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Abstract

We present a continuous-time generalization of the seminal R&D model of d’Aspremont
and Jacquemin (American Economic Review, 1988) to examine the trade-off between the
benefits of allowing firms to cooperate in R&D and the corresponding increased potential
for product market collusion. We consider all trajectories that are candidates for an optimal
solution as well as initial marginal cost levels that exceed the choke price. Firms that collude
develop further a wider range of initial technologies, pursue innovations more quickly, and
are less likely to abandon a technology. Product market collusion could thus yield higher
total surplus.
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1 Introduction

An important reason for allowing firms to set up R&D cooperatives is that these “organizations,

jointly controlled by at least two participating entities, whose primary purpose is to engage

in cooperative R&D” (Caloghirou et al., 2003) internalize technological spillovers - the free

flow of knowledge from the knowledge creator to its competitors.1 The exemption for R&D

cooperatives in anti-cartel legislation is thus perceived to diminish the failure of the market
∗Thanks are due to Bernd Ebersberger, Morten Hviid, Maurizio Iacopetta, Corinne Langinier, Bruce Lyons,

Stephen Martin, Jo Seldeslachts, Nan Yang, and to seminar participants at the Tinbergen Institute (Amsterdam, June
2011), at EARIE 2011 (Stockholm, September 2011), at CeNDEF, University of Amsterdam (Amsterdam, April
2012), at the Centre for Competition Policy at the University of East Anglia (Norwich, April 2012), at the 12th
Viennese Workshop on Optimal Control, Dynamic Games and Nonlinear Dynamics (Vienna, June 2012), at the 14th
International Schumpeter Society Conference (Brisbane, July 2012), at the Netherlands Economists Day (Amsterdam,
October 2012), at OFCE, Skema Business School (Sophia Antipolis, May 2013), at IIOC 2013 (Boston, May 2013),
and at CEA 2016 (Ottawa, June 2016) for constructive comments.
†Utrecht University School of Economics; J.Hinloopen@uu.nl.
‡Newcastle University Business School. Corresponding author. Address: Newcastle University Business School, 5

Barrack Road, Newcastle upon Tyne, NE1 4SE, United Kingdom; E-mail address: Grega.Smrkolj@newcastle.ac.uk.
§University of Amsterdam and Tinbergen Institute; F.O.O.Wagener@uva.nl.

1Bloom et al. (2013) estimate that a 10% increase in a competitor’s R&D is associated with up to a 3.8% increase
in a firm’s own market value. Internalizing technological spillovers is one of the prime reasons for firms to join an
R&D cooperative (Hernan et al., 2003; see also Röller et al., 2007).
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for R&D.2 However, as Scherer (1980) observes: “the most egregious price fixing schemes in

American history were brought about by R&D cooperatives”, an observation that constitutes

the classic counterargument to a permissive antitrust treatment of R&D markets (Pfeffer and

Nowak, 1976; Grossman and Shapiro, 1986; Brodley, 1990).3 At the same time, it is quite well

established that the prospect of future market power enhances a firm’s incentives to invest in

R&D.4 As Alan Greenspan (1962) puts it:

No one will ever know what new products, processes, machines, and cost-saving

mergers failed to come into existence, killed by the Sherman Act before they were

born. No one can ever compute the price that all of us have paid for that Act which,

by inducing less effective use of capital, has kept our standard of living lower than

would otherwise have been possible.

In this paper we develop a dynamic model of R&D that considers explicitly the cost of “new

. . . processes” that “failed to come into existence . . . before they were born” because of the ban

on price-fixing agreements.

The channels through which cooperation in R&D facilitates product market collusion have

been examined in a number of theoretical studies (Martin, 1995; Greenlee and Cassiman, 1999;

Cabral, 2000; Lambertini et al., 2002; Miyagiwa, 2009). According to Fisher (1990, p. 194):

. . . [firms] cooperating in R&D will tend to talk about other forms of cooperation.

Furthermore, in learning how other firms react and adjust in living with each other,

each cooperating firm will get better at coordination. Hence, competition in the

product market is likely to be harmed.

In the short run, the reduced intensity of product market competition is likely to hurt con-

sumers. At the same time, it could enhance the functioning of an R&D cooperative. For instance,

Geroski (1992) argues that it is the feedback from product markets that directs research towards

profitable tracks and that, therefore, for an innovation to be commercially successful, there must

be strong ties between marketing and development of new products. And Jacquemin (1988)

puts forward that R&D cooperatives are fragile and unstable. He reasons that when there is no

cooperation in the product market, there exists a continuous fear that one partner in the R&D
2See Martin (1997) for an overview of the policy treatment of R&D cooperatives in the E.U., the U.S., and Japan.
3Goeree and Helland (2008) find that in the U.S. the probability that firms join an R&D cooperative has gone

down due to a revision of antitrust leniency policy in 1993. This revision is perceived as making collusion less
attractive. Goeree and Helland (2008) conclude that “Our results are consistent with RJVs [research joint ventures]
serving, at least in part, a collusive function.” Related evidence is reported by Duso et al. (2014). They find that the
combined market share declines if partners in an RJV compete on the same product market (“horizontal RJVs”), while
it increases if members of the RJV are not direct rivals (“vertical RJVs”). The laboratory experiments of Suetens
(2008) show that members of an RJV are more likely to collude on price.

4The original observation is due to Schumpeter (1934, p. 82): “As soon as we go into the details and inquire into
the individual items in which progress was most conspicuous, the trail leads not to the doors of those firms that work
under conditions of comparatively free competition but precisely to the doors of the large concerns . . . and a shocking
suspicion dawns upon us that big business may have had more to do with creating that standard of living than with
keeping it down.” A formal treatment can be found in Tirole (1988).
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cooperative may be strengthened in such a way that it will become too strong a competitor in

the product market. Preventing firms from collaborating in the product market may therefore

destabilize R&D cooperatives, or prevent their formation in the first place. Our focus is on private

incentives to develop cost saving technologies over time. In particular, we show that if firms

collude in the product market, a wider range of technologies is fully developed. We also show

that firms competing in the product market realize an inferior productive efficiency. We thus

identify situations where product market collusion increases total surplus.

Dynamic models of R&D were first introduced to study patent races whereby successful

innovators capture the entire market.5 Meanwhile, a large literature has developed on the relation

between intellectual property rights and antitrust policies. For instance, Quirmbach (1993)

finds that there is an optimal level of collusion that is in between perfect competition and full

collusion. And Green and Scotchmer (1995) show that it is optimal to allow for collusion

through sequential licensing in case the next innovation is a truly new application of existing

patents. More recently, another strand of dynamic R&D models has developed: continuous-time

generalizations of strategic R&D models.6 Cellini and Lambertini (2005) is the first continuous-

time generalization of the seminal analysis of d’Aspremont and Jacquemin (1988). In the duopoly

game of d’Aspremont and Jacquemin (1988), firms first invest in cost-reducing R&D and then

play a Cournot game in the product market. In the continuous-time version of Cellini and

Lambertini (2005), both firms start from an initial technology (that is, a level of marginal cost)

and invest continuously in R&D. This gradually reduces the initial level of marginal cost towards

the steady-state level. In contrast to the static generalization of d’Aspremont and Jacquemin

(1988) by Hinloopen (2000), Cellini and Lambertini (2005) find that the aggregate level of R&D

is monotonically increasing in the number of independent competitors.

We also consider a continuous-time generalization of d’Aspremont and Jacquemin (1988).

There are two distinguishing features of our analysis. First, we consider all possible initial

marginal cost levels, including those exceeding the choke price (the lowest price for which there

is no demand). Especially in the early stages of development, it is quite likely that the cost of a

new technology (the cost, say, to develop a prototype) exceeds the highest willingness to pay

in the market. We characterize situations where such initial technologies are only developed if

firms collude in the product market. Indeed, excluding initial marginal costs that are above the

choke price ignores “ . . . new . . . processes . . . [that] failed to come into existence, [as they are]

killed by the Sherman Act before they were born.” These instances constitute a direct welfare

gain of product market collusion.

Second, in addition to near-equilibrium paths, we consider all trajectories that are candidates
5This literature starts with Loury (1979) and Lee and Wilde (1980); Reinganum (1989) surveys the early

contributions. Patent race models examine, in essence, the time it takes for a cost-saving innovation to be completed.
R&D investments reduce this completion period. Because in these models the R&D process itself cannot fail, the
R&D-investment decision is transformed into a static one.

6There is also a small literature that considers (stationary) repeated game models of R&D; see Cabral (2000) and
Lambertini et al. (2002). These ‘dynamic’ models do not allow for “smoothing the investment efforts over a long
time” (Cellini and Lambertini, 2005), a type of investment behavior that is observed in practice and that constitutes a
key feature of continuous-time models.
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for an optimal solution. This global analysis yields a bifurcation diagram that indicates for every

possible parameter combination the qualitative features of any market equilibrium as well as

of the transient dynamics towards it.7 We thus identify critical parameter values: points in

parameter space at which the optimal investment function changes qualitatively. In particular, we

determine the value of marginal costs for which R&D investments are terminated, and for which

they are not initiated at all. We prove that these critical cost levels are affected by firm conduct.

Therefore, extending the R&D cooperative to product market collusion can lead to qualitatively

different long-run solutions, in spite of starting from an identical initial technology.

The related literature has not considered initial marginal cost levels that exceed the choke

price, nor has it carried out a global analysis.8 The only exception is Hinloopen et al. (2013),

who characterize the equilibria of a continuous-time dynamic monopoly with R&D investments.

We expand their analysis in three directions. First, we consider a duopoly rather than a monopoly.

Second, we examine two different scenarios: one in which firms cooperate in R&D and compete

in the product market (labeled ‘partial collusion’)9, and one in which firms cooperate both in

R&D and in setting price (labeled ‘full collusion’). Indeed, comparing the two scenarios allows

us to examine the effects of extending cooperation in R&D towards collusion in the product

market. And third, rather than relying on numerical simulations, we prove a set of propositions

that characterize the dynamics of the model throughout the entire parameter space.

Our framework yields four possible outcomes for any initial draw of a new technology

(cf. Hinloopen et al., 2013). First of all, a ‘promising technology’ arrives, whereby the initial

technology is developed through continuous R&D investments. This can occur for initial cost

levels both below and above the choke price. In the latter case, production starts only after

some time, because early R&D efforts have to bring down marginal cost below the choke price.

Second, a ‘strained market’ arises: initial marginal cost is below the choke price and firms invest

in R&D, but the technology is not likely to be developed to full materialization.10 In case of an

‘uncertain future’, the third situation, it is not immediately clear whether the long-run steady state

will be reached, or that it is optimal to gradually leave the market. Only time will tell. Fourth, an

‘obsolete technology’ can emerge: whatever the initial marginal cost, the technology is either not

developed, or developed only to be taken off the market in due time. The long-run steady state

will not be reached in either case.

