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Abstract

We consider mechanism design in contexts in which agents exhibit
bounded depth of reasoning (level k) instead of rational expectations.
We use simple direct mechanisms, in which agents report only first-order
beliefs. While level 0 agents are assumed to be truth tellers, level k
agents best-respond to their belief that other agents have at most k− 1
levels of reasoning. We find that incentive compatibility is necessary
for implementation in this framework, while its strict version alone is
sufficient. Adding continuity to both directions, the same results are
obtained for continuous implementation with respect to small modeling
mistakes. We present examples to illustrate the permissiveness of our
findings in contrast to earlier related results under the assumption of
rational expectations.
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1 Introduction

Building institutions that are resilient to misspecifications of basic assump-

tions is an important task for economists. In the mechanism design literature,

concerned with the exploration of institutions in which the informational con-

straints of the designer are incorporated into the analysis, such resilience or

robustness has been addressed in several ways. Bergemann and Morris (2005,

2012) take a global view, by requiring that implementation be robust to any

higher-order belief consistent with the underlying payoff-relevant environment.

Artemov et al. (2013) do not go that far and require robustness to some, but

not necessarily all, higher-order beliefs, under the premise that some beliefs

can sometimes be discarded due to the planner’s prior information. In a con-

text of Knightian uncertainty, Lopomo et al. (2009) investigate the limitations

that such incomplete preferences may impose on mechanism design. All these

approaches model versions of nonlocal robustness, in the sense that the model

is tested against a wide class of misspecifications, including some that can

potentially be very large.

The current study follows a different approach to robustness, which relies

on a local analysis. The model is tested against small mistakes in the assump-

tions. From this point of view, our paper continues the methodology employed

in Oury and Tercieux (2012) and Jehiel et al. (2013).1

But what sets this paper aside from all the work mentioned so far is the

change in the agents’ behavioral assumptions. In an attempt to endow our

theory with further realism, we impose that agents have bounded depth of

reasoning. As it turns out, the exact size of that bound will be of no significance

for our results. Rather, what will matter is the existence of such a bound,

whatever it is, which will render our conclusions markedly different from those

based on equilibrium analysis.

1Other robustness checks in mechanism design include Chung and Ely (2003) for undom-
inated Nash implementation, Aghion et al. (2012) for subgame-perfect implementation, and
Neeman (2004) and Heifetz and Neeman (2006) in the full surplus extraction problem. See
also McLean and Postlewaite (2002) and Weinstein and Yildiz (2007) for related robustness
concerns beyond implementation.
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We rely on simple direct mechanisms, in which agents report their first-

order beliefs. We assume that our agents perform up to k levels of reasoning,

where k can be any nonnegative integer. Level 0 agents are truth-tellers,

while level k′ agents for any k′ ≤ k best-respond to their beliefs, which are

unrestricted except that they believe that all other agents are of level strictly

less than k′. We thus allow for any strategy profile that is consistent with any

reasoning of level k′ ≤ k, as just specified, and require that implementation

obtain in such strategies.

The bounded depth of reasoning assumption is made with realism in mind.

Introspection tells us that long chains of conditional reasoning are hard to

perform. The game of chess remains interesting despite being zero-sum (and

thus unequivocally solvable from a theoretical perspective) only because of our

limited depth of reasoning. Multiple experimental studies in various contexts

suggest that people’s depth of reasoning is in fact limited.2

The way our solution concept is defined may remind the reader of the

notion of rationalizability. The main difference between our behavioral model

and interim correlated rationalizability (Dekel et al. (2007)) is that all our

agents’ cognitive states start with truth-telling. While it is hard to propose an

obvious anchoring point for chains of reasoning in general games, truth-telling

seems natural in simple direct mechanisms. Earlier experiments on sender-

receiver games provide some support for this intuition (see e.g. Cai and Wang

(2006), and Wang et al. (2010)). In mechanism design, it is also sometimes

argued that truth-telling may constitute a focal point when other equilibria

exist. The central role of truth-telling makes our notion of implementation

somewhat closer to that of weak implementation.

As it turns out, we show that any social choice function (SCF) that is

implementable with bounded depth of reasoning must be Bayesian incen-

tive compatible (Theorem 1a). Conversely, any strictly incentive compatible

SCF is implementable with bounded depth of reasoning (Theorem 1b). Thus,

2See, e.g., Rapaport and Amaldoss (2000), Costa-Gomes et al. (2001), and Katok et
al. (2002) for iterated elimination of strictly dominated strategies; Nagel (1995), Ho et al.
(1998), and Bosch-Domènech et al. (2002) for iterated elimination of weakly dominated
strategies; and Binmore et al. (2002) for backward induction.
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even though our behavioral assumption is far removed from equilibrium logic,

Bayesian incentive compatibility arises as a robust limitation to the success of

mechanism design.

In the second part of our study, we turn to the issue of allowing the plan-

ner to make small modeling mistakes. Indeed, the model may not be exactly

one of independent types, or private values, or complete information, or self-

ish agents, to give a few examples of what we might have originally assumed,

but an approximation thereof. In this context, we then seek for continuous

implementation, much along the lines proposed in Oury and Tercieux (2012),

and here is where we find a result that some may deem surprising. Whereas

the Oury-Tercieux analysis seems to suggest that the requirement of continu-

ous implementation imposes stringent restrictions (implying a condition that,

for instance in complete information environments, is stronger than Maskin

monotonicity), our finding here is very different.3 Other than the require-

ment of continuity, no additional conditions on top of incentive compatibility

are found. Specifically, Theorems 2a and 2b provide an exact counterpart to

Theorems 1a and 1b, respectively, by turning the original results of implemen-

tation with bounded depth of reasoning into continuous versions of the same

form of implementation. It follows that the Oury-Tercieux conclusion hinges

on their use of Bayesian equilibrium logic, with its implied unbounded depth

of reasoning.

This paper contributes to a growing literature on mechanism design with

bounded rationality. These include for instance Eliaz (2002), who studies

full implementation in Nash equilibrium that is robust to the presence of any

number of “faulty” individuals below a fixed threshold, where faulty individ-

uals may behave in any arbitrary way; Cabrales and Serrano (2011), who

investigate implementation problems under the behavioral assumption that

3Related to the Oury-Tercieux’s logic, see a result for rationalizable implementation
of SCFs in Bergemann et al. (2011). Indeed, these results teach us, respectively, that
continuous weak implementation in strict equilibria or rationalizable implementation of
SCFs take us close to full Nash implementation; for a point of comparison, Matsushima
(1993) shows that in quasilinear environments full Bayesian implementation comes close to
weak implementation, since Bayesian monotonicity is trivially satisfied.

3



agents myopically adjust their actions in the direction of better-responses or

best-responses and derive implementation results for strict equilibria, often

found in learning and evolutionary approaches; Saran (2011), who studies un-

der which conditions over individual choice correspondences over Savage acts

does the revelation principle hold for partial Nash implementation with incom-

plete information; Glazer and Rubinstein (2012), who introduce a mechanism

design model in which both the content and framing of the mechanism af-

fect the agent’s ability to manipulate the information he provides; de Clippel

(forthcoming), who studies full Nash implementation when individual choices

need not be compatible with preference maximization; and, concurrent to this

paper, Saran (2014), who studies implementation under complete informa-

tion and k levels of rationality. In the present paper, individual behavior is

consistent with rationality to the extent that choices emerge from preference

maximization given beliefs. However, bounded depth of reasoning relaxes the

assumption of rational expectations that underlies the concept of Bayesian

Nash equilibrium, which requires the players’ beliefs to be consistent with

equilibrium behavior. A first investigation of the impact of level k behavior in

mechanism design can be found in Crawford et al. (2009) who provide some

insight on the design of optimal auctions when individuals’ depth of reasoning

is bounded.

The paper proceeds as follows. Section 2 introduces a motivating exam-

ple of bilateral trading. Section 3 presents the model. Section 4 presents

our central results of implementation with bounded depth of reasoning. Sec-

tion 5 introduces small modeling mistakes and extends our previous results to

continuous implementation. Section 6 showcases three important examples of

applications of our results, and Section 7 concludes. The proofs of three key

lemmata are relegated to an appendix.

2 A Motivating Example

Consider a simple bilateral trade problem where the seller’s good can be of

low or high quality. The buyer’s reservation price is $50 (resp. $60) if the
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good is of low (resp. high) quality, while the seller’s reservation price is fixed

at $0 irrespective of the good’s quality. It is thus mutually beneficial to trade

the good whatever its quality. Fairness would suggest that the price should

fall half-way between the traders’ reservation prices. If quality is common

knowledge between the buyer and the seller, then a simple direct mechanism

makes efficient fair trade compatible with Nash equilibrium. In this mecha-

nism, both the buyer and the seller are asked to report the good’s quality, trade

occurs if and only if both parties’ reports agree, and the good is traded against

$25 (resp. $30) if both parties claim the good is of low (resp. high) quality.

Clearly, truth-telling is a Nash equilibrium whatever the good’s quality, and

our desired SCF is (weakly) Nash implementable.

