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Abstract. In the study of farsighted coalitional behavior, a central role is played by the von
Neumann-Morgenstern (1944) stable set and its modification that incorporates farsightedness.
Such a modification was first proposed by Harsanyi (1974) and has recently been re-formulated
by Ray and Vohra (2015). The farsighted stable set is based on a notion of indirect dominance
in which an outcome can be dominated by a chain of coalitional ‘moves’ in which each coali-
tion that is involved in the sequence eventually stands to gain. However, it does not require that
each coalition make a maximal move, i.e., one that is not Pareto dominated (for the members of
the coalition in question) by another. Nor does it restrict coalitions to hold common expectations
regarding the continuation path from every state. Consequently, when there are multiple continu-
ation paths the farsighted stable set can yield unreasonable predictions. We resolve this difficulty
by requiring all coalitions to have common rational expectations about the transition from one
outcome to another. This leads to two related concepts: the rational expectations farsighted
stable set (REFS) and the strong rational expectations farsighted stable set (SREFS). We apply
these concepts to simple games and to pillage games to illustrate the consequences of imposing
rational expectations for farsighted stability.

KEYWORDS: stable sets, farsightedness, consistency, maximality, rational expectations, simple
games, pillage games.
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1. INTRODUCTION

Theories of coalitional stability are based on the notion of domination or objections by coalitions.
A coalition is said to have an objection to the status-quo if it can change the outcome to one in
which all its members gain. Perhaps the most widely used solution concept in this literature is
the core, which is defined as the set of outcomes to which there is no objection. The original
formulation of the theory by von Neumann and Morgenstern (1944), however, was concerned
with a somewhat more sophisticated equilibrium concept, which they referred to simply as the
“solution” but which has since become known as the vNM stable set.

A vNM stable set consists of outcomes that satisfy two properties: (1) internal stability in the
sense that no stable outcome dominates any other stable outcome; (2) external stability in the
sense that every outcome not in the stable set is dominated by some stable outcome. It is easy
to see that every stable set contains the core. However, as shown by Lucas (1968), it is possible
that no stable set exists even if the core is nonempty. There is a large literature on the stable set
even though it has been notoriously difficult to work with.1

Both the core and the stable set are based on myopic, or one-shot, deviations by coalitions.
If a change made by a coalition can be followed by other coalitional moves, then clearly we
should require coalitions to be farsighted in their behavior. This is a direction of research that
has attracted renewed interest; see, for example, Harsanyi (1974), Aumann and Myerson (1988),
Chwe (1994), Bloch (1996), Ray and Vohra (1997, 1999), Xue (1978), Diamantoudi and Xue
(2003), Konishi and Ray (2003), Herings et al. (2004), Ray (2011), Mauleon et al. (2011),
Ray and Vohra (2014, 2015), Chander (2015), Kimya (2015). It is by no means obvious how
the classical theory should be modified to account for farsightedness, which partly explains the
diversity of approaches taken in this literature. Ray and Vohra (2014) distinguish between two
principal approaches: (a) the blocking approach, which follows traditional cooperative game
theory in abstracting away from the details of the negotiation process and relying largely on the
specification of what each coalition is able to accomplish on its own, and (b) the bargaining
approach, which is based on noncooperative coalition bargaining.2

This paper is in the tradition of the blocking approach, where farsightedness implies that coali-
tional decision making is based not on the immediate effect of an initial ‘move’ but the ‘final
outcome’.3 This immediately raises the question of what the ‘final outcome’ is in a sequence of
coalitional moves. In particular, if there is no pre-specified set of ‘terminal’ states, how do we
know that the last step in a sequence of coalition moves is indeed the ‘final outcome’? Suppose
coalition S1 replaces x with x1, and then S2 replaces x1 with x2. If x2 is the final outcome,
farsightedness would require S1 to compare the utility of x2 to that of x (and ignore its payoff at
x1). But this argument only works if x2 is known to be the ‘final outcome’. What is considered
to be a final outcome must, of course, also be stable. Thus, testing the stability of a particular

1See Lucas (1992) for a survey.
2They also show that both approaches can be included within a more general dynamic model in which payoffs

accrue in real-time and and there is an explicit protocol regarding which coalition has the right to move, depending
on the history.

3In a real-time model what matters is the entire stream of (discounted) payoffs along a sequence of moves.
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outcome against a sequence of moves requires us to know which of the other outcomes are sta-
ble. This is precisely the kind of circularity that the stable set is very adept at handling, making
it a fruitful vehicle for incorporating farsightedness.

The idea of modifying the stable set by allowing for sequences of coalitional moves, with each
coalition focused on the ‘final outcome’, goes back to Harsanyi (1974).4 One conceptual diffi-
culty with the farsighted stable set, including it’s more recent reformulation by Ray and Vohra
(2015), is that coalitions involved in a farsighted objection are not required to make the most
profitable moves that may be available to them. This is the issue of maximality, which we ex-
plain in more detail in Sections 2 and 3, along with the consistency issue. The problem of
consistency relates to the possibility that farsighted objections may involve different coalitions
holding incompatible expectations about the continuation path from some outcome.

The main aim of this paper is to resolve the maximality and consistency issues while maintaining
the parsimony of the blocking approach. We do so by explicitly introducing expectations, held
commonly by all agents, regarding the sequence of coalitional moves, if any, from every out-
come. This leads us to define two related solution concepts: the rational expectations farsighted
stable set (REFS) and the strong rational expectations farsighted stable set (SREFS). We show
that although there are a some cases in which farsighted stable sets, or even vNM stable sets, are
REFS or SREFS, in general imposing rational expectations can be consequential for farsighted
stability.

In Sections 4 and 5, respectively, we apply these concepts to two important economic models:
simple games and pillage games. The former have been fruitful in studying voting behavior
and possess a rich literature on stable sets. We use simple games to highlight the consistency
issue. Pillage games are models of economies where property rights do not exist so that the
more “powerful” can capture the assets or wealth of the less powerful. These games cannot be
represented as characteristic function games. Jordan (2006) and Acemoglu et al. (2008) study
farsighted cooperative behavior in these models.5 In these models we find that the maximality
issue makes a crucial difference. Together, these applications illustrate how the imposition of
rational expectations can result in predictions that are very different from those of the farsighted
stable set.

2. MAXIMALITY AND CONSISTENCY

We consider a general setting, described by an abstract game, (N,X,E, ui(.)), where N is the
set of players and X is the set of outcomes or states. Let N denote the set of all subsets of N .
The effectivity correspondence, E : X×X 7→ N , specifies the coalitions that have the ability to
replace a state with another state: for x, y ∈ X , E(x, y) is the (possibly empty) set of coalitions
that can replace x with y. Finally, ui(x) is the utility of player i at state x.

The set of outcomes as well as the effectivity correspondence will depend on the structure of the
model being studied. For instance, in a characteristic function game, (N,V ), there is a set of

4See Chwe (1994) for a formal definition of the Harsanyi farsighted stable set.
5Piccione and Rubinstein (2007) study the analogue of an exchange economy in the “jungle”, which is similar to

a world without property rights.
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feasible utilities, V (S), for every coalition S.6 In this case, the set of states will typically refer to
the set of imputations, the Pareto efficient utility profiles in V (N), so u(x) = x, and S ∈ E(x, y)
iff yS ∈ V (S). Indeed, this was the original format for characteristic function games introduced
by von Neumann and Morgenstern (1944).

State y dominates x if there is S ∈ E(x, y) such that uS(y) � uS(x). In this case we also say
that (S, y) is an objection to x.

The core is the set of all states to which there is no objection.

A set K ⊆ X is a vNM stable set if it satisfies:

(i) there do not exist x, y ∈ K such that y dominates x; internal stability.
(ii) for every x /∈ K, there exists y ∈ K such that y dominates x; external stability.

For an abstract game, we can now define farsighted dominance as follows:

State y farsightedly dominates x (under E) if there is a sequence y0, (y1, S1), . . . , (ym, Sm),
with y0 = x and ym = y, such that for all k = 1, . . .m:

Sk ∈ E(yk−1, yk)

and
u(y)Sk � u(yk−1)Sk .

For set F ⊆ X is a farsighted stable set if it satisfies:

(i) there do not exist x, y ∈ F such that y farsightedly dominates x; farsighted internal
stability.

(ii) for every x /∈ F , there exists y ∈ F such that y farsightedly dominates x; farsighted
external stability.

It is important to emphasize that the notion of effectivity is especially delicate in the context of
farsightedness.7 Harsanyi (1974), in defining farsighted dominance for a characteristic function
game, maintained the von Neumann-Morgenstern assumption that S ∈ E(x, y) iff yS ∈ V (S).8

This way of specifying effectivity gives coalition S complete freedom in choosing y−S , the
payoffs to outsiders (provided y is an imputation and yS ∈ V (S)). This is not important for
myopic solutions such as the core and the stable set. But in the case of farsighted dominance this
is not only conceptually questionable but can significantly alter the nature of the farsighted stable
set, as shown by Ray and Vohra (2015). They demonstrate that imposing reasonable restrictions
on the effectivity correspondence results in a farsighted stable that is very different from, and

6A transferable utility, or TU, characteristic function game will be denoted (N, v), where V (S) = {u ∈ RS |∑
i ui ≤ v(S)} for all S.
7In fact, the classical theory doesn’t find it necessary to include the effectivity correspondence in describing a

characteristic function game. For farsighted solution concepts, however, it is very useful to explicitly specify an
effectivity correspondence; see the discussion in Ray and Vohra (2015).