All four technologies can emerge under both partial collusion and full collusion. Comparing
7Solution structures may change qualitatively due to variations in parameter values (indifference points may

appear, steady states may lose their stability, and so on). These qualitative changes due to smooth variations in
parameters are called bifurcations. For an introduction, see Grass et al. (2008), or Kiseleva and Wagener (2010).

8That literature is still small. It includes Cellini and Lambertini (2005, 2009), Lambertini and Mantovani (2009,
2010), and Kovac et al. (2010). In all these papers any of the initial (permissible) technologies will be developed
to full materialization; technologies that are only developed under specific regimes (i.e. product market collusion)
remain hidden.

9This scenario is also often called ‘semi-collusion’ in the literature.
10This situation resembles the ‘sailing ship effect’ of Cooper and Schendel (1976) (see also Howells, 2002),

whereby the arrival of a new, possibly superior technology spurs the development of the old technology. In our case,
there is no rival technology that induces continued investment in a technology that is bound to leave the market.
Rather, it is the technology itself (characterized by the size of the initial marginal cost) that makes it optimal for firms
to gradually take it off the market in due time.
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the two scenarios throughout the entire parameter space, we find that if firms collude in the

product market (i) it is more likely that an initial technology qualifies as a Promising Technology,

and if so, that it is more likely to be developed further, (ii) it is less likely that an initial technology

qualifies as an Obsolete Technology, and if so, it is more likely that firms invest in R&D, albeit

temporarily, and (iii) if an initial technology causes a Strained Market or if it induces an Uncertain

Future, it is less likely that it will be taken off the market in due time. Put differently, due to

product market collusion it is more likely that firms invest in R&D, and that these investments

eventually lead to a steady state with positive production.

Our analysis qualifies the per se prohibition of collusion in product markets for high-tech

industries. A higher total surplus obtains if colluding firms develop an initial technology and

arrive at the saddle-point steady state while firms that compete in the product market would not

develop the technology at all. We show that this is more likely to happen if new technologies

arrive in circumstances that offer a high profit potential (that is, large markets and efficient R&D

processes). Under these circumstances, product market collusion can also yield higher total

surplus if competing firms would develop the new technology as well, be it to take it off the

market in due time, or to arrive at the saddle-point steady state. And in so far higher R&D

investments as such are desirable (as suggested in the endogenous growth literature; see e.g.

Grossman and Helpman, 1991; Aghion and Howitt, 1992) the case for prohibiting collusion per

se is further weakened. On the other hand, colluding firms tend to hold on longer to technologies

that are destined to leave the market. This is not desirable from a social welfare point of view if

that prevents the development of new, superior technologies.

A particularly difficult situation arises when the initial technology is above the choke price

and if it will be developed only if firms collude in the product market. The welfare cost of

prohibiting firms to collude then remains hidden because no production is affected by this

prohibition. There is no production yet, and because collusion is prohibited, there will be no

production in the future. Put differently, no production will be taken off the market if firms are

prohibited to collude in the product market, leaving the welfare cost unnoticed. Our analysis thus

offers a first glance at “new . . . processes . . . [that] failed to come into existence, killed by the

Sherman Act before they were born.”

The remainder of the paper is organized as follows. The basics of the model are introduced in

Section 2. In Section 3, the necessary conditions for optimal production and investment schedules

are derived under partial collusion and full collusion. The corresponding bifurcation diagrams

are derived in Section 4 and the two scenarios are compared in Section 5. Section 6 concludes.

An appendix contains the proofs of all propositions.

2 The model

Our present model is an extension of the global monopoly framework of Hinloopen et al. (2013)

to two firms and builds on Cellini and Lambertini (2009). Time t is continuous: t ∈ [0,∞).

There are two a priori fully symmetric firms that both produce a homogeneous good at constant
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marginal costs ci(t). At every instant, the market price p(t) is given as

p(t) = A−Q(t), (1)

where Q(t) = q1(t) + q2(t), with qi(t) the quantity produced by firm i at time t, and where A is

the choke price.11

Each firm i can reduce its marginal cost ci(t) by investing in R&D. In particular, when firm i

exerts R&D effort ki(t), its marginal cost evolves as

dci
dt

(t) ≡ ċi(t) = ci(t) (−ki(t)− βkj(t) + δ) , (2)

where kj(t) is the R&D effort exerted by its rival and where β ∈ [0, 1] measures the degree of

spillover. Note that efficiency of production is assumed to decrease at a constant rate, as captured

by δ > 0. This depreciation is due to (exogenous) aging of technology and organizational

forgetting (Besanko et al. (2010), Lambertini and Mantovani, 2009). As Benkard (2004, p.

590) observes: “. . . an aircraft producer’s stock of production experience is constantly being

eroded by turnover, lay offs and simple losses of proficiency at seldom repeated tasks. When

producers cut back output, this erosion can even outpace learning, causing the stock of experience

to decrease.” In our model, R&D investment yields know-how gains but the logic of the argument

is the same. For instance, complementary inputs that are typically purchased also constitute a

fraction of production cost. Incorporating these inputs becomes ever more costly due to their

inherent evolution over time, especially for firms that are relatively sluggish in R&D, as R&D

efforts also determine any firm’s ‘absorptive capacity’ (Cohen and Levinthal, 1989).12

Both firms are endowed with an identical initial technology ci(0) = cj(0) = c0, which is

assumed to be drawn by Nature. Per unit of time, the costs of R&D efforts are

Γi(ki) = bk2
i , (3)

where b > 0 is inversely related to the cost-efficiency of the R&D process. The R&D process is

thus assumed to exhibit decreasing returns to scale (Schwartzman, 1976; see also the discussion

in Hinloopen et al., 2013). Both firms discount the future with the same constant rate ρ > 0.

Either firm’s instantaneous profit therefore equals

πi(qi, Q, ki, ci) = (A−Q− ci)qi − bk2
i , (4)

11We thus assume that the market size, A, is fixed and known to both firms. A random market size would not
change any of our results qualitatively. See Hinloopen et al. (2013) for an analysis of unexpected changes in A.

12A non-positive depreciation rate yields trivial equilibria. Every initial technology will be developed in case δ
is negative, as there is an exogenous reduction in marginal cost over time. For δ = 0, consider δ to be marginally
positive. In that case, the value of initial marginal cost that would make it optimal not to invest in R&D is far above
the choke price because only an infinitesimally small investment in R&D is then needed to reduce marginal cost over
time.
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with corresponding total discounted profit

Πi(qi, Q, ki, ci) =

∫ ∞
0

πi(qi, Q, ki, ci)e
−ρtdt. (5)

The model has five parameters: A, β, b, δ, and ρ. To simplify the analysis, we rescale the

model such that it has only three parameters. Rescaling is done by choosing ‘natural units’

for the problem; it does not involve making special parameter choices. Rather, each choice of

parameters in the original model corresponds to a choice of parameters in the rescaled model.

The complexity reduction obtained by the scaling is a consequence of the fact that in the original

parameters, many choices give rise to mathematically equivalent models.13,14

Lemma 1. By choosing the units of t, qi, qj , ci, cj , ki, and kj appropriately, we can assume

A = 1, b = 1, and δ = 1. This yields the following rescaled version of the model:

π̃i(q̃i, Q, k̃i, c̃i) = (1− Q̃− c̃i)q̃i − k̃2
i , (6)

Π̃i(q̃i, Q̃, k̃i, c̃i) =

∫ ∞
0

π̃i(q̃i, Q̃, k̃i, c̃i)e
−ρ̃t̃dt̃ (7)

˙̃ci = c̃i

(
1−

(
k̃i + βk̃j

)
φ
)
, c̃i(0) = c̃0, c̃i ∈ [0,∞) ∀ t̃ ∈ [0,∞) (8)

q̃i ≥ 0, k̃i ≥ 0 (9)

ρ̃ > 0, φ > 0 (10)

with conversion rules: qi = Aq̃i, qj = Aq̃j , ki = A√
b
k̃i, kj = A√

b
k̃j , ci = Ac̃i, cj = Ac̃j ,

πi = A2π̃i, πj = A2π̃j , φ = A
δ
√
b
, t = t̃

δ , ρ̃ = ρ
δ .

Rescaling the model as in Lemma 1 introduces a new parameter: φ. It is one-to-one related

to the profit potential of a technology. Higher potential revenues come with a higher A, and each

unit of R&D effort costs more if b increases, while it reduces marginal cost by less the higher

is δ. In sum, a lower (higher) φ corresponds to a lower (higher) profit potential. For notational

convenience we henceforth omit tildes.

3 Partial Collusion and Full Collusion

In this section we derive the necessary conditions for optimal production and investment schedules

in case firms cooperate in R&D but compete in the product market (Section 3.1), and in case

firms cooperate in R&D and collude in the product market (Section 3.2).
13To illustrate the usefulness of Lemma 1, consider two models with different original parameterizations: i)A = 10,

b = 1, δ = 0.2, ρ = 0.1, β = 0.5, ii) A = 20, b = 4, δ = 0.2, ρ = 0.1, β = 0.5. Both models correspond to the
same rescaled model with φ = A/δ

√
b = 50, ρ̃ = ρ/δ = 0.5, β = 0.5, and are therefore mathematically equivalent

in the sense that they have the same solution in rescaled variables.
14The proof of Lemma 1 is analogous to the proof of Lemma 1 in Hinloopen et al. (2013).
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3.1 Partial Collusion

Both firms operate their own R&D laboratory and production facility. They select their output

levels non-cooperatively and adopt a strictly cooperative behavior in determining their R&D

efforts so as to maximize joint profits. These assumptions amount to imposing a priori the

symmetry condition ki(t) = kj(t) = k(t).15 ci(0) = cj(0) = c0 implies that ci(t) = cj(t) =

c(t). Equation (8) thus reads as

ċ = c(1− (1 + β)φk). (11)

It may seem reasonable to assume that when firms cooperate in R&D, they also fully share

information, that is, to assume the level of spillover to be at its maximum (β = 1; see Kamien

et al., 1992). For the sake of generality, we do not a priori fix the value of β at its maximal

value. There are also intuitive arguments for not doing so as there might still be some ex post

duplication and/or substitutability in R&D outputs if firms operate separate laboratories (see the

discussion in Hinloopen, 2003).

The instantaneous profit of firm i is

πi(qi, Q, k, c) = (1−Q− c)qi − k2, (12)

with Q = q1 + q2, yielding its total discounted profit over time

Πi(qi, Q, k, c) =

∫ ∞
0

πi(qi, Q, k, c)e
−ρtdt. (13)

As firms jointly decide on their R&D efforts, the only independent decisions are those of

production. However, as quantity variables do not appear in the equation for the state variable (11),

production feedback strategies of a dynamic game are simply static Cournot-Nash strategies of

each corresponding instantaneous game.

