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Abstract

The labor market by itself can create cyclical outcomes, even in the absence of exogenous shocks.

We propose a theory that shows that the search behavior of the employed has profound aggregate

implications for the unemployed. There is a strategic complementarity between active on-the-job

search and vacancy posting by firms: active search changes the number of searchers and the duration

of a job, and in the presence of sorting, it improves the quality of the pool of searchers. More vacancy

posting in turn makes costly on-the-job search more attractive, a self-fulfilling belief. The absence

of on-the-job search discourages vacancy posting, rendering costly on-the-job search unattractive.

This model of multiple equilibria can account for large fluctuations in vacancies, unemployment, and

job-to-job transitions; it provides a rationale for the Jobless Recovery through a novel channel of the

employed searchers crowding out the unemployed; and it gives rise to a shift in the Beveridge Curve

(the unemployment-vacancy locus). Each of these phenomena is matched in the data.

Keywords. On-the-job search. Strategic Complementarity. Unemployment Cycles. Sorting. Mis-

match. Job-to-job flows. Jobless Recovery.
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1 Introduction

Business cycles have a wide variety of origins, ranging from financial crises, over oil price shocks, to

productivity spurts and slowdowns. Often, of all economic agents, workers are those affected most

dramatically, mainly through unemployment. For long, researchers – most notably Diamond (1982)

– have asked whether frictional markets can generate cyclical outcomes, even in the absence of any

exogenous shocks or changes in fundamentals. But so far there has been no compelling mechanism

where the labor market by itself can generate cycles and that fits the facts. In this paper, we propose a

simple theory that generates self-fulfilling unemployment fluctuations and that can account for the key

labor market facts: fluctuations in unemployment, vacancies and job-to-job flows. We will argue that

our model provides a simple rationale for the Jobless Recovery, the fact that it takes a long time for

unemployment to drop even after vacancies and productivity have recovered, and for the outward shift

of the Beveridge Curve.

The main driving force behind unemployment cycles is the search behavior of those with a job.

Singling out the employed to explain unemployment may seem counterintuitive. But with a share of

over ninety percent of the labor force, any minor change in the behavior of the employed who vie

for job openings side by side with the unemployed in the same labor market, has profound aggregate

implications for unemployment. Even if they search much less intensively than the unemployed, because

of their shear size, on average still about half of the job searchers are workers who were employed already.

Most importantly, we document that there is also a huge variation in the composition of the searcher

pool, ranging from 42% of employed workers in the recession to 62% in the boom, mostly due to the

change in the search behavior of the employed over the business cycle. And it is precisely this variation

that has drastic implications for the unemployed during the recession and recovery.

We contribute to the literature by spelling out a model that features a strategic complementarity

between on-the-job search and vacancy creation, giving rise to multiple equilibria. In their search

decision, workers trade off the matching probability against the cost of searching. In turn, in their

vacancy posting decision, firms take into consideration both the expected quality (or productivity) as

well as duration of the job. When workers actively search while on-the-job, the value to the firm of a job

is higher: In the presence of sorting, searchers tend to move to higher productivity jobs, and with active

search the fraction of on-the-job searchers to unemployed is higher. This gives rise to a composition

externality when firms sample workers. At the same time, the expected duration of a job is shorter.

It is precisely the combination of the composition externality and the different duration of a job that

is at the root of the multiplicity. With active on-the-job search, the higher expected match quality

dominates the shorter job duration, which creates incentives for vacancy creation. More vacancies in

turn create incentives for workers to actively search on-the-job since it is easier to find one. Active job

search has become self-fulfilling. This high churning outcome corresponds to an economic boom with

active on-the-job search, high employment-to-employment (EE) transitions, little mismatch, abundant
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job creation, low unemployment and high aggregate output. But there is also another equilibrium, the

recession, where workers do not actively search on-the-job, where the pool of searchers has relatively

few on-the-job searchers and the expected productivity of a job is low. For firms, the shorter duration of

jobs here dominates the impact of the composition externality. As a result, firms have little incentives

to post vacancies, which generates a low matching probability for workers that does not compensate

the cost of search. Again, this low search intensity is self fulfilling. It leads to low job turnover and

high mismatch, and low aggregate output. In the recession, workers experience grim job prospects and

hang on to their existing jobs, even if mismatched. Firms take solace in the long duration of jobs, even

if they are of low productivity.1

The economic mechanism is based on three components: 1. on-the-job search; 2. sorting (wage

ladder) with mismatch; 3. endogenous vacancy creation. Each of these ingredients is crucial for the

self-fulfilling equilibria. Without endogenous on-the-job search, there is no choice on the worker side and

the firms always face jobs of equal expected duration as well as the same composition of job searchers.

Without sorting, say if all jobs are identical and there is no mismatch, there is no efficiency gain from

moving from the first job and as a result, there is a unique equilibrium. It is not only necessary that

there is sorting, there must be a sufficiently large output gain in order to obtain the multiplicity. This

is due to the fact that firms face shorter job durations with active on-the-job search, and only a high

enough output gain will compensate that loss. Finally, for the strategic complementarity between firm

and worker behavior to arise, firms must respond to the on-the-job search behavior of workers, so

vacancy creation needs to be endogenous.

The strategic complementarity and the resulting endogenous fluctuations can account for three

features of the labor market and how it evolves between boom and recession. First, even in the absence

of any exogenous shocks (for instance to productivity and to financial markets) there are big fluctuations

in unemployment, vacancies and job-to-job transitions. As self-fulfilling beliefs switch from a high to a

low rate of vacancy posting, and the corresponding job search intensity goes from active to inactive, this

results in sizeable fluctuations of unemployment and job-to-job (EE, for employment-to-employment)

flows. In a boom, workers switch jobs frequently whereas in a recession they do so much less, as can

be seen from Figure 1.A. EE flows in the US exhibit large fluctuations, up to 13% above trend during

expansion and up to 25% below trend during the last recession. This is consistent with the share of

on-the-job searchers in overall searchers fluctuating between 42% and 62%, as reported above. In our

model, when beliefs switch, there is precisely such a sudden drop in job-to-job transitions. Because

employed workers constitute the large majority of the labor force, even a minor change in their behavior

has an enormous impact on the labor market, in particular on the unemployed.

The second labor market feature the model can account for is the Jobless Recovery. Even after

productivity has picked up following a recession, unemployment remains sluggishly high. In late 2014

1Notice that the strategic complementarity that drives the multiplicity stems from the non-contractibility of on-the-job
search: firms cannot sign contracts with workers that are contingent on their search behavior.
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Figure 1: A. Employment-to-Employment flows (detrended). B. Outward Shift of the Beverage Curve.

for example, five years after the end of the great recession, unemployment was still at 6%, more than

one percentage point above the rate observed in the preceding boom in 2007. Why does it take so

long for unemployment to recover, even after financial markets have turned healthy, productivity has

recovered and the economy is growing? Ever since the term was first used in the aftermath of the great

depression in 1935, economists have speculated about its possible origins and mechanisms. Popular and

largely unfounded explanations aside such as technological change (the Luddite fallacy2) or permanent

structural change in the labor market, academics have not found a satisfactory explanation for it. Here

we argue that a jobless recovery is inherent in the cyclical behavior of unemployment due to fluctuations

in on-the-job search. We identify a new channel where the employed are crowding out the unemployed.

At the end of a recession, as beliefs switch to an active on-the-job search regime and firms add many

vacancies, the composition of the pool of searchers changes. Almost instantaneously, the on-the-job

searchers crowd out the unemployed searchers. Overall, job flows pick up, but with random matching

they go disproportionately to the on-the-job searchers who are abundant after the recession, and not to

the unemployed. All the renewed activity thus initially translates in better jobs for those with jobs and

higher overall productivity, but no improvement in the prospects for the unemployed. After some time

this crowding out fades as the fraction of those with a job who have found a good match has grown,

and the number of on-the-job searchers decreases again relative to the unemployed searchers.

Third, the endogenous job market fluctuations naturally give rise to a shift in the Beveridge Curve

(the locus of vacancies and unemployment). While researchers have pondered over observed shifts of

the Beveridge Curve ever since it was introduced, recently there has been a renewed interest because

of a sizeable outward shift following the Great Recession (see Figure 1.B).3 An outward shift is often

2During the second industrial revolution, the Luddites, textile workers in England, feared that automated looms would
lead to mass unemployment. It is considered a fallacy because the laid off textile workers were eventually hired in new,
higher productivity jobs in different industries.

3The outward shift is substantial. For example, with 4% of vacancy creation, the unemployment rate at the end of
2008 was 7.5% while with the same vacancy creation of 4%, the unemployment rate at the beginning of 2010 was 9.5%.
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interpreted as a decrease in matching efficiency: to maintain a given level of unemployment, a larger

number of vacancies need to be posted. A deterioration of labor market efficiency during the recovery

is puzzling. One would expect to the contrary that part of the recovery is due to improved matching.

We argue that the shift of the Beveridge Curve is not due to matching efficiency but rather due to

a shift in the effective market tightness. While the Beveridge Curve depicts the ordinary market

tightness, i.e., ratio of vacancies to unemployed, the effective market tightness is the ratio of vacancies

to all searchers, including in the denominator the on-the-job searchers as well as the unemployed.

Consider the comparison between an equilibrium with active and passive on-the-job search. When

employed workers start to actively search on-the-job, effective tightness is drops. This affects the value

of creating a vacancy in multiple ways: negatively, because the job duration on average is shorter due

to active on-the-job search; positively, because there are more searchers so it is easy to fill a vacancy;

and positively also, because the pool of searchers has improved. Active on-the-job search equilibrium

requires that the net effect for the firm is positive, but for any given level of vacancies, with more

searchers, the effective labor market tightness measured as vacancies over all searchers has gone down.

Responsible for the shifting Beveridge Curve is therefore a large difference across equilibria in the

(endogenous) argument of the matching function – i.e., the effective market tightness – and not the

exogenous matching technology. This results in lower job finding probabilities for the unemployed and

contributes to the Jobless Recovery during the transition to a new steady state.

We bring our model to the data to analyze the quantitative implications of this mechanism. First,

we provide direct evidence in favor of pro-cyclical search intensity. Second, we calibrate the model to

the US economy and show that our model of multiple equilibria accounts for a significant part of the

observed fluctuations in unemployment, vacancies and EE flows over the business cycle. We also use

the model for a counterfactual exercise, feeding in observed labor productivity changes (for a given

equilibrium) and compare the implications for unemployment and vacancies with those of our model

with multiple equilibria. Compared to movements in labor productivity, our mechanism can match

observed fluctuations in labor market outcomes significantly better.

We also explore the dynamics of this model to analyze how this economy reacts to a Markov pro-

ductivity process in the presence of forward-looking agents. We adopt the history-dependent selection

criterion by Cooper (1994) to resolve the multiplicity: agents’ beliefs only switch if the productivity

shock is large enough to destroy the previous equilibrium and pushes the economy towards the other

(now unique) equilibrium. We show that, after a recession, a reasonably large positive productivity

shock pushes the economy into the boom equilibrium. Most importantly, the transition path exhibits

a Jobless Recovery, with unemployment increasing after the peak of the crisis, due to a crowding out

of unemployed by employed searchers.

Related Literature. We are intellectually indebted to several earlier contributions and ideas that have

Most people (including the NBER) would argue that 2010 was a solid recovery, yet unemployment was higher.
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shaped our thinking on this topic. The most celebrated model of self-fulfilling employment fluctuations

is without a doubt Diamond (1982).4 He proposes a very interesting search mechanism with search

in production as well as in exchange in the goods market. Trade in the goods market is faster if the

population of traders is larger. This in turn, leads to faster production and lower unemployment due

to search in production. In addition to this high production, low unemployment equilibrium, there

is also an equilibrium with a small population in the goods market and long unemployment in the

production market. The multiplicity is due to the thick market externality: the more people search,

the higher the probability of trading. While our source of multiplicity is similar since it also stems from

endogenous behavior affecting the matching function, we do not rely on increasing returns to matching,

a counterfactual feature of the matching technology (Pissarides and Petrongolo (2001)).

The source of multiplicity in our model is also related to Burdett and Coles (1997). In a simple

two-type model with two-sided heterogeneity and non-transferable utility, they show that even with

constant returns in the matching technology, there can be multiple equilibria. The driving force is thus

not Diamond (1982)’s market size or network externality, but rather a selection externality. If high

types believe other high types are not selective and accept matches with low types, the equilibrium

distribution of searchers will have a low fraction of high types provided the economy-wide share of

high types is low enough. This in turn makes the expected value of search low, inducing high types

to accept low types. Instead, if the high types believe other high types will be selective and accept

matches only with other high types (rejecting all low types), then the steady state fraction of high types

is high (provided the economy-wide fraction of high types is below a threshold) and the continuation

value of search is high. The best response therefore is to accept high types only. These beliefs are

therefore self-fulfilling, driven by the externality from the composition in the stationary distribution of

searchers. While the composition effects of active on-the-job search in our model is somewhat similar

to the selection externality first proposed in Burdett and Coles (1997), the model has quite different

predictions. In Burdett and Coles (1997) it is difficult to map the two equilibria into a boom or a

recession. In the selective equilibrium, the mismatch is low and output is high (as in a boom), but

unemployment is high as well, whereas in the non-selective equilibrium, mismatch is high and output

is low (as in the recession), but unemployment is low.

In the spirit of Diamond (1982)’s goods market externality, Kaplan and Menzio (2014) ask the

archetypical Keynesian question whether externalities in the goods market can affect production in the

labor market: if people do not demand goods, there will be less production, leading to unemployment

and hence lower demand.5 It is well known that with competitive goods markets, prices instantaneously

adjust and there is no feedback or propagation from of demand on unemployment. Kaplan and Menzio

(2014) model goods demand by means of a frictional goods market where the unemployed search more

4Diamond and Fudenberg (1989) further elaborate on the model and analyze the non-stationary rational expectations
equilibrium properties.

5In an early contribution, Howitt and McAfee (1992) address a similar question.
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intensely for low goods prices. As unemployment in the labor market is higher, markups in the goods

market are lower which in turn leads to lower production, lower vacancies, and more unemployment.

They show that this shopping externality can thus generate multiple self-fulfilling steady state equilibria,

which they, as we do here, interpret as business cycles. In Kaplan and Menzio (2014) of course, the

business cycle is due to a demand externality, and not and externality in the labor market itself.

Moreover, their mechanism does not speak to the jobless recovery.6 In an interesting approach in a

related framework, Schaal and Taschereau-Dumouchel (2014) focus on equilibrium selection using global

games. While this does away with equilibrium multiplicity, it maintains the amplification of the distant

steady states. Finally, a recent paper by Golosov and Menzio (2015) also obtains fluctuations driven

exclusively by the labor market. It features a mechanism of providing incentives in the presence of

moral hazard and it is most efficient to do so through firing during recessions. Interestingly, to obtain

the results, the model has decreasing, not increasing returns to matching.

Two interesting mechanisms in a very different setting are related to ours. In the marriage market,

Burdett, Imai, and Wright (2004) unearth a source of multiplicity from the strategic interaction within

a match that stems from the fact that both partners in the match search (in addition to the economy

wide, aggregate feedback of beliefs that drives the multiplicity in our model). If my partner searches “on

the marriage”, my match will dissolve with higher probability than if she does not search, and therefore

my match value is lower. This in turn increases the incentives to search myself, a self-fulfilling belief.

In the housing market, Moen, Nenov, and Sniekers (2015) derive multiple equilibria where homeowners

who switch houses decide to sell their current house before or after they buy the new house. While this

has small implications for the value of housing for a given individual (the transition of a few months

is very small compared to the average duration of ownership, about eight years in the US), it has big

aggregate implications which are reflected in housing prices. Using micro level data from housing in

Denmark, they find huge changes in the fraction of “on-the-home” buyers versus those who go through

a period of being without a home (which is comparable to unemployment in the labor market).

In his seminal paper, Shimer (2005) argues that in the standard Mortensen-Pissarides model of

unemployment, productivity fluctuations cannot account for the fluctuations in unemployment and

vacancies observed in the data.7 Hall (2005) (wage stickiness) and Hagedorn and Manovskii (2008) (the

high value of unemployment) have offered explanations to counter Shimer’s finding, and can indeed

create labor market volatility from small productivity shocks. We do not see our main contribution

in adding to this debate. We do however need to take a stance on the parameter values we use in

our calibration. In the light of this debate and of additional recent work,8 we will use an intermediate

6Mortensen (1999) and Sniekers (2013) also consider a demand externality but explain cycles through a limit cycle
around one steady state.

7In a theory of rest and search unemployment, a variation of the Mortensen-Pissarides search model, Jovanovic (1987)
shows that productivity fluctuations also generate pro-cyclical search behavior (in addition to pro-cyclical productivity
and countercyclical unemployment) as here, but without the amplification from equilibrium multiplicity that we highlight.

8Chodorow-Reich and Karabarbounis (2013) directly estimate from micro data the value of being unemployed. They
find a value of unemployment relative to productivity of 0.75 that is higher than Shimer (2005)’s (0.4), and lower than
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value for unemployment benefits. In any event, our mechanism can generate multiple steady states for

any value of unemployment benefits and we show in our counterfactual exercises that on-the-job search

behavior is more important in generating labor market fluctuations than productivity movements, even

when unemployment benefits are set relatively high.

The paper is organized as follows. In Section 2, we set out the environment. In Section 3, we

show that multiple steady state equilibria arise. In Section 4, we analyze the dynamic equilibria and

their stability. Section 5 contains an empirical validation exercise of pro-cyclical search behavior and a

quantitative exercise where we assess the model’s implications for labor market fluctuations and jobless

recovery. Finally, in Section 6 we offer some concluding remarks.

