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Abstract

For joint liability problems concerning tort law, a legal compensation scheme may be

based on lower and upper bounds of compensation for injury and on case-system consis-

tency. Introducing several properties inspired from this observation, we analyze compen-

sation schemes axiomatically under the situation where causation of the cumulative injury

appears in multiple sequences of wrongful acts. The situation underlying the model is

described by a rooted-tree graph. We show that there is a unique compensation scheme

that satis�es three axioms, one about lower bounds of individual compensations, one about

upper bounds of individual compensations, and one about case-system consistency. This

unique compensation scheme is the nucleolus of an associated liability game.

Keywords: Liability problems, Tort law, Rooted-tree graph, Axiomatization, Nucleolus,

JEL Classi�cation Number: D63, K13, K49



1 Introduction

In this paper we consider situations in which an injured party su¤ers damages caused by

wrongful acts performed subsequently by a sequence of injuring parties. The wrongful

acts are causally related in the sense that any wrongful act in the sequence would not

have occurred if any of the preceding wrongful acts would not have occurred. So, the

second (wrongful) act can only occur after the �rst (wrongful) act has occurred, the third

(wrongful) act can only occur when both the �rst and the second (wrongful) acts have

occurred and so on. Any wrongful act results in an amount of damage to the injured party.

The injuring parties are the tortfeasors who can be considered to be jointly liable for the

full damage. The problem is how to apportion the full damage amongst the tortfeasors. In

many real life situations, this problem is brought to court. This sharing problem is referred

to as the Liability problem.

Historically, common law did not accept any apportionment among the tortfeasors, but

evolution of common law in the 19th and 20th centuries led to the third Restatement of

Torts (May 1999), providing basic principles and rules to apportion the damages. How-

ever, a systematic apportionment method is still the subject of research. In the existing

literature on law and economics, it is a central topic to clarify whether or not a legal

compensation scheme for liability problems is useful, see for instance Landes and Posner

(1980), Shavell (1983), and Parisi and Singh (2010). These authors analyze the functioning

of compensation schemes from the viewpoint of incentives. On the other hand, the view-

point of fairness is also important. In fact, tort law prescribes an award of damages to

achieve fair compensation for injury, see Boston (1995-1996). Although a few researchers

have investigated the normative topic of liability problems (for instance, see Dehez and

Ferey (2013) and Ferey and Dehez (2015)), this topic still needs further investigation.

In this paper, we analyze the functioning of compensation schemes from the viewpoint

of fairness. For this purpose, we take an axiomatic approach.1 The axioms proposed in this

paper are derived by taking into account tort law. Furthermore, we are interested in the

situation where the determination of causal weights between the injuring parties is di¢ cult

in the following two senses. First, since a judge determines causal weights subjectively, fair

compensation for injury may be di¢ cult. Second, if the judge�s transaction cost of this

determination is high, then the determination may be impossible. Under this situation,

we axiomatize the compensation scheme associated with the �di¤erence principle of social

justice�à la Rawls (1971).

The liability problem as described in Dehez and Ferey (2013) has a linear structure in

the sense that the agents are linearly ordered: the wrongful act of agent i can only occur

1Axiomatic approaches to economic allocation problems, where the axioms are based on principles of

distributive justice have been described in, e.g. Moulin (2003)
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when all agents j < i behave wrongfully. In this paper, we consider the more general class

of liability problems with rooted-tree structure. As an example, we consider the case where

the injured party su¤ers an injury that is caused by four agents, agents 1, 2, 3, and 4.

Agent 1 has taken a wrongful act that is the root of the injury. After agent 1�s wrongful

act, agents 2 and 3 have taken wrongful acts. Without agent 1�s wrongful act, agents 2

and 3�s wrongful acts would not have occurred. On the other hand, agent 2�s wrongful

act does not a¤ect agent 3�s wrongful act and reversely. After agent�s 1 wrongful act, the

wrongful act of agent 3 might occur without the wrongful act of agent 2 and reversely, the

wrongful act of agent 2 might occur without the wrongful act of agent 3. Without the

wrongful acts of both agents 1 and 2, agent 4�s wrongful act would not have occurred. The

situation underlying this example can be modeled by the rooted-tree graph of Figure 1. In

this graph, agent 1 is located at the root and has two branches, at one branch agent 1 is

succeeded by agent 2 and agent 2 is succeeded by agent 4, at the other branch agent 1 is

succeeded by agent 3. Agents 3 and 4 are the leafs of the tree. The rooted-tree represents

the hierarchical structure of causation of the cumulative injury.

u
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Figure 1: Rooted tree with two branches.

Formally, the liability problem is how to share the total damage amongst the n tortfea-

sors, called the agents and indexed by i = 1; : : : ; n. A compensation scheme is a sharing

rule that determines for every liability problem the compensations that have to be paid

by the individual tortfeasors. Note that a compensation scheme is a procedure (algorithm)

that can be applied to every liability problem.

Following the existing literature, we use several notions of damages. Here, we explain

the notions by using the case of liability problems with linear structure. Analogously to

this case, it is easy to understand the notions of damages in the case of liability problems

with rooted-tree structure. It is supposed that all damages can be measured monetary.

Every agent i has taken a wrongful act that causes an amount of damage di. However, the

wrongful act of agent i can only occur when all agents 1; : : : ; i�1 have taken wrongful acts.
So, if at least one of the wrongful acts of the agents 1; : : : ; i� 1 would not have occurred,
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then the wrongful act of agent i would not have occurred. In the existing literature, see for

instance Dehez and Ferey (2013)2, the amount di is called the direct damage resulting from

the wrongful act of i. Furthermore, for every i the cumulative damage up to i is de�ned

as ci =
Pi

k=1 dk and the additional damage of i is de�ned as ei = cn � ci�1 =
Pn

k=i dk.