Maximizing πi over qi ≥ 0 gives us standard Cournot best-response functions for the product

market

qi(qj) =

{
1
2(1− c− qj) if qj < 1− c,

0 if qj ≥ 1− c.
(14)

Note that the constraint qi ≥ 0 is binding when qj ≥ 1− c. Solving for Cournot-Nash production

levels, we obtain

qN =

{
1
3(1− c) if c < 1,

0 if c ≥ 1.
(15)

15Throughout the paper we consider symmetric equilibria only. See Salant and Shaffer (1998) for a specific
example of a static model of R&D where individual firms face different capacity constraints in which it is optimal for
firms in an R&D cooperative to make unequal investments.
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Consequently, the instantaneous profit of each firm is16

π(c, k) =

{
1
9(1− c)2 − k2 if c < 1,

− k2 if c ≥ 1.
(16)

The dynamic optimization problem of the R&D cooperative boils down to finding an R&D effort

schedule k∗ for either firm that maximizes the total discounted joint profit, taking into account

the state equation (11), the initial condition c(0) = c0, and the control constraint k(t) ≥ 0 which

must hold at all times. Note that according to (11), if c0 > 0, then c(t) > 0 for all t. The state

space of this problem is the interval [0,∞) of marginal cost levels.

To solve this problem, we introduce the current-value Pontryagin function (also called the

un-maximized Hamilton or pre-Hamilton function)17

P (c, k, λ) =

{
1
9(1− c)2 − k2 + λc(1− (1 + β)φk) if c < 1,

− k2 + λc(1− (1 + β)φk) if c ≥ 1,
(17)

where λ is the current-value co-state variable of a firm in the R&D cooperative. The co-state (or

shadow value) measures the marginal worth of the increment in the state c for each firm at time t

when moving along the optimal path. We expect λ(t) ≤ 0 along optimal trajectories because

marginal cost is a “bad”.

We use Pontryagin’s maximum principle to obtain the solution to our optimization problem.

Maximizing over the control k ≥ 0 yields

k = max

{
0,−1

2
λc(1 + β)φ

}
. (18)

The maximum principle states further that the optimizing trajectory necessarily corresponds to

the trajectory of the state-costate system

ċ =
∂P

∂λ
, λ̇ = ρλ− ∂P

∂c
, (19)

where k is replaced by its maximizing value. For λ ≤ 0, relation (18) gives a one-to-one

correspondence between the co-state λ and the control k. We use this relation to transform the

state-costate system into a state-control system which an optimizing trajectory has to satisfy

necessarily as well. This system consists of two regimes (following the two part composition
16We implicitly assume that firms face no financial constraints; they can invest in R&D prior to production. Credit

rationing would impose an upper limit on the value of an indifference point; qualitatively it would not change our
conclusions. For a sample of Italian manufacturing firms Piga and Atzeni (2007) find that credit constraints are
negligible for R&D intensive firms. Bond et al. (2005) find no significant relationship between the level of R&D
investments and cash flow for German and U.K firms, while Harhoff (1998) finds a weak but statistically significant
relationship for both small and large German firms. The sensitivity of R&D investments to cash flow fluctuations
seems to be stronger for U.S. firms (e.g., Himmelberg and Petersen (1994), Hall et al. (1999)), but by and large, the
literature on the importance of financial constraints for R&D investment is inconclusive (see Hall and Lerner (2010)
for an overview).

17We omit a factor 2 for joint profits to obtain the solution expressed in per-firm values. Due to symmetry,
maximizing per-firm total profit corresponds to maximizing joint total profit.
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of the Pontryagin function). The first one corresponds to c < 1 and positive production (q =

(1− c)/3). The second one corresponds to c ≥ 1 and zero production.18 The state-control system

with positive production consists of the following two differential equations:{
ċ = c (1− (1 + β)φk) ,

k̇ = ρk − (1+β)φ
9 c(1− c).

(20)

The state-control system with zero production is given by{
ċ = c (1− (1 + β)φk) ,

k̇ = ρk.
(21)

3.2 Full Collusion

Under full collusion, firms determine jointly their R&D efforts and their output levels. This

amounts to imposing a priori the symmetry conditions ki(t) = kj(t) = k(t) and qi(t) = qj(t) =

q(t). Equation (8) reads again as Equation (11). The profit of each firm at every instant is

π(q, k, c) = (1− 2q − c)q − k2, (22)

with corresponding total discounted profit

Π(q, k, c) =

∫ ∞
0

π(q, k, c)e−ρtdt. (23)

The optimal control problem of the two colluding firms is to find controls q∗ and k∗ that maximize

the profit functional Π subject to the state equation (11), the initial condition c(0) = c0, and two

control constraints that must hold at all times: q ≥ 0 and k ≥ 0.19 Notice again that according to

(11), if c0 > 0, then c(t) > 0 for all t.

The current-value Pontryagin function in case of full collusion reads as:

P (c, q, k, λ) = (1− 2q − c) q − k2 + λc (1− (1 + β)φk) , (24)

where λ is the current-value co-state variable. It now measures the marginal worth at time t of an

increment in the state c for a colluding firm when moving along the optimal path.

The necessary conditions for the solution to the dynamic optimization problem consist again

of a state-control system which has two regimes. As in the partial collusion case, the first

regime corresponds to c < 1 and positive production (q = (1− c)/4), while the second regime

corresponds to c ≥ 1 and zero production.
18Recall from Lemma 1 that A = 1 in the rescaled model. In the non-rescaled model, the analogous conditions for

positive and zero production are c(t) < A and c(t) ≥ A, respectively.
19Again, due to symmetry, maximizing per-firm total profit corresponds to maximizing joint total profit.
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The state-control system in the region with positive production reads as{
ċ = c (1− (1 + β)φk) ,

k̇ = ρk − (1+β)φ
8 c(1− c),

(25)

whereas the state-control system with zero production is{
ċ = c (1− (1 + β)φk) ,

k̇ = ρk.
(26)

4 Analysis

Consider the system {
ċ = c (1− (1 + β)φk),

k̇ = ρk − αφ(1 + β)c(1− c)χ(c),
(27)

where χ(c) = 1 if 0 < c < 1 and χ(c) = 0 if c ≥ 1 (or c ≤ 0). Systems (20) – (21) and

(25) – (26) are instances of system (27), with α = 1/9 for the partial collusion scenario and

α = 1/8 for the full collusion scenario.20

The first result gives the properties of the steady states of the state-control system (see

Appendix A.1 for the proof).

Proposition 1. Let

D =
1

4
− ρ

α(1 + β)2φ2
.

Depending on the value of D, there are three different situations.

1. If D > 0, the state-control system with positive production (25) has three steady states:

i. (ce, ke) = (0, 0) is an unstable node,

ii. (ce, ke) =
(

1
2 +
√
D, 1

(1+β)φ

)
is either an unstable node or an unstable focus, and

iii. (ce, ke) =
(

1
2 −
√
D, 1

(1+β)φ

)
is a saddle-point steady state.

2. At D = 0, there are two steady states:

i. (ce, ke) = (0, 0), which is an unstable node, and

ii. (ce, ke) =
(

1
2 ,

1
(1+β)φ

)
, which is a semi-stable steady state.

3. If D < 0, the origin (ce, ke) = (0, 0) is the unique steady state of the state-control system

with positive production, which is unstable.

The system consequently exhibits a saddle-node bifurcation at D = 0.

20The monopoly system in Hinloopen et al. (2013) is also a special case of system (27), with α = 1/4.
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The stable manifold of the saddle-point steady state is one of the candidates for an optimal

solution. However, as neither the Mangasarian nor the Arrow concavity conditions are satisfied,

the stable manifold is not necessarily optimal. Note that Proposition 1 already implies that there

should be other candidates for optimality as there is a parameter region for which there is no

saddle point, and hence no stable manifold to it. The following result clarifies (Appendix A.2

contains the proof).

Proposition 2. The set of candidates for an optimal solution consists of the stable paths W s
− of

the saddle-point steady state and the trajectory E through the point (c, k) = (1, 0).

0 0.5 1 1.5

c

k

E

e
0

e
+ ċ = 0

k̇ = 0

1
(1+β)φ

q > 0 q = 0

W
s
−

e
−

Figure 1: Candidate maximizing trajectories W s
− and E in the state-control space.

Proposition 2 is illustrated in Figure 1. The thick black lines W s
− and E indicate optimal

solutions. The dotted vertical line c = 1 separates the region with zero production from the

region of positive production. We label the trajectory E the “exit trajectory”, as following this

trajectory implies that firms eventually leave the region with positive production.

Proposition 2 only reduces the set of trajectories by applying necessary conditions for

optimality, but there is no guarantee that an optimal solution exists. The next proposition

summarizes when an optimal solution exists (the proof is in Appendix A.3).

Proposition 3. For all admissible values of the parameters, the following is true. At all initial

points, the optimal control problem has at least one solution, which is among the candidates

specified in Proposition 2. Moreover, there is at most one initial state ĉ such that there are two

optimizing trajectories starting at ĉ.

To assess the dependence of the solution structure on the model parameters, we carry out a

bifurcation analysis. This consists of identifying those parameter values for which the qualitative

structure of the optimal dynamics changes. These ‘bifurcating’ values bound open parameter

regions such that the optimal dynamics are qualitatively identical for all parameter values in

a region (see Wagener, 2003, Kiseleva and Wagener, 2015). Put differently, for all points in a
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region, a sufficiently small change in parameter values will not lead to a qualitative change of the

optimal dynamics; regions characterize stable types of dynamics.
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Figure 2: R&D investment trajectories for the four stable dynamics types of system (27).

System (27) has four distinct stable dynamics types (cf. Hinloopen et al., 2013). These are

illustrated in Figure 2 in case of partial collusion.21 The first type is a “Promising Technology”.

In this case there exists an initial technology ĉ > 1 that is an indifference threshold:22 a point in

state space where the decision maker is indifferent between two optimal trajectories that have

distinct long-term limit behavior. In particular, for 0 < c0 ≤ ĉ it is optimal to start developing the

initial technology, ending up in the saddle-point steady state in the region of positive production.

If 1 < c0 ≤ ĉ, initially firms invest only in R&D; production begins whenever c(t) < 1. If c0 ≥ ĉ,
it is optimal not to initiate R&D efforts; potential future profits do not suffice to compensate for

losses that would be incurred in the initial periods during which firms would invest in R&D but

would not produce yet.23

The second type corresponds to a “Strained Market”, where there is an indifference threshold

below the choke price (that is, in the region with positive production): 0 < ĉ < 1. In this

case, if 0 < c0 < ĉ, the initial technology will be developed towards the saddle-point steady
21The same types emerge under full collusion. The stable dynamics types are compared across scenarios in

Section 5.
22Also known as Skiba, Dechert-Nishimura-Skiba or DNSS point; see Grass et al. (2008).
23Note that for c0 = ĉ, there are two distinct R&D investment trajectories, which are, nevertheless, both optimal;

see also Proposition 3.
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state. If ĉ < c0 < 1, the exit-trajectory applies; R&D investments only serve to slow down the

technological decay.