2 Environment

The model economy is a simplified version of the Postel-Vinay and Robin (2002) model of on-the-job

search with two productivity types and a highly stylized form of job ladder. It is aimed to capture

the main forces of search models with on-the-job search and sorting (à la Shimer and Smith (2000)): a

worker who already has a job will only move to a new job if the new job is more productive. Therefore,

the types of jobs out of unemployment are on average less productive than those that are accepted

when moving from an existing job.

The most natural way of modeling this would be exactly as in Postel-Vinay and Robin (2002)9 with

the random arrival of job types of high and low productivity. We do analyze that model in Appendix

B and can show that the multiplicity survives, but it is much less tractable and notationally more

cumbersome. It turns out that we can capture all the aspects of interest in this economy in a very

simple way through a two-step job ladder: we assume that all jobs out of unemployment have low

productivity, and all jobs out of an existing job have high productivity. This is a drastic assumption,

but it turns out that the logic of our argument is the same in the general model, as we show in the

Appendix.10 We have therefore opted to use the simpler, highly stylized setup for tractability and

exposition in which all the relevant action reduces to two value functions per worker/job.

Hagedorn and Manovskii (2008) (0.95). In addition, they find the contribution of unemployment benefits to the value of
unemployment is very small (16%) and that the estimated value of unemployment is pro-cyclical.

9See also Moscarini and Postel-Vinay (2012) for a similar job ladder model without explicit sorting. The full blown
model of sorting with on-the-job search and a continuum of types is analyzed computationally in Robin and Lise (2013)
and Lamadon, Lise, Meghir, and Robin (2013).

10The Appendix has two specifications: 1. one where the job quality is match-specific and each match (both with
employed and unemployed) is of high productivity y with probability π; and 2. one where firms choose to open either
a high or a low productivity job where the productivity is permanent (instead of match-specific). What transpires from
these exercises is that similar strategic complementarities between on-the-job search and vacancy posting generate multiple
steady state equilibria in these more general environments. This shows that the multiplicity is not due to the specific job
ladder we assume but roots more deeply in the interplay between composition externality and job duration. Even though
overall job duration is lower under active search, the heterogeneity of productivity (i.e. firms with a high match specific
shock can extract surplus if they meet an employed worker who is currently in a firm with low match-specific shock) and
the fact that a match is of longer duration when formed with an employed compared to an unemployed searcher, make
on-the-job searchers for firms attractive. This again triggers a strategic complementarity between search intensity and
vacancy posting.
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Agents and Technology. Time is continuous, t ∈ R+. There is a measure one of risk neutral

workers in the economy. A worker is unemployed searching for a job11, or employed, in which case

he can choose to search actively or passively on-the-job. We assume that on-the-job search only takes

place in low productivity jobs.12 The flow utility from being unemployed is b and the flow utility of

employment is equal to the wage, w. The search cost when unemployed or with passive on-the-job

search is normalized to zero and the search cost for active search when employed is k, so search costs

increase in search intensity. Workers maximize the value of employment: They search actively if the

gain from search exceeds the cost. Otherwise, they search passively at no cost (more below).

There is a large measure of potential jobs (firms). Firms can open a job paying a flow cost c.

If they stay inactive their payoff is zero. Firms are risk neutral and maximize the discounted sum

of profits. Denote the measure of job openings by v. All jobs are ex ante identical, but ex post

heterogeneous in their job productivity y. We assume the technology is given by f(y) = py, where p

is aggregate and y ∈ {y, y} is match-specific productivity.13 When a job is filled by an unemployed

worker, the productivity is y and when it is filled by a formerly employed worker the productivity is

y, with y ≤ y.14 This captures in a stylized way the economy’s job ladder: Workers tend to be better

matched to the new job after they switch, which is reflected in the data by substantial wage gains after

EE transitions. We thus model the job ladder as improvements in the match-specific component of a

worker-firm pair.

Denote the measure of the unemployed by u; the measure of the employed in a low productivity

job by γ; the measure of the employed in high productivity jobs by ξ. Since the measure of workers is

equal to one, feasibility requires that u+ γ + ξ = 1.

Market Frictions, Search and Wage Setting. Meetings between jobs and workers are stochastic,

and are modeled by means of a standard matching function m(v, s), where m is increasing, concave and

has constant returns to scale, and where v denotes the measure of vacancies and s the measure of job

searchers. Therefore the matching probability for a worker is m(θ), where θ = v
s , and that of a firm is

11We do not include the possibility of endogenous search behavior by the unemployed (only on-the-job) for two reasons:
First, the empirical studies on how search intensity of the unemployed varies over the cycle are inconclusive. There
is evidence on both counter-cyclical search intensity (Mukoyama, Patterson, and Sahin (2014)) and pro-cyclical search
intensity (Schwartz (2014)). Second, in our model even if we introduced endogenous search intensity of the unemployed,
they would always (independent of the business cycle) choose a unique level of search intensity because, due to sequential
auction wage setting with constant value of unemployment, the gains for the unemployed from search are constant.

12This assumption is for tractability; our results do not hinge on it. Those in high productivity jobs would have an
incentive to search merely to increase their wages. We can rationalize the no search behavior in high productivity jobs by
implicitly assuming that the wage increase does not compensate for the cost of on-the-job search.

13Below we assume that not only match-specific productivity y but also the cost of on-the-job search k and unemployment
benefits b are proportional to p. This is consistent with the findings of Chodorow-Reich and Karabarbounis (2013) that
the value of unemployment is pro-cyclical.

14If the surplus of a low type match is positive, it is optimal for the firm to accept this match even if that surplus is
lower than the surplus of a high type match. In our calibration below, the low type match surplus is positive. If the low
type match surplus were negative instead, our formulation implicitly assumes that firms commit to hire any worker type,
whether she is hired out of unemployment or from an on-the-job move.
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q(θ) = m(θ)
θ . Job separation is exogenous and occurs at rate δ.15

The employed always engage in passive search at no cost (job opportunities arrive without search

effort) which leads to a match with probability λ0m(θ), where λ0 is the search intensity of passive

on-the-job searchers relative to the search intensity during unemployment, which is normalized to one.

They can also engage in active search and search at intensity λ0 + λ1 by incurring the search cost

k.16 In return they get a higher chance of a match, (λ0 + λ1)m(θ). Therefore the measure of workers

searching for a job, s, is given by u + λ0γ if no employed worker actively searches on-the-job and by

u+ (λ0 + λ1)γ if all employed worker actively search on-the-job. λ0 and λ1 denote the efficiency of the

on-the-job matching technology. The resulting market tightness is then a function of the total measure

of searchers expressed in “efficiency units”, denoted by the effective number of searchers s, equal to

u + λ0γ or u + (λ0 + λ1)γ. For example, when all workers actively search on the job, the market

tightness is given by θ = v
u+(λ0+λ1)γ and when none search actively on the job it is given by θ = v

u+λ0γ
.

Notice that we distinguish the effective market tightness θ = v
s that takes into account all the effective

job searchers from the conventional market tightness in the Mortensen-Pissarides search model, here

denoted by Θ = v
u , which takes into account only the unemployed job searchers.

Wages are determined in a sequential auction framework as in Postel-Vinay and Robin (2002) (see

also Dey and Flinn (2005)). Employment contracts stipulate a fixed wage over time that the employer

commits to and that can be renegotiated only if both parties agree. The contract cannot condition on

the search intensity, which is private information. Firms can fire workers and workers are free to quit at

will. As a result, when workers receive outside offers, wages may be renegotiated. Current and outside

employers Bertrand-compete for the worker. The worker goes to the match that has higher total value

and receives a wage such that his continuation value equals the match value with the least productive

of the two competing firms. If no outside offer arrives, wages remain unchanged.17 If the worker is

hired out of unemployment, wages are such that she receives the option value of unemployment.

Individual Decision Problems and Bellman Equations. We denote the value of a vacant job

by V , of a filled job by J , of an unemployed worker by U , and of an employed worker by E. Unless

there is cause for confusion, we drop the time subscript t to keep the notation parsimonious. When

we denote the value of a job for an employed worker, we use the notation E (E) to indicate that a

worker is employed in a low (high) productivity job. Likewise, J (J) denotes the value of a low (high)

15Even though endogenous separations in the presence of stochastic match surplus is an important determinant of labor
market dynamics (see amongst others Mortensen and Pissarides (1994) and Bils, Chang, and Kim (2011)), we aim to make
the point in this paper under exogenous separations.

16An alternative way of modeling this would be through continuous search intensity on-the-job, where workers choose
an interior non-zero search intensity under a convex cost. This could also give rise to multiple equilibria with a high and
a low intensity on-the-job search outcome that are determined endogenously. Unfortunately we cannot solve that case
analytically. Observe that our cost is a step function and hence convex.

17It is well known that in the presence of endogenous on-the-job search, commitment to a fixed wage can be improved
upon with a time varying contract (see for example Lentz (2014)). However, nothing about the mechanism that generates
multiplicity here is particular to our contractual setting. We show in Appendix C that even if firms can deviate to a simple
contract with backloading, there is multiplicity.
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productivity job that is filled with a worker coming out of unemployment (a low productivity job).

Denote by ω ∈ [0, 1] the decision by the individual worker whether to actively search on-the-job and

which equals to one when the worker searches actively and is zero otherwise. And denote by Ω ∈ [0, 1]

the behavior of all other workers in a symmetric strategy equilibrium. Throughout we assume that

individual search behavior ω is private information, so firms cannot make wages contingent on search

effort. For the remainder, we also use the notation λ(ω) = λ0 + ωλ1 for the individual search intensity

and λ(Ω) = λ0 + Ωλ1 for the aggregate search intensity.

Workers. We can write the values of workers as follows.

rU = pb+m(θ(Ω))(E − U) + U̇ (1)

rE = w(Ω)− ωpk + λ(ω)m(θ(Ω))(E − E)− δ(E − U) + Ė (2)

rE = w(Ω)− δ(E − U) + Ė (3)

where U̇ is the time derivative of U (likewise for all other values) and where

θ(Ω) =
v

s(Ω)
=

v

u+ λ(Ω)γ
. (4)

It is key to observe here that individual search decisions ω affect only the value of the employed

in low productivity jobs through the cost of job search k and the probability of finding a job λ1.

Aggregate outcomes from the population behavior at large enter into values through two channels: 1.

market tightness θ(Ω) and 2. wages. The market tightness induces a search externality that affects

the job finding probabilities of all job searchers: the value of the employed in a low productivity job as

well as the value of the unemployed. But also wages change depending on the belief whether workers

search on-the-job or not. For much of what follows and whenever it is clear from the context whether

Ω is zero or one, we will drop the dependence of the market tightness on Ω in the notation.

Firms. The value of a vacancy to a firm deciding to open one is given by:

rV = −c+ q(θ(Ω))

[
u

s(Ω)
J +

λ(Ω)γ

s(Ω)
J − V

]
+ V̇ . (5)

Because we assume free entry and a large measure of potentially entering firms, the value of a vacancy

V is driven to zero. So, in equilibrium, equation (5) is evaluated at V = 0. Observe that the measure of

vacancies adjusts instantaneously. Whenever there is a positive value for profits, vacancies are created

frictionlessly to set the profits back to zero.

The value of a filled job, high or low productivity, is given by:

rJ = py − w(Ω)− δ(J − V ) + J̇ (6)

rJ = py − w(Ω)− [λ(Ω)m(θ(Ω)) + δ](J − V ) + J̇ . (7)
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The flow value of a high type job is output net of wages. Once it is filled, the job lasts until there

is exogenous separation with probability δ. The low type job similarly generates a flow value of py−w
and separates exogenously at rate δ, but in addition faces separation from on-the-job search.

Labor Market Dynamics. At any point in time, the laws of motion satisfy:

1 = u+ γ + ξ (8)

γ̇ = um(θ(Ω))− γ[δ + λ(Ω)m(θ(Ω)] (9)

ξ̇ = γλ(Ω)m(θ(Ω))− ξδ (10)

Equation (8) is simply feasibility. The measure of workers consisting of unemployed u, on-the-job

searchers γ, and high productivity workers who obtained the job through on-the-job search ξ and is

equal to the measure of the entire worker population. In (9), the change in the stock of on-the-job

searchers equals the difference between flow into low productivity jobs out of unemployment and the

flow out of low productivity job, which consists of separation δ and the outflow due finding a better

job. Finally, the change in the stock of high productivity workers equals the difference between in- and

outflow from high productivity jobs.

Definition of equilibrium. We can now define equilibrium.

Definition 1 A Perfect Foresight Equilibrium is a tuple {U,E,E, V, J, J, θ, u, γ, ξ, w,w, ω,Ω} such that

1. U,E,E, V, J, J satisfy the Bellman equations above;

2. Given Ω, ω = Ω maximizes E;

3. There is free entry: V = 0;

4. Wages: w such that E = U and w such that J = V ;

5. u, γ, ξ satisfy the laws of motion;

6. limt→∞ θt = 0 is finite for initial conditions u−1, γ−1, ξ−1.

3 Steady State Equilibrium

We first focus on steady state equilibrium. We solve the system of equilibrium equations, taking into

account that values and stocks are constant over time. First, wages are determined following the

sequential auction wage setting (Postel-Vinay and Robin (2002)) and are pinned down by the worker’s

outside option. A firm that hires an unemployed worker will offer her a wage w(Ω) that makes her

indifferent between accepting the job and remaining unemployed, i.e. E = U . Likewise, the firm offers

11



a wage w(Ω) that makes the worker with an on-the-job offer indifferent between joining the new, high

productivity firm y and staying at the existing low productivity firm y, extracting the whole surplus

from the previous firm, i.e. J = V . Some algebra (see Appendix A) reveals that

w(Ω) = p

[
b

(
r + λ(Ω)m(θ(Ω)) + δ

r + δ

)
− λ(Ω)m(θ(Ω))

r + δ
y + Ωk

]
(11)

w(Ω) = py. (12)

Observe that we have used the population-wide average of active searchers Ω and not the individual

level ω since the wage reflects the firm’s belief about the workers’ search behavior but cannot condition

on the actual (unobserved) search behavior of the particular worker that is hired. Having solved for

wages, we next pin down θ from free entry where firms take wages and search behavior as given. Finally,

for given θ, we determine u, γ, ξ from the flow equations in steady state, setting time derivatives to zero.

3.1 Multiple Steady States

We now turn to the multiplicity of steady state equilibria. We construct the two candidate equilibria

in which either no worker searches actively on-the-job, Ω = 0, or all search actively on-the-job Ω = 1.

To ascertain whether these candidate equilibria are indeed equilibria, we have to check whether there

is no deviation by any individual worker or firm.

One shot deviations. For a steady-state to exist, it is sufficient to check that one-shot deviations by

a firm or a worker are not profitable. To exclude the firms’ one-shot deviations is straightforward since

firms only have a participation decision to make in the presence of free entry and hence zero profits. In

our current setup we have restricted the contract space to constant wages until the arrival of an outside

offer as is customary in much of the literature. In Appendix C we show that even if firms can offer a

wage contract with backloading, they nonetheless do not want to deviate from constant wages under

natural parameter restrictions and there continue to be multiple equilibria.

On the worker side, it is sufficient to check one-shot deviations from the worker’s strategy in the low-

productivity job. The value of unemployment is pinned down by the exogenous value of unemployment

benefits b. As a result, the value of unemployment is independent of the equilibrium search intensity Ω.

Likewise, the worker value in high productivity jobs is independent of endogenous behavior since those

workers do not search and exogenous separation leads to unemployment. This implies that U and E

are independent of the search decision ω, and we can directly check the deviations of those employed

in a low productivity job E.

To evaluate deviations by an individual worker, we introduce the following notation. We define

E(ω|Ω) as the worker’s payoff in the low productivity job, while taking action ω for an instant dt,

and then to revert to the equilibrium action Ω. This captures the notion of a one shot deviation, or

equivalently Bellman optimality.
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We now check two possible deviations and derive conditions under which those deviations are not

individually rational: 1. when all are actively searching on-the-job, there is no deviation by a single

agent to stop active search:

E(1|1) > E(0|1) ⇐⇒ m−1

(
k(r + δ)

λ1(y − b))

)
< θ(1).

2. when no worker is actively searching on-the-job, there is no deviation of a single agent to search:

E(0|0) > E(1|0) ⇐⇒ θ(0) < m−1

(
k(r + δ)

λ1(y − b))

)
.

These two no-deviation conditions give rise to the following result.

Lemma 1 There exist multiple steady state equilibria if and only if

θ(0) < m−1

(
k(r + δ)

λ1(y − b))

)
< θ(1).

All proofs of this section are in Appendix A. Under the condition that the value of market tightness is

not too extreme, there exists two pure strategy equilibria, one where all search actively and one where no

one actively searches on-the-job. Whenever the two pure strategy equilibria exist, there is also a mixed

strategy equilibrium where every agent actively searches on-the-job with probability ω = Ω ∈ (0, 1)

in every interval of time dt, i.e. workers randomize between the choice of search effort (see Appendix

A for formal statement). This is illustrated in Figure 2, where we plot the mutual best-responses of

workers’ search effort and firms’ vacancy posting (reflected by tightness). The workers’ best response to

tightness is an increasing step function whereas the firms’ best response of tightness to workers search

effort is an increasing function, indicating the strategic complementarity. Points A and C mark the

pure strategy steady states while B indicates the steady state equilibrium in workers’ mixed strategies.

For the remainder of the paper, we will focus attention on the two pure strategy steady states.

