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Satis�cing and Stochastic Choice

Victor H. Aguiar∗ María José Boccardi†and Mark Dean‡

August 31, 2015

Abstract

Satis�cing is a hugely in�uential model of boundedly rational choice, yet it cannot be

easily tested using standard choice data. We develop necessary and su�cient conditions

for stochastic choice data to be consistent with satis�cing, assuming that preferences

are �xed, but search order may change randomly. The model predicts that stochastic

choice can only occur amongst elements that are always chosen, while all other choices

must be consistent with standard utility maximization. Adding the assumption that

the probability distribution over search orders is the same for all choice sets makes the

satis�cing model a subset of the class of random utility models.

1 Introduction

People often do not pay attention to all the available alternatives before making a

choice. This fact has lead to an extensive recent literature aimed at understanding the

observable implications of models in which the decision maker (DM) has limited attention.1

In an important recent paper, Manzini & Mariotti (2014) characterize the stochastic choice

data generated by a decision maker (DM) who has standard preferences, but only notices

each alternative in their choice set with some probability. The chosen item is therefore the

best alternative in the `consideration set' of noticed items, which may be a strict subset of

the items which are actually available.

The idea that a DM may not search exhaustively through all available alternatives is

not new. Simon (1955) introduced the concept of satis�cing: an intuitively plausible choice

procedure by which the DM searches through alternatives until they �nd one that is `good

∗Department of Economics, Brown University, Email: victor_aguiar@brown.edu
†Department of Economics, Brown University. Email: maria_jose_boccardi@brown.edu
‡Department of Economics, Columbia University. Email: mark.dean@columbia.edu
1Notable examples include Masatlioglu et al. (2012), Caplin et al. (2011), Eliaz & Spiegler (2011), and Salant & Rubinstein

(2008).
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enough', at which point they stop and choose that alternative.2 This model has been hugely

in�uential, both within economics, and in other �elds such as psychology (Schwartz et al.

(2002)) and ecology (Ward (1992)).

Despite the popularity of the satis�cing model, testing its predictions can prove

challenging. It has long been known that standard choice data, which records only the

choices made from di�erent choice sets, cannot be used to disentangle satis�cing from

utility maximization (see Caplin et al. (2011) for a discussion). Researchers have therefore

typically resorted to richer data sets in order to test the satis�cing model. For example,

Caplin et al. (2011) make use of `choice process' data, which records the evolution of choice

with decision time, while Santos et al. (2012) use the order in which alternatives were

searched as recorded from their internet browsing history.

In this paper, we characterize the observable implications of the satis�cing choice

procedure for stochastic choice data. Such data has been heavily studied in the economics

literature.3 We assume that the DM has a �xed utility function and satis�cing level. In any

given choice set, they search sequentially until they �nd an alternative which has utility

above their satis�cing level, at which point they stop and choose that alternative. If they

search the entire choice set and do not �nd a satis�cing alternative then they choose the

best available option. We assume that search order varies randomly, leading to stochasticity

in choice. On the one hand, our paper is related to the work of Manzini & Mariotti (2014)

(henceforth MM). It speci�es a procedure by which attention is allocated, while MM is

agnostic in this regard. On the other, it provides an alternative test of the satis�cing model

to that of Caplin et al. (2011) and Santos et al. (2012), using a data set which is readily

available in many settings.

Our main observation is that the satis�cing model implies that choice is stochastic

only in choice sets where there are multiple alternatives above the satis�cing level. If this

is the case, then the order of search will a�ect the chosen alternative. If not, then either

the choice set will be fully searched and the best option deterministically chosen, or the

single satis�cing alternative will always be chosen. This allows us to behaviorally identify

the alternatives that are satis�cing for the decision maker.

Without further restriction, any stochastic choice data set can trivially be made

2Caplin et al. (2011) show that satis�cing behavior can be optimal under some circumstances
3See for example Block & Marschak (1960); Luce & Suppes (1965); Falmagne (1978); Gul & Pesendorfer (2006); Gul et al.

(2014); Manzini & Mariotti (2014)
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commensurate with the satis�cing choice procedure by assuming that all alternatives are

above the satis�cing level, and the resulting distribution of choices re�ects the distribution

of search orders in that choice set. In order to generate meaningful behavioral implications,

we must place further restrictions on the satis�cing model. For our main theorem we make

the assumption that the distribution of search orders has a full support property (i.e., each

item has a positive probability of being searched �rst), and also rule out the possibility

of indi�erence. This allows us to identify the set of above-reservation alternatives and

characterize satis�cing with two simple intuitive conditions. The �rst states that choice can

be stochastic only amongst elements that are always chosen (with some probability) when

available. The second says that revealed preference, de�ned via the support of the random

choice rule in each set, must satisfy the Strong Axiom of Revealed Preference (SARP). Under

these conditions, the data will admit a satis�cing representation and the satis�cing set, util-

ity function and distribution over search orders can be identi�ed to a high degree of precision.

Our baseline speci�cation puts no restrictions on the relationship between the dis-

tribution of search orders across di�erent choice sets. We next consider a re�nement

of the satis�cing model in which the distribution of search order in each choice set is

a manifestation of the same underlying search distribution. In order to guarantee such

a representation we need a third axiom: the Total Monotonicity condition of Block &

Marschak (1960). This condition on its own is necessary and su�cient for the data to

be commensurate with the random utility model (RUM). Thus, the �xed distribution

satis�cing model is the precise intersection between satis�cing and random utility.

We �nish discussing three extensions to our results in which we relax the assumptions

of full support, no indi�erence and the observation of a complete data set. We show

that a satis�cing model without full support, but with �xed distribution is equivalent

to the random utility model. Allowing for indi�erence (but maintaining the full support

assumption) is equivalent to dropping the requirement that stochasticity only take place

amongst always chosen alternatives. If data is incomplete, our necessary and su�cient

conditions are unchanged, but our ability to identify above satis�cing elements is reduced.

Section 2 describes our set up. Section 3 characterizes the satis�cing model. Section 4

considers the extensions described above, while section 5 discusses the related literature.
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2 Set Up

2.1 Data

We consider a �nite abstract choice set X, and let D ⊆ 2X \ ∅ be the set of menus in

which behavior is observed. We assume that data comes in the form of a random choice

rule, p : X × D 7→ [0, 1], which speci�es for each menu A ∈ D the probability of choosing

each element a ∈ A (for example, if the DM has a one third probability of choosing x from

{x, y, z} then p(x, {x, y, z}) = 1
3
).

De�nition 1 [Data set] A data set consists of a set if menus D ⊆ 2X \ ∅ and a random

choice rule p : X × D 7→ [0, 1] such that
∑

a∈A p(a,A) = 1 ∀A ∈ D. We say a data set is

complete if D = 2X \ ∅.

Random choice rules have been heavily studied in the theoretical, as well as the applied

literature.4 In practice, while a random choice rule is not directly observable, it can be

estimated from observed choice frequencies, pooling either across repeated choices by the

same individual, or by aggregating across the choices of di�erent individuals.

2.2 The Satis�cing Model

The satis�cing choice procedure can be described as follows: when faced with a menu

of options to choose from, the DM searches through the available alternatives one by one.

If, at any point, they come across an alternative which is `good enough', they stop searching

and select that alternative from the menu. If they exhaustively search all alternatives

without �nding an element which satis�es their criteria, then they choose the best available

alternative from the set. Note that the standard model of rational choice is a limiting case

of the satis�cing model in which no alternative is `good enough'.

As a concrete example, consider a DM searching for a book to buy in a bookshop prior

to a �ight. They examine the available books one by one, looking for one which satis�es

their requirements (humorous, has good reviews, long enough to last the �ight, not by Dan

Brown). If they �nd such a book, they immediately go to the checkout and buy it. If they

search the entire selection and don't �nd a book which matches this criteria then they go

back and choose the best of the books that they did see.

