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Abstract

In choice under risk, differences between alternative states of the world render

choice environments complex. Moreover, they entail powerful experiences of loss

if satisfaction falls short of prospective states that did not materialize. An increase

in complexity, i.e. a larger number of differences, can have ambiguous effects on

loss aversion. Complexity can direct the decision maker’s attention to prospective

experiences of loss but also requires a higher cognitive effort of weighting and

comparing satisfaction in all states. This paper investigates empirically how loss

aversion interacts with complexity. Structural estimates of preference parameters

indicate an inverse-U shaped relationship between complexity and the weight of

expected gain-loss utility in choice under risk.
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Imagine two investment bankers’ choices of effort. The first banker expects a perfor-

mance based bonus and ponders her satisfaction in three prospective states of the

world: no bonus, a bonus that reflects her performance, and a higher bonus. In the

banker’s choice of effort, complexity originates from differences between states, i.e. dif-

ferent levels of utility when realized and different probabilities of being realized.1

Complexity, as a broad literature in psychology shows, attracts attention (Kahneman,

1973). If complexity in terms of different states attracts the banker’s attention, she

will focus on these differences and the experience of loss if her bonus falls short of a

more favorable state. In a complex choice environment, choosing an effort level that

avoids the powerful experience of loss when uncertainty is resolved requires careful

deliberation. As an example, take the choice of little effort. With little effort, the

banker’s expectation of a performance based bonus is small, and so is the loss she

experiences if there is no bonus. However, if she receives a bonus that reflects her low

effort level, she experiences a loss in comparison to the higher bonus. In contrast, the

second banker is not eligible for a bonus but expects a promotion. Because from her

vantage point only two states of the world matter — she gets the promotion or not —

she faces a choice under lower complexity. Lowering complexity reduces the cognitive

effort of weighting and comparing all alternatives but, in the spirit of Kahneman

(1973), also reduces her attention to differences between alternative states. Therefore,

lowering complexity can increase or decrease the influence of expected gain-loss utility

on a banker’s choice of effort.2

Although complexity is a defining aspect of an uncertain world and loss aversion is

central to decision-making under risk, there is no empirical evidence on the relationship

of both phenomena. This paper investigates empirically how expectations affect choice

under risk and pins down the interaction between loss aversion and complexity. The

existing literature discusses complexity and reference-dependence separately. A large

body of evidence shows that expectations over decision outcomes are important

reference points in central economic decisions such as labor supply and consumption

(see, e.g., Crawford and Meng, 2011; Abeler et al., 2011; Wenner, 2015).3 Studying

the role of complexity in choice under risk and uncertainty, Wilcox (1993), Bruce

1While definitions of complexity vary, outcome- and probability-set size naturally correspond to
complexity in choice under risk and are consistent with notions of complexity in psychology (Payne
et al., 1993) and the economic literature (Sonsino et al., 2002; Loomes, 2005).

2Related to the idea of a trade-off between attention and cognitive effort is the finding that the
influence of visual stimuli’s complexity on attention follows the shape of an inverted U (Kahneman,
1973).

3For further evidence from the field on the role of expectations as reference points see Post et al.
(2008), Card and Dahl (2011) and Pope and Schweitzer (2011). Further evidence from the laboratory
is compiled by Loomes and Sugden (1987), Ericson and Fuster (2011), Baucells et al. (2011), Gill and
Prowse (2012), Karle et al. (2015), and Sprenger (forthcoming).
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and Johnson (1996), Huck and Weizsäcker (1999), and Sonsino et al. (2002) report

mixed results regarding complexity’s influence on deviations from expected payoff

maximizing choices. In choices between lotteries with different levels of complexity,

Mador et al. (2000) and Sonsino et al. (2002) find an aversion to complexity. Moffatt

et al. (forthcoming) find that experience reduces complexity aversion.

Kőszegi and Rabin (2006, 2007), henceforth KR, capture the influence of expecta-

tions as reference points in a theoretical model.4 In the KR model, the decision maker

experiences gains and losses if her utility exceeds or falls short of utilities in states

of the world that did not materialize. To avoid losses, the decision maker compares

consequences of her choice in alternative states and makes a choice that entails small

differences. To provide some intuition for the mechanisms that underlie an interaction

between loss aversion and complexity, we draw on evidence from psychology. On the

one hand, it is well established that that decision makers rather focus on differences

than on absolute values (Kahneman, 2003). If differences attract attention, a large

number of differences between states in complex choice environments draws the

decision maker’s focus to these differences, i.e. to gains and losses.5 On the other hand,

if cognitive effort of computing expected gain-loss utility is increasing in the number of

states, individuals might abstain from taking expected gain-loss utility into account if

the outcome distribution is complex.6 This relates to evidence and models of (rational)

inattention (Sims, 2003; DellaVigna, 2009) and bounded rationality (Gabaix et al.,

2006).

To investigate the relationship between reference-dependent preferences and com-

plexity, we draw on data from a laboratory experiment. The experiment confronts

4In contrast to earlier models of disappointment aversion that use the expected consumption utility
as a single reference point (Bell, 1985; Loomes and Sugden, 1986; Gul, 1991), the reference bundle in
the KR model comprises the whole distribution of prospective consumption utilities. Comparing both
types of models, Sprenger (forthcoming) finds an endowment effect for risk that follows from the KR
model but not from the models of disappointment aversion with single reference points. Motivated by
this evidence, we mainly focus on the KR model. Comparing both specifications, we provide evidence
in favor of the KR model.

5Considering complexity in decision making is akin to taking framing effects into account. In prospect
theory, framing affects preferences by increasing the salience of specific aspects of a decision problem
(Kahneman and Tversky, 1979). For evidence on framing effects see, e.g., Kahneman and Tversky
(1981). A related literature on focusing in economic choice discusses a tendency of decision makers to
disproportionately focus on large differences (Bordalo et al., 2012, 2013; Kőszegi and Szeidl, 2013).

6In the KR model, for a discrete probability distribution, the number of comparisons to compute
expected gain-loss utility increases substantially with a rising number of alternative states. Disregarding
comparisons of outcomes with themselves, in a two-outcome lottery, the decision maker in the KR
model makes 2 comparisons. For a three-outcome lottery the number of comparisons rises to 6. For
an m-outcome lottery the number of comparisons is m(m− 1). A similar argument with respect to
cognitive effort can be made for complexity in terms of heterogeneous probabilities of states. The
necessity to assign different weights to comparisons if probability distributions are non-uniform renders
decision making in the KR model more involved for heterogeneous probabilities than for a uniform
probability distribution.
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subjects with a sequence of binary choices between lotteries, varying complexity be-

tween choice sets via the number of different decision outcomes and probabilities. To

reduce the experience of loss if an unfavorable outcome is drawn from the chosen

lottery, subjects can forgo higher expected material payoffs and choose lotteries that

expose the decision maker to smaller prospective losses. Underlying the simple binary

choice between lotteries is a more involved latent structure. The experiment sets

up choice sets in a way that allows us to approximate individually optimal choice

of effort in working relationships, where output is a poor signal of effort and there

is some probability of receiving a lower wage that is unrelated to prior effort provi-

sion. A parsimonious model predicts that in this context, loss averse decision makers

exert less effort to avoid the experience of loss if the low wage is drawn.7 In a first

step, the analogy to effort allows for an intuitive interpretation of choices, a precise

quantification of deviations from expected payoff maximization and tracing out the

joint influence of risk and loss aversion. In a second step, the set-up allows for the

estimation of structural parameters with a binary choice model that disentangles loss

aversion from risk aversion. The structural model considers the whole distribution of

possible consumption utilities as a reference bundle and allows for heterogeneity in

preference parameters with respect to the complexity of the lotteries.