8In fact, Harsanyi was following the standard practice of making this part of the dominance condition rather than
presenting it through an effectivity correspondence. So it would be more precise to say that this is implicitly what
Harsanyi assumed.
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arguably more plausible than, that of Harsanyi (1974).9 We will therefore need to be attentive to
this issue when we consider specific models in Sections 4 and 5. Until then, in order to highlight
the main concerns of this paper, we shall work in the generality of an abstract game, without any
explicit restrictions on the effectivity correspondence.

The farsighted stable set is based on an optimistic view of the coalitions involved in a farsighted
objection. A state is dominated if there exists some path that leads to a better outcome. Chwe
(1994) proposed a farsighted solution concept based on conservative behavior, which is good at
identifying states that cannot possible be considered stable. A set K ⊆ X is consistent if

K = {x ∈ X | for all y and S with S ∈ E(x, y), there exists z ∈ K such that z = y or
z farsightedly dominates y and ui(z) ≤ ui(x) for some i ∈ S}.

Thus, any potential move from a point in a consistent set is deterred by some farsighted objection
that ends in the set. Chwe shows that there exists one such set which contains all other consistent
sets, and defines this to be the largest consistent set (LCS).

In general, both of these solution concepts are unsatisfactory because optimistic or pessimistic
expectations are both ad hoc. Ideally, a solution concept should be based on optimal behavior
(which may of course turn out to be optimistic or pessimistic in particular examples). The fol-
lowing examples, based on similar ones in Xue (1998), Herings et al. (2004) and Ray and Vohra
(2014), illustrate this problem vividly.

EXAMPLE 1. The game is depicted in Figure 1, Player 1 is effective in moving from state a to
b, while player 2 can replace state b with either c or d, which are both ‘terminal’ states. The
numbers below each state denote the utilities to the players.

a
(1, 1)

b
(0, 0)

c
(10, 10)

{1} {2}

d
(1, 20)

{2}

FIGURE 1

Both c and d belong to the farsighted stable set. Since there is a farsighted objection from a to c,
the former is not in the farsighted stable set. However, this is based on the expectation that player
2 will choose c instead of d even though 2 prefers d to c. If 2 is expected to move, rationally, to
d, the a should be judged to be stable, contrary to the prediction of the farsighted stable set. Note
that a belongs to the LCS because of the the possibility that the final outcome is d.

9They also explain why it is important to define a state be not just a payoff vector but a coalition structure and a
corresponding, feasible payoff allocation.
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EXAMPLE 2. This is a modification of Example 1 as shown in Figure 2.

a
(1, 1)

b
(0, 0)

c
(10, 20)

{1} {2}

d
(1, 10)

{2}

FIGURE 2

Now the optimal move for player 2 is to choose c rather than d. The LCS and farsighted stable
set remain unchanged. But now it is the LCS which provides the wrong answer because player
1 should not fear that player 2 will (irrationally) choose d instead of c. Both the LCS and
the farsighted stable set suffer from the problem that they do not require coalitions (in these
examples, player 2) to make moves that are maximal among all profitable moves. (A formal
definition of maximality in our framework appears in the next Section).

Another problem that afflicts both the LCS and the farsighted stable set is that they may be based
on expectations that are inconsistent. For the LCS this was pointed out by Konishi and Ray
(2003). Our next Example illustrates this problem for both the farsighted stable set and the LCS.

EXAMPLE 3. This is a three-player game with five states, shown in Figure 3.

a
(1, 1, 1)

b
(1, 1, 1)

c
(0, 0, 0)

d
(0, 3, 3)

e
(3, 0, 3)

{1}

{3}

{2}

{3}

FIGURE 3
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In this example, the farsighted stable set is {d, e} while the LCS is {a, b, d, e}. State a is not
in the farsighted stable set because of a farsighted objection to e, and b is not in it because of
a farsighted objection to d. However, from c player 3 can only move to either d or e. Thus,
the exclusion of both a and b from the farsighted stable set is based on inconsistent expectations
of the move from c. On the other hand, the inclusion of both a and b in the LCS is also based
on inconsistent expectations. The ‘right’ answer in this example should be that {a, d, e} and
{b, d, e} are two ‘stable sets’: the former if the expectation is that player 3 will move from c to d
and the latter if the expectation is that 3 will move from c to e.

To define optimal behavior one will need to rely on players having (rational) expectations about
the continuation path following any coalition move. In a dynamic setting, such as in Konishi
and Ray (2003) or Ray and Vohra (2014), these expectations are specified by a dynamic process
of coalitional moves. An equilibrium process of coalition formation (EPCF) is a process in
which coalitions take actions that are maximally profitable in terms of a value function.10 One
difference in these models is that Ray and Vohra (2014), unlike Konishi and Ray (2003), specify
a protocol to explicitly determine the order in which coalitions are called upon to move at each
stage. In spirit, though, in both cases the approach for incorporating consistency and rational
expectations is similar to ours, even though we seek to accomplish this more directly within the
static, blocking approach. Static models most closely related to our approach are Xue (1978) and
Kimya (2015).

Xue (1978) argued that to resolve the maximality issue we should consider a stable set defined
over paths of coalition actions rather than on outcomes. In many cases, such as Example 1 and 2,
this can resolve the problem. However, it may push the choice between optimism and pessimism
to another level. When a path is tested against a deviation by a coalition, the deviation can itself
lead to multiple stable paths and so in evaluating these multiple paths the pessimism/optimism
choice resurfaces. This leads him to define the optimistic stable standard of behavior and the
conservative stable standard of behavior. In Example 3, the predictions of these two concepts
match the farsighted stable set and the LCS, respectively. We are able to avoid this by considering
stability in terms of a given expectation that describes transitions from every outcome. In our
framework, once a coalition makes a change, there is no further ambiguity about the continuation
path. In this respect, our approach is similar to Konishi and Ray (2003), Ray and Vohra (2014)
and Kimya (2015), even though these papers propose solution concepts that are not defined in
terms of stable sets. In these papers an ‘equilibrium path’ need not involve all coalitions doing
strictly better, whereas in our framework a sequence of coalition moves will be a farsighted
objection, involving strict improvements; see Kimya (2015) for further discussion.

At some intuitive level, notions of farsightedness and maximality attempt to bring into coalition
games considerations that are similar to backward induction in noncooperative games. The dif-
ficulty, of course, is that coalitions games don’t typically have the structure of an extensive form
that allows for recursion.11 This connection comes out perhaps most clearly in Kimya’s (2015)
concept of equilibrium coalitional behavior (ECB), which is defined for a model that has the

10In Example 3, therefore, the prediction would be that the stable outcomes are either {a, d, e} or {b, d, e}.
11Coalition proof Nash equilibrium in Bernheim, Peleg and Winston (1987) and equilibrium binding agreements

in Ray and Vohra (1997) are able to make use of recursion by restricting attention to chains of objections in which
each coalition is a subset of the previous one.
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advantage of being directly applicable to extensive form games. See Kimya (2015) for more on
the relationship between ECB and our solution concepts.

We should acknowledge that one reason all the examples in this Section are so simple is because
they concern abstract games. The skeptical reader might wonder whether issues of maximality
or consistency matter in more specific models, e.g., characteristic function games or economic
models without externalities. In Sections 4 and 5 it will become clear that the issues highlighted
here are indeed of more general importance.

3. FARSIGHTEDNESS WITH RATIONAL EXPECTATIONS

Jordan (2006) formulates the idea that farsighted stability can be expressed in terms of com-
monly held consistent expectations regarding the ‘final outcome’ from any state.12 He defines
an expectation as a function f : X → X such that for every x ∈ X , f(f(x)) = f(x). A sta-
tionary state of f is x such that f(x) = x. Given a farsighted stable set, Z, it is straightforward
to construct an expectation f that is consistent with farsighted dominance and yields Z as the
collection of all stationary outcomes. If x ∈ Z, let f(x) = x. If x /∈ Z, let f(x) = y for some
y ∈ Z that farsightedly dominates x.13

In order to deal with the issues discussed in Section 2, we extend Jordan’s approach by inter-
preting an expectation to describe the transition from one state to another, not necessarily the
final outcome from a state. In addition, we will also find it important to keep track of the coali-
tion that is expected to make the transition. With this in mind, we define an expectation as a
function F : X → X × N . For a state x ∈ X , denote F (x) = (f(x), SF (x)), where f(x)
is the state that is expected to follow x and SF (x) ∈ E(x, f(x)) is the coalition expected to
implement this change. If f(x) = x, SF (x) = ∅, signifying the fact that no coalition is expected
to change x. A stationary point of F is a state x such that f(x) = x. Given an expectation
F (.) = (f(.), SF (.)), let fk denote the k-fold composition of f . In particular, f2(x) = f(f(x)).
Let F 2(x) = F (f(x)). Having defined f j for all integers j < k, F k(x) = F (fk−1(x)). An
expectation is said to be absorbing if for every x ∈ X there exists k such that fk(x) is stationary.
In this case, let f∗(x) = fk(x) where fk(x) is stationary.

We seek to describe a set of stable outcomes Z ⊆ X that is ‘justified’ by an expectation in
the sense that Z is the set of stationary points of an expectation F that embodies farsighted
rationality.

An expectation F is said to be a rational expectation if it has the following properties:

(I) If x is stationary, then from x no coalition is effective in making a profitable move (con-
sistent with F ), i.e., there does not exist S ∈ E(x, y) such that uS(f∗(y))� uS(f∗(x)).