According to Oury and Tercieux (2012), this result is not robust to small

modeling mistakes. In particular, it is impossible to find a Bayesian Nash

equilibrium of our simple direct mechanism whose resulting outcomes coincide

with the desired SCF should the information be complete, and fall close to

the desired SCF at nearby information states. To see this, consider types that

correspond to infinite hierarchies of deterministic beliefs. If i denotes either the

buyer or the seller, then i’s type ti = (θn)n≥0, where θn ∈ {Low,High} for all n,

is interpreted as i believing that the good’s quality is θ0, that −i believes that

the good’s quality is θ1, that −i believes that i believes that the good’s quality

is θ2, etc. In particular, for each z ≥ 0, let tz be the type with θzn = High

for all n < z and θzn = Low for all n ≥ z. Notice that t0 captures either

agent’s information in the complete information case described in the previous

paragraph when the good is of low quality. Consider now a Bayesian Nash

equilibrium of our simple direct mechanism. For this equilibrium to implement

the desired SCF when information is complete, it must be that either agent

reports ‘Low’ when his type is t0. Notice, though, that this implies that an

agent of type t1 expects his opponent to report ‘Low’ in that equilibrium, and

thus also reports ‘Low’. Iterating this reasoning, we see that both agents must

report ‘Low’ in that equilibrium when his type is tz, for all z ≥ 0. However,

tz converges to the constant type tH = (High,High, . . . ), which captures

either agent’s information in the complete information case described in the
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previous paragraph when the good is of high quality. Hence any Bayesian Nash

equilibrium of our simple direct mechanism that delivers the desired outcomes

when quality is commonly known must deliver some outcomes that are far

from the desired SCF at some nearby information states.4

This elegant reasoning rests on the presumption that an agent’s behavior

can depend on very high-order beliefs, with the agent reporting ‘Low’ for

instance when of type t100, an information state that coincides with knowledge

of high quality for one hundred levels of reasoning, while also assuming that

this same agent would report ‘High’ when the quality is commonly known to

be high. While it is most useful to understand as a benchmark what rationality

implies when taken to its limit, there is also value in understanding perhaps

more realistic circumstances where participants’ sophistication is limited. Of

course, the proper discussion of such circumstances requires breaking away

from the assumption of rational expectations that underlies the concept of

Nash equilibrium. The concept of level k play provides a natural place to

start in view of the recent literature aiming at better describing the behavior

of inexperienced players in games.

To see how the level k model starting with truth-telling at level 0 might

help in continuous implementation, reconsider the sequence of types (tz)z≥0

converging to tH in the above example. Level 0 of type t0 truthfully reports

‘Low’ as he believes that the good is of low quality whereas for each z ≥ 1,

level 0 of type tz truthfully reports ‘High’ as he believes that the good is of

high quality. Type t0 believes that the other agent is also of type t0 whereas

for each z > 0, type tz believes that the other agent is of type tz−1. Therefore,

for each z ≤ 1, level 1 of type tz reports ‘Low’ as he believes that the other

agent is of level 0 with type t0 who truthfully reports ‘Low’ whereas for each

z ≥ 2, level 1 of type tz reports ‘High’ as he believes that the other agent

is of level 0 with type tz−1 who truthfully reports ‘High’. By continuing in

this fashion, it is easy to argue that for each z ≤ k, level k of type tz reports

4Oury and Tercieux’s result further implies that continuous implementation cannot be
achieved in this bilateral trade example, whatever the mechanism one considers. They show
indeed that continuous implementation requires a form of Maskin monotonicity which is not
satisfied by our desired SCF.
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‘Low’ whereas for each z ≥ k + 1, level k of type tz reports ‘High’. Hence

if the depth of reasoning is bounded by k, then all types tz with z ≥ k + 1

at all levels k′ ≤ k report ‘High’, thus preserving continuity with respect to

behavior at the limit point tH .

3 The Model

For any topological space Y , we let ∆Y denote the set of probability measures

defined on the Borel sigma algebra of subsets of Y . We endow ∆Y with the

weak∗ topology, i.e., the topology of weak convergence. If Y is a compact

metric space, then ∆Y is compact and metrizable by the Prohorov metric.5

We use the product topology for all product spaces.

3.1 Alternatives, States, and Utility Functions

A social planner/mechanism designer needs to select an alternative from a

set X, which we assume to be a compact metric space. His decision impacts

the satisfaction of individuals in a finite set I. Unfortunately he does not

know their preferences. Formally, individual i’s preference is represented by a

continuous and bounded Bernoulli function ui : X × Θ → R, where Θ is the

set of states that we assume to be also a compact metric space. Individual i

evaluates any l ∈ ∆X by its expected utility Ui(l, θ) =
∫
x∈X ui(x, θ)dl.

3.2 Information and Beliefs

Let T = (T ∗i , πi)i∈I be the universal type space generated by Θ (see Mertens

and Zamir (1985); Brandenburger and Dekel (1993)). Remember that the set

T ∗i of individual i’s types is compact and metrizable, and that the homeomor-

5Let d be the metric on Y . The Prohorov distance between any two l, l′ ∈ ∆Y is equal
to the infimum of positive ε such that the following inequalities

l(Ŷ ) ≤ l′(Ŷ ε) + ε and l′(Ŷ ) ≤ l(Ŷ ε) + ε

hold for all Borel sets Ŷ ⊆ Y , where Ŷ ε = {y ∈ Y : inf ŷ∈Ŷ d(y, ŷ) < ε}.
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phism πi : T ∗i → ∆(Θ × T ∗−i) associates to each type ti individual i’s belief

πi(ti) over the realized state and other individuals’ types. Each type ti of in-

dividual i corresponds in fact to an infinite hierarchy of coherent beliefs, that

is, ti = (q1
i (ti), q

2
i (ti), . . .), where:

1. Type ti’s first-order belief q1
i (ti) ∈ ∆Θ is the marginal distribution of πi(ti)

on Θ, describing i’s belief regarding the realized state.

2. Type ti’s second-order belief q2
i (ti) ∈ ∆(Θ × (∆Θ)I−1) describes i’s belief

regarding the realized state and other individuals’ first-order beliefs. It is

thus given by:

q2
i (ti)(E) = πi(ti)({(θ, t−i) : (θ, (q1

j (tj))j 6=i) ∈ E}),

for all measurable E ⊆ Θ × (∆Θ)I−1. Notice that q2
i (ti) is coherent with

q1
i (ti) in the sense that the marginal of q2

i (ti) on Θ equals q1
i (ti).

3. Type ti’s k
th-order belief qki (ti) describes i’s belief regarding the realized

state and up to (k − 1) orders of beliefs of other individuals, and is con-

structed similarly by induction on k.

To simplify notation, (q1
i (ti))i∈I will be denoted q1(t), and (q1

j (tj))j 6=i will

be denoted q1
−i(t−i). A sequence of types (tni )n≥1 converges to ti if for each

k ≥ 1, the sequence of kth-order beliefs (qki (tni ))n≥1 converges to qki (ti) in the

weak∗ topology. Since πi is a homeomorphism, an equivalent definition is that

(tni )n≥1 converges to ti if πi(t
n
i ) converges to πi(ti) in the weak∗ topology.

In applications, one often imposes further restrictions. For instance, de-

pending on circumstances, one may require individuals to be selfish, types to

be independent, values to be private, information to be complete, or higher-

order beliefs to be derived by Bayes’ rule from a common prior defined on

states. Each such case can be thought of as restricting attention to a subset

T ⊂ T ∗ of types, where T ∗ = ×i∈IT ∗i .

Let Ti be the projection of T on T ∗i , that is, the set of types ti ∈ T ∗i such

that t ∈ T for some t−i ∈ T ∗−i. Clearly, T is a subset of T1×· · ·×TI . The set T

is belief-closed if each individual’s belief supports only type profiles in T , that
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is, πi(ti)({(θ, t−i) : (ti, t−i) ∈ T}) = 1, for all ti ∈ Ti. This guarantees that the

model is common knowledge among individuals. The set T is regular if it is

belief-closed and the set Q1
i (T ) = {q1

i (ti) ∈ ∆Θ : ti ∈ Ti} of first-order beliefs

associated to types in Ti is closed for each individual i. In what follows, it will

be useful to distinguish between the product set ×i∈IQ1
i (T ) and the projection

of T onto the set of first-order beliefs Q1(T ) = {q1(t) ∈ (∆Θ)I : t ∈ T}.
Clearly, Q1(T ) ⊆ ×i∈IQ1

i (T ), and the two sets are equal if Q1(T ) has a product

structure.

3.3 Social Choice Rules and Simple Direct Mechanisms

The planner’s objective is to implement a social choice function (SCF) f :

T → ∆X defined on a regular subset T of T ∗, meaning that he wants outcome

f(t) to prevail at each t ∈ T .

To achieve this goal, he constructs a simple direct mechanism defined on

T , which is a measurable function µ : M1 × · · · ×MI → ∆X, where the set

Mi of messages is restricted to be Q1
i (T ). Here, ‘direct’ means that individu-

als’ messages in the mechanism concern only their types, and ‘simple’ means

that the planner bases his decision only on reports about first-order beliefs of

individuals.

3.4 Cognitive States

To describe how individuals with bounded depth of reasoning might play a

simple direct mechanism µ defined on T , we introduce an individual’s cognitive

state as in Strzalecki (2010). An individual’s cognitive state specifies his depth

of reasoning and his belief regarding other individuals’ cognitive states. In

particular, if an individual’s cognitive state is of depth k ≥ 1, then he believes

that every other individual’s cognitive state is of at most depth k−1. Our only

departure from Strzalecki (2010) is the added assumption that individuals of

cognitive state of depth 0 play the truth-telling strategy in any simple direct

mechanism.

Formally, let C0
i = {c0

i } be the singleton set where c0
i represents i’s cognitive
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state of depth 0. Suppose that we have defined the set of cognitive states of

depth k′, denoted by Ck′
j , for all individuals j ∈ I and for all nonnegative

integers k′ strictly smaller than some k ≥ 1. Then, individual i’s cognitive

state of depth k, denoted by cki , is a probability measure over ∪k−1
k′=0(×j 6=iCk′

j ).

