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Abstract 
Expert elicitation is a process for eliciting subjective probability distributions from experts about items of interest 
to decision makers. These methods have been increasingly applied in the energy domain to collect information on 
the future cost and performance of specific energy technologies and the associated uncertainty.  This article 
reviews the existing expert elicitations on energy technologies  with three main objectives: (1) to provide insights 
on expert elicitation methods and how they compare/complement other approaches to inform public energy 
decision making; (2) to review all recent elicitation exercises about future technology costs; and (3) to discuss the 
main results from these expert elicitations, in terms of  implied rates of cost reduction and the role of R&D 
investments in shaping these reductions, and compare it with insights from backward looking approaches. We 
argue that the emergence of data on future energy costs through expert elicitations provides the opportunity for 
more transparent and robust analyses incorporating technical uncertainty to assess energy and climate change 
mitigation policies.  
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1. Introduction 

When making decisions about energy systems, policy makers need to consider several aspects. First, fossil-fuel 

technologies give rise to a negative environmental externality due to the pollution they produce.1 Since pollution 

is not always priced, private incentives for RD&D in low-carbon technologies have been low with respect to the 

societal need for such investments (Popp 2010).  Second, in research, development and demonstration (RD&D) 

there is significant uncertainty associated with the returns and much of the value is associated with low 

probability but high value outcomes (Scherer and Harhoff 2000).  Such uncertainty may be particularly large in the 

case of energy: energy systems and investments are long-lived and are embedded in costly infrastructures that 

make it hard for new technologies to compete (Unruh 2000). Third, parts of the energy sector, such as electricity 

provision, are characterized by high government regulation, which often prevents utilities from directly investing 

in RD&D (Walker 2000). Hence, the general under-provision of (RD&D) effort from the private sector due to the 

presence of market failures is even more acute in the case of energy technologies, since environmental market 

failures compound the problem and the negative role of uncertainty may prove particularly problematic in the 

energy domain (Popp 2010, Popp et al. 2010). Finally, there are concerns regarding energy security, access and 

safety.  

These reasons provide strong grounds to justify government investments in clean energy RD&D to meet 

environmental, security and competitiveness goals. One of the pressing needs of public decision makers is to 

design cost-effective and robust portfolios of public energy technology RD&D investments. Such portfolios should 

allocate funding across the sometimes complementary, sometimes competing energy technologies in a way that 

accounts for their societal benefits and for the uncertainties inherent to technology innovation. Environmental 

policies encompass technology-neutral policies in terms of innovation and deployment (for instance, this is the 

case for carbon taxes) or more technology-specific policies, such as wind feed-in-tariffs, and provide incentives to 

private firms to focus on those technologies that are closer to the market. RD&D policies should on the other 

hand be designed to address RD&D needs to meet the long-run climate and energy objectives and concerns. 

Governments may in fact want to be strategic in selecting which broad category of energy technologies to fund 

through RD&D allocations to ensure the development of technologies which are cost-effective in the long run or 

have a large option value, even though they may raise costs in the short run (Popp 2010).  

But how can governments design energy technology RD&D portfolios that are robust to both the uncertainty 

surrounding the development of energy technology and the uncertainty surrounding climate or (more broadly) 

energy policies?  What methods can be used to quantify such uncertainty in order to inform the decision-making 

process? 

One way to inform policy decisions is learning from experience, studying the development of a particular 

technology (or similar technologies) in the past, and whether and how government RD&D spending shaped its 

evolution. The history of government involvement in energy RD&D provides several examples (Keller and Block 

2008). Recent research suggests that governments have played major roles as investors in RD&D in high risk 

areas, including climate-friendly research (Mazzucato 2013).  Econometric analysis of past trends in energy 

technologies has also been used to predict future trajectories, for instance in the  learning or experience curve 

literature (Wiesenthal et al. 2012a; Nagy et al. 2013; Bettencourt et al. 2013), or in the extensive literature looking 

at the determinants of energy innovation (Popp et al 2010). However, estimating the uncertainty around future 

technology cost and performance from past data and experiences does not reflect the fact that RD&D is, by its 

                                                           
1
 The U.S. National Research Council estimated that the “external costs” of energy conversion in the United States totaled 

over $120 billion in 2005, noting that many additional external costs were not quantifiable (NRC, 2010). 
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nature, uncertain and that different technologies may evolve differently at different points in time. Past trends 

may not correctly predict the future evolution of costs and performance and are unlikely to differentiate between 

different technologies and funding amounts (NRC 2007, Baker et al 2009a; Chan et al. 2011, Anadón et al. 2014b).  

A second, complementary, process to inform public decisions on energy technology RD&D funding is that of 

expert elicitations, which entail collecting experts’ views on the future evolution of a technology and how 

government funding might facilitate it. Expert elicitations are structured processes for eliciting subjective 

probability distributions from scientists, engineers, and other analysts who are knowledgeable about the metrics 

of interest (Morgan and Henrion 1990), in this case the costs and performance of energy technologies.  Expert 

elicitations overcome the limitations associated with learning or experience curves by drawing on the best 

available information (which may not yet be codified in the literature) and relaxing the assumption that the 

previous technological trajectory will continue (Chan et al. 2011). Furthermore, expert elicitations can be used to 

identify the most important technological and non-technological bottlenecks. Over the past 8 years, various 

research groups carried out structured expert elicitations on several energy technologies. Some of these groups 

had an explicit objective to inform RD&D investment decisions and thus included specific questions about the 

outcomes of different levels of RD&D investments.  

This article reviews the existing expert elicitations on energy technologies with three main objectives: (1) provide 

insights on expert elicitation methods and how they compare/complement other approaches to inform public 

energy decision making; (2) to review all recent elicitation exercises about future technology costs; and (3) to 

discuss main results from these expert elicitations, in terms of future technology costs and implied cost reduction 

rates.     

In Section 2 we introduce the reader to the basics of expert elicitations, providing some background on their 

applications and potential limitations.  Section 3 discusses and compares results for a subset of studies and 

technologies, while Section 4 concludes. 

 

2. Expert elicitation methods applied to energy technology  

2.1 What is an expert elicitation 

Expert elicitation, as we will use the term, is a process for eliciting subjective probability distributions from 

experts about items of interest to decision makers (Hora and Von Winterfeldt 1997). These methods were 

pioneered in the 1960s and 1970s, mainly in applications concerning decisions in the face of extreme events 

(Howard et al 1972; North et al 1975).  While most applications of expert elicitation have taken place in the 

private sector (Morgan 2014), they are increasingly used to inform policy making, particularly in areas related to 

the environment and health (Peerenboom et al 1989; Hora and Von Winterfeldt 1997; Krayer von Krauss et al 

2004; Cooke et al. 2007; Roman et al. 2008; InterAcademy Council 2010; Zickfeld et al 2010; Morgan 2014; EC 

2015; US EPA 2015). A detailed review of existing studies in environmental policy applications is provided in the 

companion paper in this symposium [Cooke, 2016, this journal].  While elicitations were first envisioned as a way 

to collect existing knowledge stored in the heads of experts, it was later realized that the process helps experts 

develop probability distributions that represent their knowledge (Morgan and Henrion 1990; Hora 2007). 

In this paper we focus on expert elicitations in the energy domain, which focus on the future cost and 

performance of specific energy technologies and, crucially, the associated uncertainty.  
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2.2 Challenges in expert elicitation design and use 

The main challenge of expert elicitation is that it relies on individuals who are experts in the field under 

investigation but not necessarily proficient at expressing themselves in terms of probability (Winkler 1967). 

Experts, like most people, are subject to common biases (Tversky and Kahneman 1974), including anchoring, 

status quo trap, framing, overconfidence, base-rate trap, and motivational bias (Hammond et al 1999). Protocols 

and methodologies for structured expert elicitations were developed to reduce these biases (Morgan and Henrion 

1990). The vast literature on this topic point to two sets of critical issues in designing and using an expert 

elicitation: how to properly design the elicitation protocol to reduce expert biases as much as possible (Hora 

2007; O’Hagan et al. 2006a) and how to present and analyze the data collected, with a focus on different 

aggregation methods (Clemen and Winkler 1999, Hora et al. 2013, Lichtendahl et al 2013, Baker and Olaleye 

2013). 

The assessment of the quality of the information resulting from specific expert elicitations is very difficult.  The 

main reason is that subjective probabilities reflect an individual’s degree of belief: unless a probability is 1 or 0, it 

is impossible to say that it is “right” or “wrong”. It is possible, however, (at least in theory) to evaluate the 

calibration or precision of experts on particular questions for which the answer is known, in a process of external 

validation.  An expert is well calibrated on a particular set of questions if about p% of the events to which he 

assigns p% probability, are known to actually occur. This reasoning can be extended to intervals as well. It is most 

typical for people to be poorly calibrated by being overconfident.  

Experts are overconfident if their stated probability intervals are too narrow, leading the realized values to fall 

outside of the intervals more frequently than they should. For example, Capen (1976) found, in a large scale 

experiment using almanac questions, that approximately 68% of the true values fell outside intervals provided by 

experts, regardless of what probability range participants were asked for. 

Furthermore, an expert may be well calibrated but imprecise. For example, an expert who gives the long term 

average probability of rain to predict the probability of rain on a particular day would be perfectly calibrated, but 

poorly resolved, and therefore not very useful. The combination of calibration and precision can be evaluated (ex-

post) using Proper Scoring Rules (Bickel 2007) in experimental settings, an approach which has led to 

improvements in protocol design. In addition, the use of scoring rules provides an important feedback to experts, 

a feedback which is crucial for improvement. 