(E) If x is a nonstationary state, then F (x) must prescribe a path that is profitable for all
the coalitions that are expected to implement it. More precisely, for every nonstationary
state x, (x, F (x), F 2(x)), . . . F k(x)) is a farsighted objection where fk(x) = f∗(x).

12We discuss Jordan’s model of pillage games in Section 4.
13This bears some similarity to Harsanyi’s (1974) attempt to relate the stationary set of an equilibrium in a non-

cooperative game to a version of a (farsighted) stable set.
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(M) If x is a nonstationary state, then F (x) must prescribe an optimally profitable path for
coalition SF (x) in the sense that there does not exist y such that SF (x) ∈ E(x, y) and
uSF (x)(f

∗(y))� uSF (x)(f
∗(x)).

The set of stationary points, Σ(F ), of a rational expectation F is said to be a rational expectations
farsighted stable set (REFS).

Conditions (I) and (E) are related but not the same as farsighted internal and external stability
(conditions (i) and (ii) above). And the differences can be significant enough to generate very
different results, as we will see. Condition (I) clearly implies that Σ(F ) satisfies myopic internal
stability in the traditional sense. It is weaker than farsighted internal stability since it requires
internal stability only with respect to those farsighted objections that are consistent with the
common expectation F .

Condition (E) is stronger than externality stability of Ray and Vohra (2015) because it states
that to every x /∈ Σ(F ) there is a farsighted objection (terminating in Σ(F )) consistent with the
common expectation F .

Condition (M) is the maximality condition; it is a translation of the corresponding condition of
Konishi and Ray (2004) and Ray and Vohra (2014) into our framework.14 Maximality is the
proper expression of optimality if one takes the view that at a nonstationary state x, SF (x) is
the coalition that has the floor, which gives it sole priority in selecting the transition from x.
However, one could entertain models in which, under certain conditions, some other coalition
may also have the right to intervene and change course. This motivates the following notion of
strong maximality:

(M’) If x is a nonstationary state, then F (x) must prescribe an optimally profitable path in the
sense that no coalition has the power to change course and gain, i.e., there does not exist
S ∈ E(x, y) such that S ∩ SF (x) 6= ∅ and uS(f∗(y))� uS(f∗(x)).

Condition (M’) continues to assume that a coalition disjoint from SF (x) cannot interfere in the
expected move. However, a coalition S which includes some players from SF (x) is allowed to
change course. This is based on the idea that a move by SF (x) requires the unanimous consent
of all its members, which means that another coalition may take the initiative if it can enlist the
support of at least one player in SF (x).

A expectation F satisfying (I), (E) and (M’) is a strong rational expectation. The set of stationary
points of a strong rational expectation F is said to be a strong rational expectations farsighted
stable set (SREFS).

Every SREFS is clearly a REFS. We shall therefore attempt to show the existence of a SREFS
whenever possible. But, as our next example shows, this is not always possible; condition (M’)
of SREFS may be too demanding for existence, even though a REFS may exist.

EXAMPLE 4.

14It would require that in Example 1 f(b) = d, and in Example 2 f(b) = c.
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a
(0, 0, 0)

b
(3, 2, 1)

d
(2, 1, 3)

{13}{12}

c
(1, 3, 2)

{23}

FIGURE 4

There are three REFS in Example 4: {b}, {c} and {d}. However, none of these can be a SREFS
because some player in the coalition that moves from a could do even better by moving with a
different player.15

In general, even the existence of a REFS is not guaranteed. One example in which is the case is
the three-player NTU ‘roommate game’ which also does not possess a farsighted stable set; see
Ray and Vohra (2015).

In general, REFS or SREFS can be different from farsighted stable sets. While this will be the
theme of Sections 4 and 5, the following Example illustrates this point.

EXAMPLE 5. (A three-player, TU game, (N, v) with one veto player): N = {1, 2, 3}, v({1, 2}) =
v({1, 3}) = v(N) = 1 and v(S) = 0 for all other S.

Ray and Vohra (2015) show that, under some mild assumptions on the effectivity correspondence
(see conditions (a) and (b) in Section 4), every farsighted stable in this game assigns a fixed
payoff to the veto player, strictly between 0 and 1, while the remaining surplus is can be divided
in any way among players 2 and 3. More precisely, for every a ∈ (0, 1), there is a farsighted
stable set Za with the set of payoffs: {u ∈ R3

+ | u1 = a, u2 + u3 = 1− a}; see Figure 5, where
the vertices of the simplex denote states at which the entire surplus is allocation to one of the
three players.

However, no set of the form Za can be a REFS because the external stability of Za (in the
sense of a farsighted stable set) relies on inconsistent expectations. To see this, consider why the
allocation u is not in Za. There is first an objection by {2, 3}, resulting in the coalition structure
{{1}, {2, 3}} and 0 payoff to all players. Call this state x0. This is followed by a move by N
to a point in A. And u′ is not stable because there is first a move by {2, 3} to x0, followed
by a move by N to a point in B. In the first case, x0 is expected to be replaced by a point in

15An even stronger notion of maximality, which we will not pursue, is one adopted by Xue (1998). It allows the
expected path to be altered by any coalition, even one that is disjoint from the coalition that is expected to move. For
instance, modify Example 4 so that player 1 is effective in moving from a to b, player 2 from a to c and player 3 from
a to d. Now, REFS and SREFS are the same: they consist of b, c and d. But Xue’s maximality condition would allow
any player to change course when someone else has made a move, which clearly results in a failure of existence.
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(1, 0, 0)

(0, 1, 0) (0, 0, 1)

aZ
A B

u u'

FIGURE 5. A FARSIGHTED STABLE SET, Za , IN EXAMPLE 5.

A, while in the second case it is expected to be replaced by a point in B. This is precisely the
kind of ‘inconsistent’ expectation that must be ruled out in a REFS or SREFS. In other words, a
farsighted stable set in this example cannot be a REFS.

We see in the next Section, where we provide a general result on the existence of a SREFS in
a simple game, that SREFS do exist in Example 5, but they are very different from vNM stable
sets or farsighted stable sets.

There is one interesting case in which an SREFS (or REFS) coincides with a farsighted stable
set.

A set of states Z is a single-payoff set if u(x) = u(y) for all x, y ∈ Z.

THEOREM 1. If Z is a single-payoff REFS it is a SREFS and a farsighted stable set. Conversely,
if Z is a single-payoff farsighted stable, then it is a SREFS.

It follows from Theorem 2 of Ray and Vohra (2015) that every characteristic function game with
a separable allocation16 possesses a SREFS.

Proof. Suppose Z is a single-payoff REFS. Since all stationary states have the same payoff, Z is
clearly also a SREFS and satisfies farsighted internal stability (condition (i) in the definition of
a farsighted stable set). As already observed, Condition (E) implies farsighted external stability
(condition (ii)). Thus Z is a farsighted stable set.

To prove the second part of the Theorem, consider a single-payoff farsighted stable set X0.
Define X1 to be the set of states from which there is a farsighted objection to some state in X0

16A sufficient condition for an allocation to be separable is that it belongs to the interior of the core.
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in a single step. More precisely:

X1 = {x ∈ X −X0 | ∃x0 ∈ X0, S ∈ E(x, x0) with uS(x0)� uS(x)}.

SinceX0 is a farsighted stable set, from every x ∈ X−X0, there is a farsighted objection leading
to some x0 ∈ X0: x, (x1, S1), . . . , (x′, S′), (xm, Sm). Clearly x′ ∈ X1, which establishes
the nonemptiness of X1. We shall now recursively define subsets of X from which there are
farsighted objections leading to X0 in a minimal number of steps. All of these sets will be
disjoint and will cover X . The construction is as follows.

Suppose Xj have been defined for all j = 1, . . . , k. Define Xk+1 to be the set of all other states
from which there is a farsighted objection leading to X0 such that the first step is a state in Xk:

Xk+1 = {x ∈ X − ∪kj=0X
j | there is a farsighted objection x, (x1, S1), . . . , (xm, Sm),

with x1 ∈ Xk and xm ∈ X0}.

Note that if Xk+1 = ∅, then ∪kj=0X
k = X . To complete the proof we will construct a function

F : X → X × N where F (x) = (f(x), SF (x)) such that f(x0) = x0 for every x0 ∈ X0,
and for every x ∈ Xk+1, f(x) ∈ Xk. We know that from x ∈ Xk+1 there is a farsighted
objection leading to some state in X0 which proceeds by first moving to a point in Xk. We
will choose f(x) as one such point along with a unique coalition that initiates such a farsighted
objection. The function F is constructed recursively. For x ∈ X1, define f(x) = x0 ∈ X0 and
SF (x) to be a coalition S that has a one step objection from x to x0. If there are multiple such
coalitions, choose one arbitrarily. This describes a unique transition from X1 to X0. Having
defined F : Xj 7→ Xj−1 × N for all j = 1, . . . k, if Xk+1 6= ∅, for x ∈ Xk+1 let S1 be a
coalition that has a farsighted objection from x to xm ∈ X0, denoted x, (x1, S1), . . . , (xm, Sm),
such that x1 ∈ Xk. Let F (x) = (x1, S1). Note that there may be multiple such farsighted
objections. In that case, pick F (x) to be the first element of any such sequence. Proceeding in
this way, we have constructed a function F : X → X×N withX0 as its set of stationary points.
It remains to be shown that F is a strong rational expectation.