Letting ×j 6=iCk′
j = Ck′

−i, we have that Ck
i = ∆(∪k−1

k′=0C
k′
−i) is the set of individual

i’s cognitive states of depth k. Note that C1
i is a singleton, and Ck

i is compact

and metrizable for all k ≥ 0.

Given the simple direct mechanism µ on T , let Ski (ti, c
k
i ) be the set of

messages that individual i of type ti may send when his cognitive state is cki .

Formally, these sets are defined by induction on k: S0
i (ti, c

0
i ) = {q1

i (ti)}, and

for each k > 0, mi ∈ Ski (ti, c
k
i ) if

mi ∈ arg max
m′i∈Mi

∫
Θ×T−i×∪k−1

k′=0
Ck′
−i×M−i

Ui(µ(m′i,m−i), θ)dγ (1)

for some conjecture γ ∈ ∆(Θ×T−i×∪k−1
k′=0C

k′
−i×M−i) such that (a) the distri-

bution πi(ti) coincides with the marginal distribution of γ on Θ× T−i, (b) the

distribution cki coincides with the marginal distribution of γ on ∪k−1
k′=0C

k′
−i, and

(c) the marginal distribution of γ on T−i ×∪k−1
k′=0C

k′
−i ×M−i supports a subset

of ∪k−1
k′=0

(
×j 6=iGr(Sk

′
j )
)
, where Gr(Sk

′
j ) is the graph of Sk

′
j . The conjecture γ

represents i’s belief regarding the exogenous uncertainty – the state, others’

types, and their cognitive states – and endogenous uncertainty – others’ mes-

sages – he is facing. This belief must be consistent with his belief regarding

the state and others’ types πi(ti), his belief regarding others’ cognitive states

cki , and other players’ behavior up to level k−1 as captured by conditions (a),

(b) and (c), respectively. Given his conjecture γ, individual i of type ti sends

a message in order to maximize the expected utility in (1). Let then Σk
i (ti)

be the set of messages that could be sent by an individual i of type ti with

a depth of reasoning k, that is, Σk
i (ti) = ∪cki ∈Ck

i
Ski (ti, c

k
i ). It will be assumed

throughout the paper that each individual i’s depth of reasoning is bounded

by some strictly positive integer Ki. Let then K be the vector (K1, . . . , KI)

and Σi(ti) = ∪Ki
k=0Σk

i (ti).
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4 Mechanism Design with Bounded Depth of

Reasoning

The simple direct mechanism µ on T implements the SCF f : T → ∆X when

individuals’ depth of reasoning is bounded by K if the following two conditions

are satisfied:

1. Ski (ti, c
k
i ) 6= ∅ for all ti ∈ Ti, cki ∈ Ck

i , 0 ≤ k ≤ Ki, and i ∈ I.

2. For each t ∈ T , if mi ∈ Σi(ti) for each i, then µ(m1, . . . ,mI) = f(t).

The SCF f is then said to be implementable when individuals’ depth of rea-

soning is bounded by K.

Being unsure about the individuals’ cognitive states, we thus require in each

information state that (1) any cognitive state admits at least one message that

is consistent with it, and (2) the mechanism delivers the desired outcome for all

message profiles that are consistent with at least one combination of cognitive

states. Implementation in this sense is quite flexible, as cognitive states acco-

modate a variety of reasonings (and thus behaviors), including for instance the

“cognitive hierarchy” model of Stahl (1993) (see also Stahl and Wilson (1995)

and Camerer et al. (2004)), or the “level k” model used by Costa-Gomes and

Crawford (2006) and others. While related to rationalizable full implemen-

tation, also with an iterative construction, our definition is less demanding,

as individuals’ depth of reasoning is bounded and all cognitive states start

with truth-telling. As we now show, implementation with bounded depth of

reasoning is closely related to (interim Bayesian) incentive compatibility.

The simple direct mechanism µ defined on T is incentive compatible if∫
Θ×T−i

Ui(µ(q1(t)), θ)dπi(ti) ≥
∫

Θ×T−i

Ui(µ(mi, q
1
−i(t−i)), θ)dπi(ti),

for all mi ∈ Mi, ti ∈ Ti and i ∈ I (recall that Mi = Q1
i (T ), and so the above

inequality means that each type of each player wants to report his true first-

order belief when everyone else reports their first-order beliefs truthfully). It

is strictly incentive compatible if these inequalities are strict for all mi 6= q1
i (ti).
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The mechanism µ achieves an SCF f : T → ∆X if it generates f when

individuals are truth-telling: µ(q1(t)) = f(t), for all t ∈ T .6

Theorem 1. (a) If an SCF is implementable when individuals’ depth of rea-

soning is bounded by K, then it can be achieved by a simple direct mecha-

nism that is incentive compatible.

(b) If an SCF can be achieved by a simple direct mechanism that is strictly

incentive compatible, then it is implementable when individuals’ depth of

reasoning is bounded by K.

Proof. (a) Let µ be a simple direct mechanism that implements the SCF f

when individuals’ depth of reasoning is bounded. The fact that µ achieves f

follows from the second condition in the definition of implementability given

that q1
i (ti) ∈ Σ0

i (ti) for each ti and i. The mechanism µ must also be incentive

compatible. Otherwise, there exists i, ti,mi such that∫
Θ×T−i

Ui(µ(q1(t)), θ)dπi(ti) <

∫
Θ×T−i

Ui(µ(mi, q
1
−i(t−i)), θ)dπi(ti). (2)

By the first condition of implementability, let m∗i ∈ Σ1
i (ti). By the second

condition of implementability, f(ti, t−i) = µ(m∗i , q
1
−i(t−i)), for all t−i such that

(ti, t−i) ∈ T . Since T is belief-closed, we have∫
Θ×T−i

Ui(f(t), θ)dπi(ti) =

∫
Θ×T−i

Ui(µ(m∗i , q
1
−i(t−i)), θ)dπi(ti). (3)

We have thus reached a contradiction: the left-hand sides of (2) and (3) coin-

cide, since µ achieves f , and the right-hand-side of (3) is at least as large as

that of (2), since m∗i is a best-response to truth-telling.

(b) Suppose that f : T → ∆X is achieved by a simple direct mechanism µ

that is strictly incentive compatible. It is then easy to check by induction on

k that Ski (ti, c
k
i ) = {q1

i (ti)} for all ti, c
k
i , k, and i, as the unique best response

6Hence, SCFs that can be achieved through simple direct mechanisms are invariant to
second- or higher-order beliefs.
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to truth-telling is telling the truth. Hence µ implements f when individuals’

depth of reasoning is bounded.

On the one hand, although strict incentive compatibility is sufficient, it

is not necessary for implementation when individuals’ depth of reasoning is

bounded. This is easily illustrated in the following example:

Example 1. Let I = {1, 2}, Θ = {θ, θ′}, and X = {a, b, c}. The Bernoulli

utility functions of the agents are such that a is the worst alternative for

agent 1 in state θ – i.e., u1(a, θ) < min{u1(b, θ), u1(c, θ)} – whereas a is the

best alternative for agent 2 in state θ – i.e., u2(a, θ) > max{u2(b, θ), u2(c, θ)}.
Lastly, suppose b is the best alternative for both agents in state θ′.

Consider the complete information model in which the state is common

knowledge. Let tθi and tθ
′
i denote the complete information types of player i

associated with states θ and θ′, respectively. Let T = {(tθ1, tθ2), (tθ
′

1 , t
θ′
2 )}, and

suppose the SCF f : T → ∆X is such that f(tθ1, t
θ
2) = a and f(tθ

′
1 , t

θ′
2 ) =

b. It is straightforward to argue that the following simple direct mechanism

implements f when individuals’ depth of reasoning is bounded:

q1
2(tθ2) q1

2(tθ
′

2 )

q1
1(tθ1) a c

q1
1(tθ

′
1 ) a b

Notice that the above mechanism is not strictly incentive compatible. In

fact, since a is the worst alternative for type tθ1, there does not exist any

strictly incentive compatible simple direct mechanism that implements f when

individuals’ depth of reasoning is bounded. �

On the other hand, although incentive compatibility is necessary, it is never

sufficient just by itself for implementation when individuals’ depth of reasoning

is bounded. To be precise, if an incentive compatible simple direct mechanism

µ implements f when individuals’ depth of reasoning is bounded, then µ must

either be strictly incentive compatible or satisfy the following condition: For

all t ∈ T and t′ 6= t such that for each player i, type ti is indifferent between

q1
i (ti) and q1

i (t
′
i) when others play their truth-telling strategies in µ, we must

13



have µ(q1(t′)) = µ(q1(t)) = f(t) because q1
i (t
′
i) ∈ Σ1

i (ti),∀ti.7 Indeed, when

individuals’ depth of reasoning may be greater than 1, then best responses to

beliefs that support message profiles that are in turn best responses to truth-

telling must also achieve f , and so on. However, we do not present these

additional necessary requirements as they are not relevant for what follows.

5 Robustness to Small Modeling Mistakes

As pointed out by Börgers and Oh (2012), applied game theory often focuses on

naive type spaces where two different types of an individual corresponds to two

different preference orderings. Mechanism design is no exception. Most often,

additional restrictions are imposed, including for instance that individuals are

selfish, and/or that individuals’ payoff irrelevant beliefs do not vary with their

types, and/or that individuals’ beliefs are independent, etc.