Regarding the analysis and presentation of the data from expert elicitations, a controversial question is whether 

and how to aggregate the information provided by different experts. Morgan (2014) argues that expert 

distributions should not be aggregated at all, but simply presented to decision makers to more accurately 

represent the wide diversity of views. This has the advantage of allowing decision makers to see, and possibly 

understand, the range of disagreement about key parameters. The downside is that the decision makers are left 

to aggregate the set of views themselves, which is challenging and vulnerable to bias (Cooke 2015; Bolger and 

Rowe 2015).  One approach to support decision making in cases like this is to apply what are called “bottom up 

exploratory” methods, such as Robust Decision Making (Lempert and Collins 2007), Decision Scaling (Brown et al 

2012), and Info Gap (Ben-Haim 2004). Each of these methods analyze alternative actions or policy decisions and 

visually represent how they perform under the full set of alternative beliefs, with a focus on generating new, 

more robust alternatives. Kalra et al (2014) discuss how these types of models can help lead to agreement over 

decisions in the policy realm. Related to this, Baker et al (2016) introduce a new technique that identifies sets of 

alternatives that are non-dominated across all expert beliefs. These sets of alternatives can then be used in 

conjunction with the bottom up methods.  
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An emerging literature argues in favor of aggregating expert judgments in the context of a specific decision 

problem through the use of non-traditional decision rules.  For example, there are a number of papers applying 

Ambiguity Aversion frameworks to the climate change problem (Athanassoglou and Bosetti 2015; Millner et al. 

2013; Heal and Millner 2014, Berger et al 2015). A similar approach is Robust Optimization (Gabrel et al 2014, 

Bertsimas et al 2011; Mortazavi-Naeini 2015). All of these approaches use a version of worst-case analysis, 

identifying an alternative that does not perform too badly in the worst case.  

The traditional approach is to mathematically or behaviorally aggregate expert views. While there is little 

agreement on which method is best, Clemen and Winkler (1999) conclude that “simple combination rules (e.g., a 

simple average) tend to perform quite well” and that “more complex rules sometimes outperform the simple 

rules, but they can be somewhat sensitive, leading to poor performance in some instances.” Recent work 

indicates that other mathematical aggregation methods, such as by median or quantiles, may have some 

attractive properties (Hora et al. 2013; Lichtendahl et al 2013).  

As discussed in [Cooke 2016, this journal] evaluating elicitation responses from experts through a set of seed 

questions can play an important role in the aggregation phase by providing weightings to apply to expert answers. 

Regarding energy technologies, seed questions might cover topics such as the level and composition of current 

costs trends and drivers of performance improvements in the past.  These questions could be designed to have a 

known correct answer, allowing researchers to evaluate experts’ calibrations to those questions. However, it is 

not clear whether the ability to accurately answer short term questions is a good proxy for the ability to 

accurately estimate the distributions of costs and performance 20 years in the future.  Given this challenge, a 

fruitful direction for future research would be to perform experiments similar to those described in [Cooke 2016, 

this journal], but using elicitations with answers that will be realized some decades into the future.  

 

2.3 Energy technology expert elicitations: process and characteristics  

Expert elicitations are typically codified in a protocol, which includes a set of steps (see, e.g., Kotra et al. 1996; 
Budnitz et al. 1997; Cooke and Goossens 2000; O’Hagan et al. 2006; Meyer and Booker 1991; Jenni and van Luik 
2010 for an overview). Below we discuss each of these steps and how they differ across a set of existing energy 
technology elicitations, which were performed between 2007 and 2014.  

Table 1 lists the studies, organized by technology, along with some key characteristics.   We also summarize the 

results of three meta-analyses  which study how design and expert characteristics affect elicited estimates 

(Anadón et al 2013; Verdolini et al. 2015; Nemet et al. 2016 – AVN hereafter. A more detailed summary is 

included in Appendix B).  

 

Table 1: Overview of Expert Elicitations on energy technologies.  

Research Group, Source/Publication 
Experts (#, 

characteristics) 

Year Of 

Elicitation 

Target 

year 
Type of question 

RD&D scenarios 

(see Table 3) 

Elicitation 

Mode 

Bioelectricity 

UMass*                                               4 (academia, 

government, 

private sector)  

2007 2050 Probabilities yes 
F2F, mail, 

phone 
 Baker et al. (2008a) 

Harvard* 7 (academia,  2010 2030 Percentile yes  Mail & phone 
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Anadón et al. (2011); Anadón, et al. 

(2014a) 

private sector) (medians for some 

metrics)  

FEEM* 16 (academia, 

government, 

private sector) 

2011 2030 
Percentiles and 

Probabilities 
yes F2F 

Fiorese et al. (2014) 

Biofuel 

UMass*                                               
6 (academia, 

government) 
2008 2050 Probabilities yes 

F2F, mail, 

phone 
Baker and Keisler (2011) 

Harvard* 

8 (academia,  

private sector) 
2010 2030 

Percentile 

(medians for some 

metrics)  

yes  Mail & phone 
Anadón et al. (2011); Anadón, et al. 

(2014a) 

FEEM* 15 (academia, 

government, 

private sector) 

2011 2030 
Percentiles and 

Probabilities 
yes F2F 

Fiorese et al. (2013) 

CCS 

UMass  
4 (academia, 

government) 
2007 2050 Probabilities yes F2F & survey 

 Baker et al. (2009b) 

Harvard* 13 (academia, 

government, 

private sector) 

2010 2030 
Percentiles and 

Probabilities 
yes F2F & survey 

Chan et al. (2011) * 

Duke 
13 (private sector, 

government) 
2011 2030 Percentiles no 

Survey & F2F 

or phone 
Chung et al (2011) 

UMass  15 (academia, 

government, 

private sector) 

2011 2025 Percentiles yes F2F 

Jenni et al (2013) 

FEEM  12 (academia, 

government, 

private sector) 

2012 2030 Percentiles yes online 

Ricci et al. (2014) 

CMU 
12 (academia, 

private sector) 
2006 

2030, 

2050 
Percentiles yes F2F 

Rao et al. (2006) 

NRC 
12 (academia, 

private sector) 
2006 2022 Probabilities yes F2F Panel 

 (NRC 2007) 

Nuclear 

UMass*                                               
4 (academia, 

government) 
2007 2050 Probabilities yes F2F & mail  

Baker et al (2008b) 
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Harvard* and FEEM* 60 (academia, 

government, 

private sector) 

2010 2030 

Percentile 

(medians for some 

metrics)  

yes 

Online & 

group 

workshop Anadón et al. (2012) 

CMU (GEN III only)* 
12 (government, 

private sector) 
2011 

estimate 

for an 

NOAK plant 

Probabilities & 

percentiles 

no, but consistent 

with BAU 
F2F 

Abdulla et al (2013) 

Solar 

UMass  

3 (Academic) 2007 2050 Probabilities yes 
F2F followed 

by survey 
Baker et al 2009a* 

Harvard* 
11 (academia, 

government, 

private sector) 

2010 2030 

Percentile 

(medians for some 

metrics)  

yes Online 
Anadón et al. (2011); Anadón, et al. 

(2014a) 

FEEM* 16 (academia, 

government, 

private sector, 

academic 

2011 2030 
Probabilities & 

percentiles 
yes F2F 

Bosetti et al. (2012) * 

NearZero 
21 (academia, 

government, 

private sector) 

2011 

Year for 

deployment 

target 

defined by 

expert 

Percentiles not specified Online 

Inman (2012) 

CMU* 18 (academia, 

government, 

private sector) 

2008 
2030; 

2050 
Probabilities yes Mail survey 

Curtright et al. (2008) 

Vehicles 

UMass 7 (academia, 

government, 

private sector) 

2008 2050 Probabilities yes F2F & mail 

Baker et al. (2010) 

FEEM 14 (academia, 

government, 

private sector) 

2012 2030 
Percentiles  & 

proba-bilities 
yes F2F 

Catenacci et al. (2013) 

Harvard 
9 (academia, 

government, 

private sector) 

2011 2030 

Percentile 

(medians for some 

metrics)  

yes 
Mail and F2F 

for some Anadón et al. (2011); Anadón, et al. 

(2014a) 

Other 

Harvard - Utility scale  energy storage 
25  (academia, 

government, 

private sector) 

2011 2030 

Percentile 

(medians for some 

metrics)  

yes 
Mail and F2F 

for some Anadón et al. (2011); Anadón, et al. 

(2014a) 

NRC – IGCC 8 2006 2025 probabilities yes F2F Panel 
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 NRC (2007) 
(academia,private 

sector) 

Stanford-Natural Gas 
4 (government, 

private sector) 
2013?? 2025 

Cumulative 

probabilities 
yes F2F 

Bistline (2013) 

GHG MI – Wind 

7 (private sector) 2010 2011 Percentiles no Phone 

Gillenwater (2013) 

UCL -- Low Carbon Energy 25 (academia, 

government, 

private sector) 

2010 2030 Percentiles no F2F 

Usher and Strachan (2013) 

Note: The studies shaded in grey are those for which the original data could not be retrieved. * identifies the studies for which costs have 

been standardized(see the online Appendix for process, Section 4 for results). 

 

Define the Objective. The objective of most of the elicitations listed in Table 1 is to inform public energy 

technology RD&D policy. The specific quantities that were elicited are metrics defining cost  and other 

technological performance parameters. In 80% of the studies the focus on RD&D was explicit, asking experts to 

judge cost evolution conditional on RD&D budgets; in the remaining studies no mention of the RD&D funding is 

made. Even within the former group of studies, objectives varied.  For instance, the FEEM, Harvard and UMass 

solar studies were developed specifically to support further modeling and portfolio analysis, whereas the CMU 

solar PV study was designed to stand alone. This likely shaped the specific set of questions asked.  

Select an Elicitation Mode. Elicitation mode refers to the way in which the expert judgments were collected: mail 

or online surveys, or telephone or face-to-face (F2F) interviews. Until recently, most elicitations were carried out 

as F2F interviews, generally assumed to be the gold standard (Meyer and Booker 1991; O’Hagan et al. 2006), since 

it allows for targeted “debiasing” and follow-up questions. Recently, however, many groups have been moving 

toward other modes including interactive mail and online surveys complemented with follow-up interactions with 

researchers (Nordhaus 1994; Curtright et al. 2008; Chan et al. 2011; Anadón et al. 2012).  There has been work in 

developing interactive online tools for supporting expert elicitation (James et al 2010; Spaccasassi and Deleris 

2011; Speirs-Bridge et al. 2010; Shearer et al. 2014; Dalal et al. 2011; Anadón et al. 2012), motivated primarily by 

concerns of expense and scope.  There has been little research aimed at quantitatively evaluating the impact of 

elicitation mode and expert selection.  Recent non-controlled studies (Baker et al. 2014; AVN) found that In-

person surveys are associated with broader uncertainty ranges. This suggests that current online methods are not 

as good as an interviewer in getting experts to think more broadly. Within the studies reviewed here, 42% 

involved F2F elicitations with all experts; 72% included some F2F interactions; the remainder used remote modes, 

including phone, internet, or mail.     