So, the cumulative damage up to agent n is the total damage of the tortfeasors, while the

additional damage of i is the sum of all damages that would not have occurred without the

wrongful act of i. Finally, we have the notion of potential damage. This type of damage

is de�ned for every subset S � f1; : : : ; ng of tortfeasors. De�ne k(S) = 0 if agent 1 is not
a member of S. Otherwise, de�ne k(S) as the highest indexed member of S such that all

consecutive agents 1; : : : ; k(S) also belong to S. Then the potential damage of S is the

cumulative damage ck(S), with c0 = 0, i.e. it is sum of the damages that the members of S

cause when the members outside S do not behave wrongfully.

Dehez and Ferey (2013) introduce a certain compensation scheme formalized by causal

weights between the injuring parties and the list of additional damages. They show that

for every liability problem this compensation scheme yields the (weighted) Shapley value

of the corresponding transferable utility game (for short TU game) that assigns worth

v(S) = ck(S) to every subset S of tortfeasors, i.e., the worth of S is the potential damage of

S. The (weighted) Shapley value (Shapley 1953; Kalai and Samet 1987) is an established

solution for TU games, and it is a game theoretic expression of fairness. Several notions of

fairness underlying the Shapley value are proposed in the existing literature, for instance

see Myerson (1980) and van den Brink (2001). In Ferey and Dehez (2015) a characterization

of the compensation scheme yielding the Shapley value for liability problems is given.

As Dehez and Ferey (2013) point out, for a legal compensation scheme concerning tort

law it should be required that for every liability problem it yields individual compensations

that satisfy the following properties:

(i) Every injuring party should pay at least the potential damage that he would

have caused alone.

(ii) Every injuring party should pay at most the additional damage that he

would have caused. This principle is supported by the third Restatement of

Torts, which is formulated by the American Law Institute.

For a liability problem with rooted-tree structure, based on these two properties we

de�ne in this paper two TU games, the lower-bound liability game and the upper-bound

liability game. The �rst one assigns to every subset S of tortfeasors a worth vL(S) that is

equal to the potential damage of S. For problems with linear structure this game reduces

to the liability game as de�ned in Dehez and Ferey (2013). The upper-bound liability game

2Here and in the sequel when we refer to Dehez and Ferey (2013), see also Ferey and Dehez (2015)
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assigns to every subset S of tortfeasors a worth vU(S) that is equal to the additional damage

of S.3 It appears that these two games are the duals of each other in the game-theoretic

sense.

A vector x = (x1; : : : ; xn) of individual compensations, in the sequel shortly outcome,

is in the core of the lower-bound game if for every S it holds that
P

i2S xi � vL(S), i.e.,

the total compensation to be paid by the members of S is at least equal to their potential

damage. Also, for every S � N , x satis�es
P

i2S xi � vL(S) if and only if
P

i2S xi � vU(S),

so an outcome in the core of the lower-bound liability game satis�es the Properties (i) and

(ii) mentioned above. In fact, an outcome is in the core if and only if it satis�es this type of

properties for every subset of tortfeasors. Generalizing a result of Dehez and Ferey (2013)

for linear liability games, also for liability games with rooted tree structure the lower-bound

liability game is convex.

In this paper, we propose three axioms and we show that these three axioms determine

a unique compensation scheme that yields for every liability problem with rooted-tree

structure an outcome in the core of the lower-bound liability game. As Property (i), the

�rst axiom sets for every tortfeasor a uniform lower bound. This lower bound is the same for

every tortfeasor, and for an individual tortfeasor the best possible outcome is an outcome

in which he has to pay this lower bound. As Property (ii), the second axiom sets for every

tortfeasor an individual upper bound. This upper bound di¤ers over the tortfeasors and

gives for every tortfeasor its worst possible outcome. In order to set the lower and upper

bound axioms, per capita criteria are employed. This is because in liability problems it

is often impossible to determine the causal weights between the injuring parties. In this

situation, per capita criteria might be justi�ed. The third and last axiom stems from the

stylized fact that in the UK and America, a legal compensation scheme is based on so-called

case system consistency, see for instance Ito (1978). This requires that the compensation

scheme has the property that for every liability problem it provides an outcome that

is consistent with the outcome that the same procedure generates for a di¤erent, but

similar liability problem. In this paper, we propose leaf consistency. This type of case

system consistency requires that for every liability problem with rooted-tree structure the

compensation scheme is invariant when a leaf of the tree pays his compensation and leaves.

We show that the three axioms uniquely determine a compensation scheme. This

scheme assigns to every liability problem with rooted-tree structure the so-called nucleolus

of the lower bound liability game as outcome. The Nucleolus compensation scheme has

two appealing properties.

First, the nucleolus (Schmeidler, 1969) is an established outcome for TU games. In

fact, it is a game-theoretic expression of the �di¤erence principle of social justice�à la Rawls

3The additional damage of a subset S of tortfeasors will be de�ned formally in the next section.
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(1971). So, when it is desirable that a legal compensation scheme for liability problems is

to attain a Rawlsian outcome, the three axioms yield a useful compensation scheme.

Second, it is well known that the nucleolus of a game is in the core if the core is non-

empty. Using the fact that the upper bound liability game is the dual of the lower bound

liability game, it follows that the nucleolus of the lower bound liability game lexicographi-

cally maximizes the di¤erences vU(S)�
P

i2S xi of all subsets S of tortfeasors, i.e. it makes

the smallest di¤erence over all subsets S as high as possible, then the second smallest one,

then the third smallest one, and so on. So, it maximizes (lexicographically) over all di¤er-

ent subsets S of tortfeasors the di¤erences between the additional damage vU(S) and the

actual compensation
P

i2S xi to be paid by the members of S. Loosely speaking, it min-

imizes (lexicographically) the dissatisfactions over the subsets of tortfeasors with respect

to their �worst-case�outcomes, i.e. the outcome in which S has to pay the total amount

vU(S) of its additional damage.

The remainder of the paper is organized as follows. In Section 2, preliminaries are

given. In Section 3, the liability problem with rooted-tree structure and the corresponding

liability games are given. In Section 4, we state and discuss the three axioms to be satis�ed

by a compensation scheme. In Section 5, we show that the compensation scheme that

satis�es the axioms of Section 4 assigns to every liability problem the nucleolus of the

corresponding lower-bound liability game. Section 6 contains concluding remarks, and

discusses a comparison between the Shapley and nucleolus compensation schemes, and an

incentive problem in the situation where the population of the tortfeasors is increasing.