It is natural then to ask whether results that hold for small type spaces

are robust against possible modeling misspecifications. Even if one is overall

confident that information and beliefs are aptly described by the subset of

types T̂ ⊆ T ∗, it would be preferable that we have a mechanism that does not

implement dramatically different outcomes when considering any nearby type

profile in T ∗. We assume throughout the section that T̂ is regular.

Consider an SCF f : T̂ → ∆X. A simple direct mechanism µ defined on

T ∗ continuously implements f when individuals’ depth of reasoning is bounded

by K if the following two conditions are satisfied:

1. Ski (ti, c
k
i ) 6= ∅ for all ti ∈ T ∗i , cki ∈ Ck

i , 0 ≤ k ≤ Ki, and i ∈ I.

2. For each sequence (tn)n≥1 in T ∗ that converges to some t̂ ∈ T̂ , if mn
i ∈

Σi(t
n
i ) for each i and each n, then (µ(mn

1 , . . . ,m
n
I ))n≥1 converges to f(t̂).

The SCF f is then said to be continuously implementable when individuals’

depth of reasoning is bounded by K.

Theorem 2. (a) Suppose that the SCF f : T̂ → ∆X is continuously imple-

mentable when individuals’ depth of reasoning is bounded by K, then it can

7Note that if t′ ∈ T , then this further implies that f(t′) = f(t).

14



be achieved by a simple direct mechanism defined on T̂ that is incentive

compatible and continuous at all first-order belief profiles in Q1(T̂ ).

(b) Suppose f : T̂ → ∆X is achievable through a simple direct mechanism

defined on T̂ that is both strictly incentive compatible and continuous. Then

f is continuously implementable when individuals’ depth of reasoning is

bounded by K.

The necessary condition for continuous implementability says that the sim-

ple direct mechanism defined on T̂ that achieves f must be continuous at all

points in Q1(T̂ ), which is the projection of T̂ onto the set of first-order be-

liefs. In contrast, the sufficient condition requires the simple direct mechanism

defined on T̂ to be continuous at all points in its domain ×i∈IQ1
i (T̂ ). The

stronger continuity requirement in the sufficient condition is trivially satisfied

when Q1
i (T̂ ) is finite for all i, which will be the case whenever T̂ is finite (as

in the motivating example in Section 2). There is again no gap between the

necessary and sufficient continuity requirements when Q1(T̂ ) is itself a prod-

uct set, which will be the case whenever T̂ has a product structure. Although

several interesting applications have Q1(T̂ ) as a product set (e.g., the bilateral

trading example in the next section), other applications do not (e.g., complete

information type spaces).

Proof. (a) Suppose the simple direct mechanism µ on T ∗ continuously im-

plements f : T̂ → ∆X when individuals’ depth of reasoning is bounded

by K. The domain of µ equals (∆Θ)I . Define µ̂ as the restriction of µ

to ×i∈IQ1
i (T̂ ), that is, µ̂ : ×i∈IQ1

i (T̂ ) → ∆X such that µ̂(m1, . . . ,mI) =

µ(m1, . . . ,mI),∀(m1, . . . ,mI) ∈ ×i∈IQ1
i (T̂ ). Thus defined, µ̂ is a simple direct

mechanism on T̂ .

Pick any t̂ ∈ T̂ . In µ, we have q1
i (t̂i) ∈ Σ0

i (t̂i), ∀i. Then µ(q1(t̂)) =

f(t̂) by the second condition of continuous implementability (use the constant

sequence of types fixed at t̂). Since µ̂(q1(t̂)) = µ(q1(t̂)), the mechanism µ̂

achieves f .

The mechanism µ̂ must also be incentive compatible. Otherwise, there
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exists i, t̂i ∈ T̂i, and mi ∈ Q1
i (T̂ ) such that∫

Θ×T̂−i

Ui(µ̂(q1
i (t̂i), q

1
−i(t−i)), θ)dπi(t̂i) <

∫
Θ×T̂−i

Ui(µ̂(mi, q
1
−i(t−i)), θ)dπi(t̂i).

(4)

Since T̂ is belief-closed and µ̂ is a restriction of µ to×i∈IQ1
i (T̂ ), (4) is equivalent

to∫
Θ×T ∗−i

Ui(µ(q1
i (t̂i), q

1
−i(t−i)), θ)dπi(t̂i) <

∫
Θ×T ∗−i

Ui(µ(mi, q
1
−i(t−i)), θ)dπi(t̂i).

(5)

By the first condition of continuous implementability, let m∗i ∈ Σ1
i (t̂i) in

the mechanism µ. By the second condition of continuous implementability,

µ(m∗i , q
1
−i(t−i)) = f(t̂i, t−i) = µ(q1

i (t̂i), q
1
−i(t−i)), for all t−i such that (t̂i, t−i) ∈

T̂ . Since T̂ is belief-closed, we have∫
Θ×T ∗−i

Ui(µ(q1
i (t̂i), q

1
−i(t−i)), θ)dπi(t̂i) =

∫
Θ×T ∗−i

Ui(µ(m∗i , q
1
−i(t−i)), θ)dπi(t̂i).

(6)

We have thus reached a contradiction: the right-hand side of (6) is at least as

large as that of (5), since m∗i is a best-response to truth-telling.

Finally, pick any t̂ ∈ T̂ and q1(t̂). Consider any sequence (mn)n≥1 of first-

order beliefs in ×i∈IQ1
i (T̂ ) that converges to q1(t̂). Let (tn)n≥1 be any sequence

of types in T ∗ that converges to t̂ such that q1(tn) = mn,∀n. In mechanism

µ, we have q1
i (t

n
i ) ∈ Σ0

i (t
n
i ) for all i and n. Hence, by the second condition of

continuous implementability, µ(q1(tn)) = µ(mn) = µ̂(mn) converges to f(t̂) =

µ(q1(t̂)) = µ̂(q1(t̂)).

(b) Let µ̂ : ×i∈IQ1
i (T̂ ) → ∆X be the simple direct mechanism that achieves

f in the statement. To prove that f is continuously implementable, we must

propose a mechanism defined for unrestricted message profiles, that is, whose

domain is (∆Θ)I instead of ×i∈IQ1
i (T̂ ). The strategy of proof is to apply µ̂

after ‘translating’ messages in ∆Θ \ Q1
i (T̂ ) into messages in Q1

i (T̂ ), keeping

messages in Q1
i (T̂ ) unchanged.8 The following lemma is a variant of Dugundji

8An obvious choice would be to use a single-valued selection of the projection operator
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(1951).

Lemma 1. For each i ∈ I, there exists a correspondence ωi : ∆Θ → Q1
i (T̂ )

with nonempty finite values and for each message mi ∈ ∆Θ, there exists a prob-

ability distribution ξmi
with full support on ωi(mi) such that µ : (∆Θ)I → ∆X

extends µ̂ continuously, where µ is the mechanism that associates to any

message profile m ∈ (∆Θ)I the lottery that selects µ̂(q1) with probability

×i∈Iξmi
(q1
i ), for all q1 ∈ ×i∈Iωi(mi).

The mechanism µ thus amounts to applying µ̂ after translating messages

mi ∈ ∆Θ into messages q1
i ∈ Q1

i (T̂ ) using the translation q1
i ∈ ωi(mi) with

probability ξmi
(q1
i ). The detailed construction of the translations can be found

in the Appendix.9

The Appendix also contains the proofs of the following two lemmas. First,

if i’s type t̂i belongs to the restricted domain T̂i, then for any bounded depth of

reasoning his report mi under µ will be such that its translation is q1
i (t̂i) with

probability 1, that is, ωi(mi) = {q1
i (t̂i)}. Second, given any bounded depth

of reasoning, an individual’s set of strategies compatible with such depth is

upper hemicontinuous in his type.

Lemma 2. For all i ∈ I and k ≥ 0, the correspondence Σk
i in µ is such that

ωi(mi) = {q1
i (t̂i)}, for each mi ∈ Σk

i (t̂i) and t̂i ∈ T̂i.

Lemma 3. For all i ∈ I and k ≥ 0, the correspondence Σk
i in µ is upper

hemicontinuous.

We are now ready to prove that µ continuously implements f .

for this translation. Unfortunately, one cannot guarantee the continuity of the resulting
extended mechanism without additional conditions on Q1

i (T̂ ). Continuity does obtain, how-
ever, if one uses a more elaborate construction based on ‘probabilistic translations,’ as we
do.

9For such a step, one could take a host of alternative approaches. For example, one could
apply Dugundji’s result as is if we overlook the product structure, or one could apply his
result component by component. We find it more convenient to provide a new construction.
With respect to Dugundji (1951), our version differs from the former two approaches in that
the probability of picking a message profile q1 is the product of probabilities with each factor
depending only on the input mi. This kind of product/separability property is needed in
Lemma 2 of the proof.

17



To begin with, for each i and k ≥ 0, the correspondence Ski has nonempty

values. This follows by assumption when k = 0 whereas when k ≥ 1, then

for each ti ∈ T ∗i and cki ∈ Ck
i , best responses to any consistent conjecture γ

must be nonempty since the objective function is continuous – as both Ui and

µ are continuous – and the set of messages ∆Θ is compact (see the proof of

Lemma 3 for a detailed argument that establishes that the objective function

is continuous).