Identify Experts. Selecting a highly qualified and diverse pool of experts can help avoid anchoring on the current 

state of technology (see for instance Raiffa 1968; Keeney and Winterfeld 1991; Meyer and Booker 1991; Phillips 

1999; Clemen and Reilly 2001;). There are often questions about the appropriate number of experts, however 

ideas of statistical significance are not entirely appropriate. First, informed experts are necessarily correlated 

since there is a limited set of literature and results on any technology. Second, the idea of expert elicitation is to 

derive a representation of the views of the community of experts; it is not a draw from some kind of underlying 

existing probability distribution.  Some studies have found that there are diminishing marginal returns to 

additional experts after as few as 3 or 4 (Clemen and Winkler 1985; Ferrell 1985; Clemen and Winkler 1999; 
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Clemen and Winkler 2007), but the optimal number is not set and may depend on the technology area and type 

of questions. One study (US EPA, 2015) reviewed 38 expert elicitation studies: 90% used fewer than 12 experts, 

and 60% had six to eight experts. The studies reviewed in this article vary on the number of experts assessed, 

from 3 to 60.  On average, they are a bit larger than typical studies, with an average of 11.5, and only 44% having 

fewer than 12.  Just over half the studies had at least one participant each from Academia, Government, and the 

Private Sector.  Diversity is important: experts in different technology areas, sectors or regions may have different 

experiences, impacting their estimates (Tversky and Kahneman 1974). Confirming this, AVN find that expert 

background and geographic location are often associated with lower or higher cost estimates, but this effect is 

technology specific and cannot be generalized. This likely reflects the experience of experts with a given 

technology.  

Structure the elicitation. This is typically done in conjunction with a subset of the experts and includes the 

definition of the uncertain quantity to be assessed (metrics in a given target year for specific technologies) and 

the conditioning variables, the way in which uncertainty will be encoded, consistency checks, and possibly 

assessment and self-assessment of experts. 

Metrics. The metrics refer to the specific quantity that experts are asked to assess. The definition of the uncertain 

quantity must pass “the clarity test” (Howard 1988): there must be a clear quantity that can be universally agreed 

upon once the event of interest has taken place. The studies covered here vary in the degree of aggregation in the 

metrics they assess, ranging from very specific technical metrics such as “sorbent concentration” for Carbon 

Capture and Storage (CCS), through aggregated characteristics of technologies such as capital cost and efficiency, 

to highly aggregated cost metrics such as LCOE of a specific technology. There are tradeoffs inherent in the choice 

of metric. Disaggregated metrics require a great deal of time to assess, and may be less intuitive for experts. 

Aggregated cost metrics have one foot in technological understanding and one foot in economics, making them 

useful. However, experts who deeply understand the technology and experts who understand economic 

interactions may not be the same. 

Target Year.  This refers to the year for which the parameters are being estimated, and ranges between 2022 and 

2050, with some studies (Harvard, CMU-Curtright) including two different time points (2010 and 2030).    

Technologies covered. Some studies assess a single specific technology category (say, small modular reactors). 

Other studies asked separate questions about different technologies within a technology area (say, large scale 

Gen III/III+, large-scale Gen IV, and small modular reactors). Other studies aggregate the technologies in some 

way, either by having experts assess only those specific technologies they believe will be most commercially 

viable (e.g., enzymatic hydrolysis for biofuels), or by having the experts assess the future of an entire technology 

class (i.e. CCS).  

Conditioning variables. Analysts must define which conditions will be considered explicitly, and which will be 

considered implicitly, leaving the experts to make judgments about them. Conditions of interest include 

assumptions about future input prices, the characterization of government or private RD&D efforts to support the 

specific technology, or any other key energy or environmental policy (e.g. a carbon tax) as well as assumptions 

about the future state of the economy (for instance, business-as-usual conditions for economic growth). 

The most important conditioning variable in these studies is the RD&D budget. Twenty-one studies specify 

budgets explicitly, using a range of approaches. These include asking the experts to consider BAU budget 

scenarios, to provide their own suggested RD&D investment level, or to condition on budget amounts pre-

determined by the research team. The ranges of budgets vary widely, with the UMass studies generally having the 

smallest budgets and Harvard generally having the largest (see online Appendix for more details).  
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Five of the 26 studies do not specify a public RD&D budget: it is an implicit part of the expert assessment to think 

about what future budgets may be and to average over all the possible futures. There is a tradeoff between fully 

specifying external conditions (such as economic growth, trade policies, etc.) and ensuring that the burden on 

experts’ time to participate is not too onerous. 

Encoding Uncertainty. Assessing subjective probabilities can be done in two ways: assessing specific percentiles, 

such as 5-50-95, or asking for probabilities of achieving a certain specified endpoint.  Among these studies, 46% 

used percentiles, 36% used probabilities, and 18% used both. Percentiles are easy to translate to probability 

distributions and avoid anchoring the experts; but are prone to over-confidence, with experts often reporting 

ranges that are too small compared to other experts and compared to experimental findings. Probabilities are less 

prone to over-confidence (Juslin et al 1999), but may anchor experts, and may lead to a situation where only a 

small portion of the probability distribution is assessed. The gold standard would be to use both methods. 

However, the tradeoff is that with more methods for assessing values, fewer values can be assessed. For example, 

the FEEM solar study used both, but the elicited metric was aggregated (LCOE), while the Harvard solar survey 

elicited only percentiles, but focused on a finer level of detail (for instance, inverter costsmodule costs,  etc.).  

Assessment and Self-assessment of Experts. Some studies ask experts to assess their level of expertise in general 

or specific technology areas. This has appeal, since it allows researchers to determine whether experts are 

systematically favoring technologies they are most expert in (see for instance Anadón et al. 2014a and all 

elicitations by FEEM). However, no relationship has been found between an expert’s self-assessment and the 

assessments by that expert (Bolger and Rowe 2014). There is some evidence that there is value in asking seed 

questions (questions whose exact answer will be known by the researcher) and then weighting experts by how 

well they answer the seed questions (Cooke 1991; Lin and Cheng 2009). Only one of the studies considered here 

used a test question, but it was on an unrelated subject, aimed at generally assessing experts’ overconfidence.  

Train Experts. Providing experts with background information, training, and pretesting the survey before the full 

implementation of the elicitation are key steps to reduce biases and errors..  Background information generally 

includes previous cost estimates for different sub-technologies, a discussion about overconfidence and other 

biases and how to reduce them, and data on previous RD&D budgets (see for instance the supplementary 

information of Anadón et al. 2012). Pre-testing is done for most protocols, but often is not described in the 

resulting published papers.  

Perform Assessment. The expert elicitation is conducted with the full set of experts. 

Analyze and Present Results. Elicitation data can be analyzed and reported in a number of ways as discussed 

above. There is much current research on how to communicate uncertain data to final users (Spiegelhalter et al 

2011), which has relevance to the presentation of expert elicitation results. The results of the studies reviewed 

here are presented at various levels of aggregation. 

In order to compare results of expert elicitations, it is necessary to standardize the data from the different studies 

to some degree. In the remaining of this paper, we focus on the standardized cost estimates from four expert 

elicitation groups (UMass, Harvard, FEEM and CMU) for five key technologies (bioelectricity, biofuel, CCS, nuclear 

and solar). For details on the standardization, see the online Appendix as well as AVN and Baker et al. (2015a). 
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3. Cost-estimates and the impact of RD&D from energy technology 

expert elicitation 

First, we turn to what can be learned from backward looking studies on the impacts of RD&D. A number of 

specific case studies conclude that public energy RD&D investments played a major role in cost and performance 

improvements. This is the case, for instance, for the development of the GE High Efficiency Gas Turbine, 

Nanosolar, Energy Efficient Appliances, LED lighting, 3D imaging and other shale gas recovery technologies (Keller 

and Block 2008).  DOE (2000) quantifies the benefits of 20 of its most successful energy efficiency and renewable 

energy programs and finds they saved about 5.8EJ, equivalent to around 6 percent of US energy consumption in 

2005. As pointed out in Anadón and Holdren (2010) “These energy savings were three times greater than the total 

amount of funding for energy efficiency and renewable energy (EERE) appropriated by DOE”. Similarly, NRC 

(2001) found that six specific efficiency programs co-funded by the DOE and the private sector between 1978-

2000 resulted in benefits of about $30  billion 2000$;2 whereas the amount spent by DOE on all energy efficiency 

programs in that period was $7.3 billion. However, Anadón and Holdren (2010) point out that the fossil energy 

returns “were modest in comparison, and they did not allow the … claim that those …programs had produced 

enough … to cover the (investment) by DOE …”. Overall, understanding of the historic RD&D investments of both 

the public and private sector is poor (see online Appendix for more details). This notwithstanding, there is  

growing quantitative evidence supporting the notion that  public support for RD&D increases innovation in energy 

technologies as measured by patenting and results in lower technology costs in developed countries such as the 

US, Japan, Denmark, Germany, and the UK (for instance, Howell 2015; Klaassen et al., 2005; Wiesenthal et al. 

2012a). However, insights about the relative merits of different grant funding mechanisms, type of private sector 

partnership, and extent of crowding in vs. out are still few. Furthermore, to the best of our knowledge, no 

quantitative evidence is yet available for countries outside the OECD.. Overall, the available backward looking 

studies suggest that public RD&D investments in energy technologies give rise to significant returns.  

Similarly, both a descriptive analysis of elicitation data and AVN provide strong indication that higher public RD&D 

investment give rise to lower elicited costs, both at the median and at the extremes of the distribution. Returns to 

RD&D investment differ significantly by technology reflecting different technological maturity and perceived cost-

reduction options. Conversely, the level of public RD&D investment considered in expert elicitations does not 

generally affect the uncertainty range of elicited costs.   