Of course, θ(Ω) is an endogenous object. Unfortunately, we cannot in general compute conditions

under which Lemma 1 is satisfied. We do find a necessary and sufficient condition in terms of the

primitives of the model under a particular matching function, the telegraph matching function:

m(θ) = φ
αθ

αθ + 1
, (13)

where φ is the overall matching efficiency of the matching technology and α is a parameter that deter-

mines curvature.18 In much of what follows, we will use the telegraph for three reasons. First, it has all

18This is also the matching function used in the money and search literature, where φ and α are set to one. There it is
interpreted as a matching process where buyers (money holders) and sellers are one population, and hence under uniform
random matching, the likelihood of meeting a buyer is proportional to the number of buyers in the total population of
buyers and sellers: m(θ) = θ

1+θ
= b

b+s
where θ = b

s
is the ratio of buyers to sellers.
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Figure 2: Set of Equilibria: A. No active on-the-job search Ω = 0; C. Active on-the-job search Ω = 1;
B. Mixed Strategy Equilbrium Ω ∈ (0, 1). (Parameters taken from the calibrated economy below.)

the desirable features of a matching function, being a special case of the CES matching function. Sec-

ond, with the level parameter φ and the shape parameter α, we can approximate precisely the matching

functions used in the literature (such as Shimer (2005), Hagedorn and Manovskii (2008)). Finally, it is

very tractable and allows us to analytically prove many results.

Under these assumptions, we can then establish the following result:

Proposition 1 Let m(θ) = φ αθ
αθ+1 . Then there are multiple steady states if and only if p ∈ [pl, ph] (in

Appendix A). The set [pl, ph] is non-empty for an open set of parameters.

In other words, this result rewrites the necessary and sufficient condition for multiple equilibria in

Lemma 1 as a condition of exogenous parameters. This in turn is interpreted in particular as an interval

of values for aggregate labor productivity p: values for productivity in that interval are a necessary and

sufficient condition for multiplicity. Moreover, that interval is non-empty for a robust set of parameters.

The intuition is straightforward: If aggregate productivity is too high, p > ph, then all workers want

to search actively to take advantage of high match-specific productivity jobs whose productivity is now

augmented by high aggregate productivity. The passive search equilibrium breaks down and the active

search equilibrium is unique. The opposite occurs if productivity is too low, p < pl. In Figure 3.A we

illustrate the multiplicity region, by plotting equilibrium outcome θ for different values of p. Observe

that θ is always increasing in productivity, both with and without active on-the-job search.
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It is important to note that these p-bounds depend on all other parameters of this economy. We

have performed detailed comparative statics, though we do not report them here. In general, a change

in a parameter value shifts both bounds in the same direction.

p

θ

pl ph

θ(0)

θ(1)

Figure 3: Effective market tightness θ = v
s : equilibrium with multiplicity range as a function of

aggregate productivity p.

This condition for multiplicity can of course also be expressed in terms of any of the exogenous

variables other than p. The next result states that the existence of multiple equilibria is closely related

to the gains from sorting, i.e. the difference y − y. For low gains from sorting, there is a unique

equilibrium with no on-the-job search. On-the-job search has two costs: 1. the direct search cost k

incurred by the worker; and 2. the indirect search cost incurred by the firm due to shorter expected

duration of a job. As a result, everything else equal, the opportunity cost of opening a job to the firm

is higher. This indirect cost then explains why there cannot be active on-the-job search in equilibrium

when the productivity gains from on-the-job search (measured by y − y) are arbitrarily small. If

there is hardly any output gain when filling a job with an employed worker but a discrete increase

in the opportunity cost due to shorter job duration, this discourages vacancy posting, and in turn

disincentivizes workers’ search effort. As a result, it is a dominant strategy not to search.

At the other extreme, when the output gain y − y is arbitrarily large for given search cost k and

vacancy cost c, the gains from on-the-job search swamp costs, irrespective of the behavior of other

workers. It is then a dominant strategy to always search. For tractability, we focus in this result on

the case δ → 0, which, by continuity, implies that the result holds for small δ.

Proposition 2 (Sorting Gains Needed for Active on-the-job search). Let δ → 0, and m(θ) = φ αθ
αθ+1 .

1. When the gains from sorting are small (y − y < ε) then there is a unique steady state with
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non-active on-the-job search;

2. When the gains from sorting are arbitrarily high, there is a unique steady state with active on-the

job search.

3. For intermediate gains from sorting y ∈ [yl, yh] (for given y) there are multiple equilibria.

Our results in this section illustrate the mechanism that gives rise to the strategic complementarity

and hence multiplicity. Firms trade off the expected quality or productivity of a job (which changes due

to the composition externality) against the duration. And workers trade off the matching probability

against the cost of searching. With active on-the-job search, there is more sorting and the value to

the firm of a job is higher, which creates incentives for vacancy posting. More vacancies in turn create

incentives for workers to actively search on-the-job since it is easier to find a job. Likewise, there

is also an equilibrium where workers do not actively search on-the-job, where the pool of searchers

has relatively few on-the-job searchers and is of relatively low match quality. For firms, the shorter

duration of jobs then dominates the impact of the composition externality, and as a result, they post

few vacancies. This in turn leads workers not to search actively. Our results from this section show

that too large or too small sorting or productivity gains from on-the-job search resolve the trade-offs

for firms an workers in an unambiguous way, leading to a unique equilibrium.

3.2 Steady State Equilibrium Properties

We now depict the equilibrium in the canonical Beveridge Curve diagram, i.e., the unemployment-

vacancy space. Since this is the convention, we continue to do so in the (u, v) space with corresponding

market tightness Θ = v
u . Since matching probabilities are a function of the effective market tightness

θ = v
u+λ(Ω)γ = v

s , we then also report the effective Beveridge curve, in the (s, v) space.

From the flow equations (8)–(10), evaluated in steady state, we obtain the stock of the unemployed

and workers in low-productivity jobs:

u =
δ

δ +m(θ(Ω))
(14)

γ =
δm(θ(Ω))

[δ +m(θ(Ω))][δ + λ(Ω)m(θ(Ω))]
. (15)

Equation (14) is the Beveridge curve, which through θ = v
u+λγ now not only depends on u and v but

also on γ. Even though the equilibrium system is expressed in terms of u, γ, θ, as is common practice

in this literature, we plot the system in terms of u, γ, v, where v is an immediate transformation of θ:

v = θ(u + λγ). This allows us to interpret the well-known Beveridge curve (BC). The BC is a steady

state relationship between vacancies and unemployment, in this setting, for a given stock of on-the-job

searchers γ, derived from the flow equation (14) in and out of unemployment. In our setting there is

also a second flow equation (15) in and out of low productivity jobs, which we label the γ-curve (γC)
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and which also depicts a relationship between vacancies, unemployment and γ. In Figure 4, we plot the

equilibrium. For the sake of clarity, we plot the intersection between the BC and the γC, which is now

a two-dimensional manifold instead of a three-dimensional one. For the assumed matching function,

this intersection BC ∩ γC is given by

v = −
δs(2δ(−1 + s) + φ(λ(−2 + s) + s−

√
λ2(−2 + s)2 + s2 − 2λs2))

−2αδ(δ + 2λφ) + 2α(δ + φ)(δ + λφ)s
(16)

(which is derived from (14) and (15) by summing λγ + u and solving for v as a function of s) and is

denoted by BCs, i.e. the Beveridge curve in (u, s) space. In turn, the conventional Beveridge curve can

be explicitly expressed as:

v =
δu(1− u)[2λ(Ω)(1− u) + u]

α[u(δ + φ)− δ][λ(Ω)(1− u) + u]
(17)

Note that the effective BCs has the same properties as the BC in the standard Pissarides framework

(it is downward sloping and convex).

Finally, we plot the Free Entry condition (from equation (29) in Appendix A) which gives the

equilibrium measure of posted vacancies given any level of unemployment u and on-the-job searchers γ.

The intersection between the Free Entry manifold and BCs marks the steady state. In the Figure 4,

we plot both the equilibrium for active and for passive on-the-job search (and for clarity we omit the

equilibrium in mixed strategies).

For our purpose, of interest are the properties across the multiple equilibria, which are gathered in

the following Proposition.

Proposition 3 Let there be multiple steady state equilibria. Then:

1. unemployment is lower with active on-the-job search: u(1) < u(0);

2. EE flows are higher with active on-the-job search: EE(1) > EE(0);

and under the telegraph matching function:

3. BC(1) is shifted outward relative to BC(0)

4. BCs(1) is shifted outward relative to BCs(0) (given λ(1) ≤ 1).

5. vacancies are higher with active on-the-job search: v(1) > v(0);

6. market tightness is higher with active on-the-job search: Θ(1) > Θ(0);

7. the share of on-the-job searchers in overall searchers is higher with active on-the-job search:
λ(1)γ(1)
s(1) > λ(0)γ(0)

s(0) .
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Figure 4: The Equilibrium in 3D with Free Entry manifold and the intersection of the Beveridge Curve
and the γ-Curve, for both pure strategy equilibria.

This proposition describes in greater detail what exactly is the difference between the two steady

state equilibria whenever they coexist. Many of these features can be observed in Figure 5. It plots the

conventional Beveridge Curve that relates vacancies v to unemployment u with the standard market

tightness Θ = v
u for both equilibria. (A graph of the effective Beveridge curves looks qualitatively

identical). In line with Lemma 1, if conventional market tightness under active on-the-job search is

high enough (intersecting with the bold part of the red Beveridge curve), then this equilibrium exists.

In turn, if market tightness under non-active on-the-job search is low enough (intersecting with the

bold part of the blue Beveridge curve), then the equilibrium with low search intensity exists.

First, the BC shifts out under active on-the-job search, both in the (u, v) and (u, s) space (3. and

4. of Proposition 3), and hence corresponds to lower match efficiency. There are many more jobs,

increasing the matching probability, but the on-the-job searchers crowd out the unemployed. Hence

the match efficiency per unemployed worker is lower. Vacancies are higher (5.): there are more job

searchers that generate a high productivity match, hence firms have more incentives to open vacancies.

Despite the lower match efficiency, unemployment is lower under active on-the-job search (1.). This

follows immediately from the flow equation for unemployment and the fact that under multiplicity

θ(1) > θ(0) (from Lemma 1): the matching probability increases while job separation is unchanged.

Not surprisingly, the EE flow is higher under active on-the-job search (2.). Across the two equilibria,

the stock of overall searchers, s, can in fact be smaller under high search intensity. But the quality of
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Figure 5: Multiplicity and The Beveridge Curve: The conventional BC, in (u, v) with Θ = v
u (parameters

taken from the calibrated economy below).

the pool of searchers is higher since there are more effective on-the job-searchers, which is the key factor

behind higher vacancy posting by firms (7.). Finally, market tightness Θ = v
u is higher under active

on-the-job search (6.), which is immediate from the fact that vacancies are higher and unemployment

is lower.

4 Dynamic Equilibrium

The multiplicity of stationary equilibria generates multiplicity of equilibria in the dynamic economy, i.e.

there are multiple equilibrium paths. As in the case of stationary equilibria, agents optimally choose

actions given their beliefs about other agents. In addition, in the dynamic equilibrium the transversality

condition on J (or equivalently on θ) must be satisfied. Below in our analysis of the dynamic properties

of equilibrium, we will clarify when this is the case. We now turn to the equilibrium dynamics of this

economy, focussing on local stability. We can solve this three dimensional dynamic system only by

relying on linear approximations, which precludes us from saying anything about global stability.19

To start, we rewrite the dynamic system in terms of the two state variables u, γ and the choice

variable θ. From the value functions and the flow equations, we can reduce the dynamic economy to

19Moreover, in the numerical analysis below, we did not encounter any calibration that yielded a bifurcation point,
which would have allowed us, despite linearization, to use the local bifurcation as a building block to construct the global
bifurcation diagram.

19



the following system (see Appendix A for the derivations in this Section):

u̇ = δ(1− u)− um(θ(Ω)) (18)

γ̇ = um(θ(Ω))− (δ + λ(Ω)m(θ(Ω)))γ (19)

θ̇(Ω) =
m(θ(Ω))u

c(1− η(θ(Ω)))(u+ λ(Ω)γ)
×
[
λ

u

(
− θ(Ω)c

m(θ(Ω))
+ J

)(
−u̇γ

u
+ γ̇
)
− (py − w(Ω))

+

(
c

q(θ(Ω))

u+ λ(Ω)γ

u
− λ(Ω)γ

u
J

)
(r + δ + λ(Ω)m(θ(Ω)))

]
(20)

We assess the local stability of this system by considering the linearized system around the steady

state 
u̇

γ̇

θ̇

 =


∂u̇
∂u

∗ ∂u̇
∂γ

∗ ∂u̇
∂θ

∗

∂γ̇
∂u

∗ ∂γ̇
∂γ

∗ ∂γ̇
∂θ

∗

∂θ̇
∂u

∗
∂θ̇
∂γ

∗
∂θ̇
∂θ

∗



ut − u∗i
γt − γ∗i
θt − θ∗i

 (21)

where all partial derivatives are functions of Ω and are evaluated at the steady state under consideration

(indicated by ∗) with u̇ = 0, γ̇ = 0, θ̇ = 0. The eigenvalues of the Jacobian matrix of (21) give insights

into the local stability of system (18)–(20). Since an analytical solution is infeasible, we approach the

problem numerically. We compute the eigenvalues of this system below for our calibration and verify

the existence of multiple equilibria as well as the stability properties ex-post. Under our calibration

(and without imposing any restriction on the parameter space) both steady states are characterized by

two negative real eigenvalues and one positive eigenvalue.

Following Theorem 2.1. in Kuznetsov (1998), this implies the dynamics are characterized by a stable

manifold of dimension two, and an unstable manifold of dimension one. As a result, each of the steady

states is a saddle that forms a node. From any point on the stable two-dimensional manifold, the system

converges to the corresponding steady state. Outside the stable manifold, the system diverges. Since

the number of negative eigenvalues is equal to the number of predetermined state variables u, γ, this

solution is unique (see Acemoglu (2008), Theorem 7.18). As a result, for any u, γ in the neighborhood

of the steady state, the choice variable θ will adjust in order to bring the system on the stable manifold,

from which it will converge to the steady state.

The topology of the dynamic system is illustrated in Figure 6, where we plot the dynamic properties

of the two equilibria via a three-dimensional phase diagram in u, γ, v (instead of v we could have chosen

to display θ). Both equilibria essentially exhibit the same dynamic properties, which is saddle-path

stability. In each of them, the stable manifold, denoted by vS(u, γ; Ω), is given by the two eigenvectors

that correspond to the negative eigenvalues of the system’s Jacobian. In turn, the unstable manifold,

denoted by vU (u, γ; Ω), is given by the eigenvector corresponding to the positive eigenvalue. For any

given initial conditions of the predetermined state variables γ0 and u0 in the neighborhood of a steady

state, v0 (and thus θ0) will adjust so as to position the system along the saddle path, given by the
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Figure 6: Dynamic System: Phase Diagram

stable manifold. Along the stable manifold the system is in equilibrium, characterized by mutual best

responses of all agents for given beliefs, the flow equations and the transversality condition. Notice that

outside the stable manifold, the transversality condition is violated because, for given beliefs, v (and

thus θ) diverges to ±∞, meaning that the economy is not in equilibrium.

5 Validation and Quantitative Exercise

In this section, we link the model to the data. We first provide direct evidence on pro-cyclical search

behavior that lends support to our key mechanism. We then evaluate our model quantitatively: We

calibrate it to the US economy and show that the model admits multiple equilibria. We also analyze

the implications of a shift in beliefs on fluctuations in labor market outcomes. To contrast our model

of multiple equilibria against alternative models, we perform counterfactual exercises, feeding observed

labor productivity changes into our model (for a given equilibrium) and compare the implications with

ours. We also explore the dynamic behavior of our model and show that the transition from recession to

boom exhibits a Jobless Recovery, with unemployment increasing once the economy starts recovering

after the bottom of the crisis.

We will provide evidence for our model from the US economy. For the calibration exercise, our

framework requires data on vacancies, unemployment, as well as labor market transitions (UE, EE,
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EU). Our main data source for labor flows and unemployment rates are the quarterly series from the

Current Population Survey (CPS). For vacancies, we use the JOLTS data from the Bureau of Labor

Statistics, supplemented by data from the Conference Board on online help-wanted ads.20 Using this

supplement for vacancies, our data spans the period 1996-2013.

5.1 Direct Evidence from Job Market Flows

The key premise underlying our model is that workers search more actively on-the-job during the boom,

inducing firms to post more vacancies compared to the recession. In this section, we provide evidence

for this mechanism.

Direct Evidence from EE Flows. We first decompose EE flows, given by EE = λγm(θ), into

its determinants: the effective stock of on-the-job searchers λγ, and matching probability m(θ).21 To

separate the cyclical component from the trend (which our paper has little to say about), we plot the

detrended variables. We measure the matching probability in the data from m(θ) = UE/u, and λγ

from the definition of EE flows, taking into account that UE = m(θ)u:

λγ =
uEE

UE
. (22)

Figure 7: Decomposition of EE Flows (de-trended). A. EE Flows. B. Matching Probability and Number
of Effective On the Job Searchers.

As our model predicts, in the data EE flows are pro-cyclical (Figure 7.A). At first glance, this

seems to stem from a sharp drop in v and sharp increase of u during the recession, rendering match-

ing probabilities pro-cyclical (Figure 7.B). In turn, the number of effective on-the-job searchers λγ is

20We thank Regis Barnichon for making this data available to us.
21We use the raw series of EE transitions (and its de-trended version) from the CPS. Mukoyama (2014) shows that

time-aggregation has no significant impact on the cyclical properties of EE transitions.
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counter-cyclical (Figure 7.B): The number of effective on-the-job searchers actually increases in the

recession. The reason is that towards the recession, many workers are stuck in low productivity jobs at

the bottom of the job ladder due to low matching rates. With fewer job-to-job transitions, the fraction

of those in low productivity jobs, γ, is increasing. In the boom, all search actively, hence they leave

the pool at a higher rate, implying that the stock in steady state is smaller. Below, we provide direct

evidence that the counter-cyclicality of λγ is driven by the stock of on-the-job searchers γ and not by

the search intensity λ, which we will document is pro-cyclical. In fact, the pro-cyclical EE flows can be

attributed to both, pro-cyclical matching probabilities and pro-cyclical search intensity.