2 Preliminaries

A cooperative game with transferable utility, or simply a TU game, is a pair (N; v), where

N � IN is a �nite set of players, and v : 2N ! IR is a characteristic function that assigns

a worth v(S) 2 IR to every subset (usually called coalition) S of N , satisfying v(;) = 0.

A TU game (N; v) is convex if v(S [ T ) + v(S \ T ) � v(S) + v(T ) for all S; T � N . It

is concave if these inequalities are reversed. We denote by G the class of all TU games.
The subclass of all convex TU games is denoted by Gvex and the subclass of all concave
TU games by Gcave. For a game (N; v) 2 G, the dual game, denoted by (N; vd), assigns to
every coalition S what the �grand coalition�N loses if the players in S stop cooperating,

and thus is de�ned by vd(S) = v(N) � v(N n S) for all S � N . Note that vd(;) = 0 and
vd(N) = v(N). Further it holds that (N; v) 2 Gvex if and only if (N; vd) 2 Gcave.
A payo¤ vector of TU game (N; v) is a vector x 2 IRN giving a payo¤ xi 2 IR to

every player i 2 N . A payo¤ vector is e¢ cient if
P

i2N xi = v(N). Given (N; v) 2 G, the
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preimputation set of (N; v), denoted by PI(N; v), is the set of all e¢ cient payo¤ vectors.

Further, the imputation set, denoted by I(N; v), is the subset of all vectors in PI(N; v) that

satisfy xi � v(fig) for every i 2 N (individual rationality); the anti-imputation set, denoted

by AI(N; v), is the subset of all vectors in PI(N; v) that satisfy xi � v(fig) for every
i 2 N . Note that these sets are not-empty if and only if v(N) �

P
i2N v(fig), respectively

v(N) �
P

i2N v(fig). We denote by GI the class of all TU-games with nonempty I(N; v),
and by GAI the class of all TU-games with nonempty AI(N; v). Note that Gvex is a subset
of GI and Gcave is a subset of GAI .
The core of a game (N; v), denoted by C(N; v), is the set of (e¢ cient) payo¤ vectors

that are group stable, and is given by

C(N; v) =

(
x 2 PI(N; v)

�����X
i2S

xi � v(S) for all S � N

)
:

Note that C(N; v) is a subset of I(N; v) and that it might be empty. Every game (N; v) 2
Gvex has a non-empty core. A vector x 2 C(N; v) satis�es the requirement that for every
coalition S the total payo¤ is at least equal to its own worth. This is reasonable when

(N; v) is a pro�t game, i.e., the worth v(S) is the total revenue that the members of S

can achieve by cooperating. However, when v is a cost game, i.e., coalition S has costs

v(S) when it stands alone, then the worth should be considered as upper bounds on the

contributions. For a cost game it makes sense to apply the anti-core of a game (N; v),

denoted by AC(N; v). This set of e¢ cient payo¤ vectors is given by

AC(N; v) =

(
x 2 PI(N; v)

�����X
i2S

xi � v(S) for all S � N

)
:

The anti-core AC(N; v) is a subset of AI(N; v) and might be empty, but every game

(N; v) 2 Gcave has a non-empty anti-core.
For a given subset G 0 of the class G of all TU-games, a (single-valued) solution is a

function f that assigns to every game (N; v) in G 0 a payo¤ vector f(N; v) 2 PI(N; v).

Note that in this paper we require that a solution assigns to each game an e¢ cient payo¤

vector. The best-known solution on the class G of all TU-games is the Shapley value
(Shapley, 1953), denoted Sh. This solution assigns to every game (N; v) 2 G the payo¤
vector Sh(N; v) given by4

Shi(N; v) =
X

S�N :i2S

(jN j � jSj)!(jSj � 1)!
jN j! (v(S)� v(S n fig)) for all i 2 N:

So, for every player i 2 N the payo¤ is a weighted sum of its marginal contributions

v(S)� v(S n fig) to the coalitions S containing i. When (N; v) is convex, then Sh(N; v) 2
4For a �nite set A, we denote by jAj the number of elements in A (cardinality of A).

6



C(N; v). However, in general, on the domain of TU games with non-empty cores it might

be that the Shapley value is not in the core. Further it holds that the Shapley value is

self-dual (see Kalai and Samet (1987)), saying that for every (N; v) 2 G it holds that
Sh(N; vd) = Sh(N; v).5

Another well-known solution on the class of all TU-games is the prenucleolus. Given a

TU game (N; v) 2 G, we de�ne for payo¤ vector x 2 PI(N; v) and coalition S � N the

excess of S with respect to x as

e(S; x; v) � v(S)�
X
i2S

xi:

When the payo¤s are revenues, i.e., the payo¤s are payments to the players, the excess

e(S; x; v) can be seen as a measure of dissatisfaction of coalition S. The bigger the excess of

S and thus the bigger the di¤erence between its own worth v(S) and its payo¤
P

i2S xi re-

ceived by the members of S, the more dissatis�ed coalition S is. Now, let �(x; v) 2 IR2N be
the vector obtained by arranging all the excesses in non-increasing order, so the �rst com-

ponent of �(x; v) is the excess of a coalition with the highest excess, the second component

is the excess of a coalition with the highest excess under the remaining coalitions, and so on.

Then the prenucleolus is the solution on G that assigns to every game (N; v) 2 G the unique
vector in PI(N; v) that minimizes lexicographically the dissatisfactions. To be precise, the

prenucleolus assigns to every game (N; v) the unique payo¤ vector x 2 PI(N; v) such that
for every y 2 PI(N; v) n fxg there exist a component k such that �h(x; v) = �h(y; v) for all

h < k, and �k(x; v) < �k(y; v), i.e. the prenucleolus assigns to (N; v) 2 G the unique payo¤
vector x 2 PI(N; v), such that for every other vector y 2 PI(N; v) there exists a number
k such that the k� 1 biggest excesses of x and y are equal and the next biggest excess of x
is smaller than the next biggest excess of y. We denote the prenucleolus of a game (N; v)

by PNuc(N; v).