To finish the proof, let (tn)n≥1 be a sequence of type profiles converging to

some t̂ ∈ T̂ . For each i and n, pick any mn
i ∈ Σi(t

n
i ). We show that µ((mn

i )i∈I)

converges to f(t̂) – we want to show this even though (mn
i )i∈I may not be

convergent, which makes the following argument slightly longer than one would

have expected. Compactness of ∆Θ implies that every subsequence of (mn
i )i∈I

has a subsequence (mnl
i )i∈I that converges to some message profile m. By

Lemma 3, the correspondence Σi = ∪Ki
k=0Σk

i is upper hemicontinuous, and

hence mi ∈ Σi(t̂i). So ωi(mi) = {q1
i (t̂i)}, by Lemma 2. Since µ is continuous,

µ((mnl
i )i∈I) must converge to µ(m) = µ̂(q1(t̂)) = f(t̂). This argument implies

that every subsequence of µ((mn
i )i∈I) has a subsequence that converges to f(t̂),

which is sufficient to conclude that the sequence µ((mn
i )i∈I) itself converges to

f(t̂).

6 Examples

In order to understand (weak) Bayesian implementability, much effort has been

devoted over the years to identify mechanisms that are incentive compatible.

Fortunately, we can build on this work to understand implementability un-

der bounded depth of reasoning, as it is guaranteed under a similar condition

(see Section 4). Though similar, it is nevertheless a bit stronger, as incen-

tive constraints must be satisfied strictly in our sufficient condition. Perhaps

what is even more surprising, in view of the difficulty of achieving continu-

ous implementation in Bayesian Nash equilibrium, is that when individuals’

depth of reasoning is bounded, continuous implementation obtains as soon

as the mechanism implementing the SCF is also continuous (see Section 5).
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Continuity of the mechanism is automatically satisfied when the initial set

of types T̂ or, more generally, each player’s first-order belief in T̂ is finite.

In these cases, we only need to check strict incentive compatibility of the

simple direct mechanism on T̂ to guarantee continuous implementation under

bounded depth of reasoning. For instance, the SCF in our motivating example

is continuously implementable under bounded depth of reasoning. This section

illustrates with a few classic applications how requiring continuity and strict

incentive compatibility is not much more demanding than imposing standard

incentive constraints. Investigating the properties of continuity and strict in-

centive compatibility more systematically is an interesting research agenda for

the future.

The first example shows that the classic expected externality mechanism

(see d’Aspremont and Gerard-Varet (1979)) does guarantee continuity and

strict incentive compatibility in a large class of public good problems.

Example 2 (Public Good Decision). Consider a public good problem with

quasilinear utilities. The public decision to be implemented belongs to a com-

pact convex metric space A, individual i’s payoff type θi belongs to a compact

metric space Θi, and utility functions for the public decision are given by

ui(a, θ) = vi(a, θi) + wi(a, θ−i) + y(a, θ),

for each a ∈ A and each state θ ∈ Θ = ×i∈IΘi. In addition to the public

decision, the mechanism may impose a monetary transfer zi ∈ [−z∗, z∗] on

individual i. The total utility for individual i when a is implemented while

receiving a net transfer zi is equal to ui(a, θ) + zi, for all states θ. This general

description contains the classic case of private values (with wi = y = 0). More

generally, we also allow for other players’ payoff types to impact player i’s

utility, either in a way that is additively separable and/or through a general

common interest term y.

The planner is interested in a regular subset of types T̂ in which it is

common knowledge that each individual knows his own payoff type, and for

each i ∈ I and each θi ∈ Θi, there exists t̂i ∈ T̂i such that type t̂i’s payoff
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type θi(t̂i) = θi. Thus the first-order belief of any type t̂i ∈ T̂i specifies that

his payoff type equals θi(t̂i) and his belief regarding other individuals’ payoff

types.

Consider now the following decision rule

a(θ) = arg max
a∈A

[y(a, θ) +
∑
i∈I

vi(a, θi)], ∀θ,

and the following transfers (assuming z∗ is sufficiently large to allow them)

zi(θ) = −wi(f(θ), θ−i) +
∑

j∈I\{i}

vj(f(θ), θj), ∀θ.

When values are private (wi = y = 0 for all i), a(·) picks decisions that are

ex-post efficient (maximizing the utilitarian objective), and our definition boils

down to d’Aspremont and Gerard-Varet’s expected externality mechanism.

We now show that continuity and strict incentive compatibility obtain in a

large class of problems of this type, namely whenever (a) y(a, θ)+
∑

i∈I vi(a, θi)

is strictly concave in a and (b) all the vi’s, wi’s, and y are continuous in both

arguments. Indeed, continuity of the mechanism then follows from Berge’s

Maximum Theorem. As for strict incentive compatibility, observe that indi-

vidual i of type t̂i chooses his report θ′i to maximize the following expression:∫
Θ×T̂−i

[ui
(
a(θ′i, θ−i(t−i)), (θi(t̂i), θ−i(t−i))

)
+ zi(θ

′
i, θ−i(t−i))]dπi(t̂i),

which amounts to∫
Θ×T̂−i

[y
(
a(θ′i, θ−i(t−i)), (θi(t̂i), θ−i(t−i))

)
+
∑
j∈I

vj
(
f(θ′i, θ−i(t−i)), θj(tj)

)
]dπi(t̂i).

The mechanism (a(·), (zi(·))i∈I) is thus strictly incentive compatible.10 �
10The mechanism (a(·), (zi(·))i∈I) is such that each individual reports only his payoff

type. In contrast, a simple direct mechanism defined on T̂ is such that each individ-
ual reports his payoff type and his belief regarding other individuals’ payoff types. Thus
(a(·), (zi(·))i∈I) is equivalent to a simple direct mechanism µ̂ defined on T̂ that is unre-
sponsive to individuals’ reports about their beliefs regarding other individuals’ payoff types,
i.e., µ̂(q1(t)) = (a(θ(t)), (zi(θ(t)))i∈I),∀q1(t) ∈ ×i∈IQ1

i (T̂ ). Continuity of (a(·), (zi(·))i∈I)
implies continuity of µ̂. However, strict incentive compatibility of (a(·), (zi(·))i∈I) does not
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The next example investigates a large class of bilateral trade problems with

independent private values, as in Myerson and Satterthwaite (1983). While

the second-best mechanism they identify is discontinuous and only weakly

incentive compatible, we show that, if the inverse hazard rates associated with

the distributions of buyer’s value and seller’s cost are increasing, then we can

continuously implement an approximately optimal SCF for any bounded depth

of reasoning.

Example 3 (Bilateral Trading). There are two traders of an indivisible object,

buyer b and seller s. A state is a pair (v, c), where v ∈ V = [0, 1] is the buyer’s

value and c ∈ C = [0, 1] is the seller’s cost. The planner is interested in the set

T̂ of types of the traders such that it is common knowledge that each trader

knows his value/cost and that trader i’s value/cost is distributed on [0, 1]

according to Gi with continuous and positive density gi. Any two types of the

buyer (seller) differ only in their values (costs) since other beliefs in the infinite

hierarchy of beliefs are pinned down by the common knowledge assumption.

Hence, instead of explicitly describing each type as an infinite hierarchy of

beliefs, we use the equivalent implicit formulation with T̂ = T̂b × T̂s, where

for each trader i, the set of his types T̂i = [0, 1], and his belief πi : T̂i →
∆(V × C × T̂j) is given as follows: The buyer (resp. seller) of type tb (resp.

ts) knows that his value (resp. cost) equals tb (resp. ts) and believes that the

imply incentive compatibility of µ̂. Indeed, since µ̂ is unresponsive to reports about be-
liefs regarding other individuals’ payoff types, individuals’ incentives are unaffected by such
reports. Nevertheless, since (a(·), (zi(·))i∈I) is strictly incentive compatible, in mechanism
µ̂, each individual has the strict incentive to report his payoff type truthfully when others
report their payoff types truthfully irrespective of their reports about their beliefs regarding
other individuals’ payoff types. This property implies that when we continuously extend µ̂
to ∆Θ as in the proof of Theorem 2b, for all i and k, the correspondence Σki in the extended

mechanism µ will be such that for each t̂i ∈ T̂i and mi ∈ Σki (t̂i), the translation ωi(mi)

will equal the set of all those first-order beliefs in Q1
i (T̂ ) under which individual i’s payoff

type equals θi(t̂i). With this change in the statement of Lemma 2 – which is the only place
where we used the strict incentive compatibility of the simple direct mechanism on T̂ in
the original proof –, the rest of the argument of Theorem 2b can be replicated to show
that µ will continuously implement the outcome (a(·), (zi(·))i∈I). More generally, when T̂ is
“known own payoff” type space, then any decision rule defined on the set of payoff types Θ
can be continuously implemented under bounded depth of reasoning as long as it is strictly
incentive compatible and continuous over Θ.
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seller’s cost (resp. buyer’s value) equals his type which is distributed according

to Gs (resp. Gb).

A (nonrandom) alternative specifies p ∈ {0, 1}, where p = 1 means that

the object is traded whereas p = 0 means that it is not traded, and a payment

z ∈ [−z∗, z∗] from the buyer to the seller, where z∗ is sufficiently large.

Consider any simple direct mechanism µ̂ : Q1
b(T̂ ) × Q1

s(T̂ ) → ∆X. The

first-order belief of type ti of trader i is that his value/cost equals ti and that

the opponent j’s value/cost is distributed according to Gj. Since the belief

regarding the opponent’s value/cost is independent of the trader’s value/cost,

the simple direct mechanism µ̂ is equivalent to a direct mechanism ν : T̂b×T̂s →
∆X such that

ν(tb, ts) = µ̂(q1
b (tb), q

1
s(ts)),∀(tb, ts) ∈ T̂b × T̂s.

We therefore now work with direct mechanisms.