We find that expected monetary payoff maximization or purely erratic choices

cannot explain the observed choice pattern. The structural estimates of preference pa-

rameters show that a driving force behind deviations from expected payoff maximizing

decisions is an aversion to losses with respect to consumption utilities in alternative

states. The data indicate an inverse-U shaped relationship between complexity and the

weight of expected gain-loss utility. Gain-loss utility has a large effect on choice under

moderate complexity but has a small impact on decisions under low and high levels of

complexity. Allowing for heterogeneity in the stochastic component of decisions, we

find that results are not driven by confusion over complex lotteries but by heterogeneity

in the structural parameters for risk and loss aversion. In a comparison with a model

of disappointment aversion that uses the expected consumption utility as a single

reference point, we provide suggestive evidence in favor of the KR model.

The remainder of the paper is organized as follows. Section 1 outlines the KR

model’s framework and makes predictions. Section 2 describes the experimental

design and data. Section 3 discusses deviations from random and expected monetary

payoff maximizing choices. Section 4 details the empirical strategy and Section 5

presents the structural estimates. Section 6 concludes.

7The choice of a low effort level is equivalent to choosing a lottery with smaller differences between
alternative lottery outcomes.
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1 Predictions

Underlying a binary choice between lotteries in the experiment is a choice between

effort levels with uncertainty over future returns to effort provision. The experiment

does not implement the choice of effort directly. Instead, the design allows us to

approximate expected utility maximizing effort from choices between lotteries (see

Section 2 for details) and to compare the empirical distributions of optimal effort

levels with theoretical predictions.

The latent structure resembles a working relationship where output is a poor signal

of effort, rendering wages stochastic. After the choice of effort (x), exerted effort

translates into a wage consisting of a constant component plus piece rate times effort

( fw + wx) with probability pw. With probability 1− pw the principal misjudges effort

and the decision maker receives a fixed wage ( fl or fh) that is unrelated to her prior

effort provision.8 Prospective decision outcomes are

πl(x) = fl − 1
2

x2 with probabil i t y pl ,

πw(x) = fw − 1
2

x2 + wx with probabil i t y pw,

πh(x) = fh − 1
2

x2 with probabil i t y ph,

(1.1)

where 1
2 x2 is a convex monetary cost of effort.9

We later choose piece rates and constant components such that in eq. (1.1) it holds

that fl < fw+wx ≤ fh, and accordingly πl < πw ≤ πh. To predict the optimal choice of

x , we begin by setting up a utility function. Define consumption utility from outcome

k as Uk ≡ U(πk(x)) with k ∈ {l, w, h}. We assume that individuals have narrow focus

and that Uk takes the form

Uk =
1− e−γπk

γ
, (1.2)

where γ is the Arrow-Pratt measure of absolute risk aversion.10 Assuming separability,

expected KR utility is

EUKR(x) = pl Ul + pwUw + phUh +ηV (x). (1.3)

8Abeler et al. (2011) implement a real effort task with a similar structure. For simplicity, we do not
address the decision problem of the principal and assume that a negative (positive) shock results in the
wage fl ( fh) without making assumptions about the mechanisms by which shocks transmit to output.

9 Implementing a monetary cost of effort mirrors chosen effort experiments.
10Section B of the Appendix discusses estimation results for alternative specifications with constant

relative risk aversion and expo-power utility.



Loss Aversion under Risk: The Role of Complexity 5

The first three terms capture expected consumption utility. V (x) captures expected

gain-loss utility; η measures the weight of expected gain-loss utility. Loss averse

decision makers derive expected gain-loss utility from a comparison of each outcome’s

consumption utility with a reference bundle. The KR model assumes that the decision

maker’s reference bundle comprises the entire distribution of consumption utilities.

We adopt the idea of the choice-acclimating personal equilibrium in Kőszegi and

Rabin (2007) and assume that the decision maker maximizes expected KR utility

given that uncertainty is resolved after her choice of effort. With outcomes satisfying

πl < πw ≤ πh, expected gain-loss utility in the KR model is

V (x) = pl [pl(Ul − Ul) +pwλ(Ul − Uw) +phλ(Ul − Uh)]

+pw [pl(Uw − Ul) +pw (Uw − Uw) +phλ(Uw − Uh)]

+ph [pl(Uh − Ul) +pw (Uh − Uw) +ph (Uh − Uh)].

(1.4)

The parameter λ measures the degree of loss aversion. For a loss averse individual,

the weight of expected gain-loss utility η is strictly greater than zero and λ is strictly

greater than one, i.e. losses loom larger than equal-sized gains.11 We will later allow

η to vary with complexity. Note that because the reference bundle depends on the

choice of x , reference points in the KR model are endogenous.

It is straightforward that an expected KR utility maximizing decision maker’s

optimal choice x∗ satisfies

1=
pwU ′w

−pl U
′
l − phU ′h −ηV (x)′ . (1.5)

Intuitively, the decision maker trades off increases in Uw against reductions in Ul and

Uh and losses because of deviations of outcomes from the reference bundle.

Figure 1 shows the predictions of the model for w = 3 and probabilities pl =
pw = 0.5, i.e. ph = 0.12 Panel A illustrates a risk and loss neutral decision maker’s

optimal choice x∗0.13 The blue solid line (red dotted line) is her utility if the higher

(lower) outcome πw (πl) is drawn. Because an increase in x comes at a cost for both

outcomes but increases only πw, Uw increases in x whereas Ul decreases in x . To find

the optimal value of x we include −Ul (red solid line) and search for the value of x

where marginal gains in Uw equal marginal losses in Ul . Here, x∗0 = pww = 1.5 satisfies

11Because we only look at small stakes in the laboratory, we disregard decreasing sensitivity and
assume that the value function is piece-wise linear. We do not consider probability weighting.

12The same parametrization was underlying one of the lottery configurations that was implemented
in the experiment.

13Expected utility of the risk and loss neutral decision maker is EU(x) = plπl + pwπw + phπh.
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the optimality condition (1.5) for a decision maker who is risk neutral and does not

experience gain-loss utility.

Figure 1: Predictions for a Two-Outcome Lottery (with πw and πl)

A: Risk Neutrality and No Gain-Loss
Utility η = 0

B: Risk Aversion and (No)
Gain-Loss Utility (η = 0) η > 0

pwUw

Uw=fw-1/2x2+wx

plUl

Ul=fl-1/2x2

- plUl

-Ul=-fl+1/2x2

x0*

0

C
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m
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n 
U
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x

Notes: The Figure shows predictions for a two-outcome lottery with w= 3 and probabilities pl = pw = 0.5, i.e. ph = 0. For risk
preferences, we set γ to 0.21. For expected gain-loss utility we set η to 1 and λ to 2.1. The blue solid lines (red dotted line)
show expected consumption utilities of the higher (lower) lottery outcome. The figure includes the negation of the expected
consumption utility of the lower outcome (red solid lines) and the sum over the expected consumption utility of the lower
outcome and expected gain-loss utility (red dashed line). The gray vertical lines are at expected (KR) utility maximizing values
of x .

Panel B shows how the decision maker’s optimal choice of x changes, if she is risk

averse but does not experience gain-loss utility (blue and red solid line) or if she is risk

and loss averse (blue solid line and red dashed line). Because of decreasing marginal

utilities and πl < πw, making the decision maker risk averse increases the slope of

Ul relative to the slope of Uw. To satisfy the optimality condition (1.5), she chooses

x∗ = 1, which is lower than the risk neutral decision maker’s optimal choice. If the

decision maker also experiences gain-loss utility, i.e. if η in the denominator of (1.5)

is strictly greater than zero, x∗ drops to 0.5. This is because an increase in x increases

expected losses due to a larger difference between Ul and Uw if πl is drawn. Because

losses loom larger than equal-sized gains, these losses are not offset by gains if πw is

drawn.