The nucleolus is a solution de�ned for every game with I(N; v) not-empty, so on the

subclass of games GI . It assigns to every (N; v) 2 GI the unique individually rational payo¤
vector x 2 I(N; v) that minimizes lexicographically the dissatisfactions over all vectors in
I(N; v). We denote the nucleolus of a game (N; v) by Nuc(N; v). When the core is non-

empty, Nuc(N; v) 2 C(N; v). Further, on the class of games with non-empty C(N; v) the

nucleolus coincides with the prenucleolus (Schmeidler, 1969). In particular it holds that

Nuc(N; v) = PNuc(N; v) when (N; v) is convex.

Similarly, for a game (N; v) we de�ne the anti-prenucleolus, denoted APNuc(N; v), and

for a game (N; v) in the subclass GAI the anti-nucleolus, denoted ANuc(N; v). The anti-
prenucleolus is the unique payo¤vector x 2 PI(N; v) such that��(v; x) is lexicographically

5The notion of (self-)duality plays an important role in axiomatizing solutions for TU games. For

instance, see Oishi, Nakayama, Hokari, and Funaki (2016).
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smaller than ��(v; y) for every y 2 PI(N; v), i.e., it is the unique vector in PI(N; v) that
minimizes lexicographically the vector of negative excesses

P
i2S xi � v(S) for all S � N .

So, for a cost game, the anti-prenucleolus lexicographically maximizes the cost savings

v(S)�
P

i2S xi for all S � N . The anti-nucleolus assigns to every (N; v) 2 GAI the unique
payo¤ vector x 2 I(N; v) that minimizes lexicographically the vector of negative excesses
over all vectors in AI(N; v). When the anti-core is non-empty, ANuc(N; v) 2 AC(N; v).

When (N; v) 2 Gcave it holds that ANuc(N; v) = APNuc(N; v).

In the next sections the following proposition, which follows from Oishi and Nakayama

(2009), will appear to be useful. Recall that (N; v) 2 Gvex if and only if (N; vd) 2 Gcave.

Proposition 2.1 For every (N; v) 2 Gvex it holds that

(i) AC(N; vd) = C(N; v),

(ii) ANuc(N; vd) = Nuc(N; v).

We now introduce rooted trees. First, a directed graph or digraph is a pair (N;D), where

N is a set of nodes and the collection of ordered pairs D � f(i; j)ji; j 2 N; i 6= jg is a set
of arcs. In this paper, the nodes represent the players in a game, and therefore we refer to

the nodes as players. We denote the set of all digraphs by D. For (N;D) 2 D, a sequence
of k di¤erent players (i1; :::; ik) is a (directed) path if (il; il+1) 2 D for l = 1; :::; k � 1.
For i 2 N , a player j 2 N is a subordinate of i if there is a path (i1; :::; ik) with i1 = i

and ik = j. Player i is a superior of j if and only if j is a subordinate of i. We denote

FD(i) as the set of subordinates of i and PD(i) as the set of superiors of i in (N;D).

We also denote F 0D(i) = FD(i) [ fig and P 0D(i) = PD(i) [ fig. Also for all S � N we

de�ne FD(S) = [i2S FD(i) and similarly PD(S) = [i2S PD(i), F 0D(S) = [i2S F 0D(i) and
P 0D(S) = [i2S P 0D(i).
A node i 2 N is called a top player in (N;D) if PD(i) = ;. A digraph (N;D) is a

(directed) rooted tree with root i when (i) player i is the unique top player and (ii) for all

j 6= i there is a unique path from i to j. In the sequel we denote by Dt the class of rooted
trees and an element of Dt by (N; T ). Note that for a rooted tree (N; T ) with root i it
holds that FT (i) = N n fig and for every node j 6= i there is precisely one player k 2 PT (j)
such that (k; j) 2 T . This player is called the predecessor of j and denoted by p(j). A

player is called a leaf of (N; T ) if FT (i) = ;. We denote the set of all leafs by L(T ). We
say that a tree (N; T ) is linear if jL(T )j = 1. In this case it holds that for every player k
not in L(T ) there is precisely one h such that (k; h) 2 T . For a tree (N; T ) with root i, let
M � N be such that (i) jM j � 2, (ii) i 2 M , (iii) for every j 2 M n fig all nodes on the
(unique) directed path from i to j are also in M . Then (M;T (M)) denotes the subtree of

(N; T ) restricted to M and T denotes the collection of all subtrees (M;T (M)) of (N; T ).
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A permission tree game is a triple (N; v; T ) withN � IN a �nite set of players, (N; v) 2 G
a TU-game and (N; T ) 2 Dt a rooted tree on N . In those games, it is assumed that the
tree represents a hierarchy that imposes restrictions on the forming of coalitions. Solutions

for permission tree games have been discussed in for instance van den Brink, Herings, van

der Laan and Talman (2016) and van den Brink, Dietz, van der Laan and Xu (2015). One

of these solutions is the permission value, based on the so-called conjunctive approach to

permission structures as developed in Gilles, Owen and van den Brink (1992). In this

approach, it is assumed that a coalition is feasible if and only if for every player in the

coalition all its predecessors are also in the coalition. feasible coalitions is given by

�T = fS � N jPT (i) � S for all i 2 S g :

In this paper we only consider triples (N; v; T ) with the permission structure (N; T ) 2 Dt a
rooted tree. We denote by GT the collection of all permission tree games. A (single-valued)
solution f on GT assigns a unique payo¤ vector f(N; v; T ) 2 IRN to every (N; v; T ) 2 GT .
For S � N , let �T (S) =

S
R2�T :R�S R be the largest feasible subset

6 of S. Following Gilles

Owen and van den Brink (1992), the induced permission restricted game of (N; v; T ) is the

game (N; rN;v;T ) 2 G given by

rN;v;T (S) = v(�T (S)) for all S � N;

and the permission value  on GT is the solution that assigns to every (N; v; T ) 2 GT the
Shapley value of the associated permission restricted game, thus

 (N; v; T ) = Sh(N; rN;v;T ) for all (N; v; T ) 2 GT :

3 Liability problems with rooted-tree structure

A liability problem with rooted-tree structure (shortly a liability problem) is a triple (N; T; d)

with (N; T ) 2 Dt a rooted tree on N and d 2 IRN+ a pro�le of non-negative damages, with
di the (direct) damage caused by tortfeasor i 2 N . We denote the class of all liability

problems by L. We also de�ne the following notions.