Given a direct mechanism ν, it is straightforward to define the probability

of trade p(tb, ts) and the expected payment from the buyer to the seller z(tb, ts),

for all (tb, ts) ∈ T̂b×T̂s. Then, let pi(ti) =
∫ 1

0
p(ti, tj)gj(tj)dtj be the probability

that trader i of type ti trades and zi(ti) =
∫ 1

0
z(ti, tj)gj(tj)dtj be his expected

transfer. If the buyer of type tb reports t′b in the direct mechanism ν, then

his expected payoff is tbpb(t
′
b)− zb(t′b). If the seller of type ts reports t′s in the

direct mechanism ν, then his expected payoff is zs(t
′
s)− tsps(t′s).

The following result follows from Theorem 2 in Myerson and Satterthwaite

(1983): If Gb(ts)−1
gb(tb)

and Gs(ts)
gs(ts)

are strictly increasing functions on [0, 1], then

there exists an incentive compatible and interim individually rational direct

mechanism ν∗ that maximizes the ex-ante gains from trade. Furthermore, the

probability of trade function corresponding to ν∗ is such that there exists an

α ∈ (0, 1) such that

p∗(tb, ts) =

 1, if tb − ts ≥ α
(

1−Gb(tb)
gb(tb)

+ Gs(ts)
gs(ts)

)
0, if tb − ts < α

(
1−Gb(tb)
gb(tb)

+ Gs(ts)
gs(ts)

)
.

This optimal ν∗ is not continuous because the corresponding probability
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of trade function p∗(., .) is not continuous. However, we now approximate ν∗

by a continuous direct mechanism that is strictly incentive compatible and

interim individually rational. To do that, pick the associated α, and then for

all β ∈ [α, 1] and l ∈ [1,∞) ∪ {∞}, define

pβ,l(tb, ts) =


1, if tb − ts ≥ β

(
1−Gb(tb)
gb(tb)

+ Gs(ts)
gs(ts)

)
(

tb−ts
β
(

1−Gb(tb)

gb(tb)
+

Gs(ts)
gs(ts)

)
)l
, if 0 < tb − ts < β

(
1−Gb(tb)
gb(tb)

+ Gs(ts)
gs(ts)

)
0, if tb − ts ≤ 0,

where we let

(
tb−ts

β
(

1−Gb(tb)

gb(tb)
+

Gs(ts)
gs(ts)

)
)∞

= 0. Thus, pα,∞(., .) = p∗(., .).

Also, define

λ(β, l) =

∫ 1

0

∫ 1

0

(
tb +

Gb(tb)− 1

gb(tb)
− ts −

Gs(ts)

gs(ts)

)
pβ,l(tb, ts)gb(tb)gs(ts)dtsdtb.

Since Gb(ts)−1
gb(tb)

and Gs(ts)
gs(ts)

are strictly increasing and continuous, it is easy to

see that for all (β, l) ∈ [α, 1]× [1,∞), pβ,l(., .) is continuous, pβ,lb (tb) is strictly

increasing, and pβ,ls (ts) is strictly decreasing. We can also show that λ(β, l) is

strictly increasing in β and l. Moreover, liml→∞ λ(β, l) = λ(β,∞), ∀β.

We know from Theorems 1 and 2 in Myerson and Satterthwaite (1983)

that λ(α,∞) = 0. Since λ is strictly increasing in β, we have λ(β,∞) >

0 for all β > α. As a result, for all β > α, there exists l(β) < ∞ such

that λ(β, l) ≥ 0 for all l ≥ l(β). Then using the construction in Theorem

1 in Myerson and Satterthwaite (1983) for all β and l ≥ l(β), we can find

a continuous expected payment function zβ,l(tb, ts), and hence a continuous

direct mechanism νβ,l that is incentive compatible and interim individually

rational. In fact, since pβ,lb (tb) is strictly increasing and pβ,ls (ts) is strictly

decreasing, νβ,l is strictly incentive compatible. Theorem 2b thus implies that

the SCF νβ,l is continuously implementable on T̂b× T̂s when individuals’ depth

of reasoning is bounded by K.

By taking β close enough to α and l large enough, we can approximate

the optimal ν∗ by νβ,l. Thus, there exist approximately optimal SCFs on T̂
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that are continuously implementable when individuals’ depth of reasoning is

bounded. �

To conclude this section, we provide an example with multidimensional

types as in Jehiel et al. (2012). Utility functions are picked so as to satisfy

their generic condition where locally robust implementation in their sense is

impossible. By contrast, continuous implementation in our sense is feasible.

Example 4. There are two individuals, 1 and 2. A state is a pair (θ1, θ2),

where θi = (θi1, θi2) is individual i’s payoff type drawn from Θi = [0, 1]2. The

planner is interested in the set T̂ of types of the individuals such that it is

common knowledge that each individual i knows his payoff type θi and that

his payoff type is distributed independently and uniformly on Θi.

As in the bilateral trading example, we use the implicit formulation of the

type space with T̂ = T̂1 × T̂2, where for each individual i, the set of his types

T̂i = Θi, and his belief πi : T̂i → ∆(Θ1 × Θ2 × T̂j) is given as follows: The

individual of type ti knows that his payoff type equals ti and believes that

individual j’s payoff type equals his type which is distributed uniformly on

[0, 1]2.

There are two possible social decisions, x ∈ {0, 1}. The planner can impose

any monetary transfer zi ∈ [−z∗, z∗] on player i, where z∗ is sufficiently large.

Player i’s Bernoulli utility function is ui((x, zi), (θi, θ−i)) = xvi(θi, θ−i)− zi.
Again, as in the bilateral trading example, instead of simple direct mecha-

nisms, we can work with an allocation rule p : Θ1×Θ2 ∈ [0, 1], where p(θ1, θ2)

is the probability of implementing decision 1 when the individuals’ types are

(θ1, θ2), and a transfer rule z : Θ1 × Θ2 → [−z∗, z∗]2 with zi(θ1, θ2) being the

monetary transfer imposed on player i when types are (θ1, θ2).

Fix (v1, v2) to be a pair of generic bilinear value functions as defined by

Jehiel et al. (2012). For instance,

v1(θ1, θ2) = (2 + 8θ21 + 9θ22)θ11 + (1 + 4θ21 + 6θ22)θ12 + 3θ21 + 5θ22

v2(θ1, θ2) = (40 + 16θ11 + 9θ12)θ21 + (14 + 12θ11 + 14θ12)θ22 + θ11 + 2θ12.
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Now, consider the following allocation and transfer rules:

p(θ1, θ2) =
1

3
(θ11 + θ21 + θ12θ22)

z1(θ1, θ2) =v1(θ1, θ2)p(θ1, θ2)−
∫ θ11

0

p((θ̃11, θ12), θ2)
∂v1((θ̃11, θ12), θ2)

∂θ11

dθ̃11

−
∫ θ12

0

p((θ11, θ̃12), θ2)
∂v1((θ11, θ̃12), θ2)

∂θ12

dθ̃12 + 2θ11θ12

z2(θ1, θ2) =v2(θ1, θ2)p(θ1, θ2)−
∫ θ21

0

p(θ1, (θ̃21, θ22))
∂v2(θ1, (θ̃21, θ22))

∂θ21

dθ̃21

−
∫ θ22

0

p(θ1, (θ21, θ̃22))
∂v2(θ1, (θ21, θ̃22))

∂θ22

dθ̃22 + 9θ21θ22.

We now argue that the above allocation and transfer rules are strictly incentive

compatible.

If player 1 of type θ1 reports his type as θ̂1 when player 2’s type is θ2, then

player 1’s payoff is

p(θ̂1, θ2)v1(θ1, θ2)− z1(θ̂1, θ2)

= p(θ̂1, θ2)
(
v1(θ1, θ2)− v1(θ̂1, θ2)

)
+

∫ θ̂11

0

p((θ̃11, θ̂12), θ2)
∂v1((θ̃11, θ̂12), θ2)

∂θ11

dθ̃11

+

∫ θ̂12

0

p((θ̂11, θ̃12), θ2)
∂v1((θ̂11, θ̃12), θ2)

∂θ12

dθ̃12 − 2θ̂11θ̂12

=
1

3
(θ̂11 + θ21 + θ̂12θ22)

(
(2 + 8θ21 + 9θ22)(θ11 − θ̂11) + (1 + 4θ21 + 6θ22)(θ12 − θ̂12)

)
+

1

3

∫ θ̂11

0

(θ̃11 + θ21 + θ̂12θ22)(2 + 8θ21 + 9θ22)dθ̃11

+
1

3

∫ θ̂12

0

(θ̂11 + θ21 + θ̃12θ22)(1 + 4θ21 + 6θ22)dθ̃12 − 2θ̂11θ̂12
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After some calculation, we obtain

Eθ2
∂

∂θ̂11

(
q(θ̂1, θ2)v1(θ1, θ2)− p1(θ̂1, θ2)

)
=

∂

∂θ̂11

Eθ2
(
q(θ̂1, θ2)v1(θ1, θ2)− p1(θ̂1, θ2)

)
=

7

2
(θ11 − θ̂11) + 2(θ12 − θ̂12)

Eθ2
∂

∂θ̂12

(
q(θ̂1, θ2)v1(θ1, θ2)− p1(θ̂1, θ2)

)
=

∂

∂θ̂12

Eθ2
(
q(θ̂1, θ2)v1(θ1, θ2)− p1(θ̂1, θ2)

)
= 2(θ11 − θ̂11) +

7

6
(θ12 − θ̂12).