4Examples of early theoretical work include Block & Marschak (1960) and Luce & Suppes (1965). More recent work includes
Gul & Pesendorfer (2006); Manzini & Mariotti (2014); Gul et al. (2014).
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The satis�cing choice procedure therefore has three building blocks. The �rst is a �xed

utility function u : X → R, which describes the preferences of the DM. Following Manzini

& Mariotti (2014), for our main results we rule out indi�erence, and therefore assume that

u is injective. We discuss the implications of allowing indi�erence in section 4.2.

The second model element is a utility threshold u∗, which we will refer to as the

reservation utility. This de�nes the concept of `good enough': an alternative x ∈ X is good

enough if u(x) ≥ u∗. We de�ne U∗ = {a ∈ X|u(x) ≥ u∗} as the set of satis�cing elements

according to u and u∗. For convenience, we will assume that there is at least one satis�cing

element: i.e. u∗ ≤ maxx∈Xu(x). This assumption has no behavioral implication: a model in

which only the best available alternative is above the reservation utility is indistinguishable

from one in which there is no such alternative. However, it will streamline the statement of

identi�cation results in section 3.

The third element of the satis�cing model is the order in which search occurs. A search

order for a choice set A is de�ned by a linear order on that set.5 We use RA to denote the

set of linear orders on A, with rA a typical element in RA. Our key assumption is that

the order of search is determined stochastically: we use γA : RA → [0, 1] to denote the

probability distribution over the set RA, which we call a `stochastic search order'. Abusing

notation slightly, we will use γA(x rA y) to denote the probability of all search orders in

which x appears before y: i.e. γA(rA ∈ RA|x rA y).

We are agnostic about the source of this stochasticity. It could be that the DM

randomly decides the order of search - in our example, sometimes the DM search through

the books alphabetically, while sometimes they do so by genre. Alternatively, it could

be that the random choice rule is generated by a DM who is faced by choice situations

which are framed in di�erent ways,6 with the framing unobservable to the researcher.

For example, sometimes the bookstore puts the thrillers at the front of the store, while

sometimes they put the romantic comedies at the front. These `frames' a�ect the order

in which the DM searches (though not their preferences), but are not known to the researcher.

A data set can be represented by the satis�cing model if there exists a utility function,

satis�cing level and family of stochastic search orders which would generate the observed

choice probabilities:

5i.e. a complete, transitive and antisymmetric binary relation on A with the interpretation `searched no later than'.
6In the sense of Salant & Rubinstein (2008).
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Order (1) (2) (3) (4) (5) (6)
1st a a b b c c
2nd b c a c a b
3rd c b c a b a

γ1A
1
12

1
6

1
3

1
24

1
8

1
4

Table 1: An example of the satis�cing model

De�nition 2 [General Satis�cing Model (GSM)] A data set (D, p) has a Generalized Satis-

�cing Model (GSM) representation if there exists an injective u : X → R, u∗ ∈ R such that

u∗ ≤ maxs∈Xu(x), and {γA}A∈D such that, for any A ∈ D and a ∈ A

p(a,A) =


γA (rA|a rA b ∀ b ∈ A\{a} s.t. u(b) ≥ u∗) if u(a) ≥ u∗

1 if a = arg maxx∈A u(x) < u∗

0 Otherwise

(1)

To illustrate how the model works consider the following example.

Example 1 Let A = {a, b, c} and γA be as displayed in table 1. Consider �rst the case

where a, b are satis�cing alternatives, while c is not, that is u(a), u(b) > u∗ > u(c). Then,

no matter the search order, c will never be chosen, and so p(c, A) = 0. However, as the

DM will chose a if a is seen before b and b otherwise, their frequency depends on γA. In

particular, p(a,A) = 3
8
and p(b, A) = 5

8
. If instead all alternatives are below the satis�cing

level (i.e. u∗ > maxx∈Au(x)) then choice will be independent of search order: all alternatives

will always be searched, and the best subsequently chosen.

3 Characterizing the Satis�cing Model.

3.1 A Negative Result

The aim of this paper is to describe properties of a stochastic choice data set which are

necessary and su�cient to guarantee a satis�cing representation. However, our �rst result is

negative: without further re�nement, the GSM model provides no restriction on such a data

set.

Proposition 1 Any data set (D, p) has a GSM representation.
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All proofs are relegated to the appendix

The GSM is �exible enough to match any data set because it places no restriction on

the distribution over search orders in each decision problem. Thus one can always construct

a distribution of search orders that will match the data by assuming that all alternatives

are above the satis�cing level.

To derive testable restrictions for the satis�cing model, we introduce a `full support'

condition on the distribution of search orders. This restrictions will allow us to identify

satis�cing alternatives as those which are chosen with positive probability in every choice

set in which they appear. We can then utilize the underlying structure of the GSM model

to derive behavioral restrictions. Intuitively, the stochastic nature of search generates

stochastic behavior among satis�cing alternatives. In contrast, we expect to observe deter-

ministic utility maximizing behavior among choice sets which consist only of non-satis�cing

alternatives.

For the remainder of this section we concentrate on the simple case of full support, no

indi�erence and complete data. We identify the behavioral conditions which characterize the

resulting model. We also consider a special case of the model in which there is consistency

in the distribution of search orders between choice sets. This additional restriction ensures

that our model is behaviorally equivalent to a subset of the class of random utility models

(RUMs). In section 4 we discuss extensions in which we drop the full support, no indi�erence,

and complete data conditions.

3.2 Full Support Satis�cing Models

Our model adds to the GSM the assumption that, in each choice set, any item will be

searched �rst with some positive probability.

Assumption 1 [Full Support] For any a ∈ A and all A ∈ D: γA(rA ∈ RA : a rA b ∀b ∈
A\{a}) > 0.

We describe a GSM which additionally satis�es this assumption as a Full Support Sat-

is�cing Model (FSSM)

De�nition 3 [Full Support Satis�cing Model (FSSM)] A data set (D, p) has a Full Sup-

port Satis�cing Model (FSSM) representation if it has a GSM representation in which the

stochastic search order satis�es Full Support.
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The assumption of Full Support has an important implication: we can identify

above-reservation alternatives as those which are always chosen with positive probability in

any choice set in which they appear. This is because Full Support implies that, for each

such alternative, a search order in which it is searched �rst occurs with positive probability

in each choice set, ensuring that it will be chosen. Furthermore, any alternatives that are

not above reservation utility will be chosen with zero probability in any choice set which

contains an above reservation utility alternative.

We de�ne the set of alternatives which are always chosen:

De�nition 4 [Always Chosen Set] For any data set (D, p), we de�ne the always chosen

set as W ∗ = {a ∈ X|p(a,A) > 0 for all A ∈ D such that a ∈ A}.

For any complete data set generated by a FSSM, W ∗ must be equivalent to the set of

above-reservation alternatives.

Lemma 1 Assume a complete data set (D, p) admits an FSSM representation. Then, for

any such representation W ∗ = U∗.

As we discuss in section 4.3, if the data set is not complete then W ∗ may be a strict

superset of U∗: an below-satis�cing alternative may always be chosen because it is only

observed in choice sets containing other below-satis�cing alternatives.7

Using the (observable) set W ∗, we can de�ne the �rst of two behavioral conditions

which characterize the FSSM. It states that stochastic choice must only occur amongst

elements of W ∗. This follows from the fact that stochasticity in the satis�cing model occurs

only from stochasticity in search order.

Axiom 1 [Deterministic no satis�cing choice] If a ∈ X\W ∗ then either p(a,A) = 0 or

p(a,A) = 1 for all A ∈ D.