Setting pl instead of ph to zero reverses the direction of a risk and loss averse

individual’s predicted deviation from x∗0. The risk and loss averse individual will

optimally choose a value of x that is greater than x∗0. For three-outcome lotteries, the
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sign of predicted deviations depends on the relative strength of risk and loss aversion.

For all lotteries, the size of the gap between x∗ and x∗0 depends on risk preferences

and the degree of loss aversion.14

2 Design & Data

Approximation of x∗ with Binary Choices The design of lotteries follows the latent

choice-of-effort framework but simplifies choice along two dimensions. First, individu-

als make discrete choices between lotteries instead of choosing x directly. Offering a

binary choice set reduces the continuum of alternative lotteries to a menu with two

alternatives. Second, lotteries in the choice set show prospective outcomes directly and

do not detail the outcome composition from effort dependent and fixed elements.15

To approximate the value of x that maximizes expected utility for a given lottery

configuration with binary choices, the experiment implements a sequence of choice

sets.16 We begin an elicitation sequence with a choice set that is centered around

x∗0, the expected monetary payoff maximizing value of x (see Figure 1). Define two

alternative values of x as x and x where x < x . Initially, the individual makes a choice

between a lottery where x = 0 and a lottery where x = 2x∗0. Both initial lotteries have

the same expected monetary payoff. The subsequent choice set replaces the value of

x of the non-chosen lottery with the mean over x and x . By iteratively replacing the

non-chosen lottery with a lottery that implements the mean over the previous values

of x , this procedure approximates the individual’s expected utility maximizing value

of x . The sequence stops after 4 iterations or if the follow-up lotteries’ outcomes only

differ in the second digit.17 Note that because outcomes of the non-chosen lottery

have a zero probability of being drawn, they do not alter expected gain-loss utility of

the chosen lottery in the KR model.

Figure 2 shows the implementation of a choice set for a two-outcome lottery. Each

pie chart represents one lottery and includes information on possible outcomes and

the probability distribution. Individuals are unaware of the payoff function underlying

the outcomes and of the iterative elicitation procedure. To attenuate mistakes because

of a misconception of risk, individuals can choose between two additional ways of

14For predictions with different degrees of risk and loss aversion see Figure A1 in the Appendix.
15Apart from simplifying the choices, stepping away from a design with explicit effort provision and

implementing a neutral framing rules out that large fixed outcomes are perceived as efficiency wages
and increase effort via sentiments of reciprocity.

16The iterative procedure is similar to the elicitation of certainty equivalents in Abdellaoui et al.
(2008).

17Table A1 in the Appendix provides an example for the procedure.
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displaying the lotteries.18

Figure 2: Implementation

17.30 €
50 % 

5.00 €
50 % 

11.10 €
 50 %

11.20 €
50 % 

Select

View

Select

4 of 18

Notes: The figure shows the implementation of a two-outcome lottery.

Variation of Complexity To evaluate the influence of complexity on choice, the

experiment varies complexity within subjects along two dimensions: by increasing

the number of different lottery outcomes and by increasing the number of different

outcome probabilities. For low complexity, the experiment implements two-outcome

lotteries with uniform probabilities of 1
2 . Moderately complex lotteries include an

additional third outcome but still implement uniform probabilities of 1
3 . Highly complex

lotteries comprise three prospective outcomes with different probabilities. Because

highly complex lotteries in the experiment mirror four-outcome lotteries that includeπl

or πh twice and implement uniform probabilities of 1
4 , we can alternatively differentiate

between two-outcome lotteries (low complexity), three-outcome lotteries (moderate

complexity) and four-outcome lotteries (high complexity).

Measuring the complexity of a lottery by outcome- and probability-set size is

consistent with notions of complexity in psychology (Payne et al., 1993) and the

economic literature (Sonsino et al., 2002; Loomes, 2005; Moffatt et al., forthcoming).19

Longer average decision times and a higher subjective difficulty of making a decision

provide suggestive evidence for an increase in complexity in three- and four-outcome

18There was no constraint on how many times individuals could switch between display options. The
probability that a participant made use of an alternative display option in a choice set was less than 1%.
See Figure A2 in the Appendix for an illustration of the additional display options.

19To describe lotteries with low complexity we specify an outcome vector (πl ,πw) or (πw,πh) and
a one-element probability vector (p). For moderately complex lotteries we have to specify a larger
number of outcomes (πl ,πw,πh). An unambiguous description of four-outcome lotteries is still more
complex, requiring us to specify three outcomes (πl ,πw, ph) and probabilities (pl , pw, ph).
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lotteries.20

The experiment implements low complexity, high complexity, and moderate com-

plexity in three blocks of choice sequences in this order. For each level of complexity an

element h is randomly drawn without replacement from {−4.0,−3.5,−3.0, 3.0, 3.5, 4.0}.
For each draw, the experiment implements w=

�
h2 and chooses the fixed elements

fk such that the value of πw is strictly smaller (weakly greater) than the expected

material payoff E(π) if h < 0 (h > 0). This results in a symmetric set of lotteries,

where each lottery configuration z ∈ {1,2, . . . 18} implements characteristic values

of w and fk. The experiment’s 18 choice sequences leave us with a maximum of 72

choices per individual.21

Further Details The experiment uses a neutral terminology, referring to lotteries

as alternatives. To avoid ordering effects, the ordering of lotteries in choice sets is

randomized between lottery configurations. After reading the instructions, subjects

answer computerized control questions, participate in the experiment and fill out a

questionnaire on individual characteristics and the experiment itself.22 To incentivize

decisions, one choice is randomly selected to become payoff relevant and an outcome

is drawn from the chosen lottery, according to the respective probability distribution.23

Subjects learn about the randomly selected payoff after all subjects have answered the

questionnaire.

The computerized experiment took place at the Laboratory for Experimental Re-

search Nuremberg in December 2014.24 In total, 94 students participated in 3 sessions,

generating 6 573 observations.25 The mean payoff from the experiment was € 13.86,

including the show-up fee. An average session lasted for 60 minutes.

20The average decision time in two-outcome lotteries (7.15 seconds) increases by 21% in three-
outcome lotteries and by 42% in four-outcome lotteries. Asked to rate the difficulty of choosing a lottery
on a Likert-scale from 1 (not difficult) to 10 (very difficult), we find an average subjective difficulty of
3.11 in two-outcome lotteries. The subjective difficulty increases by 59% in three-outcome lotteries
and by 112% in four-outcome lotteries. Using t-tests and individual-level cluster robust standard
errors, differences between average decision times and between subjective difficulties are statistically
significant at the 1% significance level. Table A9 in the Appendix shows the questions and possible
answers.

21Table A2 in the Appendix shows the parametrization and outcomes for the first and second choice
set of each lottery configuration.

22See the Appendix for the instructions and the questionnaire.
23Paying out one randomly selected lottery to incentivize choice can in principle cause all (chosen)

lotteries to enter the reference bundle. However, based on the evidence in Starmer and Sugden
(1991) and Cubitt et al. (1998) who do not find contamination effects in the random lottery incentive
mechanism, we argue that subjects treat lotteries effectively in isolation.

24The experiment was programmed with z-Tree (Fischbacher, 2007) and subjects were recruited with
ORSEE (Greiner, 2004).

25See Table A3 in the Appendix for summary statistics of the participants.
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3 Deviations from Maximization of Expected Monetary

Payoffs and Random Choices

Before turning to the structural analysis of risk and loss aversion, we show that maxi-

mization of expected monetary payoffs or random choices alone cannot explain the

observed choice pattern. We furthermore evaluate the joint influence of risk and loss

aversion on the optimal provision of effort. To test if maximization of expected mone-

tary payoffs or random choices alone suffice to explain choice patterns, we compare

empirical distributions of expected utility maximizing values of x with theoretical

predictions. The experimental design allows us to approximate x∗iz, individual i’s utility

maximizing value of x for a given lottery configuration z. To approximate x∗iz, we

use choices in the last choice set of the lottery configuration’s choice sequence. The

approximated optimal value x̂∗iz is the average over the chosen lottery’s latent value

of x ∈ {x iz, x iz} and 1
2(x iz + x iz), divided by the choice sequence’s upper limit of x .