It then follows that θ̂11 = θ11 and θ̂12 = θ12 is the unique maximizer of indi-

vidual 1’s expected payoff. A similar argument works for player 2. Hence, the

allocation and transfer rules are strictly incentive compatible. As these rules

are also continuous, it follows from Theorem 2b that they are continuously

implementable when individuals’ depth of reasoning is bounded. �

7 Conclusion

By imposing a bound on the agents’ depth of reasoning, which we assume

starts with truth-telling in simple direct mechanisms, we have presented re-

sults to show the permissiveness of mechanism design. In spite of requiring

full implementation, incentive compatibility alone presents limitations to im-

plementation with bounded depth of reasoning. Once small modeling mistakes

are allowed, adding continuity to the mechanism, no other condition beyond

incentive compatibility is required. The sufficiency counterparts of these re-

sults rely on the strict version of incentive compatibility. We have presented

examples to showcase the applicability of the approach, which suggest new in-

teresting directions for the theory of incentives without relying on the rational

expectations assumption.
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Appendix

This appendix provides the proofs of three lemmata used in the proof of The-

orem 2b.

Proof of Lemma 1: For each i ∈ I, define Zi = ∆Θ \ Q1
i (T̂ ). Let

d : ∆Θ × ∆Θ → R+ be the Prohorov metric. Pick any zi ∈ Zi and let

d(zi, Q
1
i (T̂ )) = inf{d(zi, q

1
i ) : q1

i ∈ Q1
i (T̂ )}. Since Zi is open (recall that Q1

i (T̂ )

is closed by assumption), d(zi, Q
1
i (T̂ )) > 0. Let B(zi,

d(zi,Q
1
i (T̂ ))

4
) be an open

ball around zi of radius
d(zi,Q

1
i (T̂ ))

4
. Note that B(zi,

d(zi,Q
1
i (T̂ ))

4
) ⊂ Zi. Now,{

B(zi,
d(zi,Q

1
i (T̂ ))

4
)
}
zi∈Zi

is an open cover of Zi. Since Zi is a metric space, it

is paracompact. Therefore, the open cover
{
B(zi,

d(zi,Q
1
i (T̂ ))

4
)
}
zi∈Zi

has a con-

tinuous locally finite partition of unity subordinate to it (see Theorem 2.90

in Aliprantis and Border (2006)). That is, there exists a family of functions

{hzi}zi∈Zi
from Zi to [0, 1] such that11

1. Each hzi is continuous.

2. Each hzi(mi) = 0 if mi ∈ Zi \B(zi,
d(zi,Q

1
i (T̂ ))

4
).

3. At each mi ∈ Zi, only finitely-many functions in the family {hzi}zi∈Zi

are nonzero and
∑

zi∈Zi
hzi(mi) = 1.

4. Each mi ∈ Zi has a neighborhood on which all but finitely-many func-

tions in the family vanish.

For each zi ∈ Zi, let ρi(zi) ∈ Q1
i (T̂ ) be such that d(zi, ρi(zi)) <

5
4
d(zi, Q

1
i (T̂ )).

11See Dugundji (1951) and Arens (1952) for a construction of such a family of functions.
For example, taking R as a paracompact space, and ∪z∈Z{(z − 1, z + 1)} as its open cover,
and hz(x) = min{x−(z−1), z+1−x} on [z−1, z+1], and 0 otherwise. Then, for each r ∈ R,
let hr = hInt(r). For each r, at most two of these functions, hInt(r) and either hInt(r)−1
or hInt(r)+1, do not vanish and their images add up to unity. Thus, each real number is
covered by a finite number of open sets, each with a different weight, and the sum of these
weights is always 1.
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For each i ∈ I, define the correspondence ωi : ∆Θ→ Q1
i (T̂ ) as follows:

ωi(mi) =

{
{mi}, if mi ∈ Q1

i (T̂ )

{ρi(zi) : zi ∈ Zi and hzi(mi) > 0}, if mi ∈ Zi.

Note that ωi is finite-valued because of the third property of the collection

{hzi}zi∈Zi
.

For each mi ∈ ∆Θ, define the probability distribution ξmi
over Q1

i (T̂ ) as

follows:

ξmi
(q1
i ) =


1, if mi ∈ Q1

i (T̂ ) and q1
i = mi∑

zi∈Zi:ρi(zi)=q1i
hzi(mi), if mi ∈ Zi and q1

i ∈ ωi(mi)

0, otherwise.

Thus, the support of ξmi
coincides with ωi(mi).

Now, define µ : (∆Θ)I → ∆X as follows:

µ(m) =
∑

q1∈×i∈Iωi(mi)

×i∈Iξmi
(q1
i )× µ̂(q1).

Since µ(m) = µ̂(m), ∀m ∈ ×i∈IQ1
i (T̂ ), the mechanism µ is an extension of µ̂

to (∆Θ)I .

We now argue that µ is continuous. Let (mn)n≥1 be a sequence in (∆Θ)I

that converges to m. Pick any Borel subset A of X such that µ(m)(∂A) = 0.

We argue that limn→∞ µ(mn)(A) = µ(m)(A). This is equivalent to proving

that the sequence of probability measures (µ(mn))n≥1 converges to µ(m) in

the weak∗ topology.

Let’s partition I into I1, I2 and I3 such that

I1 = {i ∈ I : mi is in Zi}

I2 = {i ∈ I : mi is in the interior of Q1
i (T̂ )}

I3 = {i ∈ I : mi is on the boundary of Q1
i (T̂ )}.
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Case 1. i ∈ I1: Since mi ∈ Zi, there is a neighborhood Ni of mi, with Ni ⊆ Zi,

on which all but finitely-many functions in the family {hzi}zi∈Zi
vanish. Let

Z∗i be the finite set of indices of the functions in this neighborhood that do

not vanish. There exists n∗i such that mn
i ∈ Ni for all n ≥ n∗i . Therefore, if

n ≥ n∗i , then hzi(m
n
i ) > 0 =⇒ zi ∈ Z∗i , and so ωi(m

n
i ) ⊆ {ρi(zi) : zi ∈ Z∗i }.

Case 2. i ∈ I2: Since mi is in the interior of Q1
i (T̂ ), then there exists n∗i such

that mn
i ∈ Q1

i (T̂ ) for all n ≥ n∗i .

Case 3. i ∈ I3: In this case, mi is on the boundary of Q1
i (T̂ ). Suppose the se-

quence (mn
i )n≥1 is such that it is infinitely often in Zi – otherwise, the sequence

(mn
i )n≥1 itself converges to mi. Then consider its subsequence (mnl

i )nl≥1 such

that mnl
i ∈ Zi, ∀nl ≥ 1. For each mnl

i , pick any q1nl
i ∈ ωi(mnl

i ). Let znl
i be such

that ρi(z
nl
i ) = q1nl

i and hznl
i

(mnl
i ) > 0. We argue that the sequence (q1nl

i )nl≥1

converges to mi in the weak∗ topology.

To see this, pick any ε > 0 and consider the open ball B(mi,
ε
3
). Since

mnl
i converges to mi, there exists ni such that mnl

i ∈ B(mi,
ε
3
) for all nl ≥ ni.

Hence, mnl
i ∈ Zi ∩ B(mi,

ε
3
) for all nl ≥ ni. We argue that d(mi, q

1nl
i ) < ε for

all nl ≥ ni. Note that

d(mi, q
1nl
i ) ≤ d(mi,m

nl
i ) + d(mnl

i , q
1nl
i )

≤ d(mi,m
nl
i ) + d(mnl

i , z
nl
i ) + d(znl

i , q
1nl
i )

< d(mi,m
nl
i ) + d(mnl

i , z
nl
i ) +

5

4
d(znl

i , Q
1
i (T̂ )).

Since hznl
i

(mnl
i ) > 0, we have d(mnl

i , z
nl
i ) <

d(z
nl
i ,Q1

i (T̂ ))

4
. Hence, d(mi, q

1nl
i ) <

d(mi,m
nl
i ) + 6

4
d(znl

i , Q
1
i (T̂ )).

Next,

d(znl
i , Q

1
i (T̂ )) ≤ d(znl

i ,mi) ≤ d(znl
i ,m

nl
i )+d(mnl

i ,mi) <
d(znl

i , Q
1
i (T̂ ))

4
+d(mnl

i ,mi).

Therefore, 3
4
d(znl

i , Q
1
i (T̂ )) < d(mnl

i ,mi). As a result,

d(mi, q
1nl
i ) < d(mi,m

nl
i ) +

6

4
d(znl

i , Q
1
i (T̂ )) < 3d(mi,m

nl
i ) < ε.
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Hence, (q1nl
i )nl≥1 converges to mi.

Now, by definition of µ(mn), for any Borel A ⊆ X such that µ(m)(∂A) = 0,

we have

µ(mn)(A) =
∑

q1∈×i∈Iωi(mn
i )

×i∈Iξmn
i
(q1
i )× µ̂(q1)(A).

Consider any n ≥ n∗ = max{n∗i : i ∈ I1 ∪ I2}. Then mn
i is in the interior

of Q1
i (T̂ ),∀i ∈ I2. Hence,

µ(mn)(A) =
∑

(q1i )i∈I1∪I3∈×i∈I1∪I3ωi(mn
i )

×i∈I1∪I3ξmn
i
(q1
i )×µ̂((q1

i )i∈I1∪I3 , (m
n
i )i∈I2)(A).

(7)

Pick any (q1
i )i∈I3 ∈ ×i∈I3ωi(mn

i ), and define

Y n((q1
i )i∈I3) =

∑
(q1i )i∈I1∈×i∈I1ωi(mn

i )

×i∈I1ξmn
i
(q1
i )×µ̂((q1

i )i∈I1 , (q
1
i )i∈I3 , (m

n
i )i∈I2)(A).