The second condition ensures that the preference information revealed by a data set is

well behaved. In order to state the condition, we introduce the following de�nitions.

De�nition 5 [Stochastic Revealed Preference] De�ne C(A) = {a ∈ A|p(a,A) > 0}. a is

stochastically revealed directly preferred to b if, for some A ∈ D a, b ∈ A and a ∈ C(A).

a is stochastically revealed preferred to b if {a, b} is in the transitive closure of the

7Completeness can be replaced for a weaker condition on the richness of the data set which requires observing choices from
all two and three element sets.
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stochastically revealed directly preferred relation. a is stochastically strictly revealed

preferred to b if, for some A ∈ D, a ∈ C(A) and b /∈ C(A).

Notice that, for data generated by a FSSM, these revealed preference concepts align with

the underlying utility function except in the case of two alternatives above that satis�cing

level. Such objects will be revealed indi�erent to each other, yet may in fact be ranked

according to the utility function. It is a de�ning feature of the satis�cing model that utility

di�erences above the threshold u∗ are unimportant for behavior. Nevertheless, the FSSM

implies that the stochastic revealed preference information must obey the Strong Axiom of

Revealed Preference.

Axiom 2 [SARP] C(A) must obey SARP: if a is stochastically revealed preferred to b then

b must not be stochastically strictly revealed preferred to a.

Our �rst result is that axioms A1 and A2 are necessary and su�cient for a data set to

have a FSSM representation

Theorem 1 The following are equivalent:

1. A stochastic choice dataset (D, p) is generated by a FSSM.

2. A stochastic choice dataset (D, p) satis�es A1 and A2.

To understand the su�ciency of the two axioms -A1 and A2-, note �rst that SARP

allows us, through Afriat/Richter's theorem (1996), to construct a utility function which

represents the stochastic revealed preference relation. Moreover, the elements of W ∗ will be

maximal according to that utility representation, allowing for a u∗ such that all elements

of the always chosen set can be assigned a utility greater or equal than u∗; while all

the elements that are not always chosen are assigned an utility level below u∗. Axiom

A1 guarantees deterministic choice in sets which contain at most one above-reservation

alternatives, and SARP again ensures that such choices are utility maximizing. For all other

choice sets, A1 ensures that alternatives with utility below u∗ (and so outside W ∗) are not

chosen, and a suitable stochastic search order can be constructed from the random choice

rules to explain the pattern of choice amongst above satis�cing alternatives. .

Notice that, while Lemma 1 relies on the completeness of the data set, Theorem 1

does not. The behavioral content of the FSSM model is the same regardless of whether the

data set is complete. However, the degree to which elements of the representation can be

identi�ed will be reduced in incomplete data sets, as we discuss in section 4.3.

9



The following examples illustrate the empirical content of the FSSM by presenting data

sets which violate each of our axioms.

Example 2 [Violation of Axiom 1] Let X = {a, b, c}, and let p (a, {a, b}) = 1, p (b, {b, c}) =
1
2
, p (a, {a, c}) = 1 and p (a, {a, b, c}) = 1. This does not satisfy axiom 1 since W ∗ = {a},

but p (b, {b, c}) = 1
2
/∈ {0, 1}. This behavior is incommensurate with the FSSM because the

fact that b is chosen probabilistically from {b, c} indicates that it must be above the satis�cing

level, yet this means that it should be chosen some of the time from {a, b, c} due to the full

support assumption.

Example 3 [Violation of Axiom 2] Let X = {a, b, c}, and let p (a, {a, b}) = 1, p (b, {b, c}) =

1, p (a, {a, c}) = 0 and p (a, {a, b, c}) = 1. This does not satisfy axiom 2 since p (a, {a, b}) = 1

means that a is stochastically strictly revealed preferred to b, p (b, {b, c}) = 1 means that b

is stochastically revealed preferred to c, while p (c, {a, c}) = 1 means that c is stochastically

strictly revealed preferred to a . Such behavior is also incommensurate with the FSSM as, in

each case, the uniquely chosen object must have a utility strictly higher than those which are

not chosen, either because all are below the satis�cing level, in which case the best option is

chosen, or because only the chosen object is above the satis�cing level.

Theorem 1 shows the extent to which the FSSM can be tested and di�erentiated from

other models. First, note that any data set in which p(a,A) > 0 for all A ∈ D will trivially

satisfy both A1 and A2, and so admit an FSSM representation. This is because any data set

in which the random choice rule has full support in every choice set can be rationalized by

an FSSM in which every alternative is above the satis�cing level, and the resulting pattern

of choice is driven by the choice-set speci�c distribution over search orders. Second, note

that the standard model of utility maximization (without indi�erence) is a limit case of the

FSSM in which |W ∗| = 1. Third, notice that an alternative interpretation of the FSSM is

a model in which attention is complete and choices are governed by a preference relation

which has indi�erence only amongst maximal elements. A model in which such indi�erence

is resolved using a random tie breaking rule with full support amongst maximal elements is

equivalent to the FSSM.

3.2.1 Recoverability in the FSSM

In the case of a complete data set which satis�es A1 and A2, many of the elements of

the FSSM can be uniquely identi�ed

Theorem 2 Let (D, p) be a complete data generated by an FSSM (u, u∗, {γA}A∈D). For any

FSSM representation of the data (ū, ū∗, {γ̄A}A∈D)
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1. U∗ = Ū∗

2. For all a, b /∈ U∗, u(a) > u(b)⇒ ū(a) > ū(b)

3. γA(arAb ∀b ∈ {A ∩ U∗} \ {a}) = γ̄A(arAb ∀b ∈ {A ∩ U∗} \ {a}) for all A ∈ D,

a ∈ A ∩ U∗

Theorem 2 tells us that, in a complete data set we can uniquely identify the above-

satis�cing elements, the preference ordering over non-satis�cing elements, and the probability

that one satis�cing element will be seen before another in any choice set.

3.3 Fixed Distribution Satis�cing Models

So far, we have allowed stochastic search order to vary arbitrarily between choice sets:

an alternative that is likely to be searched �rst in choice set A may be very unlikely to be

searched �rst in choice set B. However, in some cases such an assumption may be inappro-

priate. For example, consider the case in which the probability of search is governed by the

`salience' of di�erent alternatives: a book with a bright pink cover may be more likely to

be looked at before one with a dark brown cover regardless of the set of available alternatives.

We now consider the implications of a satis�cing model with full support in which the

probability distribution over search orders is invariant to the set of available alternatives.

We call this the '�xed distribution' property.

Assumption 2 [Fixed Distribution] There exists a ΓX : RX → [0, 1] such that, for every

A ∈ D and rA ∈ RA

γA(rA) = ΓX(rX |rA ⊂ rX)

For every choice set A, it is as if the DM draws a search order from a distribution ΓX

over linear orders on the grand set of alternatives X. They then follow that search order,

ignoring any alternatives that are not in fact available in A.

De�nition 6 [Fixed Distribution Satis�cing Model (FDSM)] A data set (D, p) has a Fixed

Distribution Satis�cing Model (FDSM) representation if it has a FSSM representation in

which the family of stochastic search orders {γA}A∈D satisfy Fixed Distribution.

The conditions A1 and A2 are necessary for FDSM but not su�cient, implying that

the FDSM is a strict subcase of FSSM. In order to obtain su�ciency, we make use of the
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Total Monotonicity condition of Block & Marschak (1960). Total Monotonicity by itself is

a su�cient and necessary condition for Random Utility Maximization in our environment.

This implies that the FDSM is the exact intersection of the FDSM model with the Random

Utility model of Block-Marschak and Falmagne (1978).