We end up with 1 692 normalized individually optimal choices over the same domain

x̂∗iz ∈ (0, 1).26 For all lottery configurations, the normalized expected monetary payoff

maximizing value of x is x̂∗0 = 0.5.

If decision makers randomly choose lotteries, x̂∗ should follow a standard uniform

distribution with a density of 1 over the whole domain.27 If individuals maximize

expected monetary payoffs and make some random decision errors, we should see

bunching around x̂∗0.

Figure 3 shows kernel density estimates (solid lines) and median values (dashed

lines) of x̂∗ for all levels of complexity. The Figure also includes the theoretical density

functions for random choices (horizontal gray lines) and x̂∗0 (vertical gray lines).

Because of different theoretical predictions for risk and loss aversion, we distinguish

lotteries with expected monetary payoffs that are smaller (Panel A) or larger (Panel B)

than πw.

There is a substantial and significant departure from the flat density function for

random choices.28 Because the median of x̂∗ also deviates from x̂∗0, maximization

of expected monetary payoffs alone cannot explain the choice pattern. The sign of

26Because the experiment implements a finite number of iterations in each choice sequence, x̂∗ is not
continuous. However, inaccuracies that stem from the approximation procedure should be negligible as
the grid is fine with a constant spacing of 0.063.

27If individuals choose lotteries at random (e.g. by flipping a fair coin), each possible value of x̂∗ is
chosen with the same propensity P =

�
1
2

�4
. Because the grid on which we approximate x̂∗ is reasonably

fine and the theoretical distribution of x̂∗ is bounded by values close to 0 and 1, we assume a continuous
standard uniform distribution for random choices.

28Figure A3 in the Appendix provides kernel densities that include individual-level cluster bootstrap
confidence intervals for inference.
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the median subject’s deviations under low complexity follows theoretical predictions

for E(π) < πw and E(π) ≥ πw. For inference we run quantile regressions of x̂∗

(centered around x̂∗0 = 0.5) on dummies for complexity, a dummy for E(π) ≥ πw,

and interaction terms and cluster standard errors on the individual level. We find

that deviations of the median from x̂∗0 are significant under all levels of complexity,

irrespective of the relationship between expected material payoffs and πw (p-values

< 0.050).29 Differences in the size of deviations between moderate and low complexity

and between high and low complexity are significant (p-values < 0.010).30

Figure 3: Deviations from Expected Payoff Maximization and Random Choices

A: Lotteries with E(π)< πw B: Lotteries with E(π)≥ πw
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Notes: The Figure shows kernel densities (solid lines) and the median values (dashed lines) of x̂∗. Panel A (Panel B) shows

choices in lotteries with an expected material payoff smaller (greater) than πw. The Figure also includes the theoretical density

functions for random choices (horizontal gray lines) and the expected monetary payoff maximizing value x̂∗ (vertical gray lines).

Underlying the empirical distributions are 1692 individually optimal values of x̂∗. For the univariate kernel density estimations

we use the Epanechnikov kernel function with a bandwidth of 0.12.

RESULT 1: Empirical density functions deviate from theoretical predictions for random

choices. Maximization of expected monetary payoffs alone cannot explain the choice

pattern. Complexity affects the size of deviations.

29We center x̂∗ around x̂∗0 = 0.5 and reverse the sign of x̂∗ for low complexity lotteries with E(π)≥ πw.
Reversing the sign of deviations allows us to compare the size of deviations between different levels of
complexity, accounting for the fact that the direction of predicted deviations is different in lotteries
with low complexity and E(π)≥ πw. Table A4 in the Appendix provides estimation results.

30To test whether differences in the size of deviations from x∗0 between low and moderate (low and
high) complexity are significant, we compare a model that restricts the influence of complexity to high
(moderate) complexity and an unrestricted model using F-tests.
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The empirical distributions of x̂∗ alone do not tell us what drives the deviations from

expected monetary payoff maximizing choices. In particular, we cannot distinguish

the effects of risk aversion from loss aversion. To find out what drives decisions, we

develop an empirical model, drawing on our previous assumptions regarding the utility

function, and estimate structural preference parameters with the binary choice data.

4 Binary Choice Model and Econometric

Implementation

On the basis of the expected KR utility function (1.3), we set up a structural binary

choice model. Individual i ∈ {1, 2, . . . , N} faces j ∈ {1, 2, . . . , Ji} choices between two

lotteries Π j ≡ Π j(x j) and Π j ≡ Π j(x j). She chooses Π j, if the difference between

expected utilities of the lotteries is larger than a stochastic Fechner-error τ jεi j. The

parameter τ j allows for the error variance to differ from unity.31 We assume that εi j

follow a standard normal distribution and later allow for arbitrary within-individual

correlations by computing cluster-robust standard errors. Denote the dichotomous

decision variable with Yi j. If the decision maker chooses Π j, Yi j takes the value one,

and zero otherwise. We get

Yi j(Πi j,Πi j,θ j,γ j,τ j) =

�{EUKR(Πi j,θ j,γ j)− EUKR(Πi j,θ j,γ j) +τ jεi j > 0}, (4.1)

where �{·} is the indicator function and γ j is the Arrow-Pratt measure of absolute

risk aversion. Because we cannot separately identify the gain-loss parameters λ and

η (see, e.g., Crawford and Meng, 2011), we define θ j ≡ η j(λ− 1) as a measure of

loss aversion.32 We allow for heterogeneity over the complexity of the lottery in all

parameters, i.e.

ξ j = gξ(Xi jβ
ξ), ξ j ∈ {γ j,θ j,τ j}. (4.2)

The function gξ(·) allows us to put theoretical restrictions on parameters. For θ j and

τ j we use the exponential function to rule out negative values. We do not restrict γ j.

The row vector Xi j has three elements: 1, an indicator variable that takes the value 1

if lotteries in i’s choice set j are moderately complex and an indicator variable for high

31A ceteris paribus increase in τ j increases the propensity of choosing a lottery with lower expected
KR utility. For a detailed discussion of the error specification see, e.g., Loomes (2005).

32To estimate θ we rearrange the terms in the expected gain-loss utility, so that:
ηV (x) = θ[pl ph(Ul − Uh) + pl pw(Ul − Uw) + pwph(Uw − Uh)].
We assume that differences in complexity influence the weight of expected gain-loss utility (η) but not
the degree to which losses outweigh equal-sized gains (λ).
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complexity. Because Xi j considers different levels of complexity with dummy variables,

the model does not impose functional form restrictions on the relationship between

preference parameters and complexity.

Denoting the cumulative standard normal distribution function with Φ(·), the

probability of observing the choice Yi j is

ιi j(Yi j,Πi j,Πi j,θ j,γ j,τ j,ω)

= (1−ω)Φ((2Yi j − 1)
1
τ j
ΔEUKR

i j (Πi j,Πi j,γ j,θ j)) +
ω

2
.

(4.3)

To account for the possibility that subjects randomly choose a lottery because of a

tremble, we follow Harless and Camerer (1994) and include the trembling hand

parameter ω in (4.3). The parameter value of ω equals the probability of choosing a

lottery at random. We follow von Gaudecker et al. (2011) and allow for heterogeneity

in one of the parameters that govern the degree of randomness in decision making (in

our case in τ).33

The (partial) likelihood function is

ιi =
Ji∏

j=1

ιi j(Yi j,Πi j,Πi j,θ j,γ j,τ j,ω). (4.4)

The log-likelihood function is the sum of log(ιi) over all individuals in the sample. We

employ standard techniques to maximize the log-likelihood function. For inference,

we cluster standard errors on the individual level and calculate standard errors of

transformed parameters using the delta method.

