this marginal effect is comparable across models. No estimates

for the state dummies are reported due to brevity.

The standard error of estimated ρ from the Heckman selection model has been obtained

by bootstrapping. The reason is that not ρ itself is estimated but the coefficient βλ of the

inverse Mills ratio term. After estimation it is possible to derive an estimate of σ, which

can be used to calculate estimated ρ because βλ = ρσ. Since estimated σ is obtained

after estimation, the standard error of estimated ρ cannot be obtained simply from an

application of the delta method. Therefore, I chose bootstrapping to obtain the standard

error. The value reported in Table 5 is based on 1,000 bootstrap iterations.

Table 5 shows estimates for the parameters of the main and selection equation. In case

of the fractional probit model, there is no selection equation, hence no results are reported.

Since the selection equation for both the sample selection model for fractional response

variables and the Heckman selection model are of the probit type, it is no coincidence

that the estimates of the selection equation parameters are very close. The “additional

income” variable, which has been excluded from the underlying population model, has the

expected negative impact on the selection process. Also note that the selection model for

fractional response variables and the Heckman selection model both yield a quite similar

correlation coefficient of about 0.60. Both estimates are significantly different from zero,

which indicates that non-random sample selectivity is indeed an issue.

The estimated marginal effect of education varies over the models, but is generally

negative, as expected. The largest value (in absolute terms) is obtained from the sample

selection model for fractional response variables, and the lowest value from the fractional

probit model. The marginal effect from the Heckman selection model is in between. The

differences illustrate that the choice of an appropriate model is important in practice. In

particular, the results suggest that models which do not account for the fractional nature

of the dependent variable (the Heckman model) or do not account for the non-random
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sample selectivity (the fractional probit model) underestimate (in absolute terms) the

impact of education on the perceived probability of job loss, at least in this data example.

5 Conclusions

This paper developed a sample selection model for fractional response variables. The

model was shown to be consistent with the nature of the fractional response variable, i.e.,

the model generates predictions between zero and one. Simulation evidence demonstrated

that estimation of this model works well in finite samples, and that competing estimators

which do either not account for the fractional nature of the dependent variable (the

Heckman selection model) or do not account for potential non-random selectivity (the

fractional probit model) lead to biased estimates. An empirical application to the impact

of education on women’s perceived probability of job loss illustrated that it is important

in practice to choose an appropriate model. In particular, the Heckman selection model

and the fractional probit model seemed to underestimate (in absolute terms) the marginal

effect of an increase in education on women’s perceived probability of job loss.

The challenge associated with an application of the model in applied research is to

find an appropriate exclusion restriction. However, given that such an exclusion restric-

tion is available, the model developed in this paper provides a useful device to correct for

potential sample selection bias when the dependent variable is a fractional response vari-

able. Since non-random sample selectivity is an issue frequently encountered in empirical

research, there appear to be many potential applications of this model in practice.
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Tables

Table 1: Simulation results for ρ = 0

Sel. model f. frac. resp. var. Heckman sel. model Frac. probit model
Mean RMSE/SD Mean RMSE/SD Mean RMSE/SD

n=500
Parameters
β0 -1.001 0.057 0.158 1.158 -1.003 0.039
β1 0.501 0.033 0.165 0.335 0.502 0.027
γ0 0.002 0.088 0.002 0.088
γ1 1.019 0.109 1.020 0.109
γ2 1.014 0.113 1.014 0.113
ρ -0.003 0.084 0.167 0.234
Marginal effect of x 0.118 0.005 0.165 0.010 0.118 0.005

n=1,000
Parameters
β0 -0.998 0.040 0.159 1.159 -0.999 0.027
β1 0.499 0.023 0.164 0.336 0.499 0.019
γ0 0.000 0.063 0.000 0.063
γ1 1.013 0.077 1.013 0.077
γ2 1.006 0.076 1.006 0.076
ρ -0.002 0.060 0.168 0.203
Marginal effect of x 0.118 0.003 0.164 0.007 0.118 0.003

n=2,000
Parameters
β0 -0.999 0.028 0.158 1.159 -1.000 0.020
β1 0.500 0.016 0.164 0.336 0.500 0.013
γ0 0.001 0.044 0.001 0.044
γ1 1.004 0.054 1.004 0.054
γ2 1.007 0.053 1.007 0.053
ρ -0.002 0.043 0.167 0.187
Marginal effect of x 0.118 0.002 0.164 0.005 0.118 0.002