In a small part of the parameter space the third type arises: an “Uncertain Future”. Initial

technologies (states) are now divided by a repelling steady state (rather than an indifference

point). If the system starts exactly at the repelling point, it stays there indefinitely; when it starts

close to it, it stays there for a long period of time, after which it converges to one of the two

attractors: the steady state or the exit trajectory.

The fourth type typifies the dynamics of an “Obsolete Technology”. Whatever the initial

technology, (eventually) the firms leave the market; R&D investments are only used to slow

down the technical decay.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5
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25

ρ

IR

SN

SN’

IA

ISN

I Promising technology

II Strained market

IV Obsolete technology

φ(1 + β )
III Uncert. fut.

Figure 3: Bifurcation diagram (partial collusion).

The four different dynamics types are grouped conveniently in a bifurcation diagram (see

Figure 3): the graph that indicates for every possible parameter combination the qualitative

features of any market equilibrium as well as the transient dynamics towards them. In Figure 3,

the uppermost curve represents parameter values for which the indifference point is exactly

at c = 1. At the saddle-node curve (SN), an optimal repeller and an optimal attractor collide

and disappear. The curve SN’ corresponds to saddle-node bifurcations in the state-control

system that do not correspond to optimal dynamics. At the indifference-attractor bifurcations

(IA), an indifference point collides with an optimal attractor and both disappear. Finally, at

an indifference-repeller bifurcation (IR), an indifference point turns into an optimal repeller.

The central indifference-saddle-node (ISN) bifurcation point at (ρ, φ(1 + β)) ≈ (2.14, 8.78)

organizes the bifurcation diagram. The curve representing indifference points at c = 1 obtains a

value of φ(1 + β) ≈ 2.998 for ρ = 1× 10−5.
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5 Collusion and the incentives to innovate

In this section we compare the global optimum of the two scenarios. For a welfare comparison,

we introduce total discounted values of profits (Π), consumer surplus (CS), and total surplus (TS)

Π =

∫ ∞
0

π(t)e−ρtdt, (28)

CS =

∫ ∞
0

1

2
(1− p(t))Q(t)e−ρtdt =

∫ ∞
0

2q(t)2e−ρtdt, (29)

TS = 2Π + CS, (30)

where at time t = 0 firms start with c0 and then invest along the optimal trajectory γ(t) =

(c(t), k(t)) as t→∞.

We first formally establish that the two scenarios yield different (optimal) trajectories. In

Figure 4 the bifurcation diagrams of both scenarios are superimposed. There are significant

quantitative differences between the two diagrams, as reflected by the different locations of the

curves that divide the parameter space. Let Ii, IIi, . . . , i = 1, 2 denote regions I , II, . . . under

scenario i, with i = 1 (2) corresponding to partial (full) collusion. The following then holds (see

Appendix A.4 for the proof).
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Figure 4: Superimposed bifurcation diagrams. Curves of the partial (full) collusion scenario are
grey (black).

15



Proposition 4. The following inclusions hold:

I1 ⊂ I2,

I1 ∪ II1 ⊂ I2 ∪ II2,

I1 ∪ II1 ∪ III1 ⊂ I2 ∪ II2 ∪ III2.

The first inclusion of Proposition 4 implies that the “Promising Technology” region is larger

if firms collude in the product market; due to collusion, the situation where firms first invest in

R&D, and only after some initial development period start producing, is more likely to occur.

From the third inclusion follows that the “Obsolete Technology” region is smaller if firms collude;

firms that collude are less likely either not to develop an initial technology, or to invest in R&D

only to abandon the technology in time.

5.1 R&D investment incentives

In line with much of the related literature (Tirole, 1988), Proposition 4 suggests that colluding

firms have in general a stronger incentive to invest in R&D. This turns out to be the case, as the

next proposition formally shows (see Appendix A.5.1 for the proof).

Proposition 5. Investment in R&D in the full collusion scenario is always at least as high as in

the corresponding partial collusion scenario.

Proposition 5 implies the following. First of all, whenever both scenarios lead to the saddle-

point steady state, marginal costs in the full collusion scenario are lower than in case of partial

collusion, because fully colluding firms have invested more in cost-reducing R&D to arrive at

the long-run equilibrium. Put differently, product market collusion yields a higher production

efficiency.

Second, if the initial technology leads to production after some initial development period

only, colluding firms will enter this production phase more quickly because at every instant of

the pre-production phase they invest more in R&D in order to bring the level of marginal costs

below the choke price.

Third, firms that collude in the product market abandon obsolete technologies at a lower pace.

This implication has a similar vein as the argument of Arrow (1962), that a monopolist has less

incentive to invest in R&D than an otherwise identical but perfectly competitive market, because

by doing so the monopolist replaces current monopoly profits by future (higher) monopoly profits.

Here, the alternative for colluding firms is to exit the market more quickly (rather than staying in

the market as a monopolist, as in Arrow, 1962), an alternative that for them is not optimal (see

Figure 5).

The difference in R&D intensity across the two scenarios is also reflected in the type of

trajectories that firms select. To characterize this difference for all possible situations, it is

convenient to have defined the threshold level of initial marginal cost ĉ between ‘eventual exit’
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Figure 5: State-control space (a), total discounted profit (b), consumer surplus (c), and total
surplus (d), when the exit trajectory is an optimal solution. Parameters: (β, ρ, φ) = (1, 1, 2).
Curves of the partial (full) collusion scenario are grey (black).

and ‘eventual positive production’. Formally, set ĉ = 0 in the “Obsolete Technology” region and

let ĉ1 and ĉ2 denote the threshold level for the partial collusion and the full collusion scenarios,

respectively. We can then state the following (see Appendix A.5.2 for the proof).

Proposition 6. For all parameter values, either ĉ1 < ĉ2 or ĉ1 = ĉ2 = 0.

The implications of Proposition 6 are twofold. First, if firms collude in the product market,

the set of initial technologies that are developed towards the saddle-point steady state is larger

(see Figure 6). In particular, if the initial technology c0 falls in the non-empty interval (ĉ1, ĉ2), it

will only be brought to full materialization if firms collude in the product market.

Second, the set of initial technologies that triggers no investment in R&D at all or that

induces firms to select the exit trajectory is smaller if firms collude in the product market.

Figure 7 illustrates this for a Strained Market. The strained investment circumstances induce

partially colluding firms to exit the market in due time for all c0 > ĉ1. In contrast, fully colluding

firms exit the market only for c0 > ĉ2. Initial technologies c0 in the interval (ĉ1, ĉ2) are therefore

only brought to full maturation by firms that collude in the product market.

We can conclude that due to collusion in the product market (i) it is more likely that an initial

technology qualifies as a Promising Technology, and if so, that it is more likely to be developed

further, (ii) it is less likely that an initial technology qualifies as an Obsolete Technology, and if
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ĉ2ĉ1
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Figure 6: State-control space (a), total discounted profit (b), consumer surplus (c), and total
surplus (d), when the indifference point is in the region with zero production. Parameters:
(β, ρ, φ) = (1, 0.1, 2.25). Curves of the partial (full) collusion scenario are grey (black).

so, it is more likely that firms invest in R&D, albeit temporarily, and (iii) if an initial technology

causes a Strained Market or if it induces an Uncertain Future, it is less likely that it will be taken

off the market in due time. Put differently, due to product market collusion it is more likely that

firms invest in R&D, and that these investments eventually lead to a steady state with positive

production.

5.2 Total surplus

We next consider the effect of product market collusion on total surplus. Obviously, collusion in

the product market yields higher total surplus if colluding firms develop an initial technology and

arrive at the saddle-point steady state while firms that compete in the product market would not

develop the technology at all. Formally,24

Proposition 7. Whenever both scenarios have an indifference point above the choke price, the

full collusion scenario yields higher consumer surplus and total surplus than the partial collusion

scenario for all initial technologies in between the two indifference points.

24The proof of Proposition 7 follows trivially from the fact that i) for all values of c above the indifference point
in the region where c ≥ 1, both q = 0 and k = 0 for all t ∈ [0,∞), and ii) for all values of c below the indifference
point, Π > 0 and for some finite time T also q > 0 for all t > T as t→∞.
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Figure 7: State-control space (a), total discounted profit (b), consumer surplus (c), and total
surplus (d), when the indifference point is within the region with positive production. Parameters:
(β, ρ, φ) = (1, 0.1, 2). Curves of the partial (full) collusion scenario are grey (black); curves of
the stable path (exit trajectory) are solid (dotted). Dots indicate the saddle-point steady state.

Figure 6 illustrates Proposition 7: for all c0 ∈ (ĉ1, ĉ2), collusion in the product market yields

a higher total surplus. Figure 8 illustrates some comparative statics of the indifference points in

this case. Indeed, these points are positively related to market size and R&D efficiency. Note,

however, that also ∆ĉ = ĉ2 − ĉ1 increases if the R&D process becomes more efficient and/or if

the market size becomes larger, the more so the lower is the discount rate (in Figure 8, a lower

discount rate corresponds to a larger slope of the convex curves). Because future mark-ups are

positively related to both market size and R&D efficiency, an increase in either of these two

has a larger (positive) effect on future profits if firms collude in the product market. And these

future benefits feature more prominently in total discounted profits if the discount rate is lower.

Therefore, indifference points correspond to lower marginal costs values if the discount rate goes

up, all else equal (cf. the relative location of C1 and C2 in Figure 8).

Product market collusion can also yield higher total surplus if colluding firms arrive at the

saddle-point steady state while firms that compete in the product market would select the exit

trajectory. In these cases, firms that compete in the product market temporarily produce more.

This is off-set by the added benefits of sustained R&D investments under full collusion if the

discount rate is sufficiently small (see Figure 7).

Finally, collusion in the product market can also yield a higher total surplus if under both
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Figure 8: Dependence of the indifference point ĉ on model parameters. Curves of the partial
(full) collusion scenario are dotted (solid).

scenarios firms would select the trajectory towards the saddle-point steady state: in Figure 9,

for all c0 ∈ (c?, ĉ2), total surplus is higher if firms collude in the product market. In this

example, the discount rate is high: ρ = 10, which corresponds, for instance, to the non-rescaled

variables δ = 0.01 and ρ = 0.1. Also, the initial marginal costs are sufficiently high. In such

an environment, the higher R&D investments and the reduced importance that is attached to

future surplus work in favor of product market collusion as under this scenario firms will reach

the production stage more quickly, a benefit that more than off-sets the welfare loss of future

increased mark-ups.25

6 Concluding remarks

Schumpeter’s famous observation continues to challenge the design of optimal competition

policies for high tech sectors. The classic rationale for competition policies is rooted in their

effect on total surplus. Typically, product market collusion transfers consumer surplus to firm

profits, resulting in a net loss of total surplus. To date, the literature considers this result to

be robust to the increased incentive to invest in R&D that comes with collusion in the product

market. Our analysis shows that it actually fails this robustness check if the phase of development

prior to production is taken into account and/or if all possible R&D investment trajectories are

considered.