Then it follows from (7) that

µ(mn)(A) =
∑

(q1i )i∈I3∈×i∈I3ωi(mn
i )

×i∈I3ξmn
i
(q1
i )Y

n((q1
i )i∈I3).

Since ×i∈I3ωi(mn
i ) is a finite set, we can find (q̂1n

i )i∈I3 ∈ ×i∈I3ωi(mn
i ) such

that Y n((q̂1n
i )i∈I3) ≥ Y n((q1

i )i∈I3),∀(q1
i )i∈I3 ∈ ×i∈I3ωi(mn

i ). Similarly, we can

find (q̃1n
i )i∈I3 ∈ ×i∈I3ωi(mn

i ) such that Y n((q̃1n
i )i∈I3) ≤ Y n((q1

i )i∈I3),∀(q1
i )i∈I3 ∈

×i∈I3ωi(mn
i ). Hence, Y n((q̂1n

i )i∈I3) ≥ µ(mn)(A) ≥ Y n((q̃1n
i )i∈I3). We argue

that limn→∞ Y
n((q̂1n

i )i∈I3) = limn→∞ Y
n((q̃1n

i )i∈I3) = µ(m)(A), which implies

that limn→∞ µ(mn)(A)→ µ(m)(A).

As n ≥ n∗, we have mn
i ∈ Ni ⊆ Zi,∀i ∈ I1. Then as argued in Case 1

above, ωi(m
n
i ) ⊆ {ρi(zi) : zi ∈ Z∗i },∀i ∈ I1. Hence,

Y n((q̂1n
i )i∈I3) =

∑
(q1i )i∈I1∈×i∈I1{ρi(zi):zi∈Z

∗
i }

×i∈I1ξmn
i
(q1
i )×µ̂((q1

i )i∈I1 , (q̂
1n
i )i∈I3 , (m

n
i )i∈I2)(A).
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Take any i ∈ I1 and q1
i ∈ {ρi(zi) : zi ∈ Z∗i }. Since mn

i ∈ Ni, we have

ξmn
i
(q1
i ) =

∑
zi∈Z∗i :ρi(zi)=q1i

hzi(m
n
i ). As each hzi is continuous,

lim
n→∞

ξmn
i
(q1
i ) =

∑
zi∈Z∗i :ρi(zi)=q1i

hzi(mi) = ξmi
(q1
i ).

It follows from the arguments made in Case 3 above that for all i ∈ I3, q̂1n
i

converges to mi. Hence, as µ̂ is continuous, we obtain

lim
n→∞

Y n((q̂1n
i )i∈I3) =

∑
(q1i )i∈I1∈×i∈I1{ρi(zi):zi∈Z

∗
i }

×i∈I1ξmi
(q1
i )× µ̂((q1

i )i∈I1 , (mi)i∈I2∪I3)(A)

= µ(m)(A).

A similar argument shows that limn→∞ Y
n((q̃1n

i )i∈I3) = µ(m)(A). Therefore,

µ is continuous.

Proof of Lemma 2: We proceed by induction on k. The property is trivially

satisfied when k = 0, as Σ0
i (t̂i) = {q1

i (t̂i)}. Suppose now that k > 0, and that

the property holds for all k′ < k. Letmi ∈ Σk
i (t̂i). By the induction hypothesis,

individual i’s conjecture has j of any type t̂j ∈ T̂j and any cognitive state ck
′
j ,

where k′ < k, report mj such that ωj(mj) = {q1
j (t̂j)}. Since T̂ is belief-closed,

we must have

mi ∈ arg max
m′i∈∆Θ

∑
q1i ∈ωi(m′i)

ξm′i(q
1
i )

∫
Θ×T̂−i

Ui(µ̂(q1
i , q

1
−i(t̂−i)), θ)dπi(t̂i).

The strict incentive compatibility of µ̂ implies that ωi(mi) = {q1
i (t̂i)}, as de-

sired.

Proof of Lemma 3: We argue by induction that Gr(Ski ) is closed for all

i and k ≥ 0. Since ∆Θ is compact, this implies that Ski : T ∗i × Ck
i → ∆Θ

is upper hemicontinuous for all i and k ≥ 0. As Ck
i is compact, it is then

straightforward to argue that Σk
i is upper hemicontinuous.
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Gr(S0
i ) is clearly closed for all i. Now suppose Gr(Sk

′
i ) is closed for all

k′ ≤ k−1 and i. Pick any individual i and consider sequences (tni )n≥1, (ckni )n≥1,

and (mn
i )n≥1 such that tni → ti, c

kn
i → cki , m

n
i → mi, and mn

i ∈ Ski (tni , c
kn
i ),∀n.

Since mn
i ∈ Ski (tni , c

kn
i ), there exists γn ∈ ∆(Θ × T ∗−i × ∪k−1

k′=0C
k′
−i × (∆Θ)I−1),

such that (a) the marginal of γn on Θ× T ∗−i equals πi(t
n
i ), (b) the marginal of

γn on ∪k−1
k′=0C

k′
−i equals ckni , (c) the marginal of γn on T ∗−i×∪k−1

k′=0C
k′
−i× (∆Θ)I−1

supports a subset of ∪k−1
k′=0

(
×j 6=iGr(Sk

′
j )
)
, and

mn
i ∈ arg max

m′i∈∆Θ

∫
Θ×T ∗−i×∪

k−1
k′=0

Ck′
−i×(∆Θ)I−1

Ui(µ(m′i,m−i), θ)dγ
n.

Since Θ× T ∗−i × ∪k−1
k′=0C

k′
−i × (∆Θ)I−1 is a compact metric space, so is ∆(Θ×

T ∗−i × ∪k−1
k′=0C

k
−i × (∆Θ)I−1). Hence, the sequence (γn)n≥1 has a convergent

subsequence (γnl)nl≥1 that converges to say γ in the weak∗ topology.

Since margΘ×T ∗−i
γnl = πi(t

nl
i ) → πi(ti) and margΘ×T ∗−i

γnl → margΘ×T ∗−i
γ,

we have that margΘ×T ∗−i
γ = πi(ti). Similarly, marg∪k−1

k′=0
Ck′
−i
γ = cki .

By the induction hypothesis, Gr(Sk
′
j ) is closed for all k′ ≤ k− 1 and j 6= i.

Hence, Θ×∪k−1
k′=0

(
×j 6=iGr(Sk

′
j )
)

is closed. The fact that γnl converges to γ in

the weak∗ topology implies that

γ
(

Θ× ∪k−1
k′=0

(
×j 6=i Gr(Sk

′

j )
))
≥ lim sup

nl

γnl

(
Θ× ∪k−1

k′=0

(
×j 6=i Gr(Sk

′

j )
))

= 1.

Therefore, the marginal of γ on T ∗−i × ∪k−1
k′=0C

k′
−i × (∆Θ)I−1 supports a subset

of ∪k−1
k′=0

(
×j 6=iGr(Sk

′
j )
)
.

Define

Wi(m̂i, γ̂) =

∫
Θ×T ∗−i×∪

k−1
k′=0

Ck
−i×(∆Θ)I−1

Ui(µ(m̂i,m−i), θ)dγ̂.

We argue that Wi is continuous. Let (m̂n
i )n≥1 and (γ̂n)n≥1 be two sequences

such that m̂n
i → m̂i and γ̂n → γ̂. Since Ui is continuous and bounded and µ is

continuous, it follows from the definition of weak convergence that Wi(m̂i, γ̂
n)

converges to Wi(m̂i, γ̂). That is, for every ε > 0, there exists n1 such that if

n ≥ n1, then |Wi(m̂i, γ̂
n)−Wi(m̂i, γ̂)| < ε

2
.
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Since Ui(µ(m), θ) is a continuous function over a compact metric space

(∆Θ)I ×Θ, it is uniformly continuous. Therefore, for every ε > 0, there exists

n2 such that if n ≥ n2, then |Ui(µ(m̂n
i ,m−i), θ) − Ui(µ(m̂i,m−i), θ)| < ε

2
, for

all (m−i, θ) ∈ (∆Θ)I−1 ×Θ. Therefore, for all n ≥ n2, we have

|Wi(m̂
n
i , γ̂

n)−Wi(m̂i, γ̂
n)|

≤
∫

Θ×T ∗−i×∪
k−1
k′=0

Ck′
−i×(∆Θ)I−1

|Ui(µ(m̂n
i ,m−i), θ)− Ui(µ(m̂i,m−i), θ)|dγ̂n <

ε

2
.

Hence, for all n ≥ max{n1, n2}, we have

|Wi(m̂
n
i , γ̂

n)−Wi(m̂i, γ̂)| ≤ |Wi(m̂
n
i , γ̂

n)−Wi(m̂i, γ̂
n)|+|Wi(m̂i, γ̂

n)−Wi(m̂i, γ̂)| < ε.

Therefore, Wi is continuous. It follows from Berge’s Maximum Theorem that

arg maxm̂i∈∆Θ Wi(m̂i, γ̂) is upper hemicontinuous.

Now, returning to the subsequences (mnl
i )nl≥1 and (γnl)nl≥1, we have mnl

i ∈
arg maxm̂i∈∆Θ Wi(m̂i, γ

nl). So we must have mi ∈ arg maxm̂i∈∆Θ Wi(m̂i, γ).

We thus conclude that mi ∈ Ski (ti, c
k
i ), and so Gr(Ski ) is closed.
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