Total damage For S � N , the total damage of S is dS =
P

j2S dj.

Cumulative damage For S � N , the cumulative damage up to S is cS =
P

j2P 0T (S)
dj.

Additional damage For S � N , the additional damage of S is eS =
P

j2F 0T (S)
dj.

Potential damage For every subset S � N , the potential damage of S is bS =
P

j2S:PT (j)�S dj.

6Every coalition having a unique largest feasible subset follows from the fact that �T is union closed,

i.e. for every E;F 2 �T it holds that E [ F 2 �T
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The total damage of S is the sum of the damages of the players in S. The cumulative

damage of S is the sum of the damages of the players in S and all their superiors. The

additional damage of S is the sum of the damages of the players in S and all their sub-

ordinates and can be seen as the sum of all damages that would have been avoided when

none of the members of S exercised a wrongful act. The potential damage of S is the sum

of all damages that the members of S cause when the members outside S do not behave

wrongfully. In case the tree is linear and S = fjg for some j 2 N , these notions coincide
with the notions of Dehez and Ferey (2013) as discussed in the Introduction. For ease

of notation we denote dS = di if S = fig and similarly for the other notions. Note that
dN = cN = eN = bN , and for the root i, di = ci = bi and ei =

P
j2F 0T (i)

dj = dN . The

following example illustrates the di¤erent notions of damages mentioned above.

Example 3.1 Consider six players and rooted-tree (N; T ) with N = f1; 2; 3; 4; 5; 6g and
T = f(1; 2); (2; 3); (2; 4); (1; 5); (5; 6)g, see Figure 2. Table 1 gives the four notions of
damages for two di¤erent sets S. Note that dN =

P
i2N di.

u u

u
u

u

u�
�
�
�
�
�
�
�
��

@
@

@
@@
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2 5

63 4

Figure 2: Rooted tree with six players.
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Table 1. Four notions of damages for the tree of Figure 2.
S = f1; 4; 6g S = f2; 6g

Total damage dS d1 + d4 + d6 d2 + d6

Cumulative damage cS dN � d3 d1 + d2 + d5 + d6

Additional damage eS dN d2 + d3 + d4 + d6

Potential damage bS d1 0

Given (N; T; d) 2 L, an allocation for (N; T; d) is a non-negative vector x 2 IRN+ such
that

P
i2N xi = dN . A compensation scheme for liability problems is a mapping ' on L

that associates with every problem (N; T; d) 2 L an allocation '(N; T; d) 2 IRN+ .
We generalize the liability game as de�ned by Dehez and Ferey (2013) for liability

problems with linear structure to the class of liability problems with rooted tree structure.

For liability problem (N; T; d) 2 L the corresponding lower-bound liability game is the

game (N; vL) where the worth of a coalition S is its potential damage, i.e. for all S � N ,

vL(S) = bS:

Dehez and Ferey (2013) focus on the Shapley value of the (lower-bound) liability game.

In the sequel we de�ne the Shapley value of a liability problem (N; T; d) as the Shapley

value of the corresponding lower-bound liability game. Formally we have the following

de�nition.

De�nition 3.2 The Shapley compensation scheme is the mapping Sh on L that associates
with every problem (N; T; d) 2 L the Shapley value of its corresponding lower-bound liability
game (N; vL):

Sh(N; T; d) � Sh(N; vL):

In the literature on game theory, the lower-bound liability game is known as the peer-

group game associated to peer-group situation (N; T; d), see e.g. Brânzei, Fragnelli and

Tijs (2002). A peer-group game, and so the game (N; vL), is convex. Further it holds

that (N; vL) is the permission restricted game (N; rN;v;T ) of the additive game (N; v) with

characteristic function de�ned as v(S) = dS for all S � N . Therefore, the Shapley value

of game (N; vL) is equal to the permission value of the permission tree game (N; T; v).

Since (N; vL) is convex, its Shapley value is in its core: Sh(N; vL) 2 C(N; vL). It follows

that
P

i2S Shi(N; T; d) =
P

i2S Shi(N; vL) � vL(S) for every S � N and thus the Shapley

compensation scheme satis�es the requirement that for every S � N the total compensation

paid by its members is at least equal to vL(S), being the potential damage of S. The
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Shapley compensation scheme thus satis�es Property (i) of the Introduction as required in

Dehez and Ferey (2013).

While Dehez and Ferey (2013) focus on the Shapley value of the (lower-bound) liability

game, in this paper we consider the nucleolus. We de�ne the nucleolus compensation

scheme as the mapping that assigns to every liability problem (N; T; d) the nucleolus of its

corresponding lower-bound liability game (N; vL).

De�nition 3.3 The nucleolus compensation scheme is the mapping Nuc on L that as-

sociates with every problem (N; T; d) 2 L the nucleolus of its corresponding lower-bound
liability game (N; vL):

Nuc(N; T; d) � Nuc(N; vL):

Since the nucleolus of a game is in its core (if the latter is non-empty), the Nu-

cleolus compensation scheme satis�es the requirement that for every S � N the to-

tal compensation paid by its members is at least equal to the potential damage of S

(
P

i2S Nuci(N; T; d) =
P

i2S Nuci(N; vL) � vL(S) for every S � N) and thus respects

Property (i) of the Introduction. Nevertheless, we now run into a di¢ culty about the

interpretation of the core and nucleolus. Typically it is considered to be desirable that

a payo¤ vector is in the core of the game. This is called core-stability, saying that every

coalition S gets at least its own worth v(S) and so the members of S don�t have an incen-

tive to deviate from the grand coalition N . However, this holds for pro�t games in which

v(S) is the worth that the members of S can earn by themselves without cooperating with

the others, and the entries of x yield payo¤s that are paid to the players. In contrast to

this usual situation, the Shapley value or the nucleolus of a liability game gives a vector

of compensations to be paid by the players in the game, i.e., by the tortfeasors. They are

not looking for core stability, on the contrary they want to pay as little as possible.