Direct Evidence on Search Intensity and the Composition of Jobs and Searchers. While

up to now in this section, we were not able to disentangle the effective number of on-the-job searchers

into the number of searchers γ and search intensity λ, this is what we aim to achieve here. We do

so by exploiting the panel structure from the CPS Micro-data in order to assess whether employed

individuals transited to their current jobs from unemployment, which we count into the stock of on-

the-job searchers γ, or from another job, indicating an EE move (which we then count into the stock

ξ). The CPS interviews individuals for 4 consecutive months, then gives them a break for 8 consecutive

months, and finally interviews them again for 4 consecutive months. We aggregate the monthly data

up to the quarterly level. Figure 8 shows the results of this exercise.

In line with the calibrated model below, the stock of on-the-job searchers is countercyclical (with

a slight lag; Figure 8.A, blue line), indicating that during downturns many workers are stuck at the

bottom of the job ladder. But few workers are in high productivity jobs at the top, reflected by a low

stock ξ (Figure 8.A, green line). This shows that the recession negatively affects the composition of

jobs, with a considerable bias towards low-productivity jobs. This resembles the result by Moscarini

and Postel-Vinay (2012), who argue that the job ladder has failed during the Great Recession.

Most importantly, this direct measure of the stock of on-the-job searchers γ allows us to back out our

measure of search intensity λ in the data using (22). Figure 9 plots the detrended search intensity, which

is pro-cyclical, high in booms and low in recessions. Entering the recession, search intensity dropped

abruptly, followed by a sudden relapse during recovery, providing strong support for our mechanism.

This decomposition shows that our mechanism that relies on cyclical fluctuations in search intensity

and firms responding endogenously to this behavior, has bite. Higher search intensity of workers is

rewarded by higher matching rates during booms compared to recessions.22 Firms are encouraged to

post more vacancies because the composition of the search pool is tilted towards actively searching

workers that generate higher match quality. Figure 8.B captures this by showing how the composition

of searchers varies over the business cycle. In a boom, the share of on-the-job searchers is high while the

22This is in line with the literature that documents that search intensity correlates with real outcomes, predicting how
likely it is to find a job. Krueger and Mueller (2011) show that the amount of time devoted to job search helps predict early
exits from Unemployment Insurance. Carillo-Tudela, Hobijn, Perkowski, and Visschers (2015) show that active search
increases the likelihood of finding a job by a factor of six, both from UE and EE.
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Figure 8: Composition of Jobs and Searchers. A. Stock of workers in low and high productivity jobs,
γ and ξ; B. Shares of on-the-job searchers and unemployed searchers. Both de-trended.

Figure 9: Search Intensity λ (log-deviations from trend).

share of unemployed searchers is low – in line with our model. The opposite holds true during recession.23

Fluctuations in labor market flows are thus not merely driven by fluctuations in market tightness

and thus matching probabilities.24 Importantly, vacancy posting and workers’ matching probabilities

are high when workers search actively for new jobs, making employed searchers the dominant group in

the pool of searchers.25

23We also looked at the American Time Use Survey for job search activity of the employed. We find inconclusive
evidence. As is commonly known, there are issues with that data. First, very few workers (even those who find a job)
show positive search activity, and second, of those who do, the reported amount of time is very small. This may indicate
that search effort is not well captured by Time Use.

24This is not only the case for EE flows but also for UE flows (see Figure 14, Appendix), which go up during downturns,
even though matching probabilities sharply fall.

25Pro-cyclical search intensity of on-the-job searchers is in line with suggestive evidence by Carillo-Tudela, Hobijn,
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5.2 Calibration of Steady State Equilibria

We set the parameters (r, b, δ, p, y) outside the model and report the values in Table 1. Our model

features a constant separation rate δ across boom and recession, which we set equal to average separa-

tions over time in the data. Moreover, from the theory we can generate multiple steady states even in

the absence of productivity changes. Initially therefore, we normalize aggregate productivity p to one.

Below, we will relax the constant productivity assumption.

Table 1: Exogenously Set Parameters

Variable Value Notes

r 0.0113 discount factor standard
y 1 productivity first job normalization

b 0.919 unemployment value 92% of y; 58% of y (see below)

δ 0.05 job separation rate average separation rate
p 1 productivity normalization

We determine the remaining parameters endogenously, including those that relate to the search

technology, active and passive on-the-job search intensity (λ0, λ1), the parameters of the matching

function (α, φ) and the cost of vacancies c and of on-the-job search k, as well as productivity y. To pin

down these parameters, we target business cycle moments from the Great Recession. Central to our

strategy is to target EE transitions in both boom and recession, since we would like to explain business

cycle fluctuations through differences in on-the-job search. Moreover, we target matching probabilities

in boom and recession as well as wage dispersion in the boom. Last we aim to choose parameters such

that the model matches the empirical vacancy and unemployment levels in the boom. Notice that we do

not target unemployment and vacancy levels in the recession. Instead, we want to assess whether our

calibrated model of multiple equilibria can quantitatively match the observed fluctuations in vacancies

and unemployment over the business cycle despite constant labor productivity.

To match the fluctuations in two steady states, we focus on those two data points from the last

business cycle where the difference between EE was most pronounced. We denote the third quarter of

2006 as boom (ω = 1) and the third quarter of 2009 as recession (ω = 0). We use General Method of

Moments to estimate our model, with equal number of moments and parameters. Targeted moments

(data and model) as well as estimated parameter values are in Tables 2 and 3.

Overall, the model performs fairly well. We match the EE flows in boom and recession reasonably

well, most importantly we match the difference between the two. We match observed matching prob-

abilities, wage dispersion as well as unemployment rate nearly exactly. Only regarding vacancies, the

Perkowski, and Visschers (2015). They use U.S. data on the search behavior of employed workers from the Contingent
Worker Supplement (CWS) to the CPS, conducted in February of 1995, 1997, 1999, 2001, and 2005. The advantage of
our method of backing out the cyclicality of search behavior is that we can get insights for all years, most importantly the
period before, during and after the Great Recession.
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Table 2: Targeted Moments

Data Model
EE(1) 0.066 0.035
EE(0) 0.036 0.022
u(1) 0.047 0.055
v(1) 0.029 0.039
m(θ(1)) 0.852 0.853
m(θ(0)) 0.511 0.513
w(1)
w(1) 1.230 1.230

Table 3: Estimated Parameters

Estimate Parameter Description
λ0 0.092 passive OJS intensity
λ1 0.073 active OJS intensity
α 0.863 curvature matching function
φ 3.258 overall matching efficiency
c 9.404 vacancy posting cost
y 1.577 high productivity
k 0.080 search cost

model slightly overpredicts the level. The main reason for the gap between model and data are constant

separation rates and labor productivity across boom and recession.

The parameter estimates suggest that search intensity of on-the-job searchers is considerably lower

than search intensity of unemployed workers, normalized to 1 (i.e. λ0 + λ1 = 0.165). Moreover, on-

the-job searchers are about twice as actively searching in boom compared to recession. The curvature

of the matching technology is estimated to be nearly linear, and matching efficiency φ is estimated to

be about 3. Notice that the matching efficiency is estimated to be higher than what is suggested by

most estimates in the literature, which stems from using a different tightness measure v/s (which is

smaller than the conventional v/u since it takes all searchers into account). The costs of on-the-job

search are estimated to be a relatively small fraction of the first job’s output (about 8%). Finally, the

estimated costs of posting a vacancy c are comparably high, corresponding to a hiring cost of more

than a year’s output of a high productivity match. These estimated costs are large but in line with a

growing literature that argues hiring costs are substantial and, depending on the worker type, can take

up more than an annual wage.26

It is important to note that our calibrated economy admits multiple steady states, where aggregate

productivity p = 1 ∈ [pl, ph] = [0.994, 1.026], i.e. the necessary and sufficient condition for multiplicity

(Proposition 1) are satisfied. We did not restrict the estimation to parameter estimates that are in line

with multiplicity. Moreover, under this calibration, we check the eigenvalues of the dynamic system

numerically and find that both steady states are saddle-path stable. Given any starting values (u0, γ0),

in the neighborhood a steady state, tightness θ adjusts in order to bring the economy on the saddle-path.

The economy converges to the active search equilibrium if beliefs are optimistic and to the no-search

equilibrium if they are pessimistic. Multiple equilibria exist.

Labor Market Fluctuations. Using this calibration, we are interested in the unemployment and

vacancy fluctuations that the model predicts only based on multiplicity and without any movements of

labor productivity. Table 4 suggests that our model of multiple equilibria performs well in matching

the non-targeted moments of unemployment and vacancies in the recession. Comparing vacancy and

26For evidence on substantial hiring costs, see, for instance, Blatter, Muehlemann, and Schenker (2012) as well as Dube,
Freeman, and Reich (2010) and the references therein.
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unemployment levels across boom and recession (Table 2 and 4), it generates sizable fluctuations: Our

model explains about 57% of the observed increase in unemployment and about 60% of the drop in

vacancies during the Great Recession. It is important to note that these fluctuations are obtained

through multiple equilibria alone and without alluding to any decline in labor productivity, which

is held fixed in our exercise. This suggests that differences in the intensity at which workers search

on-the-job in boom versus recession can have a profound impact on labor market fluctuations.

Table 4: Non-Targeted Moments

Data Model

u(0) 0.096 0.089
v(0) 0.016 0.029
λ(0)γ
s(0) 0.423 0.327
λ(1)γ
s(1) 0.625 0.425

We now consider the role of labor productivity movements in generating fluctuations of labor market

outcomes. Shimer (2005) argues that in the standard Mortensen-Pissarides model of unemployment,

productivity fluctuations cannot account for the fluctuations in unemployment and vacancies observed

in the data. Several studies have offered explanations to counter Shimer’s finding, and can indeed

create labor market volatility from small productivity shocks, for instance, sufficiently high value of

unemployment b (Hagedorn and Manovskii (2008)). To shed light on the role of productivity changes

and to isolate it from our channel of multiplicity, we perform the following counterfactual. We pre-

tend the boom equilibrium with active on-the-job search is the unique equilibrium and feed the labor

productivity drop that was observed during the Great Recession into the model (see Figure 14.B for de-

trended labor productivity movements in the data). Can the observed decline in productivity generate

fluctuations of similar magnitudes as our model of multiple equilibria?

To assess the explanatory power of our mechanism (Model 1) against a model where fluctuations

are driven by productivity changes alone, we focus on the boom equilibrium and feed in the observed

productivity drop from the Great Recession (Model 2). See Table 5, where ∆ indicates a change (and

∆× 100 a percentage change).

Compared to our model of multiplicity, a model with unique equilibrium and productivity shocks

generates very small fluctuations (Model 2, Table 5). This holds independently of the variable, especially

the increase in unemployment and the decline in vacancies are negligible, namely +17% and -8%,

respectively, compared to fluctuations in the data of +106% and -47%. This exercise suggests that

changes in search behavior on-the-job are more important in generating labor market fluctuations than

productivity movements.

Using the estimates from the calibrated economy, we can also compare the output net of search

costs in boom and recession. We find that net output is larger in the boom than the recession: Y (1) =

0.9561, Y (0) = 0.861. In other words, a difference of
(
Y (1)
Y (0) − 1

)
∗ 100 = 11%. For labor productivity
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Table 5: Labor Market Fluctuations and Counterfactual with Varying Productivity

Data Model 1 Model 2

∆EE -0.46 -0.37 -0.05
∆m(θ) -0.40 -0.40 -0.15
∆v -0.47 -0.28 -0.08
∆u 1.06 0.60 0.17
∆θ -0.61 -0.47 -0.20
∆Θ -0.74 -0.55 -0.22
∆λγ/s -0.32 -0.23 -0.02

fluctuations of less than ±10%, we find that net output is always higher in the boom equilibrium where

search intensity is high. In this calibrated version of the model, we can therefore clearly rank the two

equilibria in terms of welfare.

5.3 Dynamics: Jobless Recovery and Crowding Out

We investigate the transition from one steady state to another, in particular from the recession to the

boom. Our focus of attention is on the crowding out of unemployed searchers by employed job searchers.

First, we will perform a very simple exercise where we look at the immediate impact around the steady

state of an exogenous belief switch. Then, we properly analyze the dynamics and transition paths of

the model where the switch in equilibrium is induced by changes in productivity.

A Simple Exercise. Suppose we are at the bottom of the recession, and we investigate the impact of

an unexpected change in workers’ beliefs: all workers in a low productivity job start searching actively

for a job and firms instantaneously adjust by posting vacancies so that profits are driven to zero.

The immediate implication is an increase in the number of active searchers, implying s(0) = u(0) +

λ0γ(0) rises to sR = u(0) + (λ0 +λ1)γ(0), where the superscript R stands for Recovery. This also leads

to crowding out. Conditional on forming a match, the probability that it is with an unemployed worker

is now lower since more are searching on-the-job. Denote by κ the fraction of hires with the worker

coming from unemployment. Then:

κ(0) =
u(0)

u(0) + λ0γ(0)
and κR =

u(0)

u(0) + (λ0 + λ1)γ(0)

The stocks u(0) and γ(0) have not changed yet, but there is already an immediate response in the

search activity. As a result it follows that κR < κ(0). According to the estimates of our calibration,

this implies that conditional on the formation of a match, the probability that it is with an unemployed

worker goes from κ(0) = 0.67 to κR = 0.53. As soon as the recovery starts, the likelihood, conditional

on a match formation, that an unemployed workers is selected over a worker with a job significantly

drops. This is what we refer to as crowding out during the recovery.
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Figure 10: A. Market tightness Θ = v
u and effective market tightness θ = Θ UE

UE+EE in the data; B.
Matching probabilities in data and with telegraph matching (using Θ and θ from the data and calibrated
parameters for the matching function). Matching probabilities from model are normalized to match
the data in the pre-crisis quarter.

Certainly, what matters is not just the conditional likelihood of being drawn. It is also impor-

tant how fast the matching is. Under the belief that employed workers actively search for a job, the

matching rate for firms goes up, and in response, new vacancies are created until profits are driven

down to zero again. As a result, the market tightness changes as does the matching probability m(θ).

Therefore, the unconditional matching probability for an unemployed worker is κm(θ), which drops

from κ(0)m(θ(0)) = 0.34 in the recession to κRm(θR) = 0.30 in the recovery. The implication of the

lower matching rates is that the unemployment rate initially edges up marginally: u̇ > 0 since the sepa-

ration rate δ is unchanged. In turn, the matching rate of the employed workers who search significantly

increases, going from (1−κ(0))m(θ(0)) = 0.17 in the recession to (1−κR)m(θR) = 0.26 in the recovery.

Within the framework of our model, we can also highlight the role of the effective market tightness

for jobless recovery. Since we observe vacancies and unemployment, we can readily construct the

conventional market tightness Θ = v
u . We want to compare Θ to the effective market tightness θ = v

s ,

which we obtain from the data as follows

θ =
v

u+ λγ
=

v
UE
m(θ) + EE

m(θ)

= Θ
UE

UE + EE
,

since EE = m(θ)λγ and UE = m(θ)u. Figure 10.A plots both θ and Θ. It is apparent that there

is not only less fluctuation in θ than there is in Θ but in particular, after the crisis, the recovery

of θ is much flatter than that indicated by Θ. This is due to the fact that the effective market
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Table 6: Jobless Recovery and Counterfactual with Varying Productivity

Model 1 Model 2
∆κ -0.21 0.00
∆m(θ) 0.08 0.34
∆κm(θ) -0.14 0.34
∆(1− κ)m(θ) 0.54 0.34

tightness θ reflects the change in the number of on-the-job searchers. The implications for fluctuations

in matching probabilities follow immediately (Figure 10.B): While the matching probability according

to m(Θ) (using the telegraph matching function) indicates fast recovery, matching probability m(θ)

recovers more slowly, closely resembling the slow recovery of matching probability in the data and

fueling jobless recovery.

All this indicates that the immediate impact of the recovery out of the recession looks even bleaker

than the recession itself. Due to crowding out and stagnant matching probabilities, the unemployed

initially match at a slower rate and the unemployment rate goes up. Rather than a jobless recovery,

this indicates a more accurate term might be a job-destructive recovery.

Again, we assess the explanatory power of our mechanism in jobless recovery against a model where

changes in matching probabilities are driven by productivity fluctuations (Model 2). The results are

displayed in Table 6. Contrary to our model, a model with single steady state and productivity shocks

(Model 2) does not feature jobless recovery.

Productivity Induced Dynamics. Now we discuss the transition from one equilibrium to another

and explore the implication of the model’s dynamics for the phenomenon of Jobless Recovery. Following

Cooper (1994), we choose the following equilibrium selection criterion to resolve the model’s multiplicity:

We assume the economy stays in the equilibrium that was played in the previous period if it continues

to exist. This selection criterion generates history-dependent beliefs where individuals use the past to

guide their current actions and they believe that others behave this way as well. Periods of pessimistic

(optimistic) equilibrium behavior yield pessimistic (optimistic) beliefs in the future. So, as long as the

number of equilibria does not vary, the choice of search effort will not change either.

The discussed selection criterion ensures that there are no equilibrium switches unless productivity

takes a value outside of [pl, ph], for then there is a unique equilibrium and no selection issue arises. In

turn, if productivity moves from p /∈ [pl, ph] to p′ ∈ [pl, ph], then the equilibrium will be selected that is

in line with the previously played unique equilibrium. It is worth mentioning that for our calibration,

the p-bounds for existence of multiple equilibria are very narrow, [pl, ph] = [0.994, 1.026]. It therefore

does not take unrealistically big shocks to make the economy switch equilibria.