Since the stationary points of F have the same payoff vector, it trivially satisfies Condition (I) in
the definition of a rational expectation.

To prove Condition (E), consider x ∈ X − X0. Of course, there is some k ≥ 0 such that
x ∈ Xk+1. From the construction of F we know that there exists a farsighted objection
from x to xm ∈ X0, say, x, (x1, S1), (x2, S2), . . . , (xm, Sm), such that F (x) = (x1, S1).
(There is no presumption that (x2, S2) = F 2(x), or that m = k). Let u0 denote the (com-
mon) payoff corresponding to each of the (single-payoff) states in X0. Obviously, uS1(xm) =
u0
S1 � uS1(x). Since fk(x) ∈ X0, u(fk(x)) = u0, which implies that S1 gains in moving

along the path (x, F (x), F 2(x), . . . , F k(x)). By the same reasoning, S2 also gains by mov-
ing from f(x) along the path (F 2(x), . . . , F k(x)), and so on for all Sj , j = 1, . . . Sk. Thus,
(x, F (x), F 2(x), . . . , F k(x)) is a farsighted objection from x to fk(x) ∈ X0.

To see that Condition (M’) is satisfied note that no player, and therefore no coalition, can gain
by deviating from the path prescribed by F because any deviation leads to the same payoff
vector, u0. This establishes Condition (M’) and completes the proof that F is a strong rational
expectation with Σ(F ) = Z.
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In general, REFS or SREFS can be different from farsighted stable sets, as we have seen in
Example 5, and as we will see in more generality in the following Sections.

4. SIMPLE GAMES

In this Section we study superadditive TU games that have the property that for every coalition
S, either v(S) = 1, in which case S is said to be a winning coalition, or v(S) = 0. Moreover, if
v(S) = 1, then v(N − S) = 0. This is the class of proper, simple games (see von Neumann and
Morgenstern (1944)). The set of efficient payoff allocations, or imputations, in any such game
is the nonnegative n-dimensional unit simplex, 4. For simplicity, assume that no i ∈ N is a
dummy player; that is each i belongs to at least one minimal winning coalition.17

LetW denote the set of all winning coalitions. The collection of all veto players, also known as
the collegium, is denoted C = ∩S∈WS. A collegial game is one in which C 6= ∅. The collegium
(and the corresponding game) will be called oligarchic if C is itself a winning coalition. Note
that in the absence of dummy players an oligarchic game is one in which C = N ; it is a pure
bargaining game, in which the grand coalition is the only winning coalition.

In a simple game, a state x specifies a coalition structure, denoted π(x), and an associated payoff,
u(x), such that

∑
i∈W (x) ui(x) = 1, where W (x) is the winning coalition (if any) in π(x). We

use X0 to denote the set of states where no winning coalition forms and so ui = 0 for all i.
States in X0 are called zero states.18

In this section, for reasons explained in Ray and Vohra (2015), we impose the following restric-
tions on the effectivity correspondence.

(a) For every x ∈ X , S ⊆ N and u ∈ RS
+ with

∑
i∈S ui = v(S), there is y ∈ X such that

S ∈ E(x, y) and u(y)S = u.
(b) For all x, y ∈ X , and T ⊂ N , if (W (x) − T ) ∈ W , then T ∈ E(x, y) only if ui(y) ≥

ui(x) for all i ∈W (x)− T .

Condition (a) states that every coalition can form and divide its worth in any way among its
members. Condition (b) requires that if with the formation of T the residual in W (x) remains
winning then the players inW (x)−T cannot lose. It includes the condition that ifW (x)∩T = ∅,
then u(x) = u(y).

In an oligarchic game, all states with a strictly positive payoff to all (veto) players is a separable
payoff allocation. By Ray and Vohra (2015, Theorem 2), any such payoff allocation, with the
coalition N , is a singleton farsighted stable set.19 By Theorem 1, it is also a SREFS. In the
remainder of this Section, therefore, we shall concentrate on non-oligarchic games.

17The proof of our main result in this Section can be easily modified to accommodate the presence of dummy
players.

18Ray and Vohra (2015) find it convenient to identify a state by the winning coalition, if any, and the payoff
allocation. However, in our model a state specifies the entire coalition structure, not just the winning coalition. By
allowing for a richer notion of states this allows us some added flexibility in constructing an expectation function.

19In fact, they show that every farsighted stable set in such a game is of this form.
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(1, 0, 0)

(0, 1, 0) (0, 0, 1)

(a, b, b)

(a+b, b, 0) (a+b, 0, b)

FIGURE 6. SREFS IN EXAMPLE 5.

In non-oligarchic games, SREFS and REFS can be very different from farsighted stable sets.
While this will become clear from Theorem 2, it is instructive to illustrate this comparison
through Example 5. Recall that every farsighted stable in this game assigns payoffs along a
horizontal line in the simplex in Figure 5 or 6. As we argued in Section 3, this relies on inconsis-
tent expectations and cannot be supported as a REFS or SREFS. We will now show, somewhat
informally, that there is a SREFS, Z = {(u1, π1), (u2, π2), (u3, π3)}, where for some a ∈ (0, 1)

and b ≡ (1−a)
2 ,

• u1 = (a, b, b), π1 = {N}.
• u2 = (a+ b, b, 0), π2 = {{1, 2}, {3}}.
• u3 = (a+ b, 0, b), π3 = {{1, 3}, {2}}.

The three imputations corresponding to Z are shown in Figure 6. To sustain Z as SREFS, we
construct the following function. In what follows, we write x = (u, π) and xi = (ui, πi),
i = 1, 2, 3.

(i) For each x ∈ Z, f(x) = x.
(ii) For each x /∈ Z such that u1 ≥ a+ b, f(x) = ((0, 0, 0), π) with SF (x) = {2, 3}.

(iii) For each x /∈ Z such that u1 < a+ b and u2 < b, f(x) = x2, with SF (x) = {1, 2}.
(iv) If x not covered by (i) to (iii) above and u1 < a + b and u3 < b, f(x) = x3, with

SF (x) = {1, 3}.
(v) If x is such that u = (0, 0, 0), then f(x) = x1, with SF (x) = N .

(vi) Finally, if x is not covered by (i) to (v) above and u1 < a, then f(x) = ((0, 0, 0), π)
with SF (x) = {1}.

This describes F for all x ∈ X .
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Clearly, F satisfies (I). To check (M’), note that 2 and 3 cannot hope to get more than b. Also,
the deviations in (iii) and (iv) must be strongly maximal since 1 gets a+ b. In (v) and (vi), 1 does
not have any move which will give him a+ b.

To check (E), in each of cases (iii)- (v) above, there is a move to some x ∈ Z. Lastly, in cases
(ii) and (vi), there is a farsighted objection to some x ∈ Z.

This completes the demonstration that Z is a SREFS.

To prove a more general existence result we will make use of the following lemma, the proof of
which is provided in the Appendix.

LEMMA 1. Let C 6= ∅ be the set of veto players and J = {J1, . . . , JK} be such that C ∪ Jk is
a minimal winning coalition for each Jk ∈ J . Choose d < 1/|C| and let q = 1− |C|d > 0.

There exists a vector b ∈ RN−C
+ and non-empty T ⊆ J such that

(1)
∑
j∈J

bi = q for every J ∈ T

and

(2)
∑
j∈J

bi > q for each J ∈ J − T

We can now present the main result of this Section.

THEOREM 2. A SREFS exists in every non-oligarchic collegial game.

Proof. Case 1: C ∪ {j} ∈ W for all j /∈ C.

Let a > 0 and b > 0 be such that |C|a + |N − C|b = 1. Let x̂ ∈ X be defined as in Case 1
above.

Let d = (1−b)
|C| > a. For every j /∈ C, let X̂j be the set of all states xj in which the winning

coalition contains C ∪ {j} and the payoff vector has the property that ui(xj) ≥ a for all i ∈ C,
uj(x

j) = b and uk = 0 for all k /∈ C ∪ {j}.

We claim that V = ∪j /∈CX̂j ∪ {x0} is SREFS.

We construct the expectations to be such that from every zero state the grand coalition moves to
x̂: for every x ∈ X0, f(x) = x̂ with SF (x) = N .

For any state x such that xj < b for all j /∈ C, let f(x) ∈ X0, with N − C as the coalition
that moves. Since this is followed a move to x̂, it follows that this describes a profitable path for
N −C. Moreover, it is optimally profitable given the hypothesis that no non-veto player can get
more than b in V .

Now consider x /∈ V such that xj ≥ b for at least one j /∈ C. Suppose there exists i ∈ C such
that ui(x) < a. Without loss of generality, let i be the lowest indexed player in C for whom
this holds. Clearly, i has a profitable move in moving to a zero state and then to x̂. If this is



15

not optimally profitable, then i has a better move that involves a one-step move into V with all
players in C. Clearly, then any such move is optimally profitable because none of the players in
C make a better move without including all of C, and if they all move they can’t all be better off.
Thus, in either case either i or C has an optimally profitable move from x.

Finally, consider the case in which x /∈ V , ui(x) ≥ a for all i ∈ C and there is at least one
j /∈ C such that xj ≥ b. Since x /∈ V , there must be at least one other k 6= j, k /∈ C with
b > xk > 0. Now C ∪ {k} can make a profitable move to a point in X̂k. Moreover, this is
optimally profitable.

This shows that V satisfies E and M’.