In order to de�ne the total monotonicity condition, we �rst need to de�ne the following

function for each A ∈ D and a ∈ A:

f(a,A) =
∑

D∈B(A)

(−1)|D\A|p(a,D).

where B(A) is the class of supersets of A (i.e., B(A) ≡ {D ∈ D|A ⊆ D}).

Block & Marschak (1960) and Falmagne (1978) proved that the following behavioral ax-

iom called Total Monotonicity (or Block-Marschak Monotonicity) is necessary and su�cient

for a RUM representation:

Axiom 3 [A3 Total Monotonicity] f(a,B) ≥ 0 for all a ∈ X, for all B ∈ D.

Observe that f depends only on the data set so this axiom is testable.

Note that Total Monotonicity implies `standard' monotonicity: the probability of

choosing any given alternative falls as more alternatives are added to the choice set -

that is p(a,A) ≥ p(a,B) when A ⊆ B.8 However, it is also stronger than this condition

as we can see in the following example: Set X = {a, b, c, d}, let p(a, {a, b}) = 0.2,

and p(a, {a, b, c}) = p(a, {a, b, d}) = 0.19 and p(a, {a, b, c, d}) = 0.17. We check

f(a, {a, b}) = p(a, {a, b}) + p(a, {a, b, c, d})− [p(a, {a, b, c}) + p(a, {a, b, d})] and observe that

f(a, {a, b}) = −0.01 negative and violating total monotonicity. However, we can see that

standard monotonicity holds in this example.

Clearly, a FDSM cannot lead to a failure of regularity. If it did that would mean that

a given satis�cing item is more likely to be found �rst in a bigger menu than in an smaller

one, which is not consistent with the idea that the probability of any search order is �xed

across menus. The higher order monotonicity conditions implied by total monotonicity can

be interpreted as saying that the likelihood of a satis�cing item being found �rst decreases

with its size of the menu, but the marginal e�ect of adding a new option to the menu

8To see this take the Mobius inverse representation of p(a,A) =
∑

D∈B(A) f(a,D) and p(a,B) =
∑

D′∈B(B) f(a,D
′) and

note that if D ∈ B(B) then D ∈ B(A) and f(a,D) ≥ 0 by total monotonicity, then we have that p(a,A) ≥ p(a,B).
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decreases with its size. In the example above f(a, {a, b}) ≥ 0 means that the impact of

adding one additional item c in the menu {a, b} on the probability of choosing a � i.e.

p(a, {a, b}) − p(a, {a, b, c}) � is bigger that the impact of adding the same item c in the

bigger menu {a, b, d} on the probability of choosing a � i.e. p(a, {a, b, d})− p(a, {a, b, c, d})).

We are ready to state the main result of this section.

Theorem 3 The following are equivalent:

1. A complete stochastic choice dataset (D, p) is generated by a FDSM.

2. A complete stochastic choice dataset (D, p) satis�es A1, A2 and Total Monotonicity

(A3).

Note that, unlike Theorem 1, Theorem 3 requires a complete data set.

3.3.1 Recoverability in the FDSM

In the case of a complete data set which satis�es A1, A2 and Total Monotonicity (A3)

several of the elements of the FDSM can be identi�ed. In particular, the identi�cation of

the search orderings is improved upon the FSSM recoverability.

Theorem 4 Let (D, p) be a complete data generated by an FDSM (u, u∗,ΓX) such that

X \ U∗ 6= ∅. For any FDSM representation of the data (ū, ū∗,ΓX)

1. U∗ = Ū∗

2. For all a, b /∈ U∗, u(a) > u(b)⇒ ū(a) > ū(b)

3. ΓX(arXb) = ΓX(arXb) all A ∈ D and a, b ∈ U∗

Theorem 4 tells us that, in a complete data set, we can identify the above-satis�cing

elements, granted that there is a positive probability of being seeing before some above-

satis�cing element. Moreover, we can identify the preference ordering over the alternatives

that are surely non-satis�cing elements, and the probability that one revealed satis�cing

element will be seen before another in any choice set, for those elements that are surely

satis�cing.

4 Extensions

In this section we extend our model by relaxing in turn the assumptions of full support,

no indi�erence, and complete data
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4.1 Satis�cing Without Full Support

As discussed in section 3.1, the GSM model is vacuous without the full support

assumption. Here we consider the empirical implication of dropping full support but

maintaining the �xed distribution assumption. In such a case the identi�cation of satis�cing

elements as those that are always chosen breaks down. A satis�cing element a may not be

chosen in some sets if it is always searched after another satis�cing element b. To illustrate

this point consider the following example.

Example 4 Let X = {a, b, c, d}, U∗ = {a, b} and Γ a distribution over search orders on

X with full support and where each possible search order is equally likely; moreover assume

that u(c) > u(d). Then, for any menu such that U∗ ⊆ A, p(a,A) = p(b, A) = 1
2
, and if

A ∩ U∗ 6= ∅, then p(U∗, A) = 1 and p(c, A) = p(d,A) = 0. Finally, p(c, {c, d}) = 1 and

p(d, {c, d}) = 0. Note that this is the standard case describe in section 3.3. Now, notice

that since we do not assume that Γ needs to have full support on the set of search orders on

X, the same data set can be generated by the following �xed distribution satis�cing model

without full support: Ū∗ = X, Γ ((a, b, c, d)) = Γ ((b, a, c, d)) = 1
2
and Γ(rX) = 0 for all

rX linear order on X, such that rX /∈ {(a, b, c, d), (b, a, c, d)}. Furthermore, this alternative

representation is not unique.

Because it is not possible to identify the satis�cing alternatives the only implication of

the satis�cing model without full support, but with �xed distribution is Total Monotonicity

- in other words it is behaviorally indistinguishable from the random utility model. This

can be seen by noting that a RUM can be reinterpreted as a satis�cing model with �xed

distribution by assuming that all alternatives are above the reservation level, and treating

the preference orderings from the random utility model as search orders in the satis�cing

model.

Proposition 2 The following are equivalent:

1. A complete stochastic choice dataset (D, p) is generated by a FDSM without Full Sup-

port.

2. A complete stochastic choice dataset (D, p) satis�es A3.

4.2 Allowing for Indi�erence

Here we relax the no indi�erence assumption while keeping the Full Support conditions.

Allowing for indi�erence potentially introduces stochasticity among non-satis�cing alterna-

tives due to the DM's rule to break ties. We assume that tie breaking works as follows, if

14



the DM is indi�erent between two or more alternatives, and needs to choose one of them,

she chooses at random from the set of indi�erent alternatives with probabilities induced by

the tie-breaking rule T .

De�nition 7 [Tie-breaking rule] Let T : X × D → R++
9 be a function that assigns tie

breaking weights to alternatives. In case of indi�erence between two or more alternatives in

menu A, the DM applies the induced tie breaking rule as follows:

T (a|A∼a) =
T (a,A)∑

b∈A∼a T (b, A)
(2)

where T (a|A∼a) > 0 is the always positive probability that a is chosen when a is indif-

ferent to all the elements in the set A∼a ≡ {b ∈ A : u(b) = u(a)}, and superior to all other

elements in A (i.e. u(a) ≥ u(b) for all b ∈ A).

Note that if |A∼a| = 1 then T (a|A∼a) = 1, and that
∑

b∈A∼a T (a|A∼a) = 1 in general.

We now extend the Full Support Search Model to allow for indi�erences.

De�nition 8 A data set (D, p) has a Full Support Search Model with Indi�erences (FSSMI)

representation if there exists u : X → R, u∗ ∈ R such that u∗ ≤ maxa∈X u(a), stochastic

search orders{γA}A∈D that satis�es Fixed Distribution and tie breaking rule T : X × D →
R++, such that, for any a ∈ A

p(a,A) =


γA (arAb ∀ b s.t. u(b) > u∗) if u(a) ≥ u∗

T (a|A∼a) if a ∈ arg maxx∈A u(x) < u∗

0 Otherwise

(3)

The following example illustrates the FSSMI.