According to our analysis, extending an R&D cooperative agreement to collusion in the

product market is welfare enhancing if the market size is large and/or the R&D process is efficient,

given a relatively modest discount rate. The profit potential of a new technology is then relatively
25More precisely, a higher (rescaled) discount rate ρ̃ = ρ/δ implies either a higher discount rate ρ or a lower δ.

With a lower δ, cost reductions take longer, such that the time difference in reaching the production stage between the
two scenarios becomes more pronounced.
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Figure 9: Total surplus when the indifference point is in the region with zero production. Parame-
ters: (β, ρ, φ) = (1, 10, 50). Grey curves correspond to partial collusion, whereas the black ones
correspond to full collusion. c? ≈ 3.6, ĉ1 ≈ 4.01, ĉ2 ≈ 4.74. For all c0 ∈ (c?, ĉ2), total surplus
is higher if firms collude in the product market.

large. As a result, firms that collude in the product market bring more initial technologies to full

materialization.

A particularly disturbing situation arises when the initial draw c0 out of (ĉ1, ĉ2) is above the

choke price (c0 > 1). The welfare cost of prohibiting firms to collude in the product market then

remains hidden because no production is affected by this prohibition. There is no production yet,

and because collusion is prohibited, there will be no production in the future. Put differently, no

production will be taken off the market if firms are prohibited to collude in the product market.

Our analysis thus signals a potential problem for antitrust policy as it shows that prohibiting

collusion in the product market per se is not univocally welfare enhancing. It also shows that the

associated welfare costs might not surface.

By enabling firms to smooth their investments over time, the continuous-time approach to

modeling strategic R&D, introduced by Cellini and Lambertini (2005, 2009), brought theory

closer to reality. Hinloopen et al. (2013) however pointed out that in these models sufficient

optimality conditions were not satisfied and numerically established a possibility of a technology

exiting the market or never being developed in the first place; a possibility of investments

preceding production was also introduced for the first time. This resulted in a global framework

that was better aligned with empirical observations on R&D. The current paper extends this

framework to R&D cooperatives and is the first attempt to evaluate market collusion throughout

all possible technological scenarios opened up by the global framework. On a methodological

side, by considering a generalized dynamical system that also encompasses the single-firm model

of Hinloopen et al. (2013), the paper for the first time analytically proves the existence of optimal

solutions and indifference points in the global framework, thereby making a firm ground for

further analyses and extensions.

One particular aspect of the analysis we have not explicitly addressed is the stability of

cooperation. In the absence of the legal ban on price-fixing agreements (the counterfactual

scenario this paper tries to assess), the firms in the model would have incentives to sign binding

21



contracts as total discounted profits under full collusion are always at least as high as under partial

(or no) collusion. However, even without such contracts, Yeung and Petrosyan (2004) show

within the sphere of cooperative games with transferable payoffs (quite a reasonable assumption

for firms engaged in R&D cooperatives) that one can design a payoff distribution procedure26

that leads to a dynamically stable cooperation. More advanced considerations of cartel stability

are not crucial to the arguments made in this paper and are therefore left for future work. It is

reassuring, however, that none of the four technological outcomes appertaining to the bifurcation

diagram is precluded by any given value of a discount rate per se. In practice usually not all firms

in an industry are involved in the same R&D cooperative and unexpected changes in markets

might make it necessary for firms to renegotiate their initial profit sharing agreements; they might

also allow firms to mask their deviations. Entire R&D cooperatives might fail, pushing firms into

asymmetric development paths. A proper assessment of such possibilities necessarily calls for a

global framework being extended to a situation in which potentially asymmetric firms compete

in both dimensions - R&D and price. We believe these are some fruitful areas for future research

that have been opened up by the analysis in this paper.

A Appendix

A.1 Proof of Proposition 1

Second rescaling of the problem. Recall the dynamic optimization problem: to maximize

Π =

∫ ∞
0

(
α(1− c)2χ(c)− k2

)
e−ρtdt,

subject to the dynamic restriction

ċ = (1− φ(1 + β)k)c.

This problem is rewritten by introducing constants

K =
1

φ(1 + β)
and µ =

αφ2(1 + β)2

4ρ
, (31)

and the variable u through

k = Ku.

It is then seen to be equivalent to the problem to maximize

V =
Π

K2
=

∫ ∞
0

(
4ρµ(1− c)2χ(c)− u2

)
e−ρtdt, (32)

26For instance, a sharing agreement according to which each firm receives a payoff equal to its noncooperative
profits plus half of the profits in excess of noncooperative profits.
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subject to the dynamic restriction

ċ = (1− u) c

and the control restriction

u ≥ 0.

The Pontryagin function of this problem is

P = 4ρµ(1− c)2χ(c)− u2 + λc(1− u),

which is maximized at

u = max
{

0,− c
2
λ
}
. (33)

This yields the Hamilton function

H = 4ρµ(1− c)2χ(c) + λc+


(λc)2

4 if λ ≤ 0;

0 if λ > 0.

If λ ≤ 0, the associated state-costate equations read as

ċ = Hλ =
λc2

2
+ c, (34)

λ̇ = ρλ−Hc = ρλ+ 8ρµ(1− c)χ(c)− λ2

2
c− λ, (35)

whereas if λ > 0, they simplify to

ċ = c, λ̇ = (ρ− 1)λ+ 8ρµ(1− c)χ(c). (36)

Using the relation (33) as a variable transformation whenever λ ≤ 0, we can put the system into

state-control form

ċ = F1(c, u) = c (1− u) , (37)

u̇ = F2(c, u) = ρ (u− 4µc(1− c)χ(c)) . (38)

For later use, we note that in (c, u) variables, the Hamilton function takes the form

Hcontrol(c, u) = 4ρµ(1− c)2χ(c) + u2 − 2u. (39)

A.1.1 Steady states

To determine the steady states of the state-control system (37)–(38), we solve the equations ċ = 0,

u̇ = 0. It is immediate that this system has no solutions if c > 1.

If 0 ≤ c ≤ 1, the equation ċ = 0 is satisfied if c = 0 or u = 1. Substitution into u̇ = 0 of

the former yields the steady state (c, u) = (0, 0). Substitution of the latter leads to the quadratic
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equation

c2 − c+
1

4µ
= 0,

which can be written as (
c− 1

2

)2

−D = 0,

with

D =
1

4

(
1− 1

µ

)
. (40)

Note that D < 1
4 , as all parameters are assumed to have positive values. For D > 0, the quadratic

equation has two real solutions

c± =
1

2
±
√
D =

1±
√

1− 1/µ

2
,

both satisfying 0 < c± < 1; for D = 0, there is a single real solution c = 1/2, while for D < 0,

there is no real solution.

Summarizing, if 0 ≤ c ≤ 1, we have the steady states

(c, u) = e0 = (0, 0)

and, for D ≥ 0,

(c, u) = e± = (c±, u±) =

(
1

2
±
√
D, 1

)
. (41)

A.1.2 Stability

To analyze stability, we have to determine the eigenvalues of

DF =

(
1− u −c

4ρµ(2c− 1) ρ

)

at the steady states e0, e+ and e−. As

DF (e0) =

(
1 0

−4ρµ ρ

)
,

which has eigenvalues ρ and 1, the point e0 is always an unstable node.

Denote the eigenvalues of the matrix

DF (e±) =

(
0 −c±

±8ρµ
√
D ρ

)
(42)
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by λi±, i = 1, 2. They satisfy

λ1
± + λ2

± = traceDF (e±) = ρ

and

λ1
±λ

2
± = detDF (e±) = ±8ρµc±

√
D.

We have seen before that c± > 0 whenever it is real. If D > 0, it follows that the eigenval-

ues λ1
−, λ

2
− have opposite sign, and e− is a saddle, whereas λ1

+ and λ2
+ have the same sign and

positive sum, implying that e+ is an unstable node.

Expressing these results in the original variables, we obtain the results announced in the

proposition.

A.1.3 Bifurcation analysis

It remains to prove the occurrence of a saddle-node bifurcation. If µ = µb = 1, then D = 0 and

the point eb = (cb, ub) = (1/2, 1) is a steady state with eigenvalues 0 and ρ respectively.

We use a result from Sotomayor (1973) (quoted as Theorem 3.4.1 in Guckenheimer and

Holmes, 1986), which for planar dynamical systems states that if the family

ẋ = F (x;µ)

parametrised by µ satisfies the following three conditions

1. DxF (x0;µ0) has a simple eigenvalue 0 with right eigenvector v and left eigenvector w;

2. wDµF (x0;µ0) 6= 0;

3. w
[
D2
xF (x0;µ0)(v, v)

]
6= 0;

then it features a non-degenerate saddle-node bifurcation at x = x0 for µ = µ0.

As DF (eb;µb) =

(
0 −1/2

0 ρ

)
, it follows that v =

(
1

0

)
and w =

(
2ρ 1

)
are respectively

left and right eigenvectors associated to the eigenvalue 0. Furthermore

wDµF (eb;µb) = w

(
0

−ρ

)
= −ρ 6= 0

and, as v =

(
1

0

)
,

w
[
D2
xF (eb;µb)(v, v)

]
= w

∂2

∂c2
F = w

(
0

8ρ

)
= 8ρ 6= 0.

We conclude that a nondegenerate saddle-node bifurcation occurs in the system at µ = 1. This

completes the proof of Proposition 1.
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A.2 Proof of Proposition 2

As in the proof of Proposition 1, introduce the constants

K =
1

φ(1 + β)
and µ =

αφ(1 + β)

4ρK
=
αφ2(1 + β)2

4ρ
,

as well as the rescaled control variable u = k/K. The state-control system then takes the form

ċ = c (1− u) , u̇ = ρ
(
u− 4µc(1− c)χ(c)

)
. (43)

Recall also the notations

e0 = (0, 0), e− =

(
1−

√
1− 1/µ

2
, 1

)
, e+ =

(
1 +

√
1− 1/µ

2
, 1

)

for the three steady states of the system, and introduce

e1 = (1, 0).

To prove the proposition, the state-control space is partitioned into four subsets, R1, R2, R3

and E. Of these, the sets R3 and E are independent of the values of the system parameters. They

are given as

R3 = {(c, u) : 0 < c < 1, u = 0}, E = {(c, u) : c ≥ 1, u = 0}.

Let U = {(c, u) : u > 0} be the upper half plane. Given the set R1, the set R2 is equal to

R2 = U\R1.