Finally, we show that V satisfies I. Take any xj and x̂. There cannot be any one-step profitable
deviation from x̂ to xj since all j /∈ C weakly prefer x̂ to xj , and there cannot be any profitable
deviation from xj to x̂ since all i ∈ C strictly prefer the former. There cannot be any longer
sequence of deviations from x̂ to xj since the first deviation would be to a state in X0 and then
back to x̂. Using Assumption 1, there cannot be any longer sequence of deviations from xj to x̂
since C ∪ {j} must be contained in some element of π(x) for each x in such a sequence.

This completes the proof of Case 1.

Let C be the set of veto players and let J be as in Lemma 1.

Case 2: There exists Jk ∈ J such that |Jk| ≥ 2.

Define S = {i /∈ C | bi > 0}. Let T ∗ = {J ∈ T |J ⊂ S}, and N∗ = C ∪ S.20

Choose d < 1/|C|, and let b be a corresponding vector derived from the algorithm and T the set
of coalitions whose existence has been proved in the lemma. Let

∑
i∈S bi = B and a = 1−B

|C| .
Note that d can be chosen large enough to ensure that a > 0.

Define x̂ so that π(x̂) = N∗ and

ui(x̂) =

{
a if i ∈ C
bi if i /∈ C

Corresponding to each Jk ∈ T ∗, define Xk as the set of states in which the winning coalition
contains C ∪ Jk and the payoff vector corresponding to xk ∈ Xk is

ui(x
k) =


d if i ∈ C
bi if i ∈ Jk

0 otherwise

We claim that V = ∪Jk∈T ∗X
k ∪ {x̂k} is SREFS.

20The set A1 defined in the proof of Lemma 1 is nonempty and a subset of S. Moreover, A1 is in T . This ensures
that T ∗ is nonempty.
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To prove this we will construct a rational expectations function F with the following properties:
(a) f(x) = x for all x ∈ V , (b) for x ∈ X−V −X0, f(x) ∈ X0, and (c) for x ∈ X0, f(x) ∈ V ,
depending on the nature of π(x).

To describe more precisely the transition from zero states, we partition X0 into three disjoint
sets. X0

1 is the set of all zero states in which the coalition structure contains precisely one two-
player coalition containing one player from C and the other from S. X0

2 is the set of zero states
not in X0

1 but containing a unique pair (i, j) where i ∈ C and j ∈ S ∩ T where T = {i /∈ C |
C ∪ {i} ∈ W}. The set of all other zero states is denoted X0

3 .

We now describe the transition function in more detail.

Of course, f(x) = x for all x ∈ V .

(i) Suppose x ∈ X0
1 and H = {i, k | i ∈ C, k ∈ S} is the unique two-player coalition of this

form in π(x). Let SF (x) = C ∪ J(k) where J(k) is a pre-specified coalition in T ∗ containing
k, and f(x) ∈ Xk be such that π(f(x)) is the immediate change in π(x) resulting from the
formation of SF (x).

(ii) Suppose x ∈ X0
2 . Let (i, k) with i ∈ C and k ∈ S ∩ T be the unique pair of this form in

π(x). Let SF (x) = C ∪ {k} and f(x) ∈ Xk be such that π(f(x)) is the immediate change in
π(x) resulting from the formation of SF (x).

(iii) For all x ∈ X0
3 , let f(x) = x̂, with SF (x) = N∗. Of course, N∗ is a winning coalition and

so can effect the change.

We first show that V satisfies (I). Take any xk ∈ Xk and x̂. Then, all j ∈ C ∪ Jk weakly
prefer xk to x̂. So, if there is a farsighted objection from xk to x̂, and K is the first coalition
to move, then K ⊂ N − (C ∪ Jk. From Assumption 1, ui(x) ≥ ui(x

k) for all i ∈ C ∪ J(k)
if K ∈ E(xk, x). Repeated application of this argument rules out any farsighted objection.
Notice that an identical argument ensures that there cannot be a farsighted objection from xk to
xm ∈ Xm for any m 6= k.

Consider the possibility of a farsighted objection from x̂ to xk. All members of N − C weakly
prefer x̂ to xk. So, the first deviation must come from some subset of C. But, this leads to a state
x in X0

3 , and f(x) = x̂. This establishes that V satisfies I.

Choose any x = (u, π(x)) /∈ V . We demonstrate that V satisfies E and M’. There are different
cases to consider.

Case 2.1: There is i ∈ C such that ui < d and there is k ∈ S such that uk < bk.

Suppose W (x) 6= C ∪ {j} for any j ∈ T . If W (x) 6= N∗, let H be the two-player coalition
consisting of the lowest ranked player i ∈ C with ui < d and the lowest ranked player k ∈
S −W (x), so that uk(x) = 0 < bk. Then, f(x) = x′ ∈ X0

1 with SF (x) = H .21 If W (x) = N∗

choose a deviation to x′ ∈ X0
1 by a coalition H consisting of the lowest ranked player i ∈ C

21There cannot be another two-player coalition {i′, j′} ∈ π(x′) with i′ ∈ C and j′ ∈ S. If |C| 6= 2 this is
obvious. If |C| = 2, W (x) contains at least four players and the residual once i ∈ C deviates cannot be a two-player
coalition.
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with ui(x) < d and the lowest ranked k ∈ S such that ui(k) < b. This leads to x′ ∈ X0
1 because

the residual must contain at least three players. This is true because T ∗ must contain at least two
coalitions with one of them having at least 2 members. So,|N∗| ≥ 5. So, f2(x) ∈ Xk and there
is a farsighted objection from H ending in xk ∈ Xk. Notice that the response of H is maximal
since no one in C can get more than d and no k ∈ S can get more than bk.

SupposeW (x) = C∪{j} for some j ∈ T . Again, letH be the two-player coalition consisting of
the lowest ranked player i ∈ C with ui < d and the lowest ranked player k ∈ S with uk(x) < bk.
Let SF (x) = H . If C contains more than two players, then f(x) ∈ X0

1 . If C contains exactly
two players, then f(x) ∈ X0

2 . From arguments in the previous paragraph, this must be a maximal
profitable deviation.

Case 2.2: Suppose Case 1.1 does not hold and uj(x) ≥ bj for all j ∈ S. If ui(x) ≥ a for all
i ∈ C, then in fact x = x̂ contrary to the supposition that x /∈ V . So, there is i ∈ C with
ui(x) < a. Then, i can profitably deviate to x ∈ X0

3 since f(x) = x̂. If this is not a maximal
deviation, then i has another deviation (possibly with others) ending in some xk ∈ Xk. In either
case, E and M’ are satisfied.

Case 2.3: Suppose the previous two cases do not hold, and ui(x) ≥ d for all i ∈ C. If x /∈ V ,
then R = {j ∈ S|uj(x) < bj} forms a blocking coalition.

Then, let f(x) ∈ X0
3 with SF (x) = R. Since f2(x) = x̂ this must be maximal since no

j ∈ (N − C) can get more than bj .

These exhaust all possibilities and show that V is SREFS.

Of course, a large class of simple games do not have any veto player, the simplest example
being the majority game in which any majority of players constitutes a winning coalition. von
Neumann and Morgenstern (1944) identified a class of constant-sum games that have a vNM
stable set known as a main simple solution. Suppose there is a ∈ <N

+ such that
∑

i∈S ai = 1

for every minimal winning coalition S. Define, for each minimal winning coalition S, uS to be
the imputation such that uSi = ai for all i ∈ S and uSi = 0 otherwise. If the game is a constant-
sum game, then the set of all such imputations is a vNM stable set, known as the main simple
solution. For instance, the imputation (0.5, 0.5, 0) and its permutations constitute a main simple
solution in the three-person majority game. It can be shown that the set of states corresponding
to a main simple solution is a SREFS.

Suppose U is a main simple solution with associated vector a ∈ <N
+ . Let Z(U) = {x ∈

X | u(x) ∈ U}. We claim that Z(U) is a SREFS. Since U is a vNM stable set, for every
x /∈ Z(U) there is S ⊆ N and y ∈ Z(U) such that S ∈ E(x, y) and uS(y) � uS(x). For
every x /∈ Z(U) pick any (S, y) with this property and set F (x) = (y, S). If there are several
such (S, y) pick one arbitrarily. For every x ∈ Z(U), let f(x) = x. Clearly, F is an expectation
that satisfies (E). Suppose it does not satisfy (I). Then there is x ∈ Z(U) and T ∈ E(x, y)
such that uT (f(y)) � uT (x). Let S be the minimal winning coalition such that u(x) = uS .
Since ui(x) = ai for all i ∈ S, no i ∈ S can get a higher payoff at any other state in Z(U),
which implies that S ∩ T = ∅. Of course, S must be contained in the winning coalition at x.
By condition (b) of the effectivity correspondence, uS(y) = uS(x) = aS , i.e., y ∈ Z(U) and
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therefore f(y) = y. But then uT (f(y)) � uT (x) means that uT (y) � uT (x), with y ∈ Z(U),
which contradicts the myopic internal stability of U . Thus, F satisfies (I). It clearly satisfies
strong maximality, (M’), because if any S gains by moving from x to y ∈ Z(U), then ui(y) = ai
for all i ∈ S and there is no other y′ ∈ Z(U) such that ui(y′) > ui(y) for any i ∈ S.

5. PILLAGE GAMES

In this Section we apply our solution concepts to pillage games and compare them to the vNM
stable set, analyzed by Jordan (2006), as well as the farsighted stable set. In this setting, in
contrast to simple games, we find that maximality and strong maximality, rather than consistency,
play a crucial role in distinguishing between REFS, SREFS and farsighted stable sets.