Therefore, the lower-bound liability game should not be considered as a game that is

played by the tortfeasors themselves, but as a model to help the court to determine the

compensations to be paid to the injured party. With this interpretation the game gives

for every subset (coalition) of tortfeasors, the lower-bounds of their compensations and for

instance the Shapley value or the nucleolus can be applied to determine how much every

coalition has to pay in addition to its lower bound vL(S). According to the Shapley value,

these additional payments are determined by the marginal contributions of the players.7

In contrast, the nucleolus is determined by the excesses of the coalitions. However, for

a liability game (N; vL) the excess e(S; x; vL) = vL(S) �
P

i2S xi is now a measure of

7Since the marginal contributions of a player do not depend on the damages of his superiors in the

tree, this also implies that the Shapley value satis�es the property that the compensation to be paid by a

tortfeasor does not depend on the damages of its superiors, see Ferey and Dehez (2015).
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satisfaction of S at x, because the bigger the excess is, the lower the total amount of

compensation that the members of S have to pay. So, while in a game in which the payo¤

vector yields payments to the players the nucleolus minimizes lexicographically the vector

of dissatisfactions, in the liability game the nucleolus minimizes lexicographically the vector

of satisfactions. This is counterintuitive. Even if we consider the game as a model used by

the court to determine the compensations, there is no a priori reason to do so.

Nevertheless, the Nucleolus compensation scheme is justi�ed as a reasonable solution

when we consider the second requirement of Dehez and Ferey (2013), namely that every

tortfeasor should pay at most the additional damage that he would have caused, see Prop-

erty (ii) in the Introduction. This principle is supported by the third Restatement of Torts

as formulated by the American Law Institute. Based on this property, we de�ne for a

liability problem (N; T; d) 2 L the corresponding upper-bound liability game as the game
(N; vU) de�ned by setting, for all S � N ,

vU(S) = eS;

i.e. the worth of a coalition S is the additional damage that the agents in S might cause.8

The next lemma states that (N; vU) is the dual game of (N; vL). Because (N; vL) is convex

this implies that (N; vU) is concave.

Lemma 3.4 For a liability problem (N; T; d) 2 L, the upper-bound liability game (N; vU)
is the dual of the lower-bound liability game (N; vL).

Proof. For S � N , we have that vL(S) = bS =
P

j2S:PT (j)�S dj. Now, note that

fj 2 S : PT (j) � Sg = S n FT (N n S);

i.e., for every S � N , the set of players in S such that all their predecessors are also in S

coincides with the set of players in S that are not subordinates of the players in N n S.
With F 0T (N n S) = FT (N n S) [ (N n S) it follows that S n FT (N n S) = N n F 0T (N n S).
Hence for every S � N we obtain that vL(S) =

P
j2N :j 62F 0T (NnS)

dj and thus

vdL(S) = vL(N)� vL(N n S) =
X
j2N

dj �
X

j2N :j 62F 0T (Nn(NnS))

dj =

X
j2F 0T (Nn(NnS))

dj =
X

j2F 0T (S)

dj = eS = vU(S): 2

8For a liability problem with linear structure the game (N; vU ) is a so-called airport game, see Littlechild

and Owen (1973).
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We now have the following proposition, where statement (i) follows because the Shap-

ley value is self-dual and the other two statements follow from applying Proposition 2.1 to

the convex game (N; vL) and its dual (N; vU).

Proposition 3.5 For every liability problem (N; T; d) 2 L the corresponding games (N; vL)
and (N; vU) satisfy the following statements:

(i) Sh(N; vL) = Sh(N; vU),

(ii) C(N; vL) = AC(N; vU),

(iii) Nuc(N; vL) = ANuc(N; vU).

Statement (i) implies that the Shapley value of the lower-bound liability game is equal

to the Shapley value of the upper-bound liability game. Since (N; vL) convex and thus

Sh(N; vL) 2 C(N; vL), statement (ii) implies that Sh(N; vL) 2 AC(N; vU), and thus

Sh(N; vL) satis�es for every coalition S the upper-bound requirement that
P

i2S Shi(N; vL) �
eS. This also holds for Nuc(N; vL). From statement (iii) it follows that Nuc(N; vL) lexico-

graphically maximizes the cost savings vU(S) �
P

i2S xi with respect to the upper-bound

liability game. So, when the court decides to implement Nuc(N; vL) = ANuc(N; vU), the

smallest cost saving over all coalitions S is made as large as possible, then the second

smallest is made as large as possible, then the third smallest, and so on. This is a very

desirable property and gives a strong motivation for the use of the nucleolus.

We now consider the computation of the compensations for both the Shapley value and

the nucleolus. The Shapley value is easy to compute for liability games. Recall that (N; vL)

is the peer-group game associated to the peer-group situation (N; T; d) and also that it is

the permission restricted game (N; rN;v;T ) of the additive game (N; v) with its characteristic

function de�ned as v(S) = dS for all S � N . For these games, it is well-known that the

Shapley value distributes the damage di of a player i 2 N equally amongst player i and

all its superiors in (N; T ). This gives the following expression for the compensation to be

paid by a tortfeasor j 2 N according to the Shapley compensation scheme:

Shj(N; T; d) =
X

i2F 0T (j)

di
jP 0T (i)j

: (3.1)

So, when applying the Shapley value the compensation to be paid by tortfeasor j is the

sum of all his shares in the damages of himself and his subordinates.