5 The Role of Complexity for Reference-Dependent

Preferences: Structural Estimates

Turning to the structural estimates, Table 1 shows the gain-loss parameter θ under

different levels of complexity. Under moderate complexity, θ is significantly larger than

under low and under high complexity (p-values < 0.050). The difference between

33We do not allow for heterogeneity in the trembling hand parameterω. Following the argumentation
in Harless and Camerer (1994), there is no intuitive reason for choice dependence of “errors” in terms
of trembles. To capture an effect of complexity on the stochastic elements of choice, our model follows
the suggestions in Loomes (2005) and allows for heterogeneity in τ, i.e. mistakes in the comparison
of expected utilities. Instead of trembles, we could also interpret heterogeneity in ω as reflective of
avoiding cognitive effort by choosing a lottery at random if the choice is difficult. However, we find that
the results are robust to allowing for individual level heterogeneity in ω over the subjective difficulty of
choice. Table A8 provides marginal effects on parameter estimates and cluster-robust standard errors.
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θ̂low and θ̂high is not significant (p-value > 0.800). This suggests an inverse-U shaped

relationship between complexity and the weight of expected gain-loss utility. Starting

from a low baseline, an increase in complexity increases the weight of expected gain-

loss utility. With rising complexity and cognitive effort of comparing outcomes, the

weight decreases.

Table 1: Loss Aversion and Complexity – Estimates

Low Complexity Moderate Complexity High Complexity

0.207 1.48∗∗∗ 0.271

(0.430) (0.447) (0.260)

Notes: The number of observations is 6 573. The estimation follows (4.4). Coefficients for choice

under low complexity are gθ (βθcons). Coefficients for moderate and high complexity are gθ (βθcons +
βθmoderate) and gθ (βθcons + β

θ
high). Individual-level cluster robust standard errors are in parentheses.

∗∗∗p-value< 0.01

A comparison of the preference parameters with structural estimates from pre-

vious studies on expectation-based reference-dependent preferences shows that our

parameter estimates are of comparable magnitude. Crawford and Meng (2011), for

example, report estimates of θ ≡ η(λ− 1) between 0.111 and 2.01, depending on the

econometric specification. The results also fit the findings in Baucells et al. (2011),

who consider a sequence of past prices as reference points in a laboratory experiment

on investor selling decisions. They find evidence for loss aversion only for long prices

sequences, i.e. complex choice environments in terms of our experiment.

Table 2: Risk Aversion and Complexity – Estimates

Low Complexity Moderate Complexity High Complexity

0.084 0.084∗∗∗ 0.278∗∗∗

(0.106) (0.028) (0.021)

Notes: The number of observations is 6573 The estimation follows (4.4). Coefficients for choice under

low complexity are gγ(βγcons). Coefficients for moderate and high complexity are gγ(βγcons+β
γ

moderate)
and gγ(βγcons + β

γ

high). Individual-level cluster robust standard errors are in parentheses. ∗∗∗p-value<

0.01

Table 2 summarizes parameter estimates of the Arrow-Pratt coefficient of absolute

risk aversion. We find evidence for risk aversion under all levels of complexity. Strong

risk aversion in lotteries with high complexity counteracts the lower weight of expected

gain-loss utility, explaining why the average individual’s departure from expected
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monetary payoff maximization is similar under moderate and high complexity (see

Figure 3).

Estimates of the auxiliary parameters that govern the stochastic element of choice

are ω̂ = 0.313, τ̂low = 0.384, τ̂moderate = 0.400 and τ̂high = 0.135.34

RESULT 2: The structural estimates of preference parameters indicate an inverse-U

shaped relationship between complexity and the weight of expected gain-loss utility.35

The estimates of the loss aversion parameter suggest that loss aversion has a

significant effect on choices between moderately complex lotteries. To get a better

idea of the impact of expected losses on decisions, we compare predictions of x̂∗ with

the actual mean over realizations of x̂∗. First, we plug the parameter estimates of θ , γ

and ω into (1.3) and use numerical optimization techniques to find the value x̂∗ that

maximizes expected KR utility. We then make predictions without accounting for the

effect of expected gain-loss utility by setting the weight of expected gain-loss utility

(η) to zero.

Figure 4 shows an approximation of gain-loss utility’s influence on predicted

deviations from expected payoff maximization under different levels of complexity

(red dashed line). As before, x̂∗ lies in the interval (0, 1), with an expected monetary

payoff maximizing value of x̂∗0 = 0.5. Consequently, the deviations from expected

payoff maximization our model predicts lie in the interval (−0.5, 0.5). To illustrate the

magnitude of loss aversion’s impact on these deviations under moderate complexity,

the bar decomposes the overall deviation into its sources: Gain-loss utility (blue area)

and risk aversion (red area). The decomposition shows that the influence of gain-loss

utility is substantial under moderate complexity. Comparing the predicted deviation

from expected payoff maximization with the median deviation in the data (black

circle), we find that our prediction is fairly accurate.

RESULT 3: Gain-loss utility has a large effect on choice under moderate complexity.

34Table A5 in the Appendix provides marginal effects on parameter estimates and cluster-robust
standard errors for all model parameters.

35We do not theoretically model the mechanisms underlying an interaction between complexity and
loss aversion. However, the inverse-U shaped relationship is in line with a trade-off between attention
and cognitive effort.
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Figure 4: Influence of Gain-Loss Utility on Choice of Effort
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Notes: The figure shows predictions of deviations from expected payoff maximization that we can at-
tribute to gain-loss utility under different levels of complexity. Each gray dot represents a predictions
for one of the lottery specifications. For illustrative purposes, we approximate a continuous progres-
sion of gain-loss utility’s influence over different levels of complexity using a cubic spline with median
values over predictions for different lottery specifications (red dashed line). To illustrate the magni-
tude of loss aversion’s impact on these deviations under moderate complexity, the bar decomposes the
overall deviation into its sources: Gain-loss utility (blue area) and risk aversion (red area). Predictions
utilize the parameter estimates of θ , γ and ω. To predict choices without gain-loss utility, we use
the same parameter estimates but set η, i.e. θ , to zero. We reverse the sign of x̂∗ for low complexity
lotteries with E(π)≥ πw. Reversing the sign of deviations allows us to compare the size of deviations
between different levels of complexity, accounting for the fact that the direction of predicted deviations
is different in lotteries with low complexity and E(π)≥ πw.

A factor that is closely related to expectations and loss aversion is experience. List

(2003), for example, finds no endowment effect for experienced collectors of sports

memorabilia. A potential explanation for his finding is that experienced collectors

expect losses of endowments in market transactions. In choice under risk, the weight

of expected gain-loss utility might be affected by subjects’ previous experiences with

losses and disappointment in similar laboratory experiments. To test for an influence

of experience, we add dummies for prior participation in laboratory experiments and

a dummy for experiences with similar experiments to Xi j in (4.2).36 We find only

small and insignificant negative effects of previous participation in a large number

of experiments (−0.136) and experience with similar experiments (−0.102) on the

weight of expected gain-loss utility (p-values > 0.300). Experience does not attenuate

36We match Individuals’ answers to the questions “Have you participated in a similar experiment in
the past?” and “How often (approximately) have you participated in laboratory experiments before this
experiment” to the experimental data.
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the influence of loss aversion on decisions in our experimental context.37

RESULT 4: Experience does not attenuate the influence of expected gain-loss utility on

choices.