In a pillage game, a coalition can appropriate the resources of any other coalition that has less
power. Given a set of players N = {1, . . . , n}, the set of wealth allocations is 4, the unit
simplex in Rn. We shall consider the class of pillage games in which ‘wealth is power’: the
power of coalition S is is simply its aggregate wealth, wS ≡

∑
i∈S wi. Given wealth allocations

w and w′ let L(w,w′) = {i ∈ N | w′i < wi} denote the set of players who lose in moving from
w to w′. We define the effectivity correspondence in this model as follows:22

(3) S ∈ E(w,w′) if and only if wS > wL(w,w′) and wi = w′i for all i /∈ S ∪ L(w,w′).

This expresses the notion that a coalition can pillage another only if its power is strictly greater
than that of the victims. Moreover, only the winners’ and losers’ wealth payoffs can be affected
through the act of pillaging. That is, if j is neither amongst those who have been pillaged
nor part of the coalition that changes w to w′, then wj = w′j . This last condition rules out a
pillaging coalition sharing its spoils with others. While this condition is of no consequence for
myopic notions of stability, it becomes important in the context of farsighted stability. As we
have remarked earlier, Ray and Vohra’s (2015) emphasized that a deviating coalition must not be
permitted to affect the distribution of the payoff of outsiders. As we discuss in Example 6 below,
a gift can turn out to be hazardous to the recipients – a Trojan horse. We shall therefore assume
throughout this Section that the effectivity correspondence is defined by (1).

By way of background, it will be useful to begin with Jordan’s analysis of the (myopic) vNM
stable set.

A number a ∈ [0, 1] is said to be dyadic if a = 0 or a = 2−k for some nonnegative integer k. For
every positive integer k letDk = {w ∈ 4 | wi is dyadic for every i and if wi > 0, then wi ≥ 2−k}.
The set of all dyadic allocations is D = ∪kDk. The set of all allocations in which one player
captures the entire surplus, D0, is the set of tyrannical allocations. Of course, all such alloca-
tions are in the core. It is easy to see that the only other allocations in the core are ones in which
two players share the surplus equally. In other words, the core is D1. Jordan (2006) provides the
following characterization of the stable set, which remains

THEOREM 3. (Jordan) The unique stable set is D.

22Although Jordan (2006) does not explicitly define an effectivity correspondence, our formulation is consistent
with his.
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Jordan (2006) illustrates the issue of farsightedness by considering the three-player example in
this model, where D consists of the allocations (1, 0, 0), (0.5, 0.5, 0), (0.5, 0.25, 0.25) and all
their permutations. From the allocation (0.5, 0.25, 0.25), player 1, by pillaging 2, can achieve
the allocation (0.75, 0, 0.25). While the latter is not in the stable set, it allows player 1 to then
pillage 3 and achieve the tyrannical allocation (1, 0, 0), which is stable. In other words, (1, 0, 0)
is a farsighted objection to (0.5, 0.25, 0.25). Note that if player 3 anticipates the second step in
this move, she should not remain neutral when player 1 pillages 2.

Jordan (2006) formalizes this idea by explicitly introducing expectations. He shows that if other-
wise neutral players act in accordance with the expected (final) outcome, then the stable set,D, is
indeed farsighted. As Ray and Vohra (2015) point out, this argument can also be made by suitably
modifying the notion of a farsighted objection. Assume that all players are farsighted, including
those who see no change in their payoff in a single step of a farsighted move. With this in mind,
say that w′ farsightedly dominates w if there is a collection of allocations w0, w1, . . . , wm (with
w0 = w and wm = w′) and a corresponding collection of coalitions, S1, . . . , Sm, such that for
all k = 1, . . .m:

wk−1
Sk > wL(w,w′) where L(w,w′) = {i ∈ N | w′i < wi}

and
w′Sk � wk−1

Sk .

This must mean that

wW (w,w′) > wL(w,w′) where W (w,w′) = {i ∈ N | w′i > wi}.

Thus, w′ farsightedly dominates w if and only if it (myopically) dominates w.

In the notion of farsightedness described in the previous paragraph whether a coalition can move
from allocation wk−1 to wk depends on the power of the winners and losers at the end of a
sequence of moves. Formally, it does not conform to a framework in which the effectivity cor-
respondence specifies which coalition(s) are effective in changing wk−1 to wk, independently of
where wk will end up. For instance, in the three-player example, whether player 1 is effective in
changing the allocation (0.5, 0.25, 0.25) to (0.75, 0, 0.25) cannot depend on any further changes
that may be expected to take place. What is the farsighted stable set if adopt the effectivity cor-
respondence specified in (1)? As our next result shows, it turns out to be identical to D1, the
core.

THEOREM 4. Suppose the effectivity correspondence is defined as in (1). Then the unique far-
sighted stable set is D1, the core.

Proof. Suppose Z is a farsighted stable set. It is obvious that no players have the power to bene-
ficially change a tyrannical allocation since one player has already captured the entire surplus. It
must therefore belong to every farsighted stable set (as well as to every REFS). It is easy to see
allocations where two players get 0.5 are also stable in this sense. Thus, D1 ⊆ Z.23

23The fact that the core is a subset of the farsighted core is a feature of pillage games. In general, it is possible
that the core is disjoint from every farsighted stable set or REFS; recall Example 5.
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To complete the proof we will now show that for every w /∈ D1 there is a farsighted objection
that terminates in D1. There are two cases:

(i) w /∈ D1 is such that wi = wj for all i, j such that wi > 0, wj > 0. This means that there are
k players who receive 1/k, where k ≥ 3. Suppose two such players, say i and j, pillage a third
and share the spoils equally. This increases the power of i and j. If there are any other players
remaining with 1/k, in the next step i and j pillage one such player. This process continues until
we arrive at an allocation in D1 where i and j get 0.5 each. This is clearly a farsighted objection.

(ii) There are i and j such that wi > wj > 0. Let i′ be a player such that wi′ ≥ wi for all i.
Of course, i′ can pillage a player with lower wealth. This results in i′ becoming more powerful,
and she can now pillage any other player j, with wj > 0, if there is any. Through this process of
sequential pillaging, i′ can achieve the tyrannical allocation in which she has the entire wealth.
This describes a farsighted objection, leading from w to a tyrannical allocation in D1.

We now turn to a consideration of SREFS and REFS in this model. Dyadic allocations in which
players with positive wealth share equally will play an important role in this analysis. For every
nonnegative integer k, let Bk = {x ∈ 4 | xi = 0 or xi = 2−k, ∀i} and B = ∪kBk. Note that
B0 is the set of tyrannical allocations and B0 ∪B1 = D1.

Our next Example will illustrate a crucial difference between REFS and SREFS in this model.

EXAMPLE 6. The pillage game with four players.

The core, or D1 = B0 ∪ B1, in this example is the set of all permutations of allocations of
the form (1, 0, 0, 0) and (0.5, 0.5, 0, 0). And B2 consists of the equal-division allocation, w̄ =
(0.25, 0.25, 0.25, 0.25). As we noted in the proof of Theorem 4, every REFS contains D1. In
fact, D1 is a REFS and so is B, but only the latter is a SREFS. Formal proofs of these assertions
will follow from Theorems 5 and 6 below, but for now we provide a sketch in the four-player
case to help understand the differences between REFS and SREFS.

Suppose F is a rational expectation and Z = Σ(F ) is the associated REFS. Observe that if w
is allocation in which exactly two players have positive wealth and one of these is higher than
the other, F must be such that the wealthier player pillages the other to achieve a tyrannical
allocation. It can also be shown that Z does not contain any allocation in which exactly three
players have positive wealth. For our purposes it will be enough to examine the change that F
prescribes from the allocation w′ = (0.375, 0.375, 0.25, 0). (The analysis for other permutations
of this allocation is similar). There are three possibilities, depending on SF (w′), the coalition
that is expected to form at w′:

(a) SF (w′) = {1, 2}, i.e., players 1 and 2 pillage 3. In this case it is easy to see that f(w′) =
f∗(w′) = (0.5, 0.5, 0, 0);24

(b) SF (w′) = {1}, f(w′) = (0.625, 0.375, 0, 0) and f∗(w′) = (1, 0, 0, 0);

(c) SF (w′) = {2} and f∗(w′) = (0, 1, 0, 0).

24When 1 and 2 pillage player 3 they must dividew′3 equally for otherwise, the final outcome would be a tyrannical
allocation and one of these players would not have agreed to form {1, 2}.
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We can now determine whether or not B2 = {w̄} ⊆ Z. The only coalitions that have the power
to change w̄ are all two player coalitions and all three-player coalitions. A three-player coalition
cannot be expected to form because, as we noted above, no allocation with three players having
positive wealth can be stable (and one of these players will end up with 0). Is it possible that
SF (w̄) consists of two players i and j, who pillage a third and move to a w′ (or a permutation
thereof)? This will indeed happen if If F conforms to case (a) because then i and j will both
end up with 0.5 each. Of course, this implies that w̄ /∈ Z. If, however, F conforms to cases
(b) or (c) for every two-player coalition, then w̄ ∈ Z; no two player coalition will form because
one of its members would eventually get pillaged. In fact, as we will confirm in Theorem 6,
there is a rational expectation that supports B0 ∪ B1 as a REFS and also one that supports B as
a REFS. But there is an important difference between these two cases. A rational expectation
that satisfies (a) cannot be a strong rational expectation. This is so because one of the players
could have done better by refusing to participate in the two player coalition, pillaging player 3
on her own (shifting to case (b) or (c)) and inducing a tyrannical allocation. A strong rational
expectation must conform to case (b) or (c). In other words, B is a SREFS while B0 ∪B1 is not.