There is no explicit formula available for the nucleolus, but the nucleolus compensations

can be computed by the algorithm given in Brânzei, Solymosi and Tijs (2005) for peer-

group games. Given a liability problem (N; T; d) 2 L, we assume without loss of generality
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that 1 2 N is the root of (N; T ). For a subtree (M;T (M)) 2 T (see Section 2), let

(M;T (M); a), a 2 IRM+ be a liability problem on M . We de�ne for every j 2M n f1g,

� j(M;T (M); a) �

P
k2F 0

T (M)
(j) ak

jF 0T (M)(j)j+ 1
:

The Nucleolus compensation scheme is obtained by the following algorithm, where x =

Nuc(N; T; d) � Nuc(N; vL). Recall that p(j) is the predecessor of j in (N; T ) and so also

in every subtree (M;T (M)) containing j.

Nucleolus algorithm:
Step 0: Set M = N and a = d.

Step 1: Find a j 2M n f1g such that � j(M;T (M); a) = minm2Mnf1g �m(M;T (M); a).

Step 2: For every k 2 F 0T (M)(j), set xk = � j(M;T (M); a). If jM n F 0T (M)(j)j � 2, go to

Step 3. Otherwise, set x1 = dN �
P

k2Nnf1g xk and stop.

Step 3: Set M �M n F 0T (M)(j) and set ap(j) � ap(j) + xj. Return to Step 1.

Note that in Step 2, if jM n F 0T (M)(j)j = 1, then M n F 0T (M)(j) = f1g. In the next
Example we illustrate the above procedure.

Example 3.6 Let (N; T; d) be the liability problem with rooted tree as given in Figure 2

and with vector of damages given by d = (0; 12; 40; 36; 12; 30).

Using formula (3.1) we have the following computations for the Shapley compensa-

tion scheme, starting with the leafs: Sh3(N; T; d) = d3
3
= 40

3
, Sh4(N; T; d) = d4

3
= 12,

Sh6(N; T; d) =
d6
3
= 10. Next we obtain Sh2(N; T; d) = d2

2
+ Sh3(N; T; d) + Sh4(N; T; d) =

6+ 12+ 40
3
= 94

3
, Sh5(N; T; d) = d5

2
+Sh6(N; T; d) = 6+ 10 = 16 and �nally Sh1(N; T; d) =

d1+Sh2(N; T; d)+Sh5(N; T; d) = 0+
94
3
+16 = 142

3
. Thus Sh(N; T; d) = (142

3
; 94
3
; 40
3
; 12; 16; 10).

To apply the algorithm for computing the nucleolus payo¤s, let x = Nuc(N; T; d). Then

the algorithm performs as follows.

Step 0: Set M = N and a = d:

Iteration 1:

Step 1: minf30
2
; 12+30

3
; 36
2
; 40
2
; 12+40+36

4
g = 14 = � 5(M;T (M); a):

Step 2: x5 = x6 = 14.

Step 3: Set M = f1; 2; 3; 4g and a = (d1 + 14; d2; d3; d4) = (14; 12; 40; 36).
Iteration 2:

Step 1: minf36
2
; 40
2
; 12+40+36

4
g = 18 = � 4(M;T (M); a):

15



Step 2: x4 = 18.

Step 3: Set M = f1; 2; 3g and a = (d1 + 14; d2 + 18; d3) = (14; 30; 40).
Iteration 3:

Step 1: minf40
2
; 30+40

3
g = 20 = � 3(M;T (M); a).

Step 2: x3 = 20.

Step 3: Set M = f1; 2g and a = (d1 + 14; d2 + 18 + 20) = (14; 50).
Iteration 4:

Step 1: � 2(M;T (M); a) = 50
2
= 25.

Step 2: x2 = 25 and x1 = dN �
P

k2Nnf1g xk = 39. Stop.

We have found that Nuc(N; T; d) = x = (39; 25; 20; 18; 14; 14).

From formula (3.1) it follows immediately that the Shapley compensation scheme sat-

is�es monotonicity in the sense that for every player j 2 N n L(T ) it holds that j has to
pay at least as much as any of his subordinates (and strictly more when dj > 0). This

property also holds for the nucleolus compensation scheme, albeit that compensations can

be equal when dj > 0. We call this weak monotonicity.9

Lemma 3.7 Weak Monotonicity
The compensation scheme Nuc on the class L of liability problems satis�es that for every
(N; T; d) 2 L it holds for every j 2 N n L(T ) that

Nucj(N; T; d) � Nuck(N; T; d) for every k 2 FT (j):

Proof. The proof follows from the algorithm. In the �rst iteration the algorithm starts

with (N; T; d). Let k 2 N nf1g be the player such that � k(N; T; d) = minj2Nnf1g � j(N; T; d).
Then Nuch(N; T; d) = � k(N; T; d) for every h 2 F 0T (k) and so the property holds for k and
all his subordinates. In the second iteration we have M = N n F 0T (k) and the reduced
liability problem (M;T (M); a) with ap(k) = dp(k) + � k(N; T; d), and ah = dh for every

h 2 M n fp(k)g. We show that the minimal � j(M;T (M); a) in the second iteration is

at least equal to � k(N; T; d). For simplicity of notation, denote Aj = � j(N; T; d) and

nj = jF 0T (j)j for every j 2 N n f1g.
First, consider a player h 2 M that is neither a subordinate of k in (N; T; d), nor

a superior of k in (N; T; d). Then �h(M;T (M); a) = �h(N; T; d) = Ah � Ak (since Ak
was minimal in the previous iteration). Second, consider a superior h of k in (N; T; d).