The results suggest that one way in which complexity interacts with loss aversion

is via cognitive effort. To lower the cognitive effort of computing prospective gains

and losses, the decision maker can reduce the size of the reference bundle. We follow

models of disappointment aversion (Bell, 1985; Loomes and Sugden, 1986; Gul, 1991)

and consider an alternative specification with the expected consumption utility as a

single reference point. We set up expected gain-loss utility in a way that covers the

specification with the expected consumption utility as a single reference point and the

specification with the KR model’s larger reference bundle. We get

ηV (x) =θ[pl ph(Ul − Uh)

+ �{EU ≥ Uw}(pwph(Uw − Uh) + pl pwκ(Ul − Uw))

+ �{EU < Uw}(pwphκ(Uw − Uh) + pl pw(Ul − Uw))],

(5.1)

where κ is a weight for the additional comparisons in the KR model and EU is expected

consumption utility.38 If κ equals one, expected gain-loss utility is as the KR model

predicts. If κ equals zero, expected gain-loss utility reduces to the specification with

the expected consumption utility as a single reference point. Note that under low

complexity, expected gain-loss utility is the same for both specifications. The estimate

of κ̂ = 0.921 (p-value< 0.01) shows that the additional terms in the KR specification of

expected gain-loss utility have a significant influence on choices. The evidence in favor

of the KR model is in line with Sprenger (forthcoming), who finds an endowment effect

for risk that follows from the KR model but not from the models of disappointment

aversion with single reference points.39

RESULT 5: Reference bundles comprise the entire outcome distribution.

37Table A6 in the Appendix provides marginal effects on parameter estimates and cluster-robust
standard errors for all model parameters.

38See Section C of the Appendix for the derivation of eq. (5.1).
39Table A7 in the Appendix provides marginal effects on parameter estimates and cluster-robust

standard errors for all model parameters.
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6 Conclusion

The paper investigated empirically how loss aversion interacts with complexity. The

results suggest that in situations with uncertainty over prospective decision outcomes,

utility is reference-dependent as the KR model predicts. However, the weight of

expected gain-loss utility depends on the complexity of the choice environment. The

structural estimates imply that if the choice environment is sufficiently complex,

individuals deviate from rational choice to avoid losses.

The inverse-U shaped relationship between complexity and the weight of expected

gain-loss utility provides a broader framework to interpret mixed previous findings on

deviations from expected monetary payoff maximization in complex lotteries. Whereas

Sonsino et al. (2002) and Huck and Weizsäcker (1999) found bigger deviations from

payoff maximization in complex lotteries with larger outcome sets, Bruce and Johnson

(1996) did not find an effect of the number of racers on the improvement of horse-

race betters over random selection. The absence of an effect for horse-race betters is

consistent with different weights of expected gain-loss utility being the driving force

behind the complexity effects. All bets in the sample are on single horses and, because

there are only two possible outcomes (win or loose), the complexity of the choice

environment is always low. Because a larger number of racers does not affect the

(low) weights of expected gain-loss utility, we do not expect an effect of the number

of racers on improvements over random selection.

The larger influence of reference-dependent preferences in complex choice en-

vironments offers a novel explanation for complexity aversion (Mador et al., 2000;

Sonsino et al., 2002). The findings suggest that an aversion to moderately complex

lotteries in choice sets that comprise an alternative with lower complexity may result

from complexity, directing the loss averse decision maker’s attention to prospective

losses.

The non-trivial interaction between complexity and loss aversion suggests that the

design of optimal incentives depends on task heterogeneity, in the same spirit in which

optimal incentives depend on individual level heterogeneity in risk aversion (Bellemare

and Shearer, 2013). Kőszegi (2014) discuss optimal contracts in a principal agent

model with expectation based reference dependence. Coming back to the analogy of

x to effort, monetary incentives are less effective if output is a poor signal of effort

and the outcome distribution of the task is complex. The structural estimates indicate

that lower effort levels under moderate complexity do not reflect a higher propensity

of decision errors in the spirit of Sonsino et al. (2002) but are driven by expected

gain-loss utility. Considering differences in the weight of expected gain-loss utility
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as a determinant of the effectiveness of incentives complements Abeler and Jäger

(forthcoming), who attribute a lack of reactions to changes in taxation to a limit in the

taxpayer’s capacity to process information in highly complex tax schemes.

On a more general note, the results are in line with a central premise of psychology—

context matters—and suggest that conclusions about preferences should be drawn

against the backdrop of the choice environment. Naturally, in the context of a controlled

laboratory experiment, we condense choice environments by restricting the number

of available candidates for reference points. It is up to future research to extend the

design to include alternative reference points such as peers’ payoffs and to look at

alternative ways to vary complexity.
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Appendix

A Tables and Figures

Table A1: Example of a Choice Sequence

Alternative 1 Alternative 2 Choice

πl πw latent x πl πw latent x

1 9.50 9.70 0 5.00 14.20 3.00 Alternative 1

2 9.50 9.70 0 8.40 13.10 1.50 Alternative 1

3 9.50 9.70 0 9.20 11.70 0.75 Alternative 2

4 9.40 10.80 0.375 9.20 11.70 0.75 Alternative 1

Notes: The table shows a choice sequence for an exemplary two-outcome lottery configuration with w = 3 and proba-
bilities pl = pw = 0.5, i.e. ph = 0. We denote lottery outcomes with πl and πw. The lower (higher) latent value of x in
the choice set is x (x).
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Table A3: Summary Statistics

Mean SD Min Max

Age 22.5 2.91 18 33

Length of University Studies in Years 2.09 1.93 0 11

1= Female 0.76 0.43

Experience (Laboratory):
Number of Prior Participations 6.91 4.06 0 20

1= Experience in Similar Experiments 0.52 0.50

Payoff in Euro 13.86 7.60 5 31.4

Notes: The table shows summary statistics for the 94 participants.

Table A4: Deviations of Median Choice of Effort from the
Expected Monetary Payoff Maximizing Choice

Constant -0.156∗∗∗
(0.018)

1= E(π)≥ πw 0.000
(0.021)

1= Moderate Complexity -0.063∗∗
(0.031)

1= Moderate Complexity & E(π)≥ πw 0.125∗∗∗
(0.036)

1= High Complexity -0.125∗∗∗
(0.037)

1= High Complexity & E(π)≥ πw 0.188∗∗∗
(0.047)

Notes: The number of observations is 1 692. The quantile regression evaluates devia-
tions of the median values of x̂∗ from x̂∗0 = 0.5. Explanatory variables are dummies for
different levels of complexity, a dummy for E(π) ≥ πw, and interaction terms. The con-
stants represents the deviation of the median value of x̂∗ from x̂∗0 under low complexity.
Individual-level cluster robust standard errors are in parentheses. ∗∗∗p-value< 0.01, ∗∗p-
value< 0.05
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Table A5: Marginal Effects on Parameter Estimates

θ γ τ ω

Constant 0.207 0.084 0.384∗ 0.313∗∗∗
(0.430) (0.106) (0.340) (0.097)

1= Moderate Complexity 1.28∗∗ -0.001 0.017
(0.631) (0.114) (0.467)

1= High Complexity 0.064 0.193∗ -0.248
(0.505) (0.110) (0.352)

Notes: The number of observations is 6 573. Estimation follows (4.4). The constants represent parameter
values for choice under low complexity. We calculate marginal effects of increasing complexity as gξ(βξcons +
β
ξ
moderate)− gξ(βξcons), i.e. gξ(βξcons+β

ξ
high)− gξ(βξcons). Individual-level cluster robust standard errors are in

parentheses. The p-value of τcons is for a two-sided Wald test against 1. All other p-values are for two-sided
Wald tests against 0. ∗∗∗p-value< 0.01, ∗∗p-value< 0.05, ∗p-value< 0.1

Table A6: Marginal Effects on Parameter Estimates with Heterogeneity over
Experience

θ γ τ ω

Constant 0.300 0.055 0.355∗ 0.301∗∗∗
(0.245) (0.071) (0.201) (0.068)

1= Moderate Complexity 1.27∗∗ 0.035 -0.090
(0.641) (0.066) (0.221)