This example also illustrates why in defining the effectivity correspondence we ruled out the
possibility of unsolicited gifts. Consider the strong rational expectation that supports B: from
w′, SF (w′) is either (b) or (c), and w̄ is stable. Suppose that from w̄, contrary to (1), the
effectivity correspondence were to allow players 1 and 2 to pillage player 4 and share the spoils
equally with player 3. This leads to ŵ = (1/3, 1/3, 1/3, 0) from which, unlike w′, it is not
possible for 1 or 2 alone to engage in any further pillage. But 1 and 2 together can pillage player
3 to obtain 0.5 each. This renders w̄ unstable, and causes player 3 to eventually get pillaged, all
because 1 and 2 were allowed to make her a gift.

We now turn to the general case of an arbitrary number of players.

THEOREM 5. Suppose the effectivity correspondence is as in (1). Then B is a SREFS.

Proof. We construct an expectation F as follows:

(i) Suppose w is such that wi > wj > 0 for some i, j. Let i′ be the lowest indexed player such
that wi′ ≥ wi for all i, and let j′ be the lowest indexed player such that wj′ < wi′ . Then the
expectation is that i′ will pillage j′: f(w) = w′ where w′i′ = wi′ + wj′ , w′j′ = 0 and wk = w′k
for all k 6= i′, j′, and SF (w) = {i′}. Note that f∗(w) is the tyrannical allocation where i′ gets
the entire wealth.

(ii) Suppose w is such that all players with positive wealth have the same wealth but this is not
2−k for any integer k. In other words, m players get 1/m but m 6= 2k for any integer k. Let k̂ be
the largest k such that 2k < m. Then f(w) ∈ Bk̂, and SF (w) is the coalition consisting of the

lowest indexed 2k̂ players getting 1/m at w. Note that SF (w) has the power to make this move

since the total wealth of this coalition at w is 2k̂

m = 1
2

2k̂+1

m > 1
2 .

(iii) For w ∈ B, f(w) = w.

We have constructed F such that Σ(F ) = B. It remains to be shown that F satisfies conditions
(I), (E) and (M’).
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Suppose F does not satisfy (I). Then there exists w ∈ Bk and S ∈ E(w,w′) such that f∗(w′) =
w′′ ∈ Bk′ and w′′S � wS . The last inequality implies that k′ < k.

First, suppose that w′ is such that w′i > w′j for some pair i, j. Then, w′′ is a tyrannical allocation,
so that |S| = 1. But, then S /∈ E(w,w′) since wi = wj if wi, wj > 0.

So, w′ must satisfy w′i = w′j if w′i, w
′
j > 0. Also, since E satisfies equation (1), S = {i|w′i >

wi}. Putting these together, we must have w′ = w′′. That is, w′ ∈ Bk′ .

Since w′i > 0 implies that w′i = 2−k
′

and wi > 0 implies that wi = 2−k, this means that
w′i ≥ 2wi for i ∈ S - those with positive wealth at w′ must have at least twice as much as they
did at w. Since the added wealth must have been pillaged, those who were pillaged must have
had at least as much wealth at w as the pillagers. So,∑

{i∈S}

wi ≤
∑

{i:w′i=0}

wi.

This implies that S /∈ E(w,w′).

To see that (E) is satisfied, consider w /∈ B. If w is covered by Case (i), the only coalition
that moves at each step is the singleton consisting of the lowest indexed player with the highest
wealth at w. And, at each step, this coalition does better by eventually attaining the tyrannical
allocation. Thus (E) holds for w in Case (i). For w covered by Case (ii), SF (w) moves in
one step to a stationary allocation which is an improvement since it involves equal sharing in a
smaller coalition, and Condition (E) is therefore satisfied.

We now turn to Condition (M’). For w in Case (i) maximality is trivially satisfied since the
singleton that moves ultimately achieves the tyrannical allocation. Supposew is covered by Case
(ii) and (M’) is not satisfied. This means that there is a coalition S with S ∩ SF (w) 6= ∅ that
does better than f(w). Since all stationary allocations satisfy equal division among players with
positive wealth, |S| < |SF (w)|. Recall that |SF (w)| = 2k̂, which implies that if |S| = 2k

′
for

some integer k′ < k̂, S does not have the power to change w. Thus, S 6= 2−k for some positive
integer k, in which case the final outcome according to F will result in a smaller coalition and
some player in S will get 0. This contradicts the supposition that S can do better than f(w).

Since B is a SREFS it is also a REFS. But, as our next result shows, there are several other
REFS, including the unique farsighted stable set: B0 ∪ B1 = D1. In this model, therefore,
unlike simple games, the farsighted stable set can be justified on the basis of consistent and
rational expectations. It does not, however, meet the strong maximality test.

For any positive integer n, let k(n) be the largest integer such that 2k ≤ n.

THEOREM 6. For any positive integer k∗ ≤ k(n), ∪k∗0 Bk is a REFS.

Proof. Choose any positive integer k∗ ≤ k(n), and define B(k∗) ≡ ∪k∗0 Bk.

For any w, define H(w) = {i ∈ N : wi ≥ wj ∀j ∈ N}, and let H̄(w) be the subset of H(w)

consisting of the 2k-lowest ranked players in H(w), where k is the largest integer not exceeding
k∗ with 2k ≤ |H(w)|.
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Given k∗, F is defined as follows.

(i) If w ∈ B(k∗), then f(w) = w.

(ii) If w /∈ B(k∗) and |H(w)| ≥ 2k
∗
, let j′ be the lowest-indexed agent not in H̄(w) with

wj > 0. Such j must exist since w /∈ B(k∗). Then, SF (w) = H̄(w) and f(w) = w′ where

w′i =


wi +

wj′

|H̄(w)| , if i ∈ H̄(w)

wi, if i /∈ H̄(w) ∪ {j′}
0, if i = j′

(iii) If w /∈ B(k∗), |H(w)| < 2k
∗

and there is a pair i, j with wi > wj > 0, then the lowest-
ranked agent i∗ ∈ H(w) pillages the lowest-ranked agent j∗ /∈ H(w). So, SF (w) = {i} and
f(w) = w′ where

w′i =


wi + wj∗ , if i = i∗

wi, if i 6= i∗, j∗

0, if i = j∗

(iv) If w /∈ B(k∗), |H(w)| < 2k
∗

and if H(w) = {i|wi > 0}, then SF (w) = H̄(w) and
f(w) = w′ where

w′i =

{
1

|H̄(w)| , if i ∈ H̄(w)

0, if i /∈ H̄(w)

We note that in (iv) above, |H̄(w)| > |(H(w) − H̄(w))| and so H̄(w) can pillage the rest, and
hence f is well-defined.

The proof that F satisfies (I) is virtually identical to that in Theorem 5, and we only give a very
short sketch of the proof. Again, suppose w ∈ Bk with k ≤ k∗ and some S has a farsighted
objection ending in Bk′ where k′ < k. Then, |S| ≥ 2 since no singleton has the power to pillage
anyone at w. But, then the first move from w must be to some w′ which is an equal allocation
- any unequal allocation terminates in a tyrannical allocation. Just as before, w′ itself must be a
stationary allocation, and then S cannot have the power to pillage the remaining players.

We now check (M). In cases (ii) and (iv), each i ∈ H̄(w) ends up getting 1
|H̄(w)| . There cannot

be a better deviation. In case (iii), the agent initiating the deviation ends getting 1. Hence, (M)
is satisfied.

Finally, it is easy to check that (E) is satisfied. In each of cases (ii) to (iv), SF (w) has a farsighted
objection culminating in some allocation in B(k∗).

This completes the proof of the theorem.

We close this section with a discussion of Acemoglu et al. (2008). They study a model of
political coalition formation in which the power of each player is exogenously given. For each
i ∈ N , γi > 0 denotes i’s political power. The power of coalition S is γS =

∑
i∈S γi. Coalition

S ⊆ T is winning in T if γS > αγT , where α ∈ [0.5, 1). Denote by W(T ) the set of subsets
of T that are winning in T . If such a coalition exercises its power, it captures the entire surplus
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and becomes the ruling coalition. The other players are eliminated and play no further role.
However, the ruling coalition may itself be subject to a new round of power grab from within.

The distribution of wealth is determined through an exogenous rule that depends only on the
identity of the ruling coalition. Assume that for every player it is better to be in a ruling coalition
that not. Moreover, it is better to be in a ruling coalition with lower aggregate power. As Ace-
moglu et al. (2008) point out, a particular example of such a rule, which shall adopt for the sake
of simplicity, is the following:

wi(S) =

{
γi/γS if i ∈ S
0 otherwise

A state can now be defined as the ruling coalition: at state S, the ruling coalition is S and the
wealth distribution is w(S). The set of states is therefore N . Winning coalitions are the ones
effective in changing a state:

(4) S ∈ E(T, S) if and only if S is winning in T .