Example 5 Consider again example 1, and assume that DM's choices can be represented

by a Full Support Seach Model with Indi�erences. Let U∗ = {a}, and let u(b) = u(c). Then,

p(a,A) = 1, p(b, A) = p(c, A) = 0 for all A such that a ∈ A. Let the tie breaking rule be

generated by T (b, {{b, c}) = 1 and T (c, {b, c}) = 2, then p(b, {b, c}) = 1
3
, and p(c, {b, c}) = 2

3

Axiom 1 is no longer necessary for the FSSMI model: stochasticity can occur amongst

alternatives that are not always chosen due to indi�erence. In fact, it turns out that the

9Note that we rule out deterministic tie breaking since, the behavior of a DM that is indi�erent between two alternatives a
and b and always chooses a over b is behaviorally indistinguishable from a DM that prefers a over b.
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behavioral implication of allowing for indi�erence is precisely the removal of this axiom from

our set of necessary and su�cient conditions.

Theorem 5 The following are equivalent:

1. A complete stochastic choice dataset (D, p) is generated by a FSSMI.

2. A complete stochastic choice dataset (D, p) satis�es A2.

Theorem 5 highlights that the satis�cing model without indi�erence can be reinterpreted

as a standard optimizing model with random tie breaking, but allowing for indi�erence only

amongst the best alternatives.

4.2.1 Recoverability in the FSSMI

Given u∗ ≤ maxa∈X u(a), the extension of the model to allow for ties, does not obscure

the identi�cation result for the satis�cing set as in 4, where the always chosen set coincides

with the satis�cing set, i.e. W ∗ = U∗. The following theorem describes the degree to which

the other elements of the model cannot be identi�ed.

Theorem 6 Let (D, p) be a complete data generated by an FSSMI (u, u∗, {γA}A∈D, T ). For

any FDSMI representation of the data (ū, ū∗, {γA}A∈D, T̄ )

1. U∗ = Ū∗

2. For all a, b /∈ U∗, u(a) ≥ u(b)⇒ ū(a) ≥ ū(b)

3. γA(arAb ∀b ∈ {A ∩ U∗} \ {a}) = γ̄A(arAb ∀b ∈ {A ∩ U∗} \ {a}) for all A ∈ D,

a ∈ A ∩ U∗

4. T (a|A∼a) = T̄ (a|A∼a) for all a ∈ A, A ∈ D.

Theorem 6 tell us that in a complete data set we can uniquely identify the above-

satis�cing elements, the preference ordering among non-satis�cing elements, the tie breaking

rule when used and the probability that one satis�cing element is seen before another in any

choice set. Its proof follows from Theorem 2 when the identi�cation of the tie breaking rule,

since when it is used follows from the empirical choice probability among elements that are

not revealed to be satis�cing.
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4.3 Incomplete Datasets

Here we relax the complete data set assumption while keeping the full support distri-

bution condition and assuming no indi�erence. We do not work with the �xed distribution

assumption since Total Monotonicity is not well de�ned for incomplete data sets, and the

literature on Random Utility Models has not dealt with this extension.

Notice that complete data is not a necessary assumption for Theorem 1. Thus, if

we drop completeness, the implications of the model are not a�ected, but identi�cation

becomes weaker. To see this note W ∗ may be a strict superset of U∗ since a below-satis�cing

alternative may be always chosen because it is only observed in choice sets containing below-

satis�cing alternatives. The accuracy with which we can identify the primitives of the model

given observed data depends on the richness of the data set.

Theorem 7 Let (D, p) be a data set (that needs not to be complete) that satis�es A1-A2.

Then for a FSSM (u, u∗, {γA}A∈D) represents the data if and only if

1. W̃ ⊆ U∗ ⊆ W ∗

2. u must represent the stochastic revealed preference relation on X \ U∗: that is if a

is stochastically strictly revealed preferred to b then u(a) > u(b), and if a is revealed

preferred to b then u(a) ≥ u(b) for any a, b ∈ X \ U∗

3. γA(arAb ∀b ∈ (U∗ ∩ A) \ {a}) = p(a,A) for all A ∈ D, a ∈ U∗ ∩ A.

where W̃ ≡ {a ∈ X|∃A ∈ D, s.t p(a,A) ∈ (0, 1)}.

Theorem 7 tell us that, when dealing with incomplete data sets one can only certainty

identify satis�cing choices if these have been observed chosen when other satis�cing alter-

natives were available as well; that is, if we see them being chosen stochastically. As we

established before, the satis�cing set is a subset of the set of always chosen alternatives, but

with incomplete data it may be a strict subset. Furthermore, one can only partially recover

the preference order for the revealed not satis�cing alternatives as well as a search order

that only coincides with the one that generated the data for the relative probabilities for the

elements that surely are in U∗.

5 Relation to Existing Literature

The paper closest in spirit to ours is Manzini & Mariotti (2014), which charac-

terizes the random choice generated by a DM who makes choices by optimizing on a
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stochastically generated consideration set. As in our model, preferences are deterministic,

with randomness in choice coming from stochastic changes is attention. However, the

behavioral implications of the two models are quite di�erent, with the satis�cing model

being the more general. In the set up of MM, all alternatives are always chosen with

positive probability in each set. In such a data set, axioms A1 and A2 are always satis�ed,

and so the FSSM is trivially more general than the stochastic consideration set model.

Moreover, the FDSM also nests the stochastic consideration set model. This follows

from the fact that, when restricted to the class of data in which all alternatives are

chosen with positive probability, the FDSM model is equivalent to the class of all RUMs,

and the model of MM is a strict subset of this class. Moreover, the FSSM and FDSM

can accommodate data sets in which not all alternatives are chosen with positive probability.

Our work also contributes to the literature aimed at testing the satis�cing model. It is

well known that standard deterministic choice data cannot be used to distinguish rational

choice from satis�cing behavior, implying that richer data is needed. Caplin et al. (2011);

Caplin & Dean (2011) showed how to test the satis�cing model using `choice process' data,

which records not just �nal choice made by a decision maker, but also how choices change

with contemplation time. Santos et al. (2012) utilize data in which the sequence of search is

recorded to test the satis�cing model. Our paper describes the implication of the satis�cing

model for stochastic choice data, which is arguably easier to collect that either choice

process or search data.

Ours is not the �rst paper to characterize the behavior of random choice rules. Much of

the previous work has focused on random utility models (RUMs), in which the DM chooses

in order to maximize a utility function, drawn from some distribution (see for example Block

& Marschak (1960); Falmagne (1978); Gul et al. (2014)). As discussed above, the FSSM is

behaviorally distinct from the class of RUMs. It is easy to construct examples of FSSMs

which violate regularity, and so cannot be modeled as the resulting from random utility

maximization. Moreover, RUMs are not guaranteed to satisfy either axioms A1 or A2. In

contrast the FDSM is behaviorally a subset of the class of RUMs. Total monotonicity A3 is

necessary and su�cient for a RUM representation (Falmagne, 1978).
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A Proofs

A.1 Proof of Proposition 1

Proof. For any data set (D, p), set U : X → [0, 1] to be any arbitrary one to one real valued

function and set u∗ = −2; then U∗ = X. For any menu A ∈ D, let raA be the set of linear

orders on A such that a r b for all b ∈ A. {raA}a∈A therefore de�nes partition on RA. De�ne

γA(rA) =
p(a,A)

|raA|
where rA ∈ raA

Such a representation will generate p as, for any a, u(a) ≥ u∗

γA (rA|a raA b ∀ b s.t. u(b) ≥ u∗) = γA (rA ∈ raA) = p(a,A)

A.2 Proof of Lemma 1

Proof. (W ∗ ⊆ U∗) Let a ∈ W ∗ then for any given A ∈ D we have p(a,A) > 0 then either:

(i) a ∈ U∗ or (exclusive) (ii) u(a) > u(b) for all b ∈ A and U∗ ∩A = ∅. Assume a /∈ U∗ then
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(since U∗ 6= ∅) there exists b ∈ U∗ and, by completeness of the data, there is a menu A′ ∈ D
such that a, b ∈ A′, and therefore p(a,A′) = 0, so we have a contradiction.