For simplicity and illustration, we assume that there are two productivity states, p0 and p1. We
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model the transition between them through a 2-state Markov chain,[
π(0) 1− π(0)

1− π(1) π(1)

]

where π(0) is the probability to stay in the low productivity state, and 1 − π(0) is the probability to

switch from the low to the high productivity state. Similarly, π(1) and 1− π(1) give the probability to

stay in the high productivity state or to switch from high to low productivity, respectively. In case the

productivity state changes, the agents’ values of employment and jobs jump to the new steady state

values. Given the state with low productivity p0, the economy converges to the steady state with only

passive on-the-job search (which is the unique equilibrium under p0), conditional on remaining in the

low productivity state. Similarly, given the state with high productivity p1, the economy converges to

the steady state with active on-the-job search (which is the unique equilibrium under p1), conditional

on remaining in the high productivity state. This is illustrated in Figure 11. Observe that immediately

after the productivity shock, θ is not immediately at its steady state level θ(0) (or θ(1)).

p

θ

p0 pl ph p1

θ(0)

θ(1)

Figure 11: Productivity Induced Dynamics.

We follow the approach of Kaplan and Menzio (2014) in analyzing the transition dynamics in

response to a (productivity) shock. Because our three-dimensional dynamic system is very complex,

fully solving the transition dynamics of this economy is difficult, if not impossible. We therefore use

their approximation approach and add (subtract) a constant value to the choice variable, in our case

θ, upon realization of a positive (negative) shock, that moves the economy to the stable manifold of

the new steady state. This approximation captures all the changes imposed on all the value functions.
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Because in our system there is only one choice variable that instantaneously adjusts, and the other

variables u and γ are state variables, this method gives an approximation for the changes to all value

functions U, V,E, J .27 Formally, this implies that upon the realization of a shock, there is a constant

term ∆θ added to the dynamic equation in the choice variable.

Adjusting the differential equations (18), (19), (20), the approximate dynamic system with pro-

ductivity shocks can be written as (47)-(49) in Appendix A, where forward-looking agents take into

account that a productivity shock (that moves the economy to a new equilibrium) occurs with probabil-

ity 1− π(Ω), thus shifting the choice variable instantaneously by ∆θ(Ω). With probability π(Ω) there

is no change and the shift in value is zero. For the dynamic system to converge, the choice variable must

jump exactly onto the stable manifold. We therefore pick the value of ∆θ(Ω) = θ(¬Ω|u, γ)− θ(Ω|u, γ)

to be such that for any u, γ, θ in the new equilibrium jumps exactly onto the stable manifold. For

example, if the economy is currently in the recession and there is a positive shock, the choice variable

θ(0|u, γ) will jump to θ(1|u, γ), which is on the stable manifold of the active search equilibrium. This

implies that if the economy stayed in the high productivity state forever, it would converge to the active

search steady state.

Even with this approximation to the value functions using the jump in θ given by ∆θ, this three

dimensional dynamic system is extremely difficult to solve numerically. We therefore further approxi-

mate the solution by focusing on the linear approximation, pinned down by the eigenvectors v(λi) and

eigenvalues λi of the Jacobian of the linearized system (see Appendix A):
ut − u∗i
γt − γ∗i
θt − θ∗i

 = [v(λ1) v(λ2) v(λ3)]


C1 exp(λ1t)

C2 exp(λ2t)

C3 exp(λ3t)

 . (23)

This linear approximation is unlikely to capture the transition dynamic system quantitatively. More-

over, it is well known that the Pissarides model with free entry, as in ours, has a saddle path dynamic

that leads to drastic overshooting of vacancies which is not borne out in the data. It is therefore clear

that the transition dynamics in this linearized model with free entry will have some unrealistic features.

We nonetheless think it is instructive to consider the dynamic pattern of what is driving the transition.

In particular, in our model it is the composition of searchers (unemployed versus on-the-job searchers)

that drives the transitions in response to productivity shocks. It is the same composition of searchers

that determines the multiplicity of steady states.

Within this dynamic environment and the discussed equilibrium selection criterion, we illustrate the

dynamical properties of the model applied to the phenomenon of the jobless recovery. Our objective,

given the simplicity of the model and the discussed unrealistic characteristics, is not to provide a full

quantitative analysis of the jobless recovery that gets all magnitudes right, but to show that our model

27This is identical to Kaplan and Menzio (2014) who introduce a jump in the value J , the only choice variable in their
dynamic system, and not in the values for the unemployed and the vacant firms.

32



qualitatively accounts for the several features in the data.
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Figure 12: Transition Dynamics: Market Tightness and Unemployment.

Consider an economy in the recession that has been there for a long period since the negative

productivity shock p0. That implies that the state variables u, γ and the choice variable θ are stationary,

i.e., u̇, γ̇, θ̇ equal zero. Then we can compute the values from setting Ω = 0, u̇ = γ̇ = θ̇ = 0 in (47),

(48), and (49). We treat this as the initial equilibrium denoted by u0, γ0, θ0.

Now consider a positive productivity shock from p0 to p1 > ph, pushing the economy in the region of

a unique equilibrium with active on-the-job search.28 Our objective is to track the economy’s recovery

regarding u, γ, θ and its transition to the new equilibrium of active on-the-job search. Using u0, γ0, θ0

as initial values, we compute the transitions setting Ω = 1 using the linearized system (23).

Figure 12 depicts the transition dynamics of θ and u in the model and in the data. Like in the

Pissarides model, our model features saddle path stability and hence a jump in θ. As a result, the

28We choose the smallest possible productivity increase that pushes the economy into the unique equilibrium with active
on-the-job search, which is p1 = 1.0262.
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magnitudes of the model transitions do not match the data. In addition, and unlike the standard

Pissarides model, there is also a jump in unemployment: while job finding rates increase, new jobs

are all taken by the on-the-job searchers. This is the jobless (or rather job destructive) recovery. And

while there is no evidence of the overshooting of θ in the data, we do see evidence of an increase in

unemployment following the recovery. Of course, this increase of unemployment in the model is larger

than that in the data, which is again a consequence of the saddle path dynamics.
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Figure 13: Transition Dynamics: the share of unemployed out of all job searchers (us ), model (A) and

data (B); the share of employed out of all job searchers (λγs = 1− u
s ), model (C) and data (D).

The root of jobless recovery lies in the abrupt change of the composition of searchers after the crisis.

This effect becomes apparent once we derive the share of unemployed searchers out of all searchers: u
s

where s = u + λγ. While we cannot observe λγ directly in the data, we can derive it from the flows

as we mentioned above: EE = m(θ)λγ and UE = m(θ)u so that λγ = EE
UEu. Again, the change in

the composition of unemployed searchers u
s in the data does not parallel the magnitude of the jumps

in the model immediately after the productivity shock, but it does qualitatively match the inverted

U-shape pattern. Coming out of the recession, the fraction of unemployed searchers immediately drops.

At impact, due to the increase in search intensity, the on-the-job searchers flood the pool of searchers
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and find jobs faster, crowding out the unemployed and thus increasing the proportion of unemployed

searchers shortly after. Once the pool of on-the-job searchers is heavily biased towards unemployed

workers, the opposite is true and the unemployed are being hired relatively more. This in turn decreases

the fraction of unemployed searchers, gradually reducing unemployment after a phase of jobless recovery.

6 Conclusion

We have argued that the labor market behavior of the employed can have profound implications for

the unemployed. Moreover, even in the absence of exogenous shocks, this by itself can create multiple

equilibria and hence cyclical outcomes due to a strategic complementarity in active on-the-job search

and vacancy creation. Active on-the-job search by the employed makes it more attractive for firms to

post vacancies, which in turn makes on-the-job search more attractive. Self-fulfilling beliefs can thus

give rise to either a high activity on-the-job search equilibrium which we interpret as a boom as well as

a low activity equilibrium interpreted as a recession.

These beliefs give rise to large fluctuations in vacancies, unemployment and job-to-job transitions,

even without any change in the productivity or other primitives. Moreover, in the transition from a

low on-the-job search equilibrium to an equilibrium with active on-the-job search, this model naturally

generates a jobless recovery. As the employed start to search, they crowd out the unemployed, making

the recovery for the unemployed even worse than the recession. In fact, initially unemployment even

rises. We believe that this crowding out channel is new in the literature. The model also gives rise

to a shift in the Beveridge Curve (the unemployment-vacancy locus). This shift is not driven by an

exogenous change in the matching efficiency or the simple transition dynamics around a unique steady

state, but by the transition from one steady state to another.

We calibrate the model to the US economy and can match these phenomena in the data. We then

use our model for counterfactual exercises to assess the importance of labor productivity movements

relative to our mechanism that relies on multiple equilibria: Feeding observed productivity movements

into one of our two equilibria generates only small fluctuations in labor market outcomes compared to

both the fluctuations observed in the data and those generated by our model with multiple equilibria.
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Appendix A: Additional Data and Omitted Proofs

UE, EE, UE+EE flows

Figure 14: Labor Market Flows (detrended).

Equilibrium Value Functions

Firms believe workers take an individual action ω consistent with the equilibrium belief Ω, i.e., ω = Ω.

Wage setting requires that E = U , which implies that Ė = U̇ . Using this and solving for U in the

Bellman equation (1), implies:

U =
pb

r
+
U̇

r
=
pb

r
, (24)

where the second equality follows from the fact that the first term pb
r is a constant, which immediately

implies that U̇ = 0, and as a result, Ė = 0. Using this expression for U to solve for E in (2) we get:

E =
w(Ω)−Ωpk + λ(Ω)m(θ(Ω))E

r + λ(Ω)m(θ(Ω))
. (25)

Solving for E in (3) implies:

E =
w(Ω) + δ pbr + Ė

r + δ
.



The equilibrium wage for the high productivity job w is pinned down by the sequential auction

framework, setting J = V = 0, which applies to any new formed high type match. Since V̇ = 0,

this implies that the wage set in the high productivity job is time invariant and independent of the

equilibrium Ω. Solving for the wage from J = V = 0 implies:

w = py.

This further implies that

E =
py + δ pbr
r + δ

,

where Ė = 0 since all other terms are constants.

Similarly, the equilibrium wage for the low productivity job w(Ω) is pinned down by the sequential

auction framework setting E = U . Using (24) and (25) to solve for w(Ω) implies:

w(Ω) = pb

(
r + λ(Ω)m(θ(Ω)) + δ

r + δ

)
− λ(Ω)m(θ(Ω))

r + δ
py + Ωpk.

From free entry, V = 0, and therefore (5), (6) and (7) can be written as (where we make use of J = 0):

0 = −c+ q(θ(Ω))

[
u

u+ λ(Ω)γ
J +

λ(Ω)γ

u+ λ(Ω)γ
J

]
J =

py − w
r + δ

J =
py − w(Ω) + J̇

r + δ + λ(Ω)m(θ(Ω))
.

Now using the equilibrium wages and substituting all explicit solutions for the values, we obtain the

following complete set of equilibrium Bellman equations:

U =
pb

r
(26)

E =
pb

r
(27)

E =
py + δ pbr
r + δ

(28)

V = −c+ q(θ(Ω))

[
u

u+ λ(Ω)γ

(
p(y − b)
r + δ

− pkΩ− J̇
r + δ + λ(Ω)m(θ(Ω))

)
+

λ(Ω)γ

u+ λ(Ω)γ

p(y − y)

r + δ

]
= 0 (29)

J =
p(y − b)
r + δ

− pkΩ− J̇
r + δ + λ(Ω)m(θ(Ω))

(30)

J =
p(y − y)

r + δ
. (31)



Proof of Lemma 1

Proof. 1. No deviation when no one searches: E(0|0) > E(1|0).

In this case, when no one actively searches on-the-job (Ω = 0), a worker in a low productivity job deviating

during an interval dt chooses ω = 1 and gets a payoff

E(1|0) =
1

1 + rdt

[
dt(w(0)− pk) + (1− δdt)dtλ(1)m(θ(0))E + (1− δdt)(1− dtλ(1)m(θ(0)))E(0|0) + δdtU

]
where E = E(0|0) since that value is the same independent of the argument. There is no deviation provided

E(0|0) > E(1|0) or:

E(0|0)(1 + rdt) > dt(w(0)− pk) + dtλ(1)(1− δdt)m(θ(0))E + [1− δdt− dtλ(1)m(θ(0)) + dt2δλ(1)m(θ(0))]E(0|0) + δdtU.

After subtracting E(0|0) from both sides and dividing by dt and taking the limit dt→ 0, we obtain:

rE(0|0) > w(0)− pk + λ(1)m(θ(0))E + (−δ − λ(1)m(θ(0)))E(0|0) + δU.

Substituting the equilibrium values for E(0|0), E, U and w(0) we get:

(y − b)[λ(1)− λ(0)]m(θ(0))− k(r + δ) < 0. (32)

2. No deviation when all search: E(1|1) > E(0|1).

In this case, when all actively search on-the-job (Ω = 1), a worker in a low productivity job deviating

for an interval dt chooses ω = 0 and gets a payoff

E(0|1) =
1

1 + rdt

[
dtw(1) + dtλ(0)(1− δdt)m(θ(1))E + (1− δdt)(1− dtλ(0)m(θ(1)))E(1|1) + δdtU

]
.

There is no deviation provided E(1|1) > E(0|1):

E(1|1)(1 + rdt) > dtw(1) + dtλ(0)(1− δdt)m(θ(1))E + (1− δdt− dtλ(0)m(θ(1)) + dt2δλ(0)m(θ(1)))E(1|1) + δdtU.

After subtracting E(1|1) from both sides and dividing by dt and taking the limit dt→ 0, we obtain:

rE(1|1) > w(1) + λ(0)m(θ(1))E + (−δ − λ(0)m(θ(1)))E(1|1) + δU.

Substituting the equilibrium values for E(1|1), E, U and w(1) we get:

(y − b)[λ(1)− λ(0)]m(θ(1))− k(r + δ) > 0. (33)

Combining (32) and (33) gives the condition in the Lemma.



Steady State in Mixed Stategies

Denote by E(ω|Ω) the value of playing ω for one instant dt while every one else pursues strategy Ω. This payoff

is the same as the one-shot deviation payoff in Lemma 1.

For Ω ∈ [0, 1], mixing requires that E(0|Ω) = E(1|Ω), where these value functions refer to a dt-period

play (after that instant the agents play ω = Ω again). If this condition is satisfied, then any mixed strategy ω

(including Ω) is optimal from a worker’s point of view. To see this, denote E(0|Ω) = E(1|Ω) ≡ E. Then, any ω

leaves the worker indifferent ωE + (1− ω)E = E, i.e. there is an equilibrium in mixed strategies.

We now provide details.

E(1|Ω) =
1

1 + rdt

[
dt(w(Ω)− pk) + (1− δdt)dtλ(1)m(θ(Ω))E + (1− δdt)(1− dtλ(1)m(θ(Ω)))E(ω|Ω) + δdtU

]
E(0|Ω) =

1

1 + rdt

[
dtw(Ω) + (1− δdt)dtλ(0)m(θ(Ω))E + (1− δdt)(1− dtλ(0)m(θ(Ω)))E(ω|Ω) + δdtU

]
Set these values equal and simplify (divide by dt and let dt→ 0) to obtain:

λ(0)m(θ(Ω))E − λ(0)m(θ(Ω))E(ω|Ω) = −pk + λ(1)m(θ(Ω))E − λ(1)m(θ(Ω))E(ω|Ω)

Note that (as any equilibrium value of employment in the low-productivity job), E(ω|Ω) = U = bp
r . Using this,

we obtain a necessary and sufficient condition for the mixing steady state to exist,

θ(Ω) = m−1

(
k(δ + r)

λ1(y − b)

)
where the RHS is the same constant as in Lemma 1. In sum, there co-exist three steady states iff

θ(0) < θ(Ω) = m−1

(
k(δ + r)

λ1(y − b)

)
< θ(1).

The mixing probability Ω can be found by plugging θ(Ω) = m−1
(
k(δ+r)
λ1(y−b)

)
into the FE condition of the firm and

solving for Ω. We obtain the following result.

Proposition A1 (Existence of Mixed Strategy Steady State).

If there exist both active and passive search steady states, then there also exists a steady state in mixed strategies.

Proof. We showed in the Proof of Lemma 1 that the active on-the-job search steady state exists if

E(1|1) > E(0|1). (34)

In turn, the passive on-the-job search steady state exists if

E(0|0) > E(1|0). (35)

We provided conditions in terms of exogenous parameters such that both (34) and (35) hold. So, for Ω close to

one,

E(1|Ω) > E(0|Ω) (36)



but not

E(0|Ω) > E(1|Ω). (37)

In turn, for Ω close to zero, (37) holds but not (36). Since E(ω|Ω) − E(ω|Ω) is continuous in Ω, there exist a

Ω ∈ (0, 1), such that E(0|Ω) = E(1|Ω).

Proof of Proposition 1

Proof. At the multiplicity bounds, the market tightness in the equilibrium with active and passive on-the-job

search satisfies according to Lemma 1:

θl =
−δk − kr

α(bλ1φ+ δk + kr − λ1φy)
= θh

where θl is the lowest tightness that sustains the equilibrium with active on-the-job search and θh is the

highest tightness that sustains the equilibrium with passive on-the-job search.