1= High Complexity -0.240 0.289∗∗∗ -0.297
(0.221) (0.076) (0.188)

1= Prior Participation in. . .
. . . 5< n< 15 Experiments 0.498∗∗ -0.079∗∗ 0.847∗

(0.249) (0.039) (0.500)

. . . n≥ 15 Experiments -0.136 0.074 -0.061
(0.222) (0.064) (0.206)

. . . Similar Experiments -0.102 0.032 -0.060
(0.107) (0.036) (0.128)

Notes: The number of observations is 6573. Estimation follows (4.4) but additionally allows for heterogeneity over
experience. The constants represent parameter values of individuals who participated in 5 or less experiments and have
no experience with similar experiments for choice under low complexity. We calculate marginal effects of increasing
complexity as gξ(βξcons +β

ξ
moderate)− gξ(βξcons), i.e. gξ(βξcons +β

ξ
high)− gξ(βξcons). The calculation of marginal effects

of experience follows the same logic. Individual-level cluster robust standard errors are in parentheses. The p-value of
τcons is for a two-sided Wald test against 1. All other p-values are for two-sided Wald tests against 0. ∗∗∗p-value< 0.01,
∗∗p-value< 0.05, ∗p-value< 0.1
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Table A7: Comparison of the KR Model’s Specification of the Reference Bundle
to a Specification with the Expected Consumption Utility as a Single Reference
Point

κ θ γ τ ω

Constant 0.921∗∗∗ 0.206 0.084 0.380∗ 0.321∗∗∗
(0.250) (0.436) (0.108) (0.340) (0.121)

1= Moderate Complexity 1.42∗∗ -0.000 0.028
(0.567) (0.116) (0.464)

1= High Complexity 0.076 0.192∗ -0.244
(0.516) (0.111) (0.352)

Notes: The number of observations is 6573. Estimation follows (4.4) with expected gain-loss utility as in (5.1). In addition
to restricting θ and τ as outlined in Section 4, the estimation restricts ω to its theoretical domain [0,1] by estimating ω =

1
1+eβω

. The constants represent parameter values for choice under low complexity. We calculate marginal effects of increasing

complexity as gξ(βξcons + β
ξ
moderate) − gξ(βξcons), i.e. gξ(βξcons + β

ξ
high) − gξ(βξcons). Individual-level cluster robust standard

errors are in parentheses. The p-value of τcons is for a two-sided Wald test against 1. All other p-values are for two-sided Wald
tests against 0. ∗∗∗p-value< 0.01, ∗∗p-value< 0.05, ∗p-value< 0.1

Table A8: Marginal Effects on Parameter Estimates with Heterogeneity in
Trembles

θ γ τ ω

Constant 0.206 0.084 0.381∗ 0.317∗∗∗
(0.432) (0.107) (0.338) (0.114)

1= Moderate Complexity 1.34∗∗ -0.003 0.039
(0.677) (0.121) (0.563)

1= High Complexity 0.076 0.194∗ -0.238
(0.508) (0.113) (0.359)

1= Moderate Difficulty of Choice 0.010
(0.190)

1= High Difficulty of Choice -0.084
(0.129)

Notes: The number of observations is 6573. Estimation follows (4.4) but also allows for some heterogeneity inω over the
subjective difficulty of choice. To measure the subjective increase in difficulty under moderate and high complexity, we use
questionnaire responses to the question “How difficult was making a choice [under low, moderate and high complexity] for
you?”. We define a dummy for moderate (high) difficulty that takes the value 1 in moderately and highly complex lottery
choices if the individual’s subjective assessment of difficulty more than 50% but not more than 150% (150% or more)
above the individual’s assessment for lottery choice under low complexity. The constants represent parameter values for
choice under low complexity. We calculate marginal effects of increasing complexity as gξ(βξcons+β

ξ
moderate)−gξ(βξcons), i.e.

gξ(βξcons+β
ξ
high)− gξ(βξcons). Individual-level cluster robust standard errors are in parentheses. The p-value of τcons is for a

two-sided Wald test against 1. All other p-values are for two-sided Wald tests against 0. ∗∗∗p-value< 0.01, ∗∗p-value< 0.05,
∗p-value< 0.1
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Table A9: Questionnaire

1 Gender: {male, female}
2 Year of birth: {1960, 1961, . . . , 2000}
3 Start of studies (at a German university): {2000,2001, . . . , 2014}
4 Field of study: {Economic Sciences, Economics, Business Administration,

Social Sciences, Economic Education, Other}
5 Have you participated in a similar experiment in the past: {Yes, No}
6 How often (approximately) have you participated in laboratory experi-

ments before this experiment: {0,1, . . . , 30}
How difficult was making a choice for you? State if choosing an alter-
native was easy (1) or hard (10). You can also choose an answer in
between.

7.1 The choice between alternatives with two possible payoffs was:
{1, 2, . . . , 10}

7.2 The choice between alternatives with three possible payoffs and equal
probabilities was: {1,2, . . . , 10}

7.3 The choice between alternatives with three possible payoffs and different
probabilities was: {1,2, . . . , 10}

8 How much effort did you put into making your choices in the same way,
you would make your choices outside of the laboratory? State if you
put little effort (1) or a lot of effort (10) into it. You can also choose an
answer in between: {1,2, . . . , 10}

Notes: The table shows questions and possible answers {in curly brackets}. The questionnaire was implemented in z-Tree.
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Figure A1: Predictions

Lotteries with E(π)< πw Lotteries with E(π)≥ πw

Two-Outcome Lottery with Uniform Probability Distribution

Three-Outcome Lottery with Uniform Probability Distribution

Three-Outcome Lottery with Non-Uniform Probability Distribution

Notes: The Figure shows Predictions of x̂∗ with (1.3) for different degrees of risk and loss aversion in lotteries that implement
w = 3. For the exact parametrization of the lotteries see Table A2. To make predictions we plug parameter values of γ and θ
into (1.3) and use numerical optimization techniques to find the optimal value of x .
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Figure A2: Implementation
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Notes: The figure shows the implementation of the additional display options for a two-
outcome lottery.
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Figure A3: Deviations from Random Choices with 95% Confidence Intervals

Lotteries with E(π)< πw Lotteries with E(π)≥ πw

Low Complexity

Random
Choice

^*

0
1

D
en
si
ty

0 .25 .5 .75 1

x

Random
Choice

^*
0

1

D
en
si
ty

0 .25 .5 .75 1

x

Moderate Complexity

Random
Choice

^*

0
1

D
en
si
ty

0 .25 .5 .75 1

x

Random
Choice

^*

0
1

D
en
si
ty

0 .25 .5 .75 1

x

High Complexity

Random
Choice

^*

0
1

D
en
si
ty

0 .25 .5 .75 1

x

Random
Choice

^*

0
1

D
en
si
ty

0 .25 .5 .75 1

x

Notes: The Figure shows kernel densities (solid lines) with 95% confidence intervals (dashed lines). The Figure also includes
the theoretical density functions for random choices (horizontal gray lines). Underlying the empirical distributions are 1 692
individually optimal values of x̂∗. For the univariate kernel density estimations we use the Epanechnikov kernel function with
a bandwidth of 0.12. To construct confidence intervals we use an individual-level cluster bootstrap with 1000 repetitions.
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B Alternative Specifications of the Utility Function

In the following, we consider a utility function with constant relative risk aversion and

expo-power utility as alternatives to the specification in (1.2).

Constant Relative Risk Aversion

The estimation follows (4.4) but uses

Uk =

⎧⎨
⎩
π

1−ρ
k −1
1−ρ f or ρ > 0,ρ 	= 1

ln(πk) f or ρ = 1,

instead of (1.2). Here, ρ is the Arrow-Pratt measure of constant relative risk aversion.