(U∗ ⊆ W ∗) Let a ∈ U∗ ⇒ u(a) > u∗, by FSSM p(a,A) =

γA (rA|arAb ∀b ∈ A s.t. u(b) > u∗) > 0 where the last inequality follows from Full Support

assumption.

A.3 Proof of Theorem 1

Proof. First we prove that (1) implies (2). To prove that a data set (D, p) that admits a

FSSM representation satis�es A1 �rst notice that U∗ ⊆ W ∗ even for incomplete data sets.

To see this note that if a ∈ U∗ then u(a) ≥ u∗ and since the data has a FSSM representation

then p(a,A) = γA (rA|a rA b ∀b ∈ A ∩ U∗\{a}) for all A ∈ D. Given the full support

assumption, γA (rA|a rA b ∀b ∈ A ∩ U∗\{a}) > 0 for all A ∈ D, therefore p(a,A) > 0 for all

A ∈ D which in turn implies that a ∈ W ∗

Then if a /∈ W ∗ we have that a /∈ U∗, which in turn implies that u(a) < u∗. Since u is

injective, there exists a a∗A = argmaxa∈Au(a). Then either (i) a = argmaxb∈Au(b) or (ii)

u(a) < maxb∈A u(b). If (i) since the data has a FSSM representation p(a,A) = 1; while if

(ii) p(a,A) = 0. In either case A1 follows.

To show that A2 holds, assume, by the way of contradiction, that (i) a is stochastically

revealed preferred to b and (ii) b is stochastically strictly revealed preferred to a. From

(ii), given that data admits a FSSM we must have (by the full support assumption) that

u(a) < u∗ and u(a) < u(b). If a is stochastically revealed preferred to b then there must

exist a sequence of alternatives c1, ..cN and choice sets A1, ..., AN−1, such that c1 = a,

cN = b, cn, cn+1 ∈ Anand cn ∈ C(An). If u(b) > u∗ then it must be the case that

u(cN−1) > u∗(otherwise cN−1 could not be chosen with positive probability when cN was

available). Iterating on this argument implies that u(a) > u∗. If u(b) < u∗ then this implies

that u(cN−1) > u(b). If u(cn) < u∗ for all n then iterating on this argument implies that

u(a) > u(b) . Otherwise, the previous argument implies that u(a) > u∗. Either provides a

contradiction.

Now we prove that (2) implies (1). For A ⊆ X \ W ∗, C(A) ≡ {a ∈ A|p(a,A) = 1}
from A1. Given A2, we can generate an injective utility function using Afriat/Richter's

theorem, such that u : X \W ∗ → [0, u] and C(A) = argmaxa∈Au(a) for all A ∈ D such that

A∩W ∗ = ∅. Fix u∗ > u , ennumerate the elements in W ∗ as a1, ...aN and let u(an) = u∗+n
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for all an ∈ W ∗. Thus u : X → R is injective and U∗ ≡ W ∗.Furthermore, notice that A2

implies that W ∗ is non-empty, so that u∗ ≤ maxx∈Xu(x).

For every A such that A∩W ∗ is non-empty, let A∗ ≡ A∩W ∗ and de�ne RA∗ the set of

all linear orders on A∗, and let RA(rA∗) be the set of all linear orders rA ∈ RA that induce

the linear order rA∗ ∈ RA∗ .Then, set the probability of the set of linear orders that generate

each rA∗ as

γA (rA ∈ RA(rA∗)| airA∗aj ∀aj ∈ A∗\{ai}) =
p(ai, A)

| {rA∗ ∈ RA∗ : airA∗aj ∀aj ∈ A∗\{ai}} |

for all ai ∈ A∗. Finally, distribute the probability mass above uniformly across the elements

in RA(rA∗). For any rA ∈ RA(rA∗), for a given rA∗ :

γA(rA) = γA (rA ∈ RA|airA∗aj ∀aj ∈ A∗\{ai}) /|RA(rA∗)|.

Where | · | stands for the cardinality map. Note that, as rA ∈ RA(rA∗)| airA∗aj ∀aj ∈
A∗\{ai} for some ai ∈ A∗, and as p(ai, A) > 0 by construction of W ∗ this distribution will

have full support on RA.

If A ∩W ∗ = ∅ then for all rA ∈ RA de�ne

γ(rA) =
1

|RA|

Thus, between them u, u∗ and {γA}A∈D satisfy the requirements of an FSSM. To

verify that we can generate (D, p) notice that if we face a menu A we have the following cases:

(i) if A ∩ W ∗ = A then u(a) > u∗ for all a ∈ A and, for each a,

p(a,A) = γA(rA ∈ RA|a rA b ∀b ∈ A\{a}), to see that this is true observe that γA(rA ∈
RA|a rA b ∀b ∈ A\{a}) =

∑
rA∈RA

1 [rA : rA∗ such that airA∗aj ∀aj ∈ A∗] γA(rA) = p(a,A).

(ii) If A ∩W ∗ = ∅ then p(a,A) = 1 if u(a) > u(b) for all b ∈ A\{a} and zero otherwise.

This follows directly from the fact that u was constructed to represent choice on such sets.

(iii) If A ∩ W ∗ ⊂ A and A ∩ W ∗ 6= ∅ then we have p(a,A) = γA(rA|a rA b ∀b ∈
(A ∩W ∗)\{a}) if u(a) ≥ u∗ and p(a,A) = 0 if u(a) < u∗. To see that this is true observe

that by de�nition of W ∗ and A1 p(A ∩W ∗, A) = 1. To see that this is true, observe that

if we assume that p(A ∩W ∗, A) < 1 we must have that p(a,A) > 0 for some a /∈ W ∗ but
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that means by A1 that p(a,A) = 1 which is a contradiction of the fact that p(A∩W ∗, A) > 0.

Then p(a,A) = 0 if u(a) < u∗. For a, b ∈ A ∩W ∗, the result follows as in (i).

A.4 Proof of Theorem 2

Proof. To prove (1) assume, by contradiction, that U∗ 6= U
∗
and let v ∈ U∗ \ U∗. Then,

it must be the case that u(v) < u∗ and u(v) ≥ u∗. By completeness and the fact that

U∗ 6= ∅, ∃a ∈ U∗ and a A ∈ D such that A = {a, v}. Given that the data is represented by

(u, u∗, {γA}A∈D), p(a,A) = 1. On the other hand, since (u, u∗, {γA}A∈D) also represents the

data it is the case that p(a,A) ∈ (0, 1), which establishes a contradiction.

To prove (2) notice that from (1) U∗ = U
∗
. Since both, (u, u∗, {γA}A∈D) and

(u, u∗, {γA}A∈D) are generated by the same FSSM, then u and u∗ represent the preferences

given by de�nition 5 for all a /∈ U∗. Therefore, it must be the case that u is a strictly

increasing transformation of u. on X/U∗

To prove (3) assume, by contradiction, that for some A ∈ D, a ∈ A ∩ U∗

γA(arAb ∀b ∈ {A ∩ U∗} \ {a}) 6= γ̄A(arAb ∀b ∈ {A ∩ U∗} \ {a})

then p(a,A|γA) 6= p(a,A|γA) which in turn implies that both, (u, u∗, {γA}A∈D) and

(u, u∗, {γA}A∈D) cannot represent the same data.