To obtain the p-bounds, we evaluate the free entry condition of the active on-the-job search equilibrium at

θl to obtain pl, given by:

pl = −
[
cλ1(b− y)(δ + r)(λ1(y − b) + k(λ0 + λ1))(δ(λ1(y − b) + 2k(λ0 + λ1)) + 2kr(λ0 + λ1))

]
×[

α(λ1φ(b− y) + k(δ + r))
(
b3δλ2

1 − b2λ1(δk(2λ0 + λ1) + 3δλ1y + kr(λ0 + λ1))+

b
(
k(δ + r)(λ0 + λ1)(kλ0 + λ1y) + kλ1y(δ(3λ0 + λ1) + r(λ0 + λ1)) + 3δλ2

1y
2
)

−k2y(δ + r)(λ0 + λ1)2 + kλ1y(δ + r)(k − y)(λ0 + λ1)− δkλ0λ1y
2 − δλ2

1y
3
)]−1

and likewise for ph (evaluating the free entry condition of the passive on-the-job search equilibrium at θh):

ph = −
cλ1(b− y)(δ + r)(bδλ1 − 2δkλ0 − δλ1y − 2kλ0r)

α(bλ1φ+ δk + kr − λ1φy)
(
b2δλ1 − bδkλ0 − 2bδλ1y − bkλ0r + δkλ0y + δλ1y2 + kλ0ry

)
Evaluating ph − pl numerically, we can show that ph > pl for an open set of parameters. This is for example

the case in the calibration we perform in Section 5.

Proof of Proposition 2

Proof. For tractability, we focus on the case with δ → 0, which, by continutity, implies that the result holds for

small δ.

1. We aim to show that there will be a deviation. By Lemma 1, a sufficient condition for a unique equilibrium is

θ(0) > θ(1). To show this obtains, observe that J(1) = J(0)−K where K = pkΩ
r+δ+λ(Ω)m(θ(Ω)) (by equation (30)).

Free entry condition (29), when δ → 0 and y → y, in both equilibria, can be written as:

2c

q(θ(1))
= J(0)− pk

r + δ + λ(1)m(θ(1))

2c

q(θ(0))
= J(0)



Since the LHS is increasing in θ and pk
r+δ+λ(1)m(θ(1)) > 0, it immediately follows that θ(1) < θ(0). By continuity,

this holds for y − y < ε.

2. Fix y < ∞ and let y → ∞. We aim to show that when there is no active on-the-job search by all

workers, there is always a profitable deviation by an individual. From Lemma 1 this is equivalent to violating

θ(0) < m−1
(

k(r+δ)
λ1(y−b))

)
. From equation (29) we obtain:

2c

q(θ(Ω))
= J(0)− pkΩ

r + δ + λ(Ω)m(θ(Ω))
+ lim
y→∞

p(y − y)

r + δ

= J(0)− pkΩ

r + δ + λ(Ω)m(θ(Ω))
+∞

which under no active on-the-job search is

2c

q(θ(0))
= J(0) +∞.

This can only be satisfied if θ(0) → ∞, thus violating no-deviation condition θ(0) < m−1
(

k(r+δ)
λ1(y−b))

)
< ∞. By

continuity, this holds for finite but large y.

3. We can compute the bounds for y explicitly from a system of two equations (per bound), namely free

entry and the no-deviation condition.

yl = b+ k +
2cr

αφp
− 2ckr2

αbλ1φ2p+ αkφpr − αλ1φ2py
− k2(λ0 + λ1)

k(λ0 + λ1) + λ1(−b+ y)

yh =
αbp(kr + λ1φ(b− y)) + 2cλ1r(b− y)

αp(kr + λ1φ(b− y))

The set [yl, yh] can be shown to be non-empty for an open set of paramaters.

Proof of Proposition 3

Proof. Each of the items in the proposition hinges on the fact that θ(1) > θ(0), which follows from Lemma 1.

1. From equation (14), u(1) < u(0) immediately follows from the fact that θ(1) > θ(0) and m(θ) is increasing.

2. EE flows are defined as:

EE(Ω) = λ(Ω)m(θ(Ω))γ(Ω)

= λ(Ω)m(θ(Ω))
δm(θ(Ω))

(δ +m(θ(Ω)))(δ + λ(Ω)m(θ(Ω)))
,

using (15). Then EE(1) > EE((0) provided

δλ(1)m(θ(1))2

(δ +m(θ(1)))(δ + λ(1)m(θ(1)))
− δλ(0)m(θ(0))2

(δ +m(θ(0)))(δ + λ(0)m(θ(0)))
> 0

δ2
(
λ(1)m(θ(1))2 − λ(0)m(θ(0))2

)
+ λ(0)λ(1)m(θ(0))m(θ(1)) [m(θ(1))−m(θ(0))]

+m(θ(0))m(θ(1))δ [λ(1)m(θ(1))− λ(0)m(θ(0))] > 0,



which is holds since λ(1) > λ(0) and under multiplicity m(θ(1)) > m(θ(0)).

3. Since we need an explicit expression for the matching function to solve explicitly for v, we derive this for

the telegraph matching function. For a given unemployment rate u, from (17) we find that v(1) > v(0) provided

2λ(1)(1− u) + u

λ(1)(1− u) + u
>

2λ(0)(1− u) + u

λ(0)(1− u) + u

which is satisfied since λ(1) > λ(0) and u ∈ [0, 1].

4. It suffices to show that the derivative of (17) w.r.t λ(Ω) is non-negative, i.e. for given s, v is (weakly)

increasing in λ(Ω) (recall that λ(1) > λ(0)). We obtain:

∂v

∂λ(Ω)
= δs

(
2αφ(δ(s− 2) + φs)

(
2δ(s− 1) + φ

(
−
√
λ(Ω)2(s− 2)2 − 2λ(Ω)s2 + s2 + λ(Ω)(s− 2) + s

)))
(2αδ(δ + 2λ(Ω)φ)− 2αs(δ + φ)(δ + λ(Ω)φ))2

−δs
φ

(
s2−λ(Ω)(s−2)2√

λ(Ω)2(s−2)2−2λ(Ω)s2+s2
+ s− 2

)
(2αs(δ + φ)(δ + λ(Ω)φ)− 2αδ(δ + 2λ(Ω)φ))

(2αδ(δ + 2λ(Ω)φ)− 2αs(δ + φ)(δ + λ(Ω)φ))2

Since the denominator is positive, focus on the numerator.(
s2 − λ(Ω)(s− 2)2√

λ(Ω)2(s− 2)2 − 2λ(Ω)s2 + s2
+ s− 2

)
(2αs(δ + φ)(δ + λ(Ω)φ) − 2αδ(δ + 2λ(Ω)φ))

+2α(δ(s− 2) + φs)
(

2δ(s− 1) + φ
(
−
√
λ(Ω)2(s− 2)2 − 2λ(Ω)s2 + s2 + λ(Ω)(s− 2) + s

))
Simplifying (and taking into account that

√
λ(Ω)2(s− 2)2 − 2λ(Ω)s2 + s2 in the denominator is positive) implies

that the following expression needs to be signed.

δ2(s− 1)
(
s
(√

λ(Ω)2(s− 2)2 − 2λ(Ω)s2 + s2 − s
)
− 2
√
λ(Ω)2(s− 2)2 − 2λ(Ω)s2 + s2 + λ(Ω)(s− 2)2

)
+2δφ(s− 1)s

(√
λ(Ω)2(s− 2)2 − 2λ(Ω)s2 + s2 + λ(Ω)(s− 2)− s

)
+φ2s2

(√
λ(Ω)2(s− 2)2 − 2λ(Ω)s2 + s2 + (λ(Ω)− 1)s

)
By assumption s ≤ 1 (due to λ(1) ≤ 1), so all three lines are non-negative: Line 1 is non-negative since

both factors are non-positive due to s ≤ 1. Line 2 is non-negative since the second factor is(√
λ(Ω)2(s− 2)2 − 2λ(Ω)s2 + s2 + λ(Ω)(s− 2)− s

)
≤ 0

λ(Ω)2(s− 2)2 − 2λ(Ω)s2 + s2 ≤ λ(Ω)2(s− 2)2 − 2λ(Ω)s(s− 2) + s2

−4λ(Ω)s ≤ 0.

Line 3 is non-negative since
(√

λ(Ω)2(s− 2)2 − 2λ(Ω)s2 + s2 + (λ(Ω)− 1)s
)

is decreasing in s and is

positive for s = 0 and equals zero for s = 1.

5. We know from 1. that u(1) < u(0), and from 3. that for a given u, v is higher under active

on-the-job search (outward shift of Beveridge Curve). Because the BC is downward sloping, it follows

that also for u(1) < u(0) it must be the case that v(1) > v(0).



6. This follows from Lemma 1 (i.e. necessary condition for multiplicity θ(1) > θ(0)) and

θ(Ω)
u(Ω) + λ(ω)γ(Ω)

u
= Θ(Ω)

where u+λγ
u = 2− δ

δ+λm(θ) is larger for Ω = 1 since λ(1)m(θ(1) > λ(0)m(θ(0)).

7. λ(1)γ(1)/s(1) > λ(0)γ(0)/s(0) follows from λ(Ω)γ(Ω)/s(Ω) = 1 − u(Ω)/s(Ω) = 1 − (δ2 +

δλm(θ(Ω)))/(δ2 + 2δλm(θ(Ω))) and

∂(u(Ω)/s(Ω))

∂λ(Ω)m(θ(Ω))
= − δ3

(δ2 + 2δλ(Ω)m(θ(Ω)))2
< 0

as well as λ(1)m(θ(1)) > λ(0)m(θ(0)).

Dynamics

Local Stability

To analyze the dynamic properties, we take the following three dynamic equations into account. They hold both

for boom and recession,

u̇ = δ(1− u)− um(θ(Ω)) (38)

γ̇ = um(θ(Ω))− (δ + λ(Ω)m(θ(Ω)))γ (39)

J̇ = −(py − w(Ω)) + J(r + δ + λ(Ω)m(θ(Ω))) (40)

where (38) describes unemployment dynamics, (39) gives the dynamics for employed workers after a UE transition

and (40) describes how the value of a filled job evolves over time.

It will be more convenient to work with θ̇, so we first transform the equation for J̇ into and equation in θ̇.

Notice that from the free entry condition we can find an expression for J :

J =
c

q(θ(Ω))

u+ λ(Ω)γ

u
− λ(Ω)γ

u
J (41)

Take the time derivative of J (taking into account q(θ(Ω)) = m(θ(Ω))
θ(Ω)) ) to obtain:

J̇ = θ̇(Ω)
c

m(θ(Ω))2
(m(θ(Ω))− θ(Ω)m′(θ(Ω)))

u+ λ(Ω)γ

u
+ u̇

λ(Ω)γ

u2

(
− θ(Ω)c

m(θ(Ω))
+ J

)
− γ̇ λ(Ω)

u

(
− θ(Ω)c

m(θ(Ω))
+ J

)
= θ̇(Ω)

c

m(θ(Ω))
(1− η(θ(Ω)))

u+ λ(Ω)γ

u
+ u̇

λ(Ω)γ

u2

(
− θc

m(θ(Ω))
+ J

)
− γ̇ λ(Ω)

u

(
− θ(Ω)c

m(θ(Ω))
+ J

)
(42)

where we define the elasticity of the matching function as η(θ) = θm′(θ)
m(θ) .



Plug the expressions for J̇ , (42), and for J from free entry (41), into (40),

θ̇(Ω)
c

m(θ(Ω))
(1− η(θ(Ω)))

u+ λ(Ω)γ

u
+ u̇

λ(Ω)γ

u2

(
− θc

m(θ(Ω))
+ J

)
− γ̇ λ(Ω)

u

(
− θ(Ω)c

m(θ(Ω))
+ J

)
= −(py − w(Ω)) +

(
c

q(θ(Ω))

u+ λ(Ω)γ

u
− λ(Ω)γ

u
J

)
(r + δ + λ(Ω)m(θ(Ω)))

and solve for θ̇, to obtain:

θ̇(Ω) =
m(θ(Ω))u

c(1− η(θ(Ω)))(u+ λ(Ω)γ)
×

[
λ

u

(
− θc

m(θ(Ω))
+ J

)(
−u̇γ

u
+ γ̇
)
− (py − w(Ω))

+

(
c

q(θ(Ω))

u+ λ(Ω)γ

u
− λ(Ω)γ

u
J

)
(r + δ + λ(Ω)m(θ(Ω)))

]
So our dynamic system is given by:

u̇ = δ(1− u)− um(θ(Ω)) (43)

γ̇ = um(θ(Ω))− (δ + λ(Ω)m(θ(Ω)))γ (44)

θ̇(Ω) =
m(θ(Ω))u

c(1− η(θ(Ω)))(u+ λ(Ω)γ)
× [

λ

u

(
− θ(Ω)c

m(θ(Ω))
+ J

)(
−u̇γ

u
+ γ̇
)
− (py − w(Ω))

+

(
c

q(θ(Ω))

u+ λ(Ω)γ

u
− λ(Ω)γ

u
J

)
(r + δ + λ(Ω)m(θ(Ω)))] (45)

where w(0)and w(1) are given by (11).

To analyze the stability of system (43)-(45), we further have to specify the Jacobian matrix,

J∗(Ω) =


∂u̇
∂u

∗ ∂u̇
∂γ

∗ ∂u̇
∂θ

∗

∂γ̇
∂u

∗ ∂γ̇
∂γ

∗ ∂γ̇
∂θ

∗

∂θ̇
∂u

∗
∂θ̇
∂γ

∗
∂θ̇
∂θ

∗


where all partial derivatives are functions of Ω and are evaluated at the steady state under consideration



(indicated by ∗): u̇ = 0, γ̇ = 0, θ̇ = 0, J̇ = 0. In particular, we obtain

∂u̇

∂u
= −(δ +m(θ(Ω)))

∂u̇

∂γ
= 0

∂u̇

∂θ
= −um′(θ(Ω))

∂γ̇

∂u
= m(θ(Ω))

∂γ̇

∂γ
= −(δ + λm(θ(Ω)))

∂γ̇

∂θ
= m′(θ(Ω))(u− λ(Ω)γ)

∂θ̇

∂u
=

m(θ(Ω))λ(Ω)γ

c(1− η(θ(Ω)))(u+ λ(Ω)γ)
×
[(
− θ(Ω)c

m(θ(Ω))
+ J

)(γ
u

[r + 2δ + (λ(Ω) + 1)m(θ(Ω))] +m(θ(Ω))
)]

> 0

∂θ̇

∂γ
=

m(θ(Ω))λ(Ω)

c(1− η(θ(Ω)))(u+ λ(Ω)γ)
×
[
−
(
− θ(Ω)c

m(θ(Ω))
+ J

)
(r + 2δ + 2λ(Ω)m(θ(Ω)))

]
< 0

∂θ̇

∂θ
=

m(θ(Ω))u

c(1− η(θ(Ω)))(u+ λ(Ω)γ)
×
[
λ(Ω)m′(θ(Ω))

(
− pkΩ

r + δ + λ(Ω)m(θ(Ω))
+
γ(1− λ(Ω)) + u

u

(
− θ(Ω)c

m(θ(Ω))
+ J

))]
+r + δ + λ(Ω)m(θ(Ω))

The linearized system (around the steady state) of differential equations is then given by
u̇

γ̇

θ̇

 =


∂u̇
∂u

∗ ∂u̇
∂γ

∗ ∂u̇
∂θ

∗

∂γ̇
∂u

∗ ∂γ̇
∂γ

∗ ∂γ̇
∂θ

∗

∂θ̇
∂u

∗
∂θ̇
∂γ

∗
∂θ̇
∂θ

∗



ut − u∗i
γt − γ∗i
θt − θ∗i

 (46)

Transition Dynamics

We follow Stemp and Herbert (2006) to use an approximation for the stable manifold that we cannot

solve explicitly.

Using the linearized system (46) we can write the system as:
ut − u∗i
γt − γ∗i
θt − θ∗i

 = [v(λ1) v(λ2) v(λ3)]


C1 exp(λ1t)

C2 exp(λ2t)

C3 exp(λ3t)


where λi is the i-th eigenvalue and v(λi) is the corresponding eigenvector. In our case all three eigen-

values are real, with one eigenvalue positive (the unstable eigenvalue) and two eigenvalues negative (the

stable eigenvalues). Without loss, we assume that λ3 is positive. Then the stable solution is given by



setting C3 = 0, and we obtain:
ut − u∗i
γt − γ∗i
θt − θ∗i

 = [v(λ1) v(λ2)]

[
C1 exp(λ1t)

C2 exp(λ2t)

]

=


v1(λ1) v1(λ2)

v2(λ1) v2(λ2)

v3(λ1) v3(λ2)


[
C1 exp(λ1t)

C2 exp(λ2t)

]

Productivity Induced Dynamics

u̇ = δ(1− u)− um(θ(Ω)) (47)

γ̇ = um(θ(Ω))− (δ + λ(Ω)m(θ(Ω)))γ (48)

θ̇(Ω) =
m(θ(Ω))u

c(1− η(θ(Ω)))(u+ λ(Ω)γ)
×
[
λ

u

(
− θ(Ω)c

m(θ(Ω))
+ J

)(
−u̇γ

u
+ γ̇
)
− (py − w(Ω))

+

(
c

q(θ(Ω))

u+ λ(Ω)γ

u
− λ(Ω)γ

u
J

)
(r + δ + λ(Ω)m(θ(Ω)))

]
+ (1− π(Ω))∆θ(Ω). (49)



Appendix B: Alternative Technological Specifications

We will analyze two alternative specifications of the technology, exclusively in steady state.

1. Match-Specific Types

Suppose that any realized match has a probability π to be of productivity y and a probability 1− π to

be of productivity y. Once matched, the worker decides whether to continue to search. Now the exact

history matters for the continuation. There are 7 possible states corresponding to 3 stages: in stage

0 the worker is unemployed; in stage 1, the worker is employed either at a low or a high productivity

firm; in stage 2, the worker who was initially employed at a low or a high productivity firms is now

employed at a firm with low or a high match-specific productivity.