In a first step we allow for heterogeneity in ρ over all levels of complexity. Because

the parameter estimates of ρ under low (0.999) and moderate complexity (0.971) are

only marginally different from 1, we implement Uk = ln(πk) for low and moderate

complexity and estimate a single parameter ρ for high complexity.

Table B1: Parameter Estimates (Utility Function with Constant Relative Risk Aversion)

Low Complexity Moderate Complexity High Complexity

θ 0.166∗∗ 1.03∗∗∗ 0.050

(0.085) (0.352) (0.295)

ρ – – 2.65∗∗∗

(0.170)

Notes: The number of observations is 6573 The estimates of parameters under low complexity are gξ(βξcons). The

estimates of parameters under moderate high complexity are gθ (βξcons +β
ξ
moderate) and gθ (βξcons +β

ξ
high). Estimates for

the auxiliary parameters that govern the stochastic element of choice are ω̂ = 0.282, τ̂low = 0.101, τ̂moderate = 0.116

and τ̂high = 0.007. The estimates of ω (τ) are statistically different from zero (one) under all levels of complexity (p-

values < 0.050). Individual-level cluster robust standard errors are in parentheses. ∗∗∗p-value< 0.01, ∗∗p-value< 0.05
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Table B1 reports the estimates. The results are similar to the specification with

constant absolute risk aversion. Again, there is evidence for an inverse-U shaped

relationship between complexity and the weight of expected gain-loss utility. The

estimate of ρ suggests stronger risk aversion in choice under high complexity. This

finding is in line with the significantly larger Arrow-Pratt coefficient of constant absolute

risk aversion under high complexity.

Expo-Power Utility

The estimation follows (4.4) but uses Holt and Laury’s (2002) specification of the

flexible expo-power utility function (Saha, 1993)

Uk =
1− e−απ1−σ

k

α
,

instead of (1.2). With expo-power utility, decision makers exhibit constant absolute

risk aversion of α if σ = 0 and constant relative risk aversion of σ if α goes to 0.

Table B2: Parameter Estimates (Expo-Power Utility)

Low Complexity Moderate Complexity High Complexity

θ 0.155∗ 2.15∗∗∗ 0.631∗∗

(0.094) (0.586) (0.260)

σ 0.999∗∗∗ -0.463∗ -0.913∗∗∗

(0.000) (0.278) (0.245)

α 0.024 0.024 0.024

(0.015) (0.015) (0.015)

Notes: The number of observations is 6573 The estimates of parameters under low complexity are gξ(βξcons). The

estimates of parameters under moderate high complexity are gθ (βξcons + β
ξ
moderate) and gθ (βξcons + β

ξ
high). We estimate

the auxiliary parameters at ω̂ = 0.327, τ̂low = 0.000, τ̂moderate = 1.68 and τ̂high = 3.44. The trembling hand parameter

ω is significantly different from zero (p-value < 0.010) and τ̂low is significantly different from one (p-value < 0.010).

τ̂moderate and τ̂high are not significantly different from one (p-values > 0.300). Individual-level cluster robust standard

errors are in parentheses. ∗∗∗p-value< 0.01, ∗∗p-value< 0.05, ∗p-value< 0.1
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Table B2 reports the parameter estimates with expo-power utility, allowing for

heterogeneity over complexity in θ , σ, and τ.40 Again, we find evidence for an inverse-

U shaped relationship between complexity and the weight of gain-loss utility. For

low complexity the estimated risk preferences suggest an aversion to risk over the

whole domain of lottery outcomes. For moderately and highly complex lotteries, the

estimates suggest an S-shaped utility function that results in risk seeking for lotteries

with low outcomes and risk aversion for high-outcome lotteries.

40The algorithm did not reach convergence for a specification that allows for heterogeneity in α, or
heterogeneity in σ and α.
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C Gain-Loss Utility with Flexible Reference Bundle

To investigate the composition of the reference bundle, we combine a specification with

the KR model’s reference bundle and a specification with the expected consumption

utility as a single reference point.

KR – Consumption Utilities as Reference Bundle

With θ ≡ η(λ− 1), we get

ηV (x) = θ[pl ph(Ul − Uh) + pl pw(Ul − Uw) + pwph(Uw − Uh)].

Disappointment Aversion – Expected Consumption Utility as Reference Point

If expected consumption utility is strictly smaller than the consumption utility of πw,

i.e. EU < Uw, expected gain-loss utility is

V (x) = plλ[Ul − (pl Ul + pwUw + phUh)]

+ pw [Uw − (pl Ul + pwUw + phUh)]

+ ph [Uh − (pl Ul + pwUw + phUh)],

= plλ[(pw + ph)Ul − pwUw − phUh]

+ pw [−pl Ul + (pl + ph)Uw − phUh]

+ ph [−pl Ul − pwUw + (pl + pw)Uh)],

= λ[pl pw(Ul − Uw) + pl ph(Ul − Uh)]

− pl pw(Ul − Uw)

− pl ph(Ul − Uh).

After equivalently deriving expected gain-loss utility for EU ≥ Uw, we can rearrange

the terms to get

ηV (x) =

⎧⎨
⎩
θ[pl pw(Ul − Uw) + pl ph(Ul − Uh)] f or EU < Uw,

θ[pwph(Uw − Uh) + pl ph(Ul − Uh)] f or EU ≥ Uw.
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Combining Both Specifications

We end up with

ηV (x) =θ[pl ph(Ul − Uh)

+ �{EU ≥ Uw}(pwph(Uw − Uh) + pl pwκ(Ul − Uw))

+ �{EU < Uw}(pwphκ(Uw − Uh) + pl pw(Ul − Uw))],

where κ is a weight for the additional comparisons in the KR model. If κ equals

one, expected gain-loss utility is as the KR model predicts. If κ equals zero, expected

gain-loss utility reduces to the specification with the expected consumption utility as a

single reference point.



D Instructions

Instructions

Welcome to the experiment.

Please turn off your mobile phone. If you have any questions, please raise your hand.

Somebody will come to you and answer your question. From now on, communication 

with other participants is forbidden.

The Experiment

The purpose of the experiment is the analysis of economic choice behavior. The 

experiment consists of 18 sections. In each section you make choices between 

Alternative A and Alternative B.

At the end of the experiment one of your choices is randomly selected. The 

probability of being selected is the same for all of your choices. Out of the alternative, 

which you have chosen, one of the payoffs is then randomly selected. You will 

receive the payoff in cash after the experiment. Your payoff will at least amount to 

5.00 €.

The data is anonymized for evaluation.

1
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To begin a section, click XStartX. It follows a diagram of the two alternatives.

Example:

If you choose Alternative A (left), and this choice is randomly selected, you receive 

5.00 € with a probability of 50% and 17.30 € with a probability of 50%. If you choose 

Alternative B (right), and this choice is randomly selected, you receive 11.10 € with a 

probability of 50% and 11.20 € with a probability of 50%.

The size of the slices is proportional to the probability, of the corresponding payoff

being selected.

By clicking on XViewX you can display the alternatives as tables or urns. You can 

switch between the views as often as you want. By clicking on the symbol in the 

upper left corner of the screen, you can open a calculator.

2
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Your Choice

You choose one of the two alternatives.

Attention: There are no „right“ or „wrong“ choices. Make the choice that 

corresponds to your preferences.

To choose an alternative, click on Select below the respective alternative. You 

cannot change previous choices.

After you have decided, again two alternatives will be displayed. One of the 

alternatives is identical to the alternative which you have chosen before. Now you 

decide again for one of the alternatives.

Think about which one of the displayed alternatives you prefer. Make your choice

independent of your previous choices.

Attention: Each of your choices can be randomly selected for payoff. Therefore you 

should make each choice as if it determined your payoff.

Next section

After a certain number of choices, a new section commences.

End of the experiment

After you have made all of your choices, we ask you to complete a short 

questionnaire. Please behave quietly after answering the questionnaire, so you do 

not distract the other participants.

3