A.5 Proof of Theorem 3

Proof. First we prove (1) implies (2). If the complete data is generated by a FDSM then

there is a triple (u, u∗,ΓX), take a realization of ΓX with support on RX and call it rX ,

then de�ne the linear ordering on X �X : (1) a �X b if arXb and a, b ∈ U∗, (2) a �X b if

u(a) > u(b) and a, b /∈ U∗ and (3) a �X b if a ∈ U∗, b /∈ U∗. Now, assign this linear ordering

�X the probability ΓX(rX). It is direct to see that there is a Random Utility Maximization

model without indi�erence with realizations �X with probability ΓX(rX). By Block &

Marschak (1960) it follows that the generated data set (D, p) satis�es Total Monotonicity

(A3). The fact that A1 and A2 hold follows from Theorem 1.

Second we prove (2) implies (1). Because FDSM is a subcase of FSSM and A1 and A2

hold we can build an utility u : X 7→ R and a threshold u∗ ∈ R such that u(x) ≥ u∗ for all
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x ∈ W ∗ and u(x) < u∗ for all x ∈ X\W ∗. Finally, if a complete stochastic choice dataset

(D, p) satis�es A3 then the model is a Random Maximization Utility model so we can recover

a distribution over linear orders on X ΓQ
X : RX 7→ [0, 1] such that p(a,A) = ΓQ

X(arXb∀ b ∈ A)

thanks to Falmagne (1978). Call its support RX the set of quasi-search ordering, because

they are the results of both deterministic (degenerate) utility maximization choice and �xed

random searching and satis�cing behavior. To construct the ΓX we build each element of

its support by taking an element of the support of the Quasi-search ordering rX ∈ RX and

we restrict it to W ∗. Here we de�ne an equivalence class on RX if they have the same

restriction rX |W ∗, if we have any two elements rX , r
′
X ∈ RX that have the same restriction

to W ∗ (i.e., xrXy ⇐⇒ xr′Xy for x, y ∈ W ∗) we say rX ≡W ∗ r
′
X , the equivalence class

set is denoted as [rX ]≡W∗ = {r′X ∈ RX |rX ≡W ∗ r
′
X} then we assign to the representative

of the equivalence class or the restriction rX |W ∗ the probability corresponding to the sum∑
r′X∈[rX ]≡W∗

ΓQ
X(r′X). For any given restricted ordering rX |W ∗ we build its transitive closure

or the set of transitive extensions to X and call this set RX(rX) ⊂ X×X. We assign each of

the elements of this set r̂X ∈ RX(rX) the probability
∑

rX∈[rX ]≡W∗
ΓQ
X(rX)/|RX(rX)| where

the numerator is the probability of the restricted to W ∗ quasi-search ordering rX |W ∗ and

the denominator is the cardinality of the previously de�ned set. Doing this for all elements

of RX we build a new support RX with probabilities as indicated that provide us with ΓX .

Note that ΓX has full support due to how W ∗ is constructed. Because W ∗ is the

always chosen set, we know that any element of the set of restrictions rX |W ∗ such that

for each a ∈ W ∗, arXb for all b ∈ W ∗\{a} has positive probability. It follows that by

de�nition, for any A ∈ D, and for any x ∈ W ∗ we have p(x,A) > 0, this means that

ΓQ
X(rX ∈ RX : xrXy ∀y ∈ X\{x}) > 0. This implies that all representatives of the

equivalence class of restricted orderings rX |W ∗ where x is searched �rst in W ∗ have positive

probability. Then we have extended them to X with the uniform distribution for each set

RX(rX) thus preserving the full support for the whole X. The reason is that the transitive

closure to X of any rX |W ∗ contains linear search orders that have each x ∈ W ∗ as the �rst

searched element, because it contains the ordering that preserves the elements in W ∗ in

the top and the rest at the botton. But also it contains search orders with each element of

X\W ∗ at the top for each of such elements andW ∗ at the botton all with positive probability.

We have extended each restriction rX |W ∗ such that we can let ΓX be the �xed

distribution of search orders. We have built a FDSM or a triple (u, u∗,ΓX). To verify that

this FDSM model generate (D, p) notice that if we face a menu A we have the following cases:
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(i) if A ∩W ∗ = A then p(a,A) = ΓX(rX ∈ RX |arXb ∀b ∈ A\{a}), to see that this is

true observe that ΓX(rX ∈ RX |arXb ∀b ∈ A\{a}) = ΓQ
X(rX ∈ RX |arXb ∀b ∈ A\{a}). In

this case the �rst equality follows from the equivalence to random utility when restricted to

W ∗.

(ii) If A ∩W ∗ = ∅ then p(a,A) = 1 if u(a) > u(b) for all b ∈ A\{a} and zero otherwise.

This is direct from the fact that u represents C in such sets

(iii) If A ∩ W ∗ ⊂ A then we have p(a,A) = ΓX(rX |arXb ∀b ∈ (A ∩ U∗)\{a}) if

u(a) ≥ u∗ and p(a,A) = 0 if u(a) < u∗. To see that this is true observe that by de�nition

of W ∗ and A1 p(A ∩W ∗, A) = 1 then p(a,A) = 0 if u(a) < u∗. For a, b ∈ A ∩W ∗ observe

that by construction ΓX(rX ∈ RX |arXb ∀b ∈ (A ∩ U∗)\{a}) = ΓQ
X(rX ∈ RX |arXb ∀b ∈

(A ∩W ∗)\{a}) Finally, observe that ΓQ
X(rX ∈ RX |arXb ∀b ∈ (A ∩W ∗)\{a}) = ΓQ

X(rX ∈
RX |arXb ∀b ∈ A\{a}) = p(a,A) because the facts that p(c, A) = 0 for any c /∈ W ∗and that

ΓQ
X represents choice implies that ΓQ

X(rX ∈ RX |crXa) = 0.

A.6 Proof of Theorem 4

Proof. For (1) and (2) we use the results of Theorem 2.

(3) follows from the fact that W ∗ ≡ U∗ and the FDSM behaves as Random Utility in

this for the elements in W ∗. Assume by contradiction that ΓX(xrXy) 6= ΓX(xrXy) for some

x, y ∈ W ∗ but that means that in the menu {x, y}, p(x, {x, y}|ΓX) 6= p(x, {x, y}|ΓX) which

is a contradiction.

A.7 Proof of Proposition 2

Proof. First we prove that (1) implies (2). If a complete data has a FDSM without

full support representation then there is a triple (u, u∗,ΓX), take a realization of ΓX with

support on some subset or all RX and call it rX , then de�ne the linear ordering on X

�X : (1) a �X b if arXb and a, b ∈ U∗, (2) a �X b if u(a) > u(b) and a, b /∈ U∗ and (3)

a �X b if a ∈ U∗, b /∈ U∗. Now, assign this linear ordering �X the probability ΓX(rX). It is

direct to see that there is a Random Utility Maximization model without indi�erence with

realizations �X with probability ΓX(rX). By Block & Marschak (1960) it follows that the

generated data set (D, p) satis�es Total Monotonicity (A3).
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Now we prove that (2) implies (1). If a complete stochastic choice dataset (D, p) satis�es
A3 then the model is a Random Maximization Utility model so we can recover a distribution

over linear orders on X ΓX : RX 7→ [0, 1] such that p(a,A) = ΓQ
X(arXb∀ b ∈ A) thanks to

Falmagne (1978). Interprent ΓX as a �xed distribution search order, and select any injective

u : X → R and u∗ such that u(x) > u∗ for all x ∈ X. By construction this triple (u, u∗,ΓX)

generates the observed data.