It remains to specify R1, which is the first step in the proof. Then it is shown that no trajectory in

either R2 or R3 can be optimal. The next step is to demonstrate that of the trajectories in R1,

only those can be optimal which converge either to a steady state in R1, necessarily a saddle, or

which end up in the “exit trajectory” E. Then it has to be shown that the trajectories that are not

excluded up to this point, the candidate trajectories, “cover” the state space; that is, for every

initial state c0, there is at least one candidate trajectory passing through the line c = c0. Using

parts of the remaining candidate trajectories, we construct a viscosity solution of the Hamilton-

Jacobi equation, which is then necessarily the value function. This shows the optimality of the

remaining trajectories.

A.2.1 Definition of R1

Set

u0 = max{1, µ},
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and consider the trajectory γ(t) = (c(t), u(t)) of the system (43) that passes at t = 0 through

the point (1, u0).

If µ ≤ 1, then u0 = 1 and R1 is specified as

R1 = {(c, u) : 0 ≤ c ≤ 1, 0 < u ≤ 1} .

If the other possibility µ > 1 obtains, then u0 = µ > 1 and ċ(0) < 0. In this situation, let τ

be the least upper bound of those negative values of t that satisfy c(t) ≤ 1; that is, let

τ = sup{t < 0 : c(t) ≤ 1}.

We claim that τ is finite. Arguing by contradiction, assume that τ = −∞. Then for all t < 0 we

have c(t) > 1, and equation (43) implies that for all t < 0

u(t) = u0eρt.

In particular, there is a t1 < 0 such that

u(t) < u0eρt1 =: K1 < 1

for all t < t1. But for those values of t, it follows that

ċ = (1− u) c > (1−K1) c =: K2c,

where K2 > 0. Gronwall’s lemma implies then that

c(t) < eK2(t−t1)c(t1)

if t < t1. But for t sufficiently small, this is smaller than 1, contradicting the hypothesis

that τ = −∞. Hence τ is finite.

Introduce uτ by the equation γ(τ) = (1, uτ ). The set R1 is defined as follows: it is the

open region bounded by the concatenation of the curve γ taken between t = 0 and t = τ ,

connecting (1, u0) and (1, uτ ), the vertical line segment connecting (1, uτ ) to e1, the horizontal

segment connecting e1 to e0, the vertical segment connecting e0 to (0, u0), and the horizontal

segment connecting (0, u0) to (1, u0). See Figure 10 for the possible shapes of R1.

A.2.2 Trajectories in R2 cannot be optimal

In the second step of the proof, the transversality condition is used to show that any trajectory

that passes through points in R2 cannot be optimal.

Beginning with R2, we note that the subset

R
(1)
2 = {(c, u) : 0 ≤ c ≤ 1} ∩R2

27



R1

R2

R3

E
1

c

Μ

1

u

(a) µ ≤ 1

R1

R2

R3

E
1

c

Μ

1

u

(b) µ > 1

Figure 10: Definition of the set R1. Solid curves denote the boundary of the set, dashed curves
the isoclines of the system (37)–(38).

of R2 is a forward trapping region: once a trajectory of (43) is inside R(1)
2 , it remains inside

for all subsequent times. This fact is established by demonstrating that the vector field defined

by (43) is inward pointing on the boundary of R(1)
2 . For, if u = u0 = max{1, µ} and 0 ≤ c ≤ 1,

then

u̇ ≥ ρ(µ− 4µc(1− c)) = 0.

If c = 0, then ċ = 0, and if finally c = 1 and u ≥ u0 ≥ 1, then

ċ ≤ c (1− 1) = 0.

Actually, we can make the sharper statement that if u > u0, then

u̇ > 0. (44)

To show that no trajectory that enters R(1)
2 can be maximizing, pick an arbitrary trajectory γ

such that γ(t0) ∈ R(1)
2 at a given time t0. By the Poincaré-Bendixon theorem, γ(t) is either

unbounded, or its ω-limit set is a steady state, or a limit cycle. The latter possibility is excluded,

as the state-costate system, which is in one-to-one relation with the state-control system, has

constant positive divergence everywhere (see Wagener, 2003). There are no steady states in R(1)
2 .

Hence there is a sequence t0, t1, . . . such that ‖γ(ti)‖ → ∞. In particular, there is t̄ > t0

such that u(t̄) > 2u0. But then u(t) is monotonely increasing towards infinity as t > t̄, as a

consequence of (44).

Consequently, if t ≥ t̄, then

ċ ≤ (1− 2u0) c ≤ −c.
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By Gronwall’s lemma it follows that

c(t) ≤ c(t̄)e−(t−t̄). (45)

Likewise, if t ≥ t̄, then u(t) > 2u0 and

u̇ ≥ ρ(u− µ).

Gronwall’s lemma implies then that

u(t) ≥ µ+ (2u0 − µ)eρ(t−t̄). (46)

If the trajectory γ(t) = (c(t), u(t)) is optimal, then by the Hamilton-Jacobi equation (see

e.g. Wagener, 2003), the total profit Π takes the value

Π(c(0)) =
1

ρ
H(c(0), λ(0)) =

1

ρ
Hcontrol(c(0), u(0)). (47)

Michel’s transversality condition (Michel, 1982) states that along a maximizing trajectory the

relation

lim
t→∞

Π(c(t))e−ρt = 0

holds. Combining (47) and (39) yields

Π(c(t))e−ρt ≥
(
4ρµ(1− c(t))2χ(c(t)) + u(t)(u(t)− 2)

)
e−ρt

Using that the first term between brackets is always nonnegative, and taking into account (46)

yields that

Πe−ρt ≥ (2u0 − µ)eρ(t−t̄)(µ− 2 + (2u0 − µ)eρ(t−t̄))e−ρt.
As 2u0 − µ ≥ µ > 0, it follows that the right hand side of this inequality tends to infinity

as t→∞. But then

lim
t→∞

Π(c(t))e−ρt =∞,

and γ cannot be a maximizing trajectory.

It remains to show that no trajectory passing through

R
(2)
2 = R2\R(1)

2 ,

the complement ofR(1)
2 inR2, can be optimal. Consider therefore a trajectory γ such that γ(t0) ∈

R
(2)
2 for some t0. As in the definition of the region R1, using Gronwall’s lemma it can be shown

that there is some t1 > t0 such that u(t1) > 1, and some t2 > t1 such that u(t2) > 1
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and c(t2) = 1. But then γ enters the trapping region R(1)
2 , and we have already seen that such

trajectories cannot be optimal.

A.2.3 Trajectories intersecting R3 cannot be optimal

If a trajectory intersects R3, the state-control representation breaks down, and we have to switch

to the state-costate representation.

Pick an arbitrary state-costate trajectory γ(t) = (c(t), λ(t)), with associated control u(t) =

max{0,−1
2c(t)λ(t)} such that

(
c(t0), u(t0)

)
∈ R3 for some t0 ≥ 0 and

(
c(t), u(t)

)
∈ R1 for

all t < t0 that are sufficienty close to t0. The costate λ then satisfies λ(t0) = 0 and λ̇(t0) > 0.

Note that the region

R̃3 = {(c, λ) : λ > 0}

is a trapping region for the state-costate flow, as λ̇ ≥ 0 whenever λ = 0.

Using Gronwall’s lemma, we show first that

c(t) ≥ c(t0)e(t−t0),

for t > t0, since ċ = c ≥ c in R̃3 (equation (36)). It follows that there is t1 > t0 such

that c(t) > 1 for all t > t1.

Let h(t) = H(c(t), λ(t)). Note that for all t > t1 we have c(t) > 1 and λ(t) > 0, and

consequently h(t) = λ(t)c(t) > 0. The state-costate equations reduce to

ċ = c, λ̇ = (ρ− 1)λ. (48)

Compute:

ḣ = λ̇c+ λċ = ρλc = ρh.

Hence

h(t) = h(t1)eρ(t−t1)

for all t > t1. But then

lim
t→∞

h(t)e−ρt = h(t1)e−ρt1 > 0.

If γ is optimal, Michel’s transversality condition implies that

lim
t→∞

Π(c(t))e−ρt = lim
t→∞

1

ρ
H(c(t), λ(t))e−ρt = lim

t→∞

h(t)

ρ
e−ρt = 0.

As this is a contradiction, the trajectory γ cannot be optimal.
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A.2.4 Trajectories in R1 with wrong limit behavior cannot be optimal

As the set R1 is bounded, by the Poincaré-Bendixon theorem trajectories in R1 can either

converge to a steady state, or leave R1 (cf. the argument in Section A.2.2). Those entering

either R2 or R3 have already been shown to be suboptimal. The remaining possibility is to

leave R1 through the point e1 and enter the line segment E; these trajectories remain candidates

for optimality.

Trajectories remaining in R1 have to converge to a steady state. From proposition 1 we learn

that e0 and e+ are unstable nodes, to which no trajectory can converge as t → ∞. The only

remaining candidate is then the saddle e−, if µ < 1, or the bifurcating point eb if µ = 1.

This completes the proof of Proposition 2.

A.3 Proof of proposition 3

A.3.1 Construction of policy functions

The first step in the proof is to construct those (parts of) trajectories of the system (43) that will

turn out to optimize the profit functional. In particular, we shall construct a, possibly multivalued,

policy function uf such that the following holds. If (c0, u0) is such that u0 = uf (c0), then

the trajectory (c(t), u(t)) of (43) starting at this point satisfies, for all t ≥ 0, that ċ(t) 6= 0

and u(t) = uf (c(t)).

Again we have to distinguish between the situations µ < 1 and µ ≥ 1.

First situation: µ < 1. Here the only steady state of (43) is the origin e0, which is an unstable

node. Therefore, the only candidate optimizer is the trajectory passing through the point e1. Note

that a corollary of the analysis performed above is that the set R1 is a backward trapping region:

if a trajectory is in R1 for some time, it is in R1 for all previous times. Necessarily it converges

to the origin as t→ −∞.

Let γ(t) = (cγ(t), uγ(t)) be the trajectory such that γ(0) = e1. As γ(t) ∈ R1 for all t < 0,

it follows that ċγ > 0 for all t < 0 (recall that R1 is open). As u(t) = 0 for all t ≥ 0, it follows

that ċγ > 0 for all t, and that the map cγ : R → (0,∞) is invertible, with inverse t = tγ(c).

Define uf : (0,∞)→ R by

uf (c) = uγ (tγ(c))

Then the image of the curve γ : R→ R2 is equal to the graph of the function uf : (0,∞)→ R,

as

uγ(t) = uf (cγ(t))

for all t.