Note: The root mean squared errors (RMSE) refer to the parameters, while the standard deviations (SD) refer to
the marginal effect of x. The true values of the parameters are β0 = −1, β1 = 0.5, γ0 = 0, γ1 = 1 and γ2 = 1. The
simulation results are based on 1,000 repetitions.
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Table 2: Simulation results for ρ = 0.3

Sel. model f. frac. resp. var. Heckman sel. model Frac. probit model
Mean RMSE/SD Mean RMSE/SD Mean RMSE/SD

n=500
Parameters
β0 -1.000 0.051 0.152 1.152 -0.865 0.141
β1 0.501 0.031 0.170 0.330 0.440 0.065
γ0 0.001 0.088 0.001 0.088
γ1 1.024 0.115 1.024 0.116
γ2 1.016 0.113 1.016 0.113
ρ 0.300 0.086 0.681 0.409
Marginal effect of x 0.117 0.005 0.170 0.010 0.114 0.005

n=1,000
Parameters
β0 -1.001 0.03738778 0.152 1.152 -0.864 0.139
β1 0.501 0.02172999 0.170 0.330 0.440 0.063
γ0 0.000 0.06235902 0.000 0.062
γ1 1.007 0.07473817 1.007 0.075
γ2 1.007 0.07608353 1.007 0.076
ρ 0.302 0.06023886 0.683 0.398
Marginal effect of x 0.117 0.003 0.170 0.007 0.114 0.003

n=2,000
Parameters
β0 -0.999 0.02553724 0.153 1.153 -0.863 0.138
β1 0.499 0.01549113 0.170 0.330 0.439 0.062
γ0 0.002 0.0426022 0.002 0.043
γ1 1.005 0.05509056 1.006 0.055
γ2 1.005 0.05406413 1.005 0.054
ρ 0.298 0.04441957 0.678 0.387
Marginal effect of x 0.117 0.002 0.170 0.005 0.114 0.002

Note: The root mean squared errors (RMSE) refer to the parameters, while the standard deviations (SD) refer to
the marginal effect of x. The true values of the parameters are β0 = −1, β1 = 0.5, γ0 = 0, γ1 = 1 and γ2 = 1. The
simulation results are based on 1,000 repetitions.
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Table 3: Simulation results for ρ = 0.7

Sel. model f. frac. resp. var. Heckman sel. model Frac. probit model
Mean RMSE/SD Mean RMSE/SD Mean RMSE/SD

n=500
Parameters
β0 -0.997 0.045 0.127 1.127 -0.696 0.307
β1 0.499 0.027 0.184 0.316 0.363 0.140
γ0 -0.003 0.089 -0.002 0.089
γ1 1.014 0.106 1.015 0.111
γ2 1.019 0.109 1.019 0.110
ρ 0.693 0.081 1.000 0.300
Marginal effect of x 0.118 0.005 0.184 0.011 0.107 0.006

n=1,000
Parameters
β0 -0.998 0.033 0.126 1.126 -0.695 0.307
β1 0.499 0.020 0.184 0.316 0.361 0.141
γ0 0.003 0.060 0.004 0.061
γ1 1.009 0.074 1.010 0.077
γ2 1.008 0.076 1.008 0.076
ρ 0.699 0.057 1.000 0.300
Marginal effect of x 0.118 0.003 0.184 0.008 0.107 0.004

n=2,000
Parameters
β0 -0.999 0.023 0.126 1.126 -0.696 0.305
β1 0.500 0.014 0.184 0.316 0.362 0.139
γ0 -0.002 0.045 -0.002 0.046
γ1 1.003 0.051 1.003 0.054
γ2 1.005 0.054 1.005 0.054
ρ 0.697 0.041 1.000 0.300
Marginal effect of x 0.118 0.002 0.184 0.006 0.107 0.003

Note: The root mean squared errors (RMSE) refer to the parameters, while the standard deviations (SD) refer to
the marginal effect of x. The true values of the parameters are β0 = −1, β1 = 0.5, γ0 = 0, γ1 = 1 and γ2 = 1. The
simulation results are based on 1,000 repetitions.
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Table 4: Summary statistics

Variable Description Obs Mean Std. Dev.