A.8 Proof of Theorem 5

Proof. First we prove that (1) implies (2). To show that A2 holds, assume, by the way of

contradiction, that (i) a is stochastically revealed preferred to b and (ii) b is stochastically

strictly revealed preferred to a. From (ii), given that data admits a FSSMI we must have

(by the full support assumption) that u(a) < u∗ and u(a) < u(b). If a is stochastically

revealed preferred to b then there must exist a sequence of alternatives c1, ..cN and choice

sets A1, ..., AN−1, such that c1 = a, cN = b, cn, cn+1 ∈ Anand cn ∈ C(An). If u(b) > u∗ then

it must be the case that u(cN−1) > u∗ (otherwise cN−1 could not be chosen with positive

probability when cN was available). Iterating on this argument implies that u(a) > u∗. If

u(b) < u∗ then this implies that u(cN−1) > u(b). If u(cn) < u∗ for all n then iterating on

this argument implies that u(a) ≥ u(b) . Otherwise, the previous argument implies that

u(a) > u∗. Either provides a contradiction.

Now we prove that (2) implies (1). We say two items are revealed stochas-

tically indi�erent if a is revealed stochastically preferred to b and b is revealed

stochastically preferred to a, in that case we denote aI∗b. We modify this rela-

tion I∗ ⊆ X × X by removing its elements that have at least one item from al-

ways chosen set W ∗ that is non-empty by SARP. Formally we de�ne the relation

I = {(a, b) ∈ X ×X : (a, b) ∈ I∗ a ∈ X\W ∗ or b ∈ X\W ∗} ∪D(W ∗) where D(W ∗) is

the diagonal ordering in W ∗ (i.e., it contains only the elements (a, a) ∈ W ∗ ×W ∗). I is an

equivalence relation because it is re�exive, symmetric and transitive. Because A2 holds I∗

is an equivalence relation, and I is still an equivalence relation because it only eliminates

the indi�erence of the items in W ∗ except for re�exivity, namely the elements (a, a) ∈ I∗

for a ∈ W ∗. By A2 and the de�nition of W ∗ no item in X\W ∗ is revealed indi�erent to

an item in W ∗. The relation I induces an equivalence class that we denote as [a]. We

concentrate on the quotient set XI = X/I, we de�ne the canonical projection j : X 7→ X/I

and its inverse mapping j−1 : X/I 7→ X. We let DI ≡ {j(A)}A∈D be the indexed set by

D. In particular de�ne pI : XI × DI 7→ [0, 1] as p(aI , AI) =
∑

a∈j−1(aI)∩A p(a,A) for A ∈ D
such that j(A) = AI and aI ∈ AI , this mapping is well de�ned. If A2 holds it follows that
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the quotient dataset {p(aI , AI)}aI∈XI ,AI∈DI also satis�es SARP. Also observe, that in the

quotient dataset the always chosen set W I,∗ = {aI ∈ XI : p(aI , AI) > 0 ∀AI ∈ DI} is
such that j−1(aI) ∈ W ∗for all aI ∈ W I,∗, this follows from the construction of I because the

equivalence classes in W ∗ are singletons. Observe also that A1 holds in the quotient dataset

{p(aI , AI)}aI∈XI ,AI∈DI , because if bI ∈ XI\W I,∗ then either p(bI , AI) = 0 or (exclusively)

p(bI , AI) = 1. In fact, the set XI is a �nite choice set with elements associated with

degenerates probabilities of choice p([a] ∩ A,A) =
∑

a∈[a]∩A p(a,A) ∈ {0, 1} if [a] ⊆ X\W ∗.

To see this is true assume that p([a] ∩ A,A) ∈ (0, 1) and [a] ⊆ X\W ∗, this means that

there is a third element c ∈ A such that c ∈ A\[a], that is stochastically revealed preferred

to all a ∈ [a] (i.e, p(c, A) > 0) and of course all elements a ∈ [a] are stochastically revealed

preferred to c, but that means that aIc for all a ∈ [a] which means that c ∈ [a], this is a

contradiction. By theorem (1) we conclude that the quotient dataset {p(aI , AI)}aI∈XI ,AI∈DI

can be generated by a FSSM without indi�erence, thus we build a triple (u, u∗{γ}AI∈DI),

that generates the quotient dataset.

With this in hand we build the FSSMI in the actual dataset {p(a,A)}a∈x,A∈D. (i) We

build a utility function u : X 7→ R, by the composition u = u ◦ j where j is the canonical
projection de�ned above. By construction u(a) > u∗ for all a ∈ W ∗ and u(a) = u(b) if

b ∈ [a]. Moreover, u(b) < u∗ for all b ∈ X\W ∗. (ii) The search probabilities are de�ned

over the quotient set, we build search probabilities for the actual set X. γ de�nes a full

support search distribution on each AI ∈ DI . Now we de�ne γ by the following algorithm:

For each search ordering rAI de�ned in the quotient dataset, de�ne the set of linear orders

in the corresponding A ∈ D such that j(A) = AI , and call it RA(rAI ) by arAb if j(a)rAI j(b),

also for the elements of the top equivalence class in rAI (i,e., aI,∗rAIbI for all bI ∈ AI\{aI}).
Obtain all possible linear search orders over j−1(aI,∗) ∩A, for the rest of equivalence classes
�x one arbitrary linear search order over it j−1(aI) ∩ A for each of the linear search orders

for the top equivalence class. Now assign to each element rA ∈ RA(rAI ) the probability

γA(rA) = γ(rAI )/k! with k = |j−1(aI,∗)|, where k! is the number of possible linear orders

in the top equivalence class. This construction provides as with {γA}A∈D that de�nes a

FS random linear ordering on each D. (iii) To build the menu dependent tie breaking

rules we calibrate them as follows T (a,A) = p(a,A) if a ∈ X\W ∗ and a ∈ [a] such that

p([a]∩A,A) = 1. If p([a]∩A,A) = 0 then we let T (a|A∼a) = 1/|[a]∩A|. This guarantees a
tie breaking rule that is always positive and that adds up to 1 as required.

We have generated a tuple (u, u∗, {γA}A∈D, T ) or a FSSMI representation that generates

the complete dataset {p(a,A)}a∈X,A∈D. To verify this claim, notice that this follows imme-
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diately from applying theorem (1) to generate the quotient dataset, and noticing that for

non-satis�cing elements we can generate the actual dataset using the calibrated tie breaking

rule directly and observing that the elements in W I,∗ have a one to one correspondence to

the elements in W ∗.

A.9 Proof of Theorem 6

Proof. (1)-(3) follows from Theorem 4. To prove (4) notice that, given U∗ = Ū∗, for all

a /∈ U∗, if T (a|A∼a) 6= T̄ (a|A∼a) then, from the de�nition of the model p(a,A) 6= p(a,A).

A.10 Proof of Theorem 7

Proof. To prove (1) notice that, since we do not allow for ties, p(a,A) ∈ (0, 1) if a ∈ U∗

then W̃ ⊆ U∗. Moreover if a ∈ U∗ then, given the full support assumption, p(a,A) > 0 for

all A ∈ D then a ∈ W ∗ as in Theorem 1.

(2) follows from A2. Notice that SARP does not requires complete data sets to

guarantee the existence of a utility function that represents the revealed preference relation.

(3) follows from the de�nition of the model. Note that identi�cation is only possible

when surely revealed satis�cing elements are available together in a menu. That is, we can

identify the probability of a seen �rst than b in A ∈ D, i.e. γA(arAb ∀b ∈ (A ∩ U∗)\{a}) if
a ∈ A ∩ U∗. Moreover notice that if this is the case, then a, b ∈ W̃ .
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