We now turn to a comparison of the standardized cost with historical data from similar or related technologies 

and present insights on the implied average annual rate from these data. Figure 1 summarizes the future 

technology cost distributions (left panel) and the respective cost change rate (right panel).  

On the left panel, (with the exception of the CCS data) the ends of the lines show the lowest 10th percentile and 

the highest 90th percentile among all of the experts in each study, and the marker the median of the medians. For 

CCS, each line shows the 10th, 50th and 90th percentile of the aggregated distributions from Baker et al 2015a; thus 

these values are less extreme than the others.   

   

 

 

                                                           
2
 The specific programs analyzed were: advanced refrigerator/freezer compressors, electronic ballast for fluorescent lamps, 

low-emission glass, advanced lost foam casting, oxygen-fueled gas  furnace, and advanced turbine systems.  
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Figure 1: Summary of the elicitation data showing the cost-estimates from energy technology expert elicitations (left 

panel) and the implied average annual rate of cost change (right panel).  

 

 

Notes: For all technologies, with the exception of CCS, the horizontal lines range from the minimum of the 10
th

 percentile to 

the maximum of the 90
th

 percentile across all experts in that particular study.  The middle marker represents the median of 

the medians. In the case of CCS we show the 10
th

, the 50
th

 and the 90
th

 percentiles of the joint distribution across experts. The 

vertical red lines in the left-hand-side panels show the average price of the technologies in 2010 (See SI for further details).  

The right-hand panels present the distribution of the annual rate of cost changes between 2010 and 2030 of elicited cost 

distributions assuming the 2010 costs shown on the left panel. These are then plotted against the historical rates calculated 

from data in the literature, represented by the shaded vertical colored areas. Both panels show results by R&D level scenario. 
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While each study was translated into common units of $/kWh, the metrics for each technology vary somewhat. 

The solar metric is the full LCOE, accounting for all costs (other than grid integration). This cost, was calculated 

assuming a capacity factor of 12% (to be consistent with the implicit assumptions of the FEEM study); the costs 

would be about 35% lower if the the capacity factor were 18.5% instead. Both bioenergy metrics are levelized 

non-energy cost (thus excluide fuel costs), which may vary between $1-2/GGE or $.03-.06/kWh. The nuclear 

metric is levelized capital cost (thus exclude O&M, fuel cost, or waste storage), which currently are around 

$.024/kWh (NEI 2016). The CCS metric is levelized additional capital cost. It does not account for the energy 

penalty from CCS, and would need to be added to the levelized cost of fossil generation to get the full cost of 

electricity. 

For comparison, the vertical red lines in the left-hand-side panel show the average of the 2010 costs (see 

Appendix D for detail on sources). It may appear surprising that some of the 2030 costs provided by experts are 

higher than the 2010 values. However, the line shows only the average of 2010 costs, rather than an entire cost 

distribution; the elicited Harvard distributions for 2010, for example, were wide, consistent with data from IRENA.   

Overall, insights from the left-hand panel indicate that most of the technologies are expected to improve, in the 

sense that the medians, along with a large part of the future cost distribution, are lower than the 2010 cost. 

However, the median of the nuclear cost is estimated to remain close to the 2010 average cost, and there are 

many 90th percentiles that are above current costs. The average impact of additional R&D expenditures tends to 

be small relative to the entire range of uncertainty.  The value of these elicitation results, however, does not rest 

simply in the medians, but in the full range of uncertainty.  

The right-hand-side panel of Figure 1 compares historical average annual rates of change from several sources in 

the literature with the implied average annual rate from the relevant expert elicitations.   For both the historical 

data and the elicitations, the average annual rate of cost change was calculated as follows:  

  

Where t0 is the starting year and t1 the final year of the interval considered, and Costt0 and Costt1 are the relevant 

cost at those two years. The rates are highly dependent on the choice of t0 and t1 (Nemet 2009); thus we show 

multiple ranges when they exist. We report the linear average rate of change for the historical data and the 

elicitations instead of a non-linear function that would be more consistent with historical experience for two 

reasons. First, most elicitation studies only asked experts about future costs for one date (mainly in 2030).  The 

lack of intermediate points makes it impossible to estimate the two parameters needed for a non-linear fit 

consistent with Moore’s law (Nagy et al. 2013).  Second, linear averages are easier to interpret than the two 

parameters resulting from a non-linear fit.  For example, the right panel from Figure 2 can be interpreted by 

seeing that historical costs and future-looking elicitations lead to the ranges shown in terms of X% decrease in 

costs per year on average. In Appendix E we show that the ranking across technologies regarding the historical 

rate of change over time does not change if we estimate the parameters for Moore’s law.. 

Note that the analogies that were used for the historical comparisons were more similar for some technologies 

than for others.  The historical rates of bioelectricity represent the change in capital cost of biomass fluidized-bed 

combined heat and power in Sweden between 1990 and 2002. The historical range shown for biofuels represents 

the cost evolution of sugarcane ethanol in Brazil from the periods of 1980-1985 (slower rate of decrease) and for 

1985 and 2002 (faster rate of decrease) (Goldemberg et al 2004).  The expert elicitation exercise covered other 

processes, such as second generation cellulosic technologies. We did not identify a good historical analogue for 

the additional capital cost of CCS. W show two estimates of the evolution of the capital cost of nuclear power in 
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France between 1977-2002 and 1977-2002 from Gruebler (2010) and Escobar Rangel and Lévêque (2012); they 

overlap considerably and so are shown as a single range. Finally, we compare solar PV the elicitation data with 

seven studies, covering different periods and lengths of time and showing very different cost reduction rates. The 

IEA studies span 2010 to 2035; they include global module prices and include both historical and prospective 

components (IEA 2014). Fraunhofer (2015) covers historical data of solar PV prices in Germany.   

Overall, there appears to be a relationship between past experience and experts’ beliefs. Technologies with the 

biggest past decreases have medians farthest to the left, whereas nuclear, with past increases, has medians 

farthest to the right.  However, the technologies differ in the degree to which the experts see the future as being 

similar to the past. The elicitations for biofuels indicate median rates of change very similar to that seen 

historically. While the experts are not terribly optimistic about nuclear, putting the median rate of change near 

zero, they are nevertheless more optimistic than past data would imply, as nuclear has shown primarily cost 

increases in the past. This may reflect optimism, or it may be a sign that experts believe that current research, 

modelling, and licensing practices make it less likely for costs to continue to increase in the future. Note that most 

of the nuclear elicitations overlap with the historical data, and thus, continued increases would not be a surprise.  

The experts appear to expect a significant slowdown in the rate of change of bioelectricity costs, at least when 

compared to the experience from Sweden. The figure indicates that only the UMass experts foresaw a reasonable 

chance of continuing to achieve such rapid cost decreases. This indicates either (1) the experts in the studies 

believe that much of the cost reduction has been achieved; or (2) the experts in the study were over-confident 

and did not account for the kind of rapid cost reduction that was recently seen in Sweden.  Solar is of particular 

interest. The band of color on the far left indicates a recent significant annual cost decreases over a short period 

of time. The experts appear to believe, however, that in the long term, the annual decrease rate will be, on 

average, similar to what it has been over longer historical periods and estimated by Fraunhofer and IEA.  This is 

consistent with statistical expectations in general: it is not unusual to have an outlier over a short period of time 

(such as between 2010 and 2014 in the Fraunhofer estimate), but experts seem to expect future changes to have 

some reversion to the mean. Again, there are two interpretations. First, it is possible that experts in the 

elicitations missed a fundamental change to the trajectory of costs that started in 2010 and will continue; this is a 

real possibility since most of the elicitations took place before 2010 when prices started falling rapidly. Second, an 

alternative interpretation is that the experts correctly estimated the long term trajectory of solar, with the short 

term rapid reductions in cost not indicating a change in the trajectory, but rather simply a random deviation. The 

three IEA forecasts overlap with most of the medians of the expert elicitations, but do not provide information 

about the range of outcomes around the median.  

This comparison informs on the value of elicitations in combination with past data. Elicitations are able to provide 

insights about the range of possibilities, meaning that there will be far fewer surprises than when decisions are 

based on historical estimates. Elicitations, such as these, can include the impact of prospective policies, and can 

consider deviations in rates of technological change that may be enabled by new scientific developments; it is 

difficult or impossible to get this information from past data. Past data and elicitations together can be 

particularly revealing. When compared, they can tell us when experts think the future will be different from past; 

this information can be further explored and considered in policy decisions.     

 

4 Future research needs and conclusions 

This paper provides a comprehensive overview of existing expert elicitation studies on the future of energy 

technologies with a focus on the impact of RD&D investments. Understanding the future performance of energy 
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technologies, and how those may be affected by RD&D, is key to the design of energy RD&D portfolios and to the 

development of better projections of the costs of future emissions scenarios. Although looking at past 

performances of R&D programs and at the evolution of technological costs is a key input to the process of 

designing careful strategies for the future, this data may, by itself, not make the best use of all information 

available to anticipate unexpected and unprecedented patterns due to characteristics that may be technology 

specific or related to unprecedented phases in the boundary conditions. For these reasons, expert elicitations are 

an important, and complementary, source of information. 

Taken all together, the expert elicitation data summarized here show some regularities. Most simply, experts 

largely believe that increased public R&D investments will result in reductions in future technology costs by 2030, 

although possibly with diminishing marginal returns. Implicit median annual rates in cost reduction collected 

through expert elicitations partly reflect historical trends in those technologies. However, the information 

collected is much richer and allows us to look into the extremes of the tails (breakthroughs and failures) thus 

allowing the design of more robust policies. For all technologies, experts see the possibility of breakthroughs that 

would make the technology cost competitive, envisioning sustained annual rates of cost reduction on the order of 

10% per year. These tails seem to be more extreme under higher R&D; it is more difficult to say what would 

happen under decreased funding. The range of uncertainty and disagreement among the technologies and teams 

seems to imply that there are benefits in a portfolio approach to technology R&D, rather than picking a small 

number of winners (Anadón et al. 2015). However, it is important to note that any improvements in technology 

must be evaluated in the context of the economy before decisions about R&D investment are made.  