Second situation: µ ≥ 1. In this case, though R1 is still a backward trapping region, there are

at least two steady states in R1: apart from the origin e0, we also have e− and e+. As seen before,

if D > 0, the first is a saddle and the second a repeller; if D = 0, these two points coincide in eb.
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Denote by δ1 the part of the parabola u = 4µc(1− c) connecting e0 to e−, by δ2 the segment

of the line u = 1 connecting e− to e+, by δ3 that part of the same parabola which connects e+

to e1, and by δ4 the segment of the line u = 0 connecting e1 to e0. All curves δi are taken without

their endpoint. Let finally S1 ⊂ R1 be the open subregion of R1 that is bounded by the curves δi,

i = 1, . . . , 4. See Figure 11.

S1

S2

S3 S4

∆1

∆2

∆3

∆4e0 e1

e- e+

c

u

Figure 11: Subdivision of region R1. The vertices e0, e1, e− and e+, the edges δi, i = 1, . . . , 4,
and the faces Si, i = 1, . . . , 4 are defined in the text.

Let γ(t) = (c(t), u(t)) be the trajectory of (43) satisfying γ(0) = e1. As the open set S1 is

bounded, the trajectory γ either converges to a steady state on the boundary of S1, or it enters S1

for the last time by crossing one of the curves δi. We analyze the possibilities one by one.

The trajectory remains in S1 for all t < 0 and tends to e0. If γ(t) ∈ S1 for all t < 0

and γ(t)→ e0 as t→ −∞, then the results of the situation D < 0 carry over unmodified, and

we obtain a policy function uf : (0,∞)→ R.

The trajectory remains in S1 for all t < 0 and tends to e−. If γ(t) ∈ S1 for all t < 0

and γ(t)→ e− as t→ −∞, then γ is part of the unstable manifold of e−. Reasoning as in the

situation D < 0, we obtain a policy function

u
(1)
f : (c−,∞)→ R

with

lim
c↓c−

u
(1)
f (c) = u− = 1.

However, this function is not defined for all c > 0. To construct a policy function for 0 < c < c−,

we take a trajectory γs on the left half of the stable manifold of the saddle e−.

We claim that this part of the stable manifold is contained in its entirety in the region S2

that is bounded by δ1, the segment of u = 1 connecting e− to (0, 1), and the segment of the

line c = 0 connecting (0, 1) to e0. It is straightforward to show that S2 is a backward trapping
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region; consequently, every trajectory in S2 converges to the unstable node e0 as t→ −∞.

The stable manifold of e− is tangent to the stable eigenspace of

DF (e−) =

(
0 −c−

8ρµ
√
D ρ

)
,

cf. equation (42), at e−. Note that the vector v = (0, 1) cannot be an eigenvector of this matrix,

as c− 6= 0. Therefore any eigenvector v = (v1, v2) satisfies v1 6= 0; it may therefore be assumed

that v1 = 1.

Let vs = (1, vs2) be the stable eigenvector, with eigenvalue λs < 0. The eigenvalue equation

DF (e−)vs = λsvs

then yields

vs2 = −λ
s

c−
> 0.

Locally around the saddle, the stable manifold coincides with the graph of a function ws, defined

on a neighborhood of c−, which is of the form

ws(c) = c− + vs2(c− c−) +O((c− c−)2).

In particular, if c0 < c− is sufficiently close to c−, then

dws

dc
(c) > 0

for all c ∈ [c0, c−]. The trajectory γ(t) of (43) such that γ(0) = (c0, w
s(c0)) consequently

satisfies c0 ≤ c(t) < c−, as well as ċ(t) > 0 and u̇(t) > 0 for all t ≥ 0. We infer that necessarily

4µc(t)(1− c(t)) < u(t) < 1

for all t ≥ 0, and hence (c(t), u(t)) ∈ S2 for all t ≥ 0. But as S2 is a backward trapping region,

the trajectory γ is contained in S2 for all t, hence satisfying

γ(t)→ e0 as t→ −∞, and γ(t)→ e− as t→∞.

As in S2, we have ċ > 0 everywhere, and we construct as above a policy function

u
(2)
f : (0, c−)→ R, with lim

c↑c−
u

(2)
f (c) = u− = 1.
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It follows that the function

uf (c) =


u

(1)
f (c) if c > c−,

u− if c = c−,

u
(2)
f (c) if 0 < c < c−,

is a continuous policy function that is defined for all c > 0.

The trajectory remains in S1 for all t < 0 and tends to e+. As before, we can construct a

policy function

u
(1)
f : (c+,∞)→ R, with lim

c↓c+
u

(1)
f (c) = u+ = 1.

The remaining part of the policy function has to be furnished by the stable manifold of e−. As

above, the left half of this stable manifold furnishes a policy function

u
(2)
f : (0, c−)→ R, with lim

c↑c−
u

(2)
f (c) = u− = 1.

We turn to the right half of the stable manifold. For values of c0 larger than but close to c−, the

point (c0, u0) = (c0, w
s(c0)) on the stable manifold is contained in the bounded open region S3

that is bounded by the line u = 1 and the parabola u = 4µc(1 − c). In this region ċ < 0

and k̇ < 0. Fix (c0, u0) and consider the trajectory γ of (43) such that γ(0) = (c0, u0). This

trajectory enters S3 through the part of the parabola connecting its vertex (1/2, µ) with the

point e+. It enters from the region S4 that is bounded by that same part of the parabola, the

line u = u+ and the boundary of R1. In that region, ċ < 0, but k̇ > 0. It follows that the

trajectory has to enter S4 through the line segment of c = c+ connecting e+ and (c+, µ), or

through one of the endpoints.

If γ(t)→ e+ as t→ −∞, then its graph defines a policy function

u
(3)
f : (c−, c+)→ R with lim

c↓c−
u

(3)
f (c) = u− = 1, lim

c↑c+
u

(3)
f (c) = u+ = 1.

A continuous policy function is then given by

uf (c) =



u
(1)
f (c) if c > c+,

u+ if c = c+,

u
(2)
f (c) if 0 < c < c−,

u− if c = c−,

u
(3)
f (c) if c− < c < c+.

Otherwise, there is a time t1 < 0, such that c(t1) = c+ and u(t1) > u+. As in this case γ(t)

does not tend to a steady state in the boundary of S4, it has to enter S4 for some t2 < t1; the only
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possibility for this is through the line u = 1. We therefore have

γ(t2) = (cM , 1).

In this situation, the graph γ([t2,∞)) defines a policy function

u
(3)
f : (c−, cM )→ R with lim

c↓c−
u

(3)
f (c) = u− = 1, lim

c↑cM
u

(3)
f (c) = 1.

On the interval (c+, cM ), there are now two policy functions defined. Recall that the total profit

at an initial state c of an R&D policy for which u = uf (c) is given by

Π(c) =
1

ρ
Hcontrol(c, u) =

1

ρ

(
4ρµ(1− c)2χ(c) + u2 − 2u

)
.

For fixed values of c, the function Hcontrol(c, u) is minimal at u = 1. Hence the policy u(3)
f is

superior to u(1)
f at c = c+, but it is inferior to it at c = cM . As both functions are continuous,

there is a value c = ĉ such that both policies generate the same total profit. This is an indifference

point, as the manager is indifferent between two policies at this state. A policy function, which is

at one point two-valued, is then given by

uf (c) =



u
(1)
f (c) if c > ĉ,

u
(1)
f (ĉ) or u(3)

f (ĉ) if c = ĉ,

u
(2)
f (c) if 0 < c < c−,

u− if c = c−,

u
(3)
f (c) if c− < c < ĉ.

Note that the induced total profit Π(c) = Hcontrol(c, uf (c))/ρ is Lipschitz continuous.

The trajectory enters S1 for the last time through δ1. The next situation to be investigated

is that the trajectory γ satisfying γ(0) = e1 enters S1 through δ1 at some time t1 < 0, and

remains in S1 for all t1 < t < 0. But then it has to be in the backward trapping region S2 for

all t < t1, and it converges to e0 as t→ −∞. As ċ > 0 in both S1 and S2, we can construct a

differentiable policy function exactly as in the situation that the trajectory remains in S1 for t < 0

and converges to e0.

The trajectory enters S1 for the last time through δ2. Finally consider the situation that the

trajectory γ that passes through e1 at t = 0 enters S1 through δ2 for some t1 < 0, and remains

in S1 for all t1 < t < 0. Introduce cm by setting γ(t1) = (cm, 1). As ċ(t) > 0 for t1 < t < 0 as

well as for t ≥ 0, we can construct a continuous policy function

u
(1)
f : [cm,∞)→ R, u

(1)
f (cm) = 1.
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in the usual manner. The left branch of the stable manifold of the saddle e− furnishes a continuous

policy function

u
(2)
f : (0, c−)→ R, with lim

c↑c−
u

(2)
f (c) = u− = 1,

and the right branch of that manifold furnishes a continuous policy function

u
(3)
f : (c−, cM )→ R, with lim

c↓c−
u

(3)
f (c) = u− = 1, u

(3)
f (cM ) = 1,

where c+ ≤ cM . Invoking the same arguments as above, we show that u(3)
f is superior to u(1)

f

at c = cm and inferior to it at c = cM . By the intermediate value theorem, there is an indifference

point ĉ such that cm < ĉ < cM , and such that the manager is indifferent between the two policies

at c = ĉ. A policy function defined on all points of state space is then

uf (c) =



u
(1)
f (c) if c > ĉ,

u
(1)
f (ĉ) or u(3)

f (ĉ) if c = ĉ,

u
(2)
f (c) if 0 < c < c−,

u− if c = c−,

u
(3)
f (c) if c− < c < ĉ.

Summary. For all parameters, we have constructed a policy function

uf : (0,∞)→ R,

which is single-valued, except at most at one point ĉ, the indifference point. Moreover, the values

of the two trajectories originating at an indifference point are the same.

A.3.2 Policy functions generate viscosity solutions of the Hamilton-Jacobi equation

Using relation (47), we have that

V (c) =
1

ρ
Hcontrol(c, uf (c))

is well-defined at c = ĉ, continuous and continuously differentiable at all points c > 0 except ĉ.

Moreover, the value of the total profit (32) along a trajectory γ of the state-control system (37)

such that γ(0) = (c, uf (c)) is equal to V (c).

We now go back to the state-costate representation (34)–(35), and introduce the feedback

costate function

λf (c) = −2

c
uf (c).

Note that then

V (c) =
1

ρ
H(c, λf (c)). (49)
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By construction, if γ(t) = (c(t), λ(t)) is a solution of the state-costate system such that λ(0) =

λf (c(0)), then

λ(t) = λf (c(t)) for all t.

If t > 0, then c(t) 6= ĉ and λf is differentiable at c(t); by the chain rule

λ̇ = λ′f (c)ċ. (50)

We claim that λf (c) = V ′(c) for all c 6= ĉ. For, differentiating (49) with respect to c yields

V ′(c) =
1

ρ

(
Hc +Hλλ

′
f (c)

)
.