1. U : unemployed

2. E1: Employed at y out of U (get wage w1)

3. E1: Employed at y out of U (get wage w1)

4. E2: Employed at y after a match with another y (wage w2)

5. E2′ : Employed at y after first having been employed by a y (get wage w2′)

6. E2: Employed at y after getting an outside offer from a y (get wage w2);

7. E2′ : Employed at y after matching with another y (get wage w2′)

As in the baseline version of the model, we assume that search costs are prohibitively high (or the

gains are too low) when the wage offer has been matched once (i.e. after one round of on-the-job search),

so that no more search occurs to increase the wage further. Ties are broken in favor of the incumbent:

in case of a tie, assume the worker does not move or equivalently, that there is an ε moving cost. For

the values of a filled job as well as for the labor market stocks, we adopt a similar notation below.

Further, let the stocks corresponding to the different states be:

1. u: unemployment

2. γ: employed out of U in a y job

3. γ: employed out of U in a y job

4. ξ
2
: employed, first an y job, then an y job

5. ξ
2′

: employed, first an y job, then an y job

6. ξ2: employed, first an y job, then an y job



7. ξ2′ : employed, first an y job, then an y job

The laws of motion satisfy:

1 = u+ γ + γ + ξ
2

+ ξ
2′

+ ξ2 + ξ2′

γ̇ = um(θ(Ω))(1− π)− γ[δ + λ(Ω)m(θ(Ω)]

γ̇ = um(θ(Ω))π − γ[δ + λ(Ω)m(θ(Ω)]

ξ̇
2

= γλ(Ω)m(θ(Ω))(1− π)− ξ
2
δ

˙ξ
2′

= γλ(Ω)m(θ(Ω))π − ξ
2′
δ

ξ̇2 = γλ(Ω)m(θ(Ω))(1− π)− ξ2δ

˙ξ2′ = γλ(Ω)m(θ(Ω))π − ξ2′δ

Equilibrium. As before, we look for an equilibrium where either all search actively in the first job

or no one searches actively. Of course, now there could also be equilibria where only those in the y

job search but not in the y job. This is beyond the purpose of this exercise which is to show that the

mechanism that leads to multiplicity does not hinge on the particular job ladder that we have in the

baseline model.

We can write the value functions of the worker in steady state as:

rU = pb+m(θ(Ω))((1− π)E1 + πE1 − U)

rE1 = w1(Ω)− ωpk + λ(ω)m(θ(Ω))((1− π)E2 + πE2′ − E1)− δ(E1 − U)

rE1 = w1(Ω)− ωpk + λ(ω)m(θ(Ω))((1− π)E2 + πE2′ − E1)− δ(E1 − U)

rE2 = w2(Ω)− δ(E2 − U)

rE2′ = w2′(Ω)− δ(E2′ − U)

rE2 = w2(Ω)− δ(E2 − U)

rE2′ = w2′(Ω)− δ(E2′ − U)

The steady state values of a filled job, high or low productivity (and depending on the workers

previous position), are given by:

rJ1 = py − w1(Ω)− [λ(Ω)m(θ(Ω))π + δ](J1 − V )− λ(Ω)m(θ(Ω))(1− π)(J1 − J2′)

rJ1 = py − w1(Ω)− δ(J1 − V ))− λ(Ω)m(θ(Ω))
[
(1− π)(J1 − J2) + π(J1 − J2′)

]
rJ2 = py − w2(Ω)− δ(J2 − V )

rJ2′ = py − w2′(Ω)− δ(J2′ − V )

rJ2 = py − w2(Ω)− δ(J2 − V )

rJ2′ = py − w2′(Ω)− δ(J2′ − V )



The value of a vacancy to the firm is

rV = −c+ q(θ(Ω))

[
u

s
(1− π)J1 +

u

s
πJ1 +

λ(Ω)γ

s
πJ2′ − V

]
which reflects the fact that workers stay with the incumbent firm in case the worker draws the same

match-specific productivity.

The equilibrium wage in the terminal jobs is set such that the “losing” firm (which is the challenging

firm with low match-specific productivity), when competing for the worker, is indifferent between paying

that wage and opening a new vacancy. That implies:

w2 = w2′ = w2 = py

since this equally holds for any firm trying to poach the worker when there is at least one y firm

competing. When both competing firms are of type y, then the wage is:

w2′ = py.

Observe that all the wages in the terminal jobs are time invariant.

Then the equilibrium tightness can be written as:

θ(Ω) =
v

s(Ω)
=

v

u+ λ(Ω)
[
γ + γ

] .
We now derive the steady state equilibrium values where Ω is either 1 or 0. As before:

U =
pb

r
,

and using this expression for U to solve for E1 and E1 we get:

E1 =
w1(Ω)−Ωpk + λ(Ω)m(θ(Ω))((1− π)E2 + πE2′)

r + λ(Ω)m(θ(Ω))

E1 =
w1(Ω)−Ωpk + λ(Ω)m(θ(Ω))((1− π)E2 + πE2′)

r + λ(Ω)m(θ(Ω))
.



Then solving for the terminal values using the value for unemployment and the equilibrium wages gives

E2 =
py + δ pbr
r + δ

E2′ =
py + δ pbr
r + δ

E2 =
py + δ pbr
r + δ

E2′ =
py + δ pbr
r + δ

and similarly for the terminal job values:

J2 =
p(y − y)

r + δ

J2′ =
p(y − y)

r + δ

J2 =
p(y − y)

r + δ

J2′ = 0

The equilibrium wages for jobs out of unemployment w1 and w1 are pinned down by the sequential

auction framework setting E1 = U and E1 = U . Using the values from above, this implies:

w1(Ω) = pb

(
r + λ(Ω)m(θ(Ω)) + δ

r + δ

)
− λ(Ω)m(θ(Ω))

r + δ
py + Ωpk

w1(Ω) = pb

(
r + λ(Ω)m(θ(Ω)) + δ

r + δ

)
− λ(Ω)m(θ(Ω))

r + δ
p[(1− π)y + πy] + Ωpk.

From free entry, V = 0 and using the values for the terminal jobs, this implies:

0 = −c+ q(θ(Ω))

[
u

s
(1− π)J1 +

u

s
πJ1 +

λ(Ω)γ

s
πJ2′

]

J1 =
py − w1(Ω) + λ(Ω)m(θ(Ω))(1− π)

p(y−y)

r+δ

r + δ + λ(Ω)m(θ(Ω))

J1 =
py − w1(Ω) + λ(Ω)m(θ(Ω))(1− π)

p(y−y)

r+δ

r + δ + λ(Ω)m(θ(Ω))
.



Now using the equilibrium wages and substituting all explicit solutions for the values, we obtain the

following complete set of equilibrium Bellman equations:

U = E1 = E1 =
pb

r

E2 = E2′ = E2 =
py + δ pbr
r + δ

E2′ =
py + δ pbr
r + δ

V = −c+ q(θ(Ω))

u(1− π)

s

p(y − b)
r + δ

−
pkΩ− λ(Ω)m(θ(Ω))(1− π)

p(y−y)

r+δ

r + δ + λ(Ω)m(θ(Ω))


+
uπ

s

(
p(y − b)
r + δ

− pkΩ

r + δ + λ(Ω)m(θ(Ω))

)
+
λ(Ω)γπ

s

p(y − y)

r + δ

]
= 0

J1 =
p(y − b)
r + δ

−
pkΩ− λ(Ω)m(θ(Ω))(1− π)

p(y−y)

r+δ

r + δ + λ(Ω)m(θ(Ω))

J1 =
p(y − b)
r + δ

− pkΩ

r + δ + λ(Ω)m(θ(Ω))

J2 = J2′ = J2 =
p(y − y)

r + δ

J2′ = 0

Multiple Equilibria. Now we need to verify the two no-deviation conditions for those workers matched

in two types of matches, a match y and y. This implies that we need to check the conditions:

1. No deviation when non one searches: E1(0|0) > E1(1|0) and E1(0|0) > E1(1|0)

2. No deviation when all search: E1(1|1) > E1(0|1) and E1(1|1) > E1(0|1)

The next proof, adapted from the proof of the baseline model, shows that the condition for multi-

plicity is very similar to (but stronger than) the condition from the baseline model, i.e.,

θ(0) < m−1

(
k(r + δ)

λ1

[
πy + (1− π)y − b

]) < m−1

(
k(r + δ)

λ1(y − b))

)
< θ(1).

Proof.

1.1. No deviation in y jobs when no one searches: E1(0|0) > E1(1|0).

In this case, when no one actively searches on-the-job (Ω = 0), a worker in a low productivity job

deviating during an interval dt chooses ω = 1 and gets a payoff

E1(1|0) =
1

1 + rdt
[dt(w1(0)− pk) + (1− δdt)dtλ(1)m(θ(0)) [(1− π)E2 + πE2′ ] + (1− δdt)(1− dtλ(1)m(θ(0)))E1(0|0) + δdtU ]



where E2 = E2(0|0) and E2′ = E2′(0|0). There is no deviation provided E1(0|0) > E1(1|0) or:

E1(0|0)(1 + rdt) > dt(w1(0)− pk) + dtλ(1)(1− δdt)m(θ(0)) [(1− π)E2 + πE2′ ]

+(1− δdt− dtλ(1)m(θ(0)) + dt2δλ(1)m(θ(0)))E1(0|0) + δdtU.

After subtracting E1(0|0) from both sides and dividing by dt and taking the limit dt→ 0, we obtain:

rE1(0|0) > w1(0)− pk + λ(1)m(θ(0)) [(1− π)E2 + πE2′ ] + (−δ − λ(1)m(θ(0)))E1(0|0) + δU.

Substituting the equilibrium values for E1(0|0), E2, E2′,U and w1(0) we get:

(y − b)[λ(1)− λ(0)]m(θ(0))− k(r + δ) < 0.

So there is no deviation provided that:

θ(0) < m−1

(
k(r + δ)

λ1(y − b))

)

1.2. No deviation in y jobs when no one searches: E1(0|0) > E1(1|0).

E1(1|0) =
1

1 + rdt

[
dt(w1(0)− pk) + (1− δdt)dtλ(1)m(θ(0))

[
(1− π)E2 + πE2′

]
+(1− δdt)(1− dtλ(1)m(θ(0)))E1(0|0) + δdtU

]
where E2 = E2(0|0) and E2′ = E2′(0|0). There is no deviation provided E1(0|0) > E1(1|0) or:

E1(0|0)(1 + rdt) > dt(w1(0)− pk) + dtλ(1)(1− δdt)m(θ(0))
[
(1− π)E2 + πE2′

]
+(1− δdt− dtλ(1)m(θ(0)) + dt2δλ(1)m(θ(0)))E1(0|0) + δdtU.

After subtracting E1(0|0) from both sides and dividing by dt and taking the limit dt→ 0, we obtain:

rE1(0|0) > w1(0)− pk + λ(1)m(θ(0))
[
(1− π)E2 + πE2′

]
+ (−δ − λ(1)m(θ(0)))E1(0|0) + δU.

Substituting the equilibrium values for E1(0|0), E2, E2′ , U and w1(0) we get:

(y − b)[λ(1)− λ(0)]m(θ(0))− k(r + δ) + (λ(1)− λ(0))m(θ(0))
[
π(y − y)

]
< 0

This condition is stronger than the one under 1.1. (that one is implied by this condition) since

(λ(1)− λ(0))m(θ(0))
[
π(y − y)

]
> 0. Therefore, the requirement for multiplicity is (using the fact that



λ(1)− λ(0) = λ1:

(y − b)λ1m(θ(0))− k(r + δ) + λ1m(θ(0))
[
π(y − y)

]
< 0

or

θ(0) < m−1

(
k(r + δ)

λ1

[
πy + (1− π)y − b

]) .
2.1. No deviation in y job when all search: E1(1|1) > E1(0|1).

In this case, when all actively search on-the-job (Ω = 1), a worker in a low productivity job deviating

for an interval dt chooses ω = 0 and gets a payoff

E1(0|1) =
1

1 + rdt

[
dtw1(1) + dtλ(0)(1− δdt)m(θ(1))

[
(1− π)E2 + πE2′

]
+ (1− δdt)(1− dtλ(0)m(θ(1)))E1(1|1) + δdtU

]
.

There is no deviation provided E1(1|1) > E1(0|1):

E1(1|1)(1 + rdt) > dtw1(1) + dtλ(0)(1− δdt)m(θ(1))
[
(1− π)E2 + πE2′

]
+(1− δdt− dtλ(0)m(θ(1)) + dt2δλ(0)m(θ(1)))E1(1|1) + δdtU.

After subtracting E1(1|1) from both sides and dividing by dt and taking the limit dt→ 0, we obtain:

rE1(1|1) > w1(1) + λ(0)m(θ(1))
[
(1− π)E2 + πE2′

]
+ (−δ − λ(0)m(θ(1)))E1(1|1) + δU.

Substituting the equilibrium values for E1(1|1), E2, E2′ , U and w1(1) we get:

(y − b)[λ(1)− λ(0)]m(θ(1))− k(r + δ) > 0.

So there is no deviation provided that:

θ(1) > m−1

(
k(r + δ)

λ1(y − b))

)

2.2. No deviation in y job when all search: E1(1|1) > E1(0|1).

In this case, when all actively search on-the-job (Ω = 1), a worker in a high productivity job

deviating for an interval dt chooses ω = 0 and gets a payoff

E1(0|1) =
1

1 + rdt

[
dtw1(1) + dtλ(0)(1− δdt)m(θ(1))

[
(1− π)E2 + πE2′

]
+ (1− δdt)(1− dtλ(0)m(θ(1)))E1(1|1) + δdtU

]
.



There is no deviation provided E1(1|1) > E1(0|1):

E1(1|1)(1 + rdt) > dtw1(1) + dtλ(0)(1− δdt)m(θ(1))
[
(1− π)E2 + πE2′

]
+(1− δdt− dtλ(0)m(θ(1)) + dt2δλ(0)m(θ(1)))E1(1|1) + δdtU.

After subtracting E1(1|1) from both sides and dividing by dt and taking the limit dt→ 0, we obtain:

rE1(1|1) > w1(1) + λ(0)m(θ(1))
[
(1− π)E2 + πE2′

]
+ (−δ − λ(0)m(θ(1)))E1(1|1) + δU.

Substituting the equilibrium values for E1(1|1), E2, E2′ , U and w1(1) we get:

(y − b)[λ(1)− λ(0)]m(θ(1))−m(θ(1))[λ(1)− λ(0)]π(y − y)− k(r + δ) > 0.

And therefore, there is no deviation in this particular point of the tree if:

θ(1) > m−1

(
k(r + δ)

λ1

[
πy + (1− π)y − b

]) .
Since λ1(πy+ (1−π)y− b) > λ1(y− b) this condition is less strict than the condition under 2.1. As

a result, the conditions for no deviation when all search is:

θ(1) > m−1

(
k(r + δ)

λ1

[
y − b

]) .
The necessary and sufficient conditions for the existence of multiple steady state equilibria is there-

fore:

θ(0) < m−1

(
k(r + δ)

λ1

[
πy + (1− π)y − b

]) < m−1

(
k(r + δ)

λ1(y − b))

)
< θ(1) (50)

Notice that this condition is more stringent than the one from our baseline model. This is intuitive

since workers who obtain the high-productivity match right after unemployment have strong incentives

to keep searching in order to obtain another y match and extract all rents from matching. Only a

sufficiently low market tightness prevents them from doing so.

Using the bounds from (50) for θ, we can – as in the baseline model – evaluate the free entry condition

in boom and recession to obtain multiplicity bounds on primitive p. We have the following result.

Proposition 4 Let m(θ) = φ αθ
αθ+1 . Then there are multiple steady states if and only if p ∈ [pl, ph],

where [pl, ph] is not empty for an open set of parameters.

(Closed-form expressions for pl and ph are tedious and available upon request.)



This result shows that the multiplicity does not hinge on the specific job ladder that we assumed in

the baseline model. Even a setting where both unemployed and employed workers have the same prob-

ability of drawing a firm with high match-specific productivity gives rise to a strategic complementarity

between vacancy posting and on-the-job search, generating multiplicity. Why workers are encouraged

to actively search when more vacancies are posted is straightforward (and analogous to the baseline

model). Similar to the baseline model, the reason why firms are encouraged to post vacancies under

active on-the-job search lies in the combination of two factors: a) With heterogeneity in match-specific

shocks, firms benefit from meeting employed workers who are currently matched with a low productivity

firm y if the match-specific shock with this new competing firm is high y. In this case, they manage to

attract the worker and can extract a sizable share of the produced output since the worker agrees to a

relatively low wage. This is more likely under active on-the-job search since then the pool of searchers

is more biased towards on-the-job searchers than to unemployed workers. b) Moreover, a match with

an on-the-job searcher is characterized by longer duration than a match with an unemployed worker

who starts lower in the job ladder and keeps searching for more rounds. Both factors are crucial in

order for on-the-job search to incentivize vacancy posting (and, in an equilibrium with active search,

must dominate the fact that overall match duration is lower than under passive search).

It is important to note that this result does not hinge on the assumption of a single round of on-

the-job search. If there are more than one but a finite number of rounds, firms always benefit from

meeting a worker who was previously employed in a y job and who draws a high match-specific shock

with the new firm. This is especially the case for a worker who drew y until the second last round of

on-the-job search but y in the last round: The firm will extract a sizable share of the surplus and keeps

the worker until the match is exogenously distroyed (i.e. it benefits from longer job duration than when

meeting an unemployed worker).

2. Permanent Types

Now we study a setting with two types of jobs y and y. A firm can open vacancies of either type,

which is permanent. Let the number of vacancies be v ∈ {v, v}. Following Robin and Lise (2013), we

model the employment production technology by assuming the the cost of vacancies is increasing in the

aggregate number of vacancies of each type: c(v) with c(0) ≥ 0, c′ > 0, c′(0) = 0, c′′ = 0.