In general, many results differ substantially across studies. This finding, corroborated by three meta-analysis 

studies, indicates that differences in elicitation design (including choice of experts, mode of elicitation, and format 

of the questions) may lead to differences in estimates. In order to extract the full value of these elicitations, it is 

important to explore the role of key features in elicitation design, perhaps experimentally, and to bring these 

lessons to practice in the design of shared protocols that allow a more systematic collection of data. As the cost of 

elicitation can be very high, a possible way forward would be to design web-based protocols that maximize the 

effectiveness of the elicitation while allowing repeated communication with experts as well as the participation of 

a broader set of experts. 

A few important gaps in the literature emerge from this overview. First, although many studies conditioned on 

current or increased RD&D investments, very few (considered drastic reductions in current RD&D spending Jenni 

et al. 2013; Fiorese et al. 2014; Ricci et al. 2014; NRC 2007 are exceptions). In times of tight governmental 

budgets, it is important to assess what would happen if entire RD&D programs were scaled down.  Second, as the 

geography of experts appears to be a key driver of elicited costs, and given that energy RD&D investments data 

show an increasing role for emerging economies, it will be important to extend expert elicitations to include 

experts from emerging economies to obtain a more exhaustive picture of how technologies might progress.  

Third, some technology areas, such as utility scale energy storage, wind, vehicles, gas turbines, geothermal and 

energy efficiency technologies, have been the subject of few, or no, publicly available expert elicitations. As a 

result, our ability to analyze these technologies and how they fit into energy RD&D portfolios is limited, 

particularly given insights presented on some of the drivers of the estimates.  

Overall, the recent emergence of data on future energy costs through expert elicitations is providing the 

opportunity and (we would argue) the obligation of more rigorously and transparently introducing considerations 

of uncertainty around technical change on discussions about energy policies and climate change mitigation. We 

believe this is essential given the magnitude of the uncertainties involved and their impact on costs. The elicited 

probabilistic information summarized in this paper sheds light on where technological progress is most likely, and 
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how it is influenced by public RD&D efforts. Expert elicitation data can serve as input to the calibration of 

integrated assessment and energy system models that are commonly used to design and evaluate energy and 

climate policies. Finally, it can be used in more complex analyses aiming at the definition of energy RD&D 

portfolios that account for multiple societal objectives and that are robust to key uncertainties affecting the 

innovation process. 

In the spirit of the suggestions by Convery and Wagner (2015), this review provides an up to date summary of 

what we know, and what we do not know, about the future of technological progress in energy and how it is 

influenced by public RD&D efforts. While scientists and economists are often more comfortable with point 

estimates derived from past data, this work shows that the uncertainty about the future is much wider than can 

be derived from past data, and that surprises, both happy and unhappy, are real possibilities that need to be 

accounted for. The presence of multiple studies covering similar technologies underlines that representing 

uncertainty is a complex task, one in which insights can most certainly be drawn, but where humility is a 

necessary trait.   
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Appendix A: Individual Survey Data  

In all following graphs, when one expert elicited more than one specific sub-technology category, the values for 

that expert were aggregated. The aggregation was carried out taking the minimum of the 10th percentile, the 

median of the 50th percentile and the maximum of the 90th percentile. 

Harmonized surveys 

 
Figure 1: Experts’ results of the bioelectricity surveys per expert and per R&D scenario. The lines range from  the 10th to 

the 90th percentiles and the marker in between represents the 50th percentile. 
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Figure 2: Experts’ results of the biofuel surveys per expert and per R&D scenario. The lines range from the 10th to the 90th 

percentiles and the marker in between represents the 50th percentile.  
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Figure 3: Experts’ results of the CCS surveys per expert and per R&D scenario. The lines range from the 10th to the 90th 

percentiles and the marker in between represents the 50th percentile.  
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Figure 4: Experts’ results of the nuclear GenIII/III+ surveys per expert and per R&D scenario. The lines range from the 10th 

to the 90th percentiles and the marker in between represents the 50th percentile.  
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Figure 5: Experts’ results of the nuclear GenIV surveys per expert and per R&D scenario. The lines range from the 10th to 

the 90th percentiles and the marker in between represents the 50th percentile.  
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Figure 6: Experts’ results of the nuclear SMR surveys per expert and per R&D scenario. The lines range from the 10th to the 

90th percentiles and the marker in between represents the 50th percentile.  
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Figure 7: Experts’ results of the PV surveys per expert and per R&D scenario. The lines range from the 10th to the 90th 

percentiles and the marker in between represents the 50th percentile.  
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Figure 8: Experts’ results of the CPV surveys per expert and per R&D scenario. The lines range from the 10th to the 90th 

percentiles and the marker in between represents the 50th percentile.  
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Individual experts non harmonized surveys   

CCS  

 
Figure 9: Experts’ results of the UMass (Jenni et al 2013a) CCS survey per expert and per R&D scenario. The lines range 

from the 10th to the 90th percentiles and the marker in between represents the 50th percentile.  
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Figure 10: Experts’ results of FEEM CCS survey per expert and per R&D scenario. The lines range from the 10th to the 90th 

percentiles and the marker in between represents the 50th percentile. R&D level 1 corresponds to no further R&D for the 

specific capture technology is funded by the EU; R&D level 2 is as level 1 but some type of carbon price is enacted 

worldwide, beginning in 2015 (assumes that whatever form the policy takes, it has the effect of about a $100/tonCO2 

Carbon Tax worldwide); R&D level 3 assumes that the EU increases investments in a specific capture technology R&D 

substantially, to about $250 million per year, starting in 2015 and continuing at that level through to 2025. (Consider that 

since 2002 annual R&D investments for capture technologies in the EU have ranged between 0.6-111.0 Million 2010US$, 

with an average of 41.6 Million 2010US$). 
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Vehicles  

 
Figure 11: Experts’ results of the FEEM vehicle batteries survey per expert and per R&D scenario. The lines range from the 

10th to the 90th percentiles and the marker in between represents the 50th percentile.  
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Figure 12: Experts’ results of the Harvard vehicles survey per expert and per R&D scenario. The lines range from the 10th 

to the 90th percentiles and the marker in between represents the 50th percentile.  
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Utility Energy Storage  

  
Figure 13: Experts’ results of the Harvard storage survey per expert and per R&D scenario. The lines range from the 10th to 
the 90th percentiles and the marker in between represents the 50th percentile.  
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Natural Gas 

   
Figure 14: Experts’ results of the Stanford (Bistline 2013) natural gas survey per expert and per R&D scenario. The lines 
range from the 10th to the 90th percentiles and the marker in between represents the 50th percentile.   
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 Appendix  B. Data Standardization Process   

 
As noted in the appendix of Anadón et al. (2015):  “In order to compare and aggregate the values that were 

elicited in the individual surveys, a set of harmonizing assumptions had to be made to allow a meaningful 

comparison. For each of the assumptions that differ across studies (i.e., as currencies and currency years, endpoint 

years, and other underlying technical factors) we had to make a decision on what value to converge to. The 

harmonization process per se required months of research and discussions between the authors of the different 

elicitation studies”.   This Appendix briefly summarizes the data cleaning and harmonization procedures. We refer 

the interested reader to the original articles (Anadón et al 2013; Anadón et al.2015; Baker et al. 2015; Verdolini et 

al. 2015; Nemet, et al 2016) for further details. This Appendix borrows heavily from the Appendices and 

explanations included in these articles. First, whenever elicitation groups collected different metrics, the 

harmonization process entailed constructing a model to make the data comparable using common assumptions 

(e.g., insolation and discount rates). Details in this respect are explained below in subsection B.1 and organized by 

technology (Nemet el al. 2016). Second, all surveys included in the harmonization procedure elicited costs in 

2030, with the exception of the UMass studies, which asked experts about 2050. The explanation of how UMass 

elicited values were adjusted is presented in subsection B.2. Third, harmonization of the R&D levels is discussed in 

subection B.3. 

  

Section B.1: Harmonization of cost estimates 

As argued in Section 2 of the paper, differences among studies make it challenging to compare the results of the 

expert elicitations. For instance, it is impossible to gather insights on the impacts of RD&D investment levels 

across the different studies if the elicited metrics are different. To address the issue of data comparability across 

different energy technology expert elicitations, a set of papers performed a standardization process on a subset 

of the studies listed in Errore. L'origine riferimento non è stata trovata. (Anadón et al 2013, Baker et al. 2015a;  

Verdolini et al. 2015; Nemet et al. 2016). We summarize here the main aspects of the standardization process. 

Details on the standardization of the budget amounts with which experts were confronted are discussed in 

Appendix C.  

 

First, all elicited values were transformed in the common metric of 2010$/kWh using common assumptions (e.g., 

insolation and discount rates). This common metric represented an LCOE for solar photovoltaics, a non-energy 

LCOE for bioelectricity, a non-energy levelized cost of fuel for biofuels, a partial levelized cost of electricity for 

nuclear (including only capital cost), and a levelized additional cost of CCS.  Harmonization assumptions are 

detailed below for each technology and study.  Table B.1 below was compiled using information from  Anadón et 

al (2013); Anadón et al. (2015); Baker et al. (2015); Verdolini et al. (2015); Nemet et al (2016) and summarizes the 

elicited values and key assumptions for the UMass, Harvard, CMU and FEEM harmonized studies. 

 

Another aspect is that different elicitation studies use different levels of granularity in the assessed technologies 

(e.g. general CCS versus absorption) and metrics. This was addressed by identifying the level of technology 

granularity that allowed for the largest number of elicitations, generally the most-aggregated level. For example, 

some nuclear surveys focused on collecting information on the most commercially-viable large-scale Gen. IV 

nuclear system and its future cost, while others focused on specific reactor configurations such as fast reactors 

and high temperature reactors. When experts provided cost estimates for different sub-technologies, only the 
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lowest cost sub-technology estimate is used, assuming that this would be the technology that would be most 

successful in the economy.   