Evaluating this equation at c = c(t), using first (50) and then (34) and (35) gives

V ′
(
c(t)
)

=
1

ρ

(
Hc +Hλ

λ̇

ċ

)

=
1

ρ

(
Hc +Hλ

ρλ−Hc

Hλ

)
= λ(t) = λf

(
c(t)
)
;

this proves the claim.

It follows that the function V defined by (49) is a regular solution of the Hamilton-Jacobi

equation

ρV (c) = H(c, V ′(c)) (51)

for all c 6= ĉ.

Viscosity solutions. We quote the definition of viscosity sub- and supersolutions from Fleming

and Soner (2006, section II.11, p. 106).

Definition

1◦ A function W is a viscosity subsolution of (51) at c̄, if for every continuously differentiable

function w such that the difference W − w takes a local maximum at c̄, we have

ρV (c̄)−H(c̄, w′(c̄)) ≤ 0. (52)

2◦ A function W is a viscosity supersolution of (51) at c̄, if for every continuously differentiable

function w such that the difference W − w takes a local minimum at c̄, we have

ρV (c̄)−H(c̄, w′(c̄)) ≥ 0. (53)

3◦ A functionW is a viscosity solution of (51), if it is both a viscosity subsolution and a viscosity
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supersolution.

As V is continuously differentiable in the neighborhood of every point c̄ 6= ĉ, taking w = V

in these definitions shows that V is a viscosity solution of the Hamilton-Jacobi equation (51) at c̄

if and only if it is a regular solution at c̄.

It remains to show that V is a viscosity solution at an indifference point ĉ. Note that the left

and right limits of V ′(c) exist at ĉ; we write

λ̂− = lim
c↑ĉ

V ′(c), λ̂+ = lim
c↓ĉ

V ′(c).

From the analysis done above, we infer that

λ̂− < λ̂+

Let v be a continuously differentiable function such that V − v takes a local minimum at c = ĉ.

Then necessarily

lim
c↑ĉ

V ′(c)− v′(c) ≤ 0, lim
c↓ĉ

V ′(c)− v′(c) ≥ 0,

implying that

λ̂− ≤ v′(c) ≤ λ̂+. (54)

As ĉ is an indifference point, we have that

H(ĉ, λ̂−) = H(ĉ, λ̂+) = ρV (ĉ).

Moreover, the Hamilton function H(c, λ) is convex in λ. Together with (54) this implies that

ρV (ĉ)−H(ĉ, v′(ĉ)) ≥ 0.

Hence V is a viscosity supersolution.

Consider now the situation that v is a continuously differentiable function such that V − v
takes a local maximum at ĉ. Then

lim
c↑ĉ

V ′(c)− v′(c) ≥ 0, lim
c↓ĉ

V ′(c)− v′(c) ≤ 0,

which implies that

v′(ĉ) ≤ λ̂− < λ̂+ ≤ v′(ĉ),

which is a contradiction. There is no differentiable function such that V − v takes a local

minimum; but then for all such functions, the inequality (52) holds at ĉ, and V is a viscosity

subsolution.

As we know (cf. Fleming and Soner, 2006) that the unique viscosity solution of the Hamilton-

Jacobi equation is the value function of the problem, it follows that the trajectories defined by the

policy function are optimal. This concludes the proof.

38



A.4 Proof of Proposition 4

This is an immediate consequence of the scaling (31). For assume that there is a bifurcation

at (µ, ρ) = (µ∗, ρ∗). Then for ρ = ρ∗, the value K−1 = φ(1 + β) is bifurcating if

K−1
∗ =

2
√
ρ∗µ∗√
α

.

As α = 1/9 under partial collusion and α = 1/8 under full collusion, this implies

K−1
∗partial = 6

√
ρ∗µ∗ > 4

√
2
√
ρ∗µ∗ = K−1

∗full.

This proves the proposition.

A.5 Proof of Propositions 6 and 5

We want to compare, for a given parameter combination, the full collusion situation α = 1
8 ,

and the partial collusion situation α = 1
9 . Performing the scaling to (c, u) variables and (µ, ρ)

parameters, this reduces to comparing the partial collusion situation (µ1, ρ) with the full collusion

situation (µ2, ρ), where the µi are related as

µ2 =
9

8
µ1.

Denote by uif , i = 1, 2 the corresponding policy functions, and recall that their graphs are

locally equal to a portion of a trajectory of (37)–(38), with u replaced by u1 or u2, depending

on whether µ = µ1 or µ = µ2. Invoking the chain rule as in (50), we can derive a differential

equation for ui = uif as follows:

dui
dc

=
u̇i
ċ

=
ρ (ui − 4µc(1− c)χ)

c(1− ui)
;

here, we have written χ = χ(c) for brevity. This is a first order non-autonomous differential

equation, with singularities at c = 0 and ui = 1.

Writing ∆µ = µ2 − µ1 and ∆u = u2 − u1, the difference ∆u satisfies the following
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differential relation:

d∆u

dc
=
ρ (u2 − 4µ2c(1− c)χ)

c(1− u2)
− ρ (u1 − 4µ1c(1− c)χ)

c(1− u1)

=
ρ(1− u1) (u2 − 4µ2c(1− c)χ)

c(1− u1)(1− u2)
− ρ(1− u2) (u1 − 4µ1c(1− c)χ)

c(1− u1)(1− u2)

=
ρ (u2 − u1u2 − 4c(1− c)χ(µ2 − u1µ2))

c(1− u1)(1− u2)

− ρ (u1 − u1u2 − 4c(1− c)χ(µ1 − u2µ1))

c(1− u1)(1− u2)

=
ρ (∆u− 4c(1− c)χ(∆µ+ u2µ2 − u1µ2 − u2µ2 + u2µ1))

c(1− u1)(1− u2)

=
ρ (∆u− 4c(1− c)χ(∆µ+ µ2∆u− u2∆µ))

c(1− u1)(1− u2)

=
ρ (1− 4µ2c(1− c)χ)

c(1− u1)(1− u2)
∆u− 4ρ(1− c)χ

1− u1
∆µ

As u1 and u2 are known, this relation is of the form

d∆u

dc
= a(c)∆u+ b(c),

where a and b are known functions. For

∆u(c0) = ∆0

the variations of constants formula for the solution reads as

∆u(c) = ∆0e
∫ c
c0
a(x)dx

+

∫ c

c0

b(x)e
∫ c
x a(y)dydx.

A.5.1 Proof of Proposition 5

Consider first the situation that there is a value 0 ≤ c̄ ≤ 1 such that for all c ∈ (c̄, 1] the

optimal trajectories for both the partial and the full collusion case leave the production region

through e1. As we know that trajectories through e1 can be optimal only if they have not crossed

the line u = 1 yet, the term b of the variations of constants formula satisfies

b(c) = −4ρ(1− c)χ
1− u1

∆µ ≤ 0

for c̄ < c ≤ 1. Taking c0 = 1 gives ∆0 = 0, which implies that

∆(c) > 0

for all c̄ < c ≤ 1. Hence, R&D effort under full collusion is always larger than R&D effort under

partial collusion if both lead to eventually leaving the market.
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Next, we consider the situation that there is some c̄ > 0, such that for all c ∈ (0, c̄), the

optimal trajectories for both the partial and the full collusion case converge to their respective

steady states e1
− = (c1

−, 1) and e2
− = (c2

−, 1). As µ2 < µ1, it follows that 0 < c2
− < c1

− ≤ 1/2.

The stable manifold tending to e2
− can only leave the region bounded by the parabola u = µ2c(1−

c) and the lines u = 1 and c = 1/2 through the line segment connecting the points (1/2, 1)

with (1/2, µ2). It follows that necessarily

u2(c1
−) > u1(c1

−), or equivalently, ∆(c1
−) > 0.

We have already established that trajectories tending to either e1
− or e2

− can only be optimal if

they do not cross the line u = 1. Therefore

b(c) =
4ρ(1− c)χ
u1 − 1

∆µ > 0,

if 0 < c < c̄, and the variations of constants formula implies

∆(c) > 0 for all c1
− ≤ c < c̄.

Moreover u1(c) < 1 if 0 < c < c1
−, implying that b(c) < 0 there. Again using the variations of

constants formula, we obtain

∆(c) > 0 for all 0 < c ≤ c1
−

as well.

Finally, if the optimal trajectory of the full collusion case converges to e2
−, whereas the

optimal trajectory of the partial collusion case exits the production region through e1, we have

that the former satisfies u ≥ 1 and the latter u ≤ 1.

This proves Proposition 5.

A.5.2 Proof of Proposition 6

To prove Proposition 6, we again use the fact that the value of the integral Π over a trajectory

starting at a point (c, u) equals

Π(c, u) =
1

ρ
Hcontrol(c, u) =

1

ρ

(
4ρµ(1− c)2χ− 1 + (u− 1)2

)
= h(c) + C(u− 1)2. (55)

If c = ĉ is an indifference point, there are values û(1) > û(2) such that the trajectories starting

at (ĉ, û(i)), for i = 1, 2, are both optimal and have both the same value. Note that the trajectory

through (ĉ, û(1)) goes to the left, and that through (ĉ, û(2)) goes to the right. As

Π
(
ĉ, û(1)

)
= Π

(
ĉ, û(2)

)
,
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it follows that

|û(1) − 1| = |û(2) − 1|.

Consider a fixed value of ρ and two values µ1, µ2 of µ such that µ2 = (9/8)µ1; that is, (µ1, ρ)

describes a partial collusion situation, and (µ2, ρ) is the corresponding full collusion situation.

Assume first that there is an indifference point in the partial collusion problem; denote these

points as ĉ1, and the corresponding values of u as

û
(1)
1 < û

(2)
1 .

We have seen in the proof of Proposition 5 that necessarily the full collusion trajectory going

towards e2
− is above the partial collusion trajectory going towards e1

−. Denote its intersection

with the line c = ĉ1 by (ĉ1, û
(1)
2 ). We have that

|û(1)
2 − 1| > |û(1)

1 − 1|.

We argue by contradiction. Assume that the threshold ĉ2 in the full collusion case exists and is

below the threshold in the partial collusion case, then the full collusion trajectory going right,

that is, to e1, has to intersect the line c = ĉ1 in a point (ĉ1, û
(2)
2 ). Moreover, this trajectory has to

be optimal at ĉ1. Using (55), this implies that

|û(1)
2 − 1| < |û(2)

2 − 1|.

Finally, the full collusion trajectory has to be above the partial collusion trajectory going to e1,

implying

|û(2)
2 − 1| < |û(2)

1 − 1|.

Combining these inequalities with the fact that ĉ1 is an indifference point in the partial collusion

situation, we arrive at

|û(1)
2 − 1| > |û(1)

1 − 1| = |û(2)
1 − 1| > |û(2)

2 − 1| > |û(1)
2 − 1|.

But this is a contradiction. The proof in situation that the threshold is a repeller is similar and

will be omitted.
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