pjobloss Perceived prob. of job loss 3,733 0.194 0.256
educ Years of education 5,612 11.957 2.440
age Age 5,612 39.453 8.096
state State of residence
..Schleswig-Holstein Schleswig-Holstein (0/1; base) 5,612 0.026 0.159
..Hamburg Hamburg (0/1) 5,612 0.013 0.113
..Lower Saxony Lower Saxony (0/1) 5,612 0.085 0.279
..Bremen Bremen (0/1) 5,612 0.007 0.081
..North-Rhine-Westfalia North-Rhine-Westfalia (0/1) 5,612 0.218 0.413
..Hessen Hessen (0/1) 5,612 0.069 0.254
..Rheinland-Pfalz Rheinland-Pfalz (0/1) 5,612 0.050 0.218
..Baden-Wuerttemberg Baden-Wuerttemberg (0/1) 5,612 0.121 0.327
..Bavaria Bavaria (0/1) 5,612 0.141 0.348
..Saarland Saarland (0/1) 5,612 0.016 0.124
..Berlin Berlin (0/1) 5,612 0.035 0.184
..Brandenburg Brandenburg (0/1) 5,612 0.039 0.195
..Mecklenburg-Vorpommern Mecklenburg-Vorpommern (0/1) 5,612 0.023 0.149
..Saxony Saxony (0/1) 5,612 0.073 0.260
..Saxony-Anhalt Saxony-Anhalt (0/1) 5,612 0.043 0.202
Thuringia Thuringia (0/1) 5,612 0.041 0.199
foreign Foreign nationality (0/1) 5,612 0.108 0.311
marital status Marital status
..married (liv. tog.) Married and living together (0/1; base) 5,612 0.722 0.448
..married (sep.) Married and separated (0/1) 5,612 0.024 0.152
..single Single (0/1) 5,612 0.156 0.363
..divorced Divorced (0/1) 5,612 0.083 0.276
..widowed Widowed (0/1) 5,612 0.016 0.125
no. children Number of children 5,612 0.963 1.041
add. inc. Add. monthly income (divided by 1,000) 5,612 1.789 1.190

Note: The data have been taken from the 2001 wave of the German Socioeconomic Panel (SOEP).
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Table 5: Estimation results

Variable Sel. model f. frac. resp. Var. Heckman sel. model Frac. Probit model
(Dep.var.: pjobloss) Coef. (Std. Err.) Coef. (Std. Err.) Coef. (Std. Err.)

Population model
educ -0.0292 (0.0073) -0.0075 (0.0021) -0.0122 (0.0071)
age -0.0904 (0.0280) -0.0207 (0.0082) 0.0120 (0.0216)
age squared 0.0011 (0.0004) 0.0002 (0.0001) -0.0002 (0.0003)
foreign 0.1073 (0.0637) 0.0230 (0.0175) -0.0051 (0.0642)
marital status
..married (sep.) 0.1883 (0.1100) 0.0586 (0.0288) 0.2141 (0.1167)
..single -0.0103 (0.0506) 0.0015 (0.0142) 0.0589 (0.0497)
..divorced -0.0294 (0.0559) -0.0024 (0.0157) 0.0755 (0.0532)
..widowed -0.0003 (0.1132) 0.0018 (0.0335) 0.0407 (0.1134)
no. children 0.1415 (0.0313) 0.0334 (0.0095) 0.0028 (0.0196)
constant 1.4314 (0.6065) 0.7209 (0.1783) -0.9895 (0.4340)

Selection equation
educ 0.0679 (0.0086) 0.0680 (0.0083)
age 0.2950 (0.0250) 0.2967 (0.0253)
age squared -0.0037 (0.0003) -0.0037 (0.0003)
foreign -0.3085 (0.0608) -0.3084 (0.0610)
marital status
..married (sep.) -0.1850 (0.1218) -0.1896 (0.1200)
..single 0.0855 (0.0655) 0.0848 (0.0648)
..divorced 0.1135 (0.0743) 0.1164 (0.0725)
..widowed -0.0332 (0.1504) -0.0317 (0.1497)
no. children -0.3574 (0.0215) -0.3592 (0.0219)
add. inc. -0.1852 (0.0238) -0.1854 (0.0166)
constant -5.2592 (0.4974) -5.2790 (0.5032)

ρ -0.6102 (0.0911) -0.6019 (0.1167)
Mar. eff. of educ -0.0101 (0.0027) -0.0075 (0.0021) -0.0032 (0.0019)

State dummies incl. Yes Yes Yes
No. obs. 5,612 5,612 3,733

Note: In case of the Heckman selection model, the standard error of estimated ρ has been obtained by bootstrapping.
The coefficients associated with the state dummies are not displayed due to brevity. The marginal effect of educ
refers to the marginal effect of education in the underlying population model.
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