 

Table B1. Summary of key assumptions in harmonization process (Nemet et al. 2016) 

Group  Biofuels  Bioelectricity  CCS  Nuclear Solar

UMass        Manufacturing cost per m2

metrics elicited    efficiency l i fetime

FEEM      Cost per gge  Cost per kwh  N/A                  Overnight capita l   LCOE

metrics elicited     O&M cost      O&M cost      cost               

Harvard  Cost per gge  Cost per kwh Overnight capita l  cost ($/kW)          Overnight capita l  cost ($/kW)          Module capita l  cost per Wp

metrics  elicited Plant l i fe  Plant l i fe    Generating efficiency Fixed O\M cost Module efficiency

yield (gge/dry ton 

feedstock)          

 yield  (gge/dry ton 

feedstock)          
HHV  Variable  O\M cost           Inverter cost

        feedstock costs    Capacity factor  Fuel  cost Inverter efficiency

          Book l i fe               Thermal  burnup     Inverter l i fetime

CMU  N/A                  N/A                  N/A                  Overnight capita l  cost   Module prices  in $/W for

metrics elicited                di fferent solar systems

Common Metrics 

Harmonized 

Non-energy level ized 

cost of fuel
Non-energy LCOE Level ized capita l  cost Level ized capita l  cost   LCOE

Key          0.031 kwh=1gge Interest Rate=0.1 Interest Rate=0.1 Capacity Factor: 12%

Assumptions  Li fetime=40 Li fetime=40 Factor  Discount rate: 10%

       Capacity Factor=0.9 Hours  per year: 8760

           Li fetime: 20

           
BOS m2: 75 UMass , 250 

Harvard 

           
Cost of Power Cond ($/Wp): 

0.1

           
Moduel  Area Costs  ($/m2): 

350

           
Peak Power Insolation 

(Wp/m2): 1,000 

           

See  description below  

about assumptions  needed 

to turn UMass  2050  

estimates  to 2030 estimates

                               

For CMU solar, Module 

prices  $/W were converted  

into LCOE $/kWh us ing the 

average va lues  from the 

Harvard s tudy for the other 

cost components  and BOS 

as  wel l  as  other 

assumptions  above

 Capita l  cost per gge 

(ga l lon of gasol ine 

equiva lent), capacity, 

 Various  technica l   

endpoints

 Various  technica l   

endpoints

 Various  technica l   

endpoints

See  description below 

about assumptions  

needed to turn UMass  

2050  estimates  to 2030 

estimates

See  description below  

about assumptions  

needed to turn UMass  

2050 estimates  to 2030 

estimates

See  description below 

about assumptions    

needed to turn UMass  

2050  estimates  to 2030 

estimates

See  description below  

about assumptions  

needed to turn UMass  

2050 estimates  to 2030 

estimates

See  description below 

about assumptions  

needed to turn UMass  

2050 estimates  to 2030 

estimates

See  description below 

about assumptions  

needed to turn UMass  

2050 estimates  to 2030 

estimates

  

Section B.2 Temporal harmonization of UMass data 

As explained in  Anadón et al. (2015):  “In order to adjust the UMass endpoints from 2050 to 2030, which was the 

time frame used in the FEEM and Harvard studies, we backcasted the UMass 2050 estimates to 2030 using 

Moore's Law and parameters from Nagy et al. (2013). Nagy et al. (2013) analyzed a large dataset for several 

technologies, and concluded that the estimated costs that used only the parameter time performed 

approximately as well as the traditional experience curve. Thus, we use the following relation based on Moore's 

Law: 
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Where m is a parameter of this model calculated from B, the learning rate, and g, the growth rate of production, 

as follows. 

 
This method is used to estimate the values for 2030: 

 
The parameter m is calculated using the learning parameters B, taken from the literature, and the growth 

parameter g provided in Nagy et al. (2013). A summary for all technologies is reported in Table B.2. 

 
Table B.2. reprinted with permission from Baker et al 2014(a)  

 

Section B.3: RD&D investment assumptions in expert elicitation and harmonization of 

R&D levels 

Twenty-four of the studies reviewed here specifically conditioned on RD&D funding scenarios. As noted in 

appendix of Anadón et al. (2015), the UMass, Harvard and FEEM experts were confronted with different R&D 

scenarios as explained below:  “Experts were asked to assess future costs and performance of energy 

technologies, for three given levels of R&D funding by governments in order to study the effect of government 

R&D on reducing the costs of clean energy technologies. Each team defined R&D funding levels differently.  […] 

funding levels are grouped into three broad categories, Low (which is consistent with a business-as-usual (BAU) 

scenario for FEEM, an increase of 50% to 200% over BAU for Harvard, and small investments, independent from 

the BAU, into specific technologies for UMass), Medium (ranging between an additional 50% to a 16-fold increase 

over low) and High (ranging between an additional 30% to a 10-fold increase over medium). And, while both 

Harvard and FEEM included demonstration expenditures, UMass asked questions about smaller R&D scenarios 

that did not include demonstration expenditures.   

The CMU nuclear cost elicitation made R&D assumptions consistent with a BAU scenario (Low R&D). Conversely, 

the solar CMU study made assumptions about both R&D investment and specific deployment levels. Specifically, 

experts were asked for their estimates under four scenarios: 

a) Status quo, defined as 2008 government RD&D funding levels for the PV technology being considered and 

current government incentive levels for deployment of PV technologies in general; 

b) 10x RD, defined as 10 times the 2008 RD&D level 

c) 10X deploy, defined as a 2008 RD&D investment level, accompanied by a 10-fold increase in deployment 

in the United States  

d) 10X deploy and 10X RD&D, defined as a combination of scenarios (b) and (c). 

Scenario (a) was categories as “low” RD&D and elicitations, while scenarios (b) as “high” RD&D.  Data for 

scenarios c and d were not used. 

 

Table 3 summarizes the details of the assumptions about RD&D funding scenarios for the studies which 

underwent the standardization process described in Section 2.  
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Table B.1: RD&D levels in expert elicitations 

Group 

 RD&D Level  (million 2010$) 

Comments 
Low Medium  High 

Excluded from 
present study 

 Bioelectricity 

UMass 15 50 150     

Harvard BAU: 214 
Ave. REC RD&D 

(585) 
10 REC RD&D 0.5 REC RD&D Includes biofuels budget 

FEEM 169 254 338     

Biofuel 

UMass 13 201 838     

Harvard BAU: 214 
Ave. REC RD&D 

(585)  
10 REC RD&D 0.5 REC RD&D (includes bioelectricity budget) 

FEEM 168 252 336     

Carbon Capture and Storage 

UMass 13 48 108     

Harvard BAU: 701 
Ave. REC RD&D 

(2,250)  
10 REC 0.5 REC includes coal and gas CCS budget 

CMU BAU 10 BAU   
Deployment 

scenarios   

Nuclear power 

UMass 40 480 1980     

Harvard BAU: 466 
Ave. REC RD&D 

(1,883)  
10 REC 0.5 REC 

(includes Gen III+ and IV, both large-
scale and SMRs) 

FEEM BAU: 800 
Ave. REC RD&D 

(1,514)  
10 REC 0.5 REC 

(includes Gen III+ and IV, both large-
scale and SMRs) 

CMU BAU:  466       
No explicit assumptions on RD&D, 
but consistent with BAU RD&D 
budget. 

Solar power 

Umass 25 140       

Harvard BAU: 143 
Ave. REC RD&D 

(409)  
10X REC 0.5X REC   

FEEM 171 257 342     

CMU BAU 10 BAU   
Deployment 

scenarios 
  

 

  

Section B.4. Quantitative analysis of results from multiple elicitations   

We now summarize the results of three studies which investigated the impact of study design on the outcomes of 
expert elicitations, using the standardized data from a subset of the expert elicitations presented above. As 
discussed in Section 2, differences in the protocol design (i.e., metrics, target year, mode, RD&D scenarios) and 
the background and geographic area of the experts make it difficult to draw insights through a simple 
juxtaposition of elicited cost estimates.  
Anadón et al (2013); Verdolini et al. (2015); Nemet et al. (2016) use a meta-analytic approach to test whether 
expert or survey characteristics,  including assumptions about technology granularity and R&D levels, impact 
elicited values in a statistically significant way. The three papers use similar methods,  but cover different sets of 
studies: Anadón et al. (2013) focus on nuclear power, Verdolini et al. (2015) on solar PV, and Nemet et al. (2016) 
pulls together 16 surveys on five energy technologies (solar, nuclear, biofuels, bioelectricity and coal with CCS). 
The studies investigate two sets of independent variables: percentiles (10th, 50th, and 90th representing “best-
case/breakthrough scenario,” median expected future costs and “worst case scenario”) and a normalized 
measure of the range of uncertainty. The four key categories of variables included: (1) technology characteristics, 
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(2) R&D levels, (3) expert characteristics (sectoral background and geographic area), and (4) study characteristics 
(elicitation mode, year of elicitation, whether elicitation was published in a peer-reviewed journal).  
Overall, the three studies provide strong indication that: public RD&D investment has an impact on elicited costs, 
both at the median and at the extremes of the distribution. Such impact is, however, technology specific in that 
the returns to RD&D investment differ by technology in a significant way. This reflects different technological 
maturity and perceived cost-reduction options. Conversely, the level of public RD&D investment considered does 
not generally affect the uncertainty range of elicited costs.  In a number of cases, expert background and 
geographic location are associated with lower or higher cost estimates, but this effect is technology specific and 
cannot be generalized. This probably reflects the experience of experts with a given technology. It also raises the 
issue of selecting experts from different backgrounds to capture a wider variation in elicited costs.  In-person 
surveys are associated with broader uncertainty ranges. This suggests that current online methods are not as 
good as an interviewer in getting experts to think more broadly. While it would be ideal to explore these findings 
further within an experimental design in which only one variable is changing at a time, they provide initial 
evidence that elicitation design impacts the elicited metrics.  
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Appendix  C. Energy RD&D Investments   

In this section, we present an overview of historical energy RD&D budget levels and allocations globally by public 

and private actors, and of experts’ future looking recommendations about public U.S. energy RD&D levels and 

allocation.  

Section C.1. Sources of Public and Private RD&D data 

There are two main sources of information on public energy technology RD&D budgets for developed countries. 