This means that if a change occurs, the new ruling coalition is smaller. If such a change is
expected to lead to a further change, then a winning coalition will choose not to exercise its
power. This is a result of the fact that any further change must leave some member(s) of the
original winning coalition with a payoff of 0. In other words, if there is a farsighted objection
S, S1, . . . Sm leading from S to Sm it must be the case that m = 1; farsighted dominance is
equivalent to dominance.25 Harsanyi (1974) refers to a farsighted dominance relation with this
property as trivial and points out that if this property holds for every farsighted dominance of
one state over another, then the vNM stable set is equivalent to the farsighted stable set.

Another feature of this model that makes it very tractable is that objections can only come from
subsets of the ruling coalition (internal blocking). This makes it possible to construct a stable set
recursively; see Ray and Vohra (2014). Of particular interest in these models is the stability of
N , or the stable state(s) starting from N . We illustrate this through the following example.

EXAMPLE 7. (Four-player example of the Acemoglu et al. (2008) model). Suppose N =
{1, 2, 3, 4}, γ = (2, 4, 6, 8) and α = 0.5.

A vNM stable set can be constructed as follows. Any ruling coalition consisting of one individual
clearly belongs to the stable set (it is in the core). Any ruling coalition consisting of two players
is not in the stable set because the more powerful player will eliminate the weaker one; there is
an objection leading to a stable state. Next, consider the three-player coalitions. The coalition
{1, 2, 4} is not stable because player 4 has enough power to eliminate the other two. Let the
collection of the other three-player coalitions be denoted S = {{1, 3, 4}, {2, 3, 4}, {1, 2, 3}}. It
is easy to see that no coalition in S is threatened by a single powerful player. In each instance,
two of the players have enough power to eliminate the third, but the resulting outcome is not
stable, as we have just noted. This means that all coalitions in S are stable, and N is not; it will
be replaced by one of these three-player coalitions. Thus, the stable set consists of singletons

25Recall that in Jordan’s pillage game a farsighted objection could last several steps, although at each step it would
be the same coalition making the change. This difference stems from the fact that in the Acemoglu et al. model only
the winning coalition survives to the next stage; there are no neutral players.
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and the collection S . In fact, this is also a farsighted stable set because farsighted dominance is
equivalent to myopic dominance in this model. To verify this directly in this Example, it is only
necessary to establish the farsighted internal stability for states in S . While two players could
eliminate a third, this cannot result in a farsighted objection ending in a stable state because the
weaker of the two will get eliminated at the next stage. We conclude that N is not stable and will
replaced be one of the coalitions in S.26

Recall that farsighted internal stability is stronger than condition (I) of REFS and myopic external
stability is stronger than condition (E) of REFS. Consequently, the equivalence of farsighted
dominance and myopic dominance also yields equivalence with REFS. More precisely, consider
a set of states Z that is a stable set as well as a farsighted stable set. For every state S ∈ Z,
let F (S) = S. (Because X = N , we abuse notation slightly to consider F as a function from
N → N ). For S /∈ Z define F (S) to be a subcoalition of S that dominates it (myopically)
and belongs to Z. If there are several such coalitions, pick one arbitrarily. By construction, F
satisfies (E). It satisfies (I) because Z is farsighted stable set. Finally, it satisfies (M) because for
every nonstationary state, S, it prescribes a move by coalition F (S) that ends with F (S). Since
this is the only profitable move available to F (S) it is trivially maximal.

Acemoglu et al. (2008) provide an axiomatic characterization of a solution to this model and also
show that it coincides with the subgame perfect equilibria of a noncooperative model of coalition
formation. Their solution is a refinement of REFS, or the stable set. This difference turns out to
hinge on the difference between REFS and SREFS. In fact, in this model SREFS refines REFS
precisely to the Acemoglu et al. solution.27 This can be illustrated through Example 7. As
explained above, in constructing a rational expectation F we have the freedom to choose F (N)
to be any one of the three coalitions in S. In particular, we could define F (N) = {2, 3, 4}.
But players 3 and 4 could do better by forming {1, 3, 4}; recall that the payoff to a player is
higher in a coalition with lower aggregate power. In other words, F does not satisfy (M’). In
fact, strong maximality in this model, not just in Example 7, reduces to the condition that if S is
not a stationary state, then F (S) has the lowest aggregate power among all stable coalitions that
are winning in S:

If S /∈ Σ(F ), then F (S) ∈ argminT∈Σ(F )∩W∗(S)γT , whereW∗(S) denotesW(S)− S.

If γ is generic in the sense that γS 6= γT for any S, T , S 6= T , then clearly F (S) is unique for
every S. And the unique strong rational expectation can be computed recursively as follows. Of
course, F (S) = S if |S| = 1. Suppose F (S) has been defined for all S such that |S| < k. Then
for S with |S| = k,

F (S) =

{
argminT∈Σ(F )∩W∗(S)γT if Σ(F ) ∩W∗(S) 6= ∅
S otherwise

F (S) is the same as φ(S), the ultimate ruling coalition for player set S in Acemoglu et al.
(2008).

26The singletons are also stable, but none of those states are reachable from N .
27Ray and Vohra (2014) show that their notion of an EPCF yields the same predictions as REFS but an appropri-

ately chosen protocol sharpens the equilibria to coincide with the Acemoglu et al. solution. See also Kimya (2015).
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APPENDIX

LEMMA 1. Let C 6= ∅ be the set of veto players and J = {J1, . . . , JK} be such that C ∪ Jk is
a minimal winning coalition for each Jk ∈ J . Choose d < 1/|C| and let q = 1− |C|d > 0.

There exists a vector b ∈ RN−C
+ and non-empty T ⊆ J such that

(1)
∑
j∈J

bi = q for every J ∈ T

and

(2)
∑
j∈J

bi > q for each J ∈ J − T

Proof. We construct an algorithm which will yield the desired vector.

Without loss of generality, assume that the coalitions in J are ranked in non-decreasing order of
cardinality, so |Jk| ≤ |Jk+1| for all k = 1, . . . ,K − 1.

Let Jf , f > 1, be the first coalition in the list which has a non-empty intersection with some Jk,
k < f . If no such f exists, then set f = K + 1, and JK+1 = ∅.

Step 1: For all k < f , let bi = q
|Jk| for all i ∈ Jk. Note that for all k, k′ < f , Jk ∩ Jk′ = ∅, so

this construction is well-defined.

Define A1 = ∪f−1
k=1J

k. Then, for every i ∈ A1, bi as defined above will will be the “terminal“
value. So, (1) is satisfied for all Jk, k < f . For i /∈ A1 we will construct bi iteratively.

For every k ≥ f , let Gk = ∪k−1
j=1J

j −A1 and for i ∈ Jk −Gk let

t1i = max

[
0,
q −

∑
j∈A1∩Jk bj −

∑
j∈(Gk−A1)∩Jk t1j

|Jk −Gk|

]
Since there are no dummy players, every i ∈ N − C belongs to at least one coalition in J , and
has therefore been assigned a number, bi or t1i .

Let J 1 = {J ∈ J |
∑

i∈A1∩J bi +
∑

i∈J∩(N−(C∪A1) t
1
i < q}.

If J 1 = ∅, then set bi = t1i for all i /∈ A1, and terminate the algorithm. It is possible that for
some coalitions Jk,

∑
i∈Jk∩A1 bi > q, so that these coalitions satisfy (2). All other coalitions

satisfy (1).

If J 1 is nonempty, then let Jk1 be a coalition in J 1 which maximizes
q−

∑
j∈Jk∩A1 bj

|Jk−A1| , ties being

broken arbitrarily. For each i ∈ Jk1 −A1, set

bi =
q −

∑
j∈Jk1∩A1 bj

|Jk1 −A1|
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Note that given the ranking of sets in increasing order of cardinality, |Jk1 | ≥ |Jf |. So, for each
i ∈ A1, bi ≥ q

|Jk1 | . Hence, Jk1 cannot be contained in A1. This means that A2 ≡ A1 ∪ Jk1 is a

strict superset of A1.

Step 2: Since some of the components of the t vector have been increased, the remaining com-
ponents may not be feasible. So, now repeat step 1 with A2 replacing A1.

Take any k ≥ f , and for i ∈ Jk − (Gk − Jk1), let

t2i = max

[
0,
q −

∑
j∈A2∩Jk bj −

∑
j∈(R1(k)−A2)∩Jk t2j

|Jk − (A2 ∪R1(k))|

]

Notice again that if the right hand side of this expression reaches a unique maximum at 0, then
Jk satisfies (2).

Let J 2 = {J ∈ J |
∑

i∈A2∩J bi +
∑

i∈J∩(N−(C∪A2) t
2
i < q}. By construction, Jk1 /∈ J 2. If J 2

is empty, the algorithm terminates with bi = t2i for all i ∈ N − (C ∪A2). Otherwise, choose the

coalition Jk2 which maximizes
q−

∑
j∈A2∩Jk bj

|Jk−A2| in this set. For each i ∈ Jk2 −A2, set

bi =
q −

∑
j∈A2∩Jk2 bj

|Jk2 −A2|

Claim: Jk2 −A2 is non-empty.

For suppose not. Of course, Jk2 is not a subset of A1. Let Jk2 ∩ Jk1 = S 6= ∅. Then,
q −

∑
i∈A2∩Jk2 bi

|S|
>
q −

∑
i∈A1∩Jk1 bi

|Jk1 −A1|
But, this contradicts the choice of Jk1 . Hence the claim is true.

Let A3 ≡ A2 ∪ Jk2 .

Since the sets Ak are strictly increasing over stages, the algorithm terminates. Now, define
T = {J ∈ J |

∑
i∈J bi = q}. If J /∈ T . Clearly this has the desired properties.