Equilibrium. The objective of the vacancy posting firm (as in Robin and Lise (2013), we assume that

these are handled by competing intermediaries; in contrast to their setup, our intermediaries operate

in a CRS environment and have zero profits, meaning that one firm can post many vacancies) is to

maximize the value of vacancies by choosing the number of either low or high type vacancies. In



particular, the value of a low and high-type vacancies are given by

V = −c(v) + vq(θ(Ω))
u

s
J1

V = −c(v) + vq(θ(Ω))

[
u

s
J1 +

λ(Ω)γ

s
J2′

]
In equilibrium, then the marginal cost of a vacancy is equal to the value of a job of each type:

c′(v) = q(θ(Ω))

[
u

s
J1 +

λ(Ω)γ

s
J2′

]
≡ q(θ(Ω))Jv

c′(v) = q(θ(Ω))
u

s
J1.

In addition, with CRS, the levels will be such that profits from opening any vacancy are zero or

equivalently, the equilibrium value of opening either vacancy is zero, q(θ(Ω))vJv − c(v) = 0, where

write Jv is the value of a low or high vacancy.

Define as π the equilibrium fraction of high type vacancies: π = v
v+v . We use a similar notation for

values and stocks as in Appendix B, Section 1. The value of a filled job, high or low productivity, is

given by:

rJ1 = py − w1(Ω)− [λ(Ω)m(θ(Ω))π + δ](J1 − V )− λ(Ω)m(θ(Ω))(1− π)(J1 − J2′)

rJ1 = py − w1(Ω)− δ(J1 − V ))− λ(Ω)m(θ(Ω))
[
(1− π)(J1 − J2) + π(J1 − J2′)

]
rJ2 = py − w2(Ω)− δ(J2 − V )

rJ2′ = py − w2′(Ω)− δ(J2′ − V )

rJ2 = py − w2(Ω)− δ(J2 − V )

rJ2′ = py − w2′(Ω)− δ(J2′ − V )

We can write the value functions of the worker as:

rU = pb+m(θ(Ω))((1− π)E1 + πE1 − U)

rE1 = w1(Ω)− ωpk + λ(ω)m(θ(Ω))((1− π)E2 + πE2′ − E1)− δ(E1 − U)

rE1 = w1(Ω)− ωpk + λ(ω)m(θ(Ω))((1− π)E2 + πE2′ − E1)− δ(E1 − U)

rE2 = w2(Ω)− δ(E2 − U)

rE2′ = w2′(Ω)− δ(E2′ − U)

rE2 = w2(Ω)− δ(E2 − U)

rE2′ = w2′(Ω)− δ(E2′ − U)

The laws of motions for the labor market stocks are identical to the previous extension with math-



specific types (previous subsection), with the only difference that π = v
v+v is endogenous and denotes

the fraction of high type vacancies.

The equilibrium wage in the terminal jobs is set such that the ‘losing” firm (which is the challenging

firm with low match-specific productivity), when competing for the worker, is indifferent between paying

that wage and opening a new vacancy. This implies

w2 = w2′ = w2 = py

since this equally holds for any firm trying to poach the worker when there is at least one y firm

competing. When both firms that compete are of type y, then the wage is:

w2′ = py.

Observe that all the wages in the terminal jobs are time invariant.

Then the equilibrium tightness can be written as:

θ(Ω) =
v

s(Ω)
=

v

u+ λ(Ω)
[
γ + γ

] .
We now derive the steady state equilibrium values where Ω is either 1 or 0. As before:

U =
pb

r
,

and using this expression for U to solve for E1 and E1 we get:

E1 =
w1(Ω)−Ωpk + λ(Ω)m(θ(Ω))((1− π)E2 + πE2′)

r + λ(Ω)m(θ(Ω))

E1 =
w1(Ω)−Ωpk + λ(Ω)m(θ(Ω))((1− π)E2 + πE2′)

r + λ(Ω)m(θ(Ω))
.

Then solving for the terminal values using the value for unemployment and the equilibrium wages gives:

E2 = E2′ = E2 =
py + δ pbr
r + δ

E2′ =
py + δ pbr
r + δ

and similarly for the terminal job values:

J2 = J2′ = J2 =
p(y − y)

r + δ

J2′ = 0



The equilibrium wages for jobs out of unemployment w1 and w1 are pinned down by the sequential

auction framework setting E1 = U and E1 = U . Using the above this implies:

w1(Ω) = pb

(
r + λ(Ω)m(θ(Ω)) + δ

r + δ

)
− λ(Ω)m(θ(Ω))

r + δ
py + Ωpk

w1(Ω) = pb

(
r + λ(Ω)m(θ(Ω)) + δ

r + δ

)
− λ(Ω)m(θ(Ω))

r + δ
p[(1− π)y + πy] + Ωpk.

From the assumption of CRS, V = V = 0, and using the values for the terminal jobs, this implies:

0 = −c+ vq(θ(Ω))

[
u

s
J1 +

λ(Ω)γ

s
J2′

]
= −c+ vq(θ(Ω))

u

s
J1

J1 =
py − w1(Ω) + λ(Ω)m(θ(Ω))(1− π)

p(y−y)

r+δ

r + δ + λ(Ω)m(θ(Ω))

J1 =
py − w1(Ω) + λ(Ω)m(θ(Ω))(1− π)

p(y−y)

r+δ

r + δ + λ(Ω)m(θ(Ω))
.

Now using the equilibrium wages and substituting all explicit solutions for the values, we obtain the

following complete set of equilibrium Bellman equations in steady state:

U = E1 = E1 =
pb

r

E2 = E2′ = E2 =
py + δ pbr
r + δ

E2′ =
py + δ pbr
r + δ

V = −c(v) + vq(θ(Ω))
u

s

(
p(y − b)
r + δ

− pkΩ

r + δ + λ(Ω)m(θ(Ω))

)
= 0

V = −c(v) + vq(θ(Ω))

[
u

s

(
p(y − b)
r + δ

− pkΩ

r + δ + λ(Ω)m(θ(Ω))

)
+
λ(Ω)γ

s

p(y − y)

r + δ

]
= 0

J1 =
p(y − b)
r + δ

−
pkΩ− λ(Ω)m(θ(Ω))(1− π)

p(y−y)

r+δ

r + δ + λ(Ω)m(θ(Ω))

J1 =
p(y − b)
r + δ

− pkΩ

r + δ + λ(Ω)m(θ(Ω))

J2 = J2′ = J2 =
p(y − y)

r + δ

J2′ = 0

where π = v
v+v and where V takes into account that low-productivity workers will only be accepted by un-

employed workers since, under the assumed tie-breaking rule, no employed worker would leave his job for a

low-productivity job.



Dependence of cost on y. Let c(v) = c0vy. Then the first order conditions of both types of firms are given by:

q(θ(Ω))
u

s
J1 = c0y

q(θ(Ω))

[
u

s
J1 +

λ(Ω)γ

s
J2′

]
= c0y

Recall that we assume CRS, which is why both types of firms make on average zero profits (i.e. V = V =

0), so that firms are indifferent between posting low and high type vacancies. From the FOCs, u
s J1y =[

u
s J1 +

λ(Ω)γ

s J2′

]
y. We can then solve this equation for m(θ) (and, assuming the telegraph matching func-

tion, also for θ) as a function of π.

m(θ(Ω)) = −
1

2λ2(y − y)(b+ (π − 1)(y − y))

×
[√

λ2(y − y)2
(

(b(2δ + r) + δkΩ− (π − 1)y(δ + r) + δπy − δy + kΩr)2 − 4δ(δ + r)(b+ kΩ)(b+ (π − 1)(y − y))
)

+λ(y − y)(b(2δ + r) + δkΩ− (π − 1)y(δ + r) + δπy − δy + kΩr)
]

(51)

where θ can then immediately be calculated from inverting the matching function m(θ) = φαθ
αθ+1 . This condition

pins down θ as a function of π.

Multiple Equilibria. Since all value functions (except the value of a vacancy, but that is equal to zero

in equilibrium) have the same form as in the extension with match-specific types (Section 1, Appendix B), the

conditions for multiplicity are identical to those in the case of match-specific heterogeneity. As a result, the

necessary and sufficient conditions for multiplicity that establish the equivalence to Lemma 1 are also the same:

θ(0) < m−1

(
k(r + δ)

λ1

[
πy + (1− π)y − b

]) < m−1

(
k(r + δ)

λ1(y − b))

)
< θ(1).

Notice that these bounds still depend on the endogenous variable π. To obtain the bounds in terms of π that

only depend on parameters, we evaluate the bounds at equality, using the expression for θ(Ω) above (i.e. obtain

θ from (51)) and solve for π. Since there are two bounds, we obtain two expressions

π(0) =
1

2λ1(δ + r)(y − y)(δ(y − y)(bλ1 + kλ0)− kλ0ry)
×{[

k2λ2
0(δ + r)2

(
δ2(y − y)2(λ1(y − b) + kλ0)2 + 2δr(y − y)(λ1(y − b) + kλ0)(λ1(by + 2by − yy) + kλ0(y − y))

+r2
(
2kλ0λ1(y − y)(by + 2by − yy) + λ2

1(by − 2by + yy)2 + k2λ2
0(y − y)2

))] 1
2

+δ2(−(y − y))
(
kλ0λ1(b− y + 2y) + 2bλ2

1(y − b) + k2λ2
0

)
+ δr

(
kλ0λ1

(
b(y − 2y) + (y − 2y)2

)
+2bλ2

1(b− y)(y − y) + 2k2λ2
0(y − y)

)
− kλ0λ1r

2(by + y(y − 2y)) + k2λ2
0r

2(y − y)
}



π(1) =
1

k(λ0 + λ1)(δ(y − y)(λ1(y − b) + k(λ0 + λ1)) + r(λ1y(b− y) + k(λ0 + λ1)(y − y)))
×{

b3(−δ)λ2
1 + b2λ1(δk(2λ0 + λ1) + 2δλ1y + kr(λ0 + λ1))

+b
(
−k(λ0 + λ1)(kλ0(δ + r) + δλ1y) + δkλ1y(λ1 − λ0)− δλ2

1y
2
)

+k
(
δ(k(λ0 + λ1) + λ1y)(y(λ0 + λ1)− y(λ0 + 2λ1)) + r(λ0 + λ1)

(
ky(λ0 + λ1)− ky(λ0 + 2λ1)− λ1y

2
))}

where π(0) gives the highest value of π that is consistent with an equilibrium where no one searches actively and

π(1) is the lowest π that is consistent with an equilibrium where everyone searches actively.

Finally, to obtain the bounds in terms of primitive p, we use the zero profit conditions (either V = 0 or

V = 0) for both the equilibrium of active and non-active search and solve for pl and ph respectively

pl =
cy

m(θ(1))u(y−b)
θ(1)(δ+r)(γ(λ0+λ1)+u) −

km(θ(1))u
θ(1)(γ(λ0+λ1)+u)(δ+m(θ(1))(λ0+λ1)+r) +

m(θ(1))2(1−π(1))u(λ0+λ1)(y−y)

θ(1)(δ+r)(γ(λ0+λ1)+u)(δ+m(θ(1))(λ0+λ1)+r)

ph = −
cθ(0)y(δ + r)(γλ0 + u)(δ + λ0m(θ(0)) + r)

m(θ(0))u(bδ + bλ0m(θ(0)) + br − δy + λ0m(θ(0))π(0)y − λ0m(θ(0))π(0)y − λ0m(θ(0))y − ry)

which we evaluate at π(Ω), θ(Ω) as well as u, γ from above to obtain expressions that solely depend on parameters.

The expressions are involved but one can show via simulations that there exists a paramater range for which

ph > pl and π(1) > π(0). We have the following result (exact expressions available upon request).

Proposition 5 Let m(θ) = φ αθ
αθ+1 . Then there are multiple steady states if and only if p ∈ [pl, ph]. The set

[pl, ph] is non-empty for an open set of parameters.

Also in this set-up with permanent firm types, the strategic complementarity and thus multiplicity survives.

When both equilibria coexist, the active on-the-job search equilibrium is characterized by more search effort,

larger market tightness and a larger share of high-productivity vacancies v (with y). What gives rise to this

strategic complementarity between on-the-job search and (high-type) vacancies? Here workers are incentivized

to search actively, not only if tightness is high enough (as before) but also if the fraction of high productivity

vacancies is high enough. High type vacancies encourage on-the-job search because it offers workers the chance

to end up in a job where they extract the entire surplus (after having met a high productivity firm not only after

unemployment but, crucially, also after on-the-job search). In turn, firms are encouraged to not only post more

vacancies but especially more high type vacancies in the presence of active on-the-job search because on-the-job

search biases the pool of searcher towards the employed. This bias implies that high type vacancies match faster

(v cannot attract on-the-job searchers) and the match duration with employed searchers is longer than with

unemployed ones.



Appendix C. Firm Deviation to Back-Loaded Wage Contract

One concern of our analysis is that the assumption of fixed wages drives the multiplicity result. While the fixed

wage assumption is common in this literature, it is well-known that it is not necessarily the optimal contract. A

firm may find it optimal to offer time-varying wages to discourage workers’ on-the-job search in the equilibrium

with active on-the-job search. Here we make a modest attempt to address this issue. We extend the contract space

to a two-part wage with back loading, and ask whether firms would want to deviate and offer a wage different

from the constant wage. In particular, we allow a firm to deviate from the current contract with constant wages

and to post a relatively low wage for T periods (where T is optimally chosen by the firm) which incentivizes

on-the-job search, followed by a relatively high wage from T + 1 onward that discourages active search. We find

that for the relevant parameter values, a firm is worse off when deviating and posting the time-varying wages

compared to the equilibrium contract with stable wages. In this case, the value of a filled low productivity job

under the deviating contract approaches the equilibrium value of a filled low productivity job in the limit for

T → ∞ and is strictly below for finite T , implying that the firm would not want to deviate from fixed wages

and pay a higher wages to discourage search. Only if discounting is (unnaturally) high, such that workers do not

value much the benefits of search, and if at the same time search costs are high, then it is profitable for the firm

to deviate from the equilibrium wage contract because discouraging search is cheap. Of course, this result does

not prove that there exists no profitable firm deviation through some more complicated contract. But it does

demonstrate that allowing for a natural class of wage contracts does not induce profitable deviations by the firms

that would destroy the equilibrium with on-the-job search (under reasonable parameter restrictions).

Here, we sketch the analysis if we allow firms to commit to the above mentioned wage contract, given that

other firms offer fixed wages. We do not aim to provide a full analytical characterization at this stage but rather

to give the conceptual framework and the intuition for the results. For convenience, we do the analysis in discrete

time. There is only one stage in which this deviating contract may be profitable to the firm, and that is when

employing a worker in a low productivity job (this is the only stage at which the worker searches). We therefore

focus on a deviation by a single firm regarding the contract in the low productivity job in the equilibrium with

active on-the-job search.

Denote by ET the value of a low productivity job to a worker, in which he will receive the low wage w1 for T

periods and the high wage w2 from T + 1 onward. This implies that ET is the value of a job from the perspective

of an unemployed worker. Denote by E0 the value of a job to a worker from period T + 1 onward. We adopt the

same notation for the firm, i.e. JT is the value of a filled low productivity job to a firm when paying the worker a

low wage for T periods; J0 is the value of that job when starting to pay the worker a higher wage from T + 1 on.

In steady state, these values are given by

JT =
1− (β(1− δ)(1− λ(1)m))T

β(1− δ)(1− λ(1)m)
(py − w1) + (β(1− δ)(1− λ(1)m))TJ0

J0 =
py − w2

β(1− δ)(1− λ(0)m)

ET =
1− (β(1− δ)(1− λ(1)m))T

β(1− δ)(1− λ(1)m)
(w1 − pk) + (β(1− δ)(1− λ(1)m))TE0 + βλ(1)m

1− (β(1− δ)(1− λ(1)m))T

β(1− δ)(1− λ(1)m)
E

+δβ
1− (β(1− δ)(1− λ(1)m))T

β(1− δ)(1− λ(1)m)
U



E0 =
w2 + βλ(0)mE + βδU

1− β(1− δ)(1− λ(0)m)

E =
w + βδU

1− β(1− δ)

U =
b

1− β

which take into account that V = 0 due to free entry.

The firm’s objective is to choose a triple T,w1, w2 to maximize the value of a low productivity job JT subject

to three constraints:

max
T,w1,w2

JT

s.t. ET ≥ U

E0(0) ≥ E0(1)

ET−1(1) ≥ ET−1(0)

The first constraint states that the wages must be such that the worker is at least as well off taking the job as in

unemployment; the second states that after T periods, wages must be such that the worker weakly prefers not

to search; the third constraint ensures that the worker does not want to deviate from the strategy search until

period T (and not thereafter): If the worker prefers to search in period T − 1, he also prefers to search in all

periods t < T − 1 since in period T − 1 it is most tempting to not search due to the soon-to-be-expected wage

increase. The first two constraints will hold with equality, otherwise the firm would forgo profits. We recover w2

from constraint 2 and, given w2, we recover w1 from constraint 1. Last, we verify that constraint 3 holds for any

paramater constellation; it is slack.

We then evaluate the objective function JT at the wages and check its properties: Our simulations (available

upon request) reveal that it is either monotonic increasing or decreasing, i.e. T ∗ is at a corner. For most

parameter ranges, JT is increasing, always weakly below the value of the on-the-job search equilibrium J with

limT→∞ JT = J . This implies that the deviation is not profitable; firms do not seek to discourage search by

backloading wages. For some paramater constellations (in particular, for unnaturally low β and high k), JT can

be decreasing with its maximum at T ∗ = 0. In this case, in which on-the-job search is costly and workers do not

value much future benefits, it is worth it for the firm to discourage search, and the firm would do so immediately

after hiring.
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