The International Energy Agency collects RD&D Budget/Expenditure Statistics for 29 IEA Member countries for 

several large technology categories: energy efficiency; fossil fuels; renewable energy sources; nuclear fission and 

fusion; Hydrogen and fuel cells; other power and storage techs; Total other cross-cutting technologies or 

research.1 Data includes both budgeted and expenditure amounts, and is generally available starting in the 1980s. 

More granular information on the allocation of RD&D within each technologies (for instance, for the categories of 

“solar heating and cooling,” “PV,” “solar thermal power and high-temperature applications,” and “unallocated 

solar energy” within solar energy more in general) has become available only recently and not for all countries.  

 

Statistics on energy-related public RD&D budgets (but not expenditures) are also collected as part of the GBAORD 

database by EUROSTAT and the OECD (OECD 2016). Statistics include government-funded RD&D performed in 

government establishments but also government-financed RD&D in the other sectors (business enterprise, 

private non-profit, higher education) as well as abroad (including international organizations) and are collected 

under different socio-economic objective (SEO).2 One of the 13 SEOs of public RD&D funding is “Production, 

Distribution and Rational Utilization of Energy”, which also includes research on processes designed to increase 

the efficiency of energy production and distribution, and the study of energy conservation. 

 

In addition to these public efforts in funding energy R&D, private investments also have a crucial role, although 

information on private energy R&D investments is rather poor. The few available data sources in this respect offer 

a partial picture of private investments in the broad category of energy technologies.  The comprehensiveness of 

data on private RD&D in electricity generation technologies, especially renewables, is relatively good. Conversely, 

information on other technologies, such as vehicles and batteries, is very limited.  

 

The data sources reporting the level of private energy RD&D investments in developed countries include:  

 

- The US National Science Foundation Industrial Surveys (the BRDIS – Business  Research and Development 

and Innovation Survey, NSF 2015), described in Anadón et al. 2014. Before 2008, BRDIS had 3 broad 

                                                           
1
 Countries covered include: Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Estonia, Finland, France, 

Germany, Greece, Hungary, Ireland, Italy, Japan, Republic of Korea, Luxembourg, Netherlands, New Zealand, Norway, Poland, 
Portugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey, United Kingdom, and United States. Iceland, Chile, and Mexico 
are OECD members, but are not IEA members. For further details see (IEA 2015).  
2
 The SEOs are based on the Nomenclature for the Analysis and comparison of Scientific programs and Budget (NABS) 2007 

classification. These include Exploration and exploitation of the earth, Infrastructure and general planning of land-use, 

Control and care of the environment, Protection and improvement of human health, Production, distribution and rational 

utilization of energy, Agricultural production and technology, Industrial production and technology, Social structures and 

relationships, Exploration and exploitation of space, Research financed from GUF, Non-oriented research, Other civil 

research, Defense. 
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technology classes (nuclear energy, fossil energy and all other) and only covered about 100 large firms. 

After 2008 it covered over 11,000 firms, and provided a clear definition of “energy”, but it did not provide 

results disaggregated by technology area. Data is available since 2000, and the most recent available 

estimate (2010) from this sources indicates private energy R&D investments in the United States for over 

$16 billion in 2010$ for a total of 11,557 firms.  

- The EU Joint Research Center (Wiesenthal et al. 2012), which estimates private investments in 

technologies that are part of the Strategic Energy Technology Plan for the year 2007. The SET Plan 

technologies include wind energy, photovoltaics (PV) and concentrating solar power (CSP), CCS, biofuels, 

hydrogen and fuel cells, smart grids, nuclear fission, and nuclear fusion. Wiesenthal et al. (2012) use a 

bottom up approach refining basic data on individual companies taken from the EU Industrial RD&D 

Investment Scoreboard and companies’ annual reports with other publicly available data and direct 

contacts with individual enterprises and. Information details totals by technology and country, but not 

firm counts. Using this methodology, they estimate that corporate R&D in 2007 for non-nuclear 

technology areas was around €1.66 billion €2007, with a margin of error of 24%. Given the broader 

definition of energy R&D used in the NSF BRDIS survey, the EU and US numbers presented are not 

comparable.  

- The JRC-IPTS Scoreboard which contains information on corporate R&D financed by the top 1400 EU and 

non EU firms. R&D expenditures are allocated to the parent company, thus effectively assigning all the 

R&D investment to the country where the parent company is located, independently of where the actual 

R&D expenditure took place. A focus on the power sector is available for the time period 2007- 2010, 

where the sectors Electricity, Gas, water & multi-utilities, and Alternative energy are defined. However, 

some firms reported in the Scoreboard and that perform R&D relevant to the power sector are classified 

elsewhere, as their main product segment is not power generation. For example, the Japanese Company 

Hitachi Kokusai Electric is classified under the Electronic equipment sector, but it sells most of its products 

(69% of total sales) to the power sector. General Electric, which according to the ICB classification 

standards falls under General Industries, perform research in many areas closely connected to power 

generation such as wind turbines and sells 9% of its products to the power sector.  

- The OECD ANBERD Database (BERD) database, which is a source of information on sectoral RD&D 

expenditure performed. Within the database, expenditures for the sector “Electricity, water and gas 

distribution industry” sector are detailed. There are two main challenges in using the ANBERD data. First, 

the statistics are presented by sector of performance expenditures regardless of whether funding was 

sourced from private or public spending, and expenditures by large energy authorities are frequently 

classified in the service sector and this can distort the international comparison at the industrial level. 

Second, the sector “Electricity, water and gas distribution industry” is clearly not capturing in a 

satisfactory way the R&D expenditure related to power production and distribution, as much of it is 

carried out in other sectors such as mining and machinery which provide capital and material inputs to 

energy production.   

 

Both public and private energy RD&D data in middle- and low-income countries is also hard to find, since it is 

not compiled systematically. A recent Harvard study showed that middle- and low-income countries’ 

investments in energy technology R&D are however becoming sizeable and must be taken into account in an 

effort to think about the future evolution of technologies. Kempener et al. (2010) and Kempener et al. (2014) 

present data for the each of the BRIMCS countries (Brazil, Russia, India, Mexico and South Africa) for one year 

into categories compatible with the IEA technology categorization. Kempener et al (2010) show estimates for 

2008 of at least $13.8 billion 2008$ PPP (an estimate that includes funding from state owned enterprises 
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where the government has a majority stake). The data are only available namely: fossil (including CCS), 

nuclear, electricity, transmission, distribution and storage, renewable energy sources, energy efficiency, and 

other. The “at least” caveat mentioned above is important because there were many categories for which 

data was not available for a particular country, which does not mean that there was no expenditure in the 

area. In the same year, governments in IEA member countries reported investing $12.7 billion 2008$ PPP.   

 

Recently, the Bloomberg New Energy Finance (BNEF 2014) started collecting data on renewable energy 

investments globally. These include not only public and private RD&D expenditures, but also information on 

venture capital, private equity, asset finance focusing on energy technologies. The Frankfurt School, UNEP, 

and Bloomberg New Energy Finance used this information to publish a yearly report on energy investment 

with global coverage since 2010. While including information on key developing countries, the data only 

covers renewable power and fuels (thus, it does not include, for example, vehicles, efficiency, nuclear, or 

CCS). Other major limitations of this data source are that the number and size of the firms included in the 

estimates are not specified, that it is unclear how the renewables R&D budget for big corporations active in 

both energy and non-energy technology areas is determined, and what the criteria are for including firms. 

Nonetheless, this source indicates a budget of $5 billion 2014$ in corporate RD&D in renewables in 2013, 

which, according to their estimates, is roughly the same size as the amount of government R&D for clean 

energy. 

 

Section C.2. Past RD&D investments 

A clear understanding of the magnitude and impact of past energy RD&D would help towards designing robust 

RD&D investments portfolios. Unfortunately, there is a pervasive lack of data compounded by difficulties in 

attributing technological change to individual causes; this has made it difficult to assess the effectiveness of public 

RD&D investments. As evident from Table 2, it is extremely hard to grasp the magnitude of energy-related RD&D 

investments from these different data sources. Estimates are not comparable across different sources given 

differences in the technologies considered, the methodologies used to collect data (budget versus expenses, 

whether the data is allocated to parent company in the home country or in the country where it is spent, etc.). 

Furthermore, insights on the trends in energy-related RD&D expenditures are hard to draw given the lack of time-

series data, with the exception of public investments in OECD countries reported by the IEA. The USA and Europe 

lead in terms of investments. However, fast-developing countries are increasing their investments, with China 

doing so at an impressive rate (Anadón 2012). 

Table C.2 provides information on public and private RD&D investments from several of the sources described in 

Section C.1 above.  As evident from the table, it is extremely hard to grasp the magnitude of energy-related RD&D 

investments from these different data sources. Estimates are not comparable across different sources given 

differences in the technologies considered, the methodologies used to collect data (budget versus expenses, 

whether the data is allocated to parent company in the home country or in the country where it is spent, etc.). 

Furthermore, insights on the trends in energy-related RD&D expenditures are hard to draw given the lack of time-

series data, with the exception of public investments in OECD countries reported by the IEA. The USA and Europe 

lead in terms of investments. However, fast-developing countries are increasing their investments, with China 

doing so at an impressive rate (Anadón 2012). 

 

 



23 

 

Table C.2: Energy RD&D investments by country (or region), public and private, various sources, 2010USD.  

Country Source Source Technology 2004 2005 2006 2007 2008 2009 2010 2011

BNEF (2012) Corporate R&D Renewable energy 1 9 9 19 47 38 47 38 38

Kempener et al. (2010) Government R&D
Fossil energy 

(incl.CCS)
65 69 90 102 80

Kempener et al. (2010) Other
Fossil energy 

(incl.CCS)
603 755 1,208 1,256 1,182

Kempener et al. (2010) Government R&D Renewable energy 47 45 67 47 15

BNEF (2012) Corporate R&D Renewable energy 19 19 28 85 19 304 437 304

Kempener et al. (2010) Government R&D
Fossil energy 

(incl.CCS)
3,545 3,810 4,646 5,614 6,844

Kempener et al. (2010) Other
Fossil energy 

(incl.CCS)
41 56 47 106 293

Kempener et al. (2010) Government R&D Renewable energy 

Binz et al. (2015)
Special Programs 

relevant for Energy

energy expenditure of 

973 project
11 12 12 20 22 31 38 41

Binz et al. (2015)
Special Programs 

relevant for Energy

energy expenditure of 

Gongguan project
8 15 24 23 31 20 20 23

IEA (2016) Government R&D Renewable energy 364 487 559 676 733 1,082 1,282

IEA (2016) Government R&D Fossil Fuels 244 264 291 323 309 377 425

OECD (2016)
Government R&D 

(Federal budget)
Energy 2,191 2,656 2,687 3,101 3,875 3,770 3,960 3,827

BNEF (2012) Corporate R&D Renewable energy 1,083 712 883 703 1,102 1,216 1,339 921

Wiesenthal et al. 

(2012b)
Corporate R&D

non nuclear SET Plan 

Technologies2 2,312

BNEF (2012) Corporate R&D Renewable energy 0 0 9 9 28 57 57 38

Kempener et al. (2010) Government R&D
Fossil energy 

(incl.CCS)
148 97 311 188 107

Kempener et al. (2010) Other
Fossil energy 

(incl.CCS)
2,420 1,585 566 1,396 703

Kempener et al. (2010) Government R&D Renewable energy 39 18 31 46 58

IEA (2016) Government R&D Renewable energy 272 272 214 571 451 2,202

IEA (2016) Government R&D Fossil Fuels 483 436 435 464 569 3,351 454

OECD (2016)
Government R&D 

(Federal)
Energy 1,578 1,478 1,347 2,027 2,148 3,895 2,607 2,251

BNEF (2012) Corporate R&D Renewable energy 2,184 712 826 722 959 883 1,007 978

Jones et al (2014) - NSF 

SIRD 
Private RD&D

Energy applications3 2,429 2,934 4,206 5,671

Jones et al (2014) - 

BRDIS
Private RD&D

Energy applications3 16,107 16,482 16,477

* EUROPE refers to the EU27. Note that IEA and OECD do not collect data for some of the EU27 (see sources for details)
1 Biofuels, Biomass & Waste, Geothermal, Marine, Small Hydro, Solar, Wind
2 Inxcludes fuels cells and smar grids
3 Energy applications, including energy production, distribution, storage, and efficiency (excluding exploration and prospecting). Energy R&D in industry from 

the NSF SIRD survey (from 2000 to 2007) and the BRDIS survey (for 2008-2010).  

Brazil

China

Europe*

India

United 

States

 
 

As argued in Section 3 of the paper, there are number of reports and assessments that analyze specific case 

studies, of, concluding that public energy RD&D investments have played a major role in cost and performance 

improvements.  
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Section C.3. RD&D Budgets in Energy Elicitations 

Most of the elicitation studies listed in Table 1 considered multiple levels of RD&D funding to prompt experts to 

think about both business-as-usual and extreme funding scenarios. Four studies – Jenni et al 2013, Ricci et al 2014 

and two NRC studies -- explicitly considered a “No RD&D” scenario. Many studies defined budgets based on 

multiples of current governmental RD&D budgets, including the FEEM studies (EU budgets); Curtright et al. (2008) 

and Chung et al (2011) (US budgets); the NRC studies, Jenni et al. (2013) (USDOE budgets).  Rao et al. (2006) only 

specified “modest but steady growth” of the current DOE budget.   

The UMass studies developed budget amounts in a bottom-up manner in conjunction with a subset of the experts 

for each sub-technology (e.g. purely organic solar cells, post-combustion CCS). These budgets did not include 

demonstration plants, and were primarily aimed at inducing scientific breakthroughs that would enable better 

technologies. The Harvard studies asked experts to develop a recommendation in a bottom-up fashion by 

allocating funding amounts to specific research areas within a technology, and to cover the spectrum from basic 

RD&D, applied RD&D, and demonstration plants. They then made assessments conditional four RD&D scenarios: 

BAU, and ½X, 1X, and 10X their recommended budget.  Figure 15, sourced from Anadón et al (2014a), displays the 

median, minimum and maximum amount of recommended RD&D budgets by technology area, and compares it to 

the 2009 and 2015 U.S. Department of Energy funding allocations (see also Table ES-1 in Anadón et al 2011). 

Overall, Harvard experts recommended increasing public RD&D funding for specific technology on average  by a 

factor of 2.5 (for fossil, solar, and bioenergy) to about 11 (for energy storage).   

 

Figure 15: Recommended budgets from the Harvard studies per expert and technology. 

 

   
Source: Anadón et al (2014a), Transforming US Energy Innovation, page 118, Figure 2.5. The figure presents range 

of budget recommendations from experts, by technology area. The red line represents the median 

recommendation; the blue box encompasses the 25th and 75 percentiles; the black lines represent the highest and 
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lowest recommendations within 1.5 times the interquantile range of budget recommendations. The 

recommendations outside this range are show with cross marks. 

 

Section C.4. Expert recommendations on funding allocation by technology and types 

of RD&D 

Some elicitations asked experts to provide a recommended allocation of the RD&D funds for a particular 

technology area across different technological paths or focus areas explored in the elicitation (e.g. how much to 

allocate to enzymatic hydrolysis or thermochemical conversion processes, among other areas, in the biofuels 

survey). In general, experts indicate that more than one sub-technological path should be explored and pursued 

within each technology (see for instance the discussion in Bosetti et al. 2012 and Anadón et al. 2014a). The 

highest allocations for more specific technology areas within each energy technology for the Harvard elicitations 

were for thermochemical conversion processes (pyrolysis and liquefaction) in bioenergy; oxy-fueling and IGCC in 

fossil and CCS; SFR (Sodium Cooled Fast Reactors) and fuel cycle for nuclear; thin films and concentrators for 

solar; Li-ion batteries for vehicles; and batteries and flow batteries for utility-scale storage. For the FEEM studies, 

thermochemical conversion process received roughly 27 percent of the biomass technology budget, Li-ion 

batteries 28 percent of the storage for electric vehicles budget, Algae about 14 percent of the budget for biofuel-

related RD&D, and Crystalline-Si and Thin-film PV roughly 20 percent each of the solar RD&D public budget   

 

In a related question, the Harvard and FEEM surveys asked experts to allocate funding for specific pathways 

across different “types” of research, namely: basic research, applied research, pilots and experiments as well as 

demonstration.  Figure 16 shows the breakdown of the budget in the four different types of RD&D by technology 

for both the Harvard and FEEM studies.  To provide a benchmark, the fraction of federal RD&D in the United 

States for all technology areas (energy and non-energy) devoted to the basic research, applied research and 

development in 2011 was 32%, 24% and 44%.3 As seen in Figure 2, the emphasis varied by technology area.  

 

Figure 16. Expert’s recommended budget allocation to different phases of RD&D process (percent of total budget by 

technology) 
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3
 Corresponding values for the EU cannot be calculated from the available government energy statistics.  
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Appendix  D. Current Cost of Technologies  

This Appendix details the current costs used in to calculate the annual cost change rates presented in Section 5 

(table D.1) and compares the annual cost decrease rates presented in section 5, Figure 3, with the parameters 

estimated using Moore’s law as in Nagy et al. (2013) (Table D.2) 

 

 Table D.1: Technology LCOE in 2010 per technology and source. 

Technology Group Technology Price in 2010 Unit Source 

Solar PV 224.64 US$2005/MWh POLES ADVANCE 

Solar PV 177.463 US$2005/MWh REMIND 1.5 

Solar PV 523.912 US$2005/MWh WITCH 

Nuclear Energy Nuclear 4675.35 $/kW POLES ADVANCE 

Nuclear Energy Nuclear 3540 $/kW REMIND 1.5 

Nuclear Energy Nuclear 4012 $/kW REMIND 1.6 

Nuclear Energy Nuclear 3807.1 $/kW WITCH 

Bioelectricity electricity biomass 107.503 US$2005/MWh AIM/CGE 

Bioelectricity electricity biomass 205.396 US$2005/MWh GCAM 3.0 

Bioelectricity electricity biomass 130.465 US$2005/MWh POLES ADVANCE 

Bioelectricity electricity biomass 53.1 US$2005/MWh REMIND 1.6 

Bioelectricity electricity biomass 55.353 US$2005/MWh WITCH 

Bioelectricity Biomass gasifier 10 cUS$/kWh 
REN21 Global 
Status Report 

Bioelectricity Biomass power 12.75 cUS$/kWh 
Global Status 
Report 

Bioelectricity PV 33 cUS$/kWh 
Global Status 
Report 

Nuclear Energy Nuclear 4216.666667 $/kW IEA 2014b 

CCS CCS 0.022 2009$/kWh 
Harvard CCS 
survey 

Biofuel Gasoline substitute  0.063781802 2009$/kWh 
Harvard CCS 
survey 

Biofuel Diesel substitute  0.07681302 2009$/kWh 
Harvard CCS 
survey 

 
 
Table D.2: Linear annual cost decreases and Moore’s law estimate 

Technology Data Source Reference Years 

Coefficient 
from model  
estimating 

Moore's law  
(=-m) 

Ranking 
based 
on m 

Solar Fraunhofer 2000-2014 -0.118 1 

Solar IEA 1976-2015 -0.093 2 

Biofuel (Ethanol) Goldemberg 1980-2002 -0.059 3 

Solar IEA 2015-2035 -0.042 4 

Nuclear Rangel 1978-2002 0.017 5 



27 

Nuclear Gruebler 1977-1999 0.055 6 

          

          

Technology Source 
Linear Annual 
Cost Decrease 

Rate 

Ranking 
based on 

Linear Annual 
Cost Decrease 

Rate 

  

Solar Fraunhofer 2010-2014 -0.237/-0.222 1   

Bioelectricity Juninger 1990-2002 -0.126 2   

Solar IEA  2010-2015 -0.119 3   

Solar Fraunhofer 2000-2014;1990-2014 -0.116/-0.091 4   

Solar 
Fraunhofer 2000-2010; IEA 2010-
2035, 2014-2035 

-0.062/-0.0326 
5 

  

Biofuel Goldemberg 1985-2002 -0.0582 6   

Biofuel Goldemberg 1980-1985 -0.0349 7   

Nuclear Energy Rangel/Gruebler 1977-2002 0.035/0.090 8   
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