Now note that in the �rst iteration nk players (k and its subordinates) have left and that

all these players paid compensation Ak, while ap(k) = dp(k) + Ak. Further note that h is

9This property is called structural monotonicity in van den Brink and Gilles (1996) who use it to

axiomatize the conjunctive (Shapley) permission value for permission restricted games.
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either p(k) itself, or it is a superior of p(k) and that Ah = 1
nh+1

P
i2F 0T (h)

ai. From this and

Ah � Ak it follows that

�h(M;T (M); a) =
(nh + 1)Ah � nkAk

nh � nk + 1
� (nh + 1)Ah � nkAh

nh � nk + 1
= Ah � Ak:

So, at the second iteration we have for every h 2 M n f1g that �h(M;T (M); a) is at

least equal to the compensation Ak assigned to k and each of its subordinates in the �rst

iteration. So, the players that leave in the second iteration have to pay at least the same

amount as the players that have left in the �rst iteration.

Continuing in this way we obtain that the assigned payo¤s are non-increasing in the

iterations. The result now follows from the fact that for any two players k and h with k a

subordinate of h, player h gets assigned its payo¤ either in the same iteration as k or in a

later iteration. 2

4 Axioms

In this section, we propose three axioms of a compensation scheme for liability problems

with rooted-tree structure. These properties are inspired from the observations concerning

tort law and case-system consistency, see Ito (1978). We then prove that the Nucleo-

lus compensation scheme is the unique compensation scheme on the class L of liability
problems with rooted-tree structure that satis�es the three properties. Without loss of

generality, we assume that for every (N; T; d) 2 L it holds that 1 2 N is the top of root

(N; T ).

The �rst axiom takes into account the tort law principle that all tortfeasors are held

jointly responsible for the total damage dN =
P

j2N dj, and therefore every tortfeasor

should pay a fair share of this total damage. According to this principle the �rst property

sets a uniform lower bound on the compensation to be paid by an individual tortfeasor.

The axiom is obtained by considering for tortfeasor i 2 N n f1g the additional damage
ei =

P
k2F 0T (i)

dk that has been caused by agent i and his subordinates. Without the

wrongful act of agent i�s predecessor p(i), the sequentially wrongful acts by agent i and his

subordinates would not have occurred. From this viewpoint, all agents in F 0T (i) and p(i)

are jointly responsible for the additional damage ei of agent i. We assume the case of torts

where the causal weights between the agents in F 0T (i) and p(i) cannot be determined and

therefore a per capita criterion is justi�ed.10 For i 2 N n f1g, this yields the per capita
10For instance, Ni and Wang (2007) use a per capita criterion to introduce the upstream equal respon-

sibility sharing method for polluted river problems.
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contribution � i(N; T; d) given by

� i(N; T; d) =
ei

jF 0T (i)j+ 1
;

i.e., � i(N; T; d) is the equal division of the additional damage ei between i, all his subordi-

nates and his predecessor.

Now, the �rst axiom requires that every tortfeasor i should pay at least the smallest

per capita contribution minj2Nnf1g � j(N; T; d), i.e., the smallest per capita contribution is

considered as a guarantee of every injuring party�s compensation for the total damage.

Axiom 1 (Uniform lower bound) A compensation scheme ' on L satis�es the uni-
form lower bound if for every (N; T; d) 2 L and every i 2 N ,

'i(N; T; d) � min
j2Nnf1g

� j(N; T; d):

We stress that this is a very weak lower bound. Note that it does not require that i

contributes at least its own per capita contribution, but the minimal per capita contribution

over all tortfeasors (except the �rst tortfeasor). In Example 3.6 it requires that every

tortfeasor pays at least the per capita contribution of agent 5, being 14.

The second axiom puts for every tortfeasor an individual upper bound on his compen-

sation. Also this axiom is obtained by considering for tortfeasor i 2 N n f1g the additional
damage ei that has been caused by agent i and his subordinates. Again this damage

would not have occurred without the wrongful act of agent i�s predecessor p(i). From this

viewpoint, agent i and his predecessor can be held jointly responsible for the damage ei.

Assuming again the case of torts, the causal weights between i and p(i) cannot be deter-

mined. This yields an equal division of ei between i and p(i). The second axiom requires

that every tortfeasor i 6= 1 should be held responsible for at most the half of his additional
damage ei. Since agent 1 has no predecessor, he should be held responsible for at most his

full additional damage e1, which is equal to the total damage dN .

Axiom 2 (Individual upper bounds) A compensation scheme ' on L satis�es the

individual upper bounds if for every (N; T; d) 2 L and every i 2 N n f1g,

'i(N; T; d) �
1

2
ei:

In Example 3.6 the vector of additional damages is given by e = (e1; e2; e3; e4; e5) =

(130; 88; 40; 36; 42; 30), so the upper bounds for agents 2 to 6 are, respectively, 44; 20; 18; 21

and 15.
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The third and last axiom is a type of case system consistency. Given a compensation

scheme ', consider a liability problem (N; T; d) 2 L and a tortfeasor i 2 L(T ) (thus a

tortfeasor that does not have subordinates). Since such a tortfeasor can be held responsi-

ble for at most his own damage di, we may assume that he has to pay at most di. Now

consider the related liability problem (N n fig; T (N n fig); di), where di 2 IRN is the vector
of damages given by dip(i) = dp(i) + di � 'i(N; T; d) and d

i
k = dk for every k 6= p(i) in

N n fig. So, this is the liability problem obtained from (N; T; d) by removing leaf i and

by adding the remaining damage di � 'i(N; d; T ) not paid by i to the damage dp(i) caused
by his predecessor p(i). The consistency axiom requires that the outcome chosen by a

compensation scheme for every agent j 2 N n fig should be invariant under the departure
of a leaf i 2 L(T ) of the tree.

Axiom 3 (Leaf consistency) A compensation scheme ' on L satis�es leaf consistency
if for every (N; T; d) 2 L, every i 2 L(T ) and every j 2 N n fig

'j(N n fig; T (N n fig); di) = 'j(N; T; d):

In Example 3.6, leaf consistency, for example, implies that when agent 6 leaves and pays

its nucleolus contribution 14, and we consider the new damage vector where the damage

of agent 5 is d5 + d6 � 14 = 42 � 14 = 28 and the other damages do not change, and in
the structure we just leave agent 6, then the nucleolus payo¤s of the other agents do not

change.

5 Characterization of the Nucleolus compensation scheme

In this section, we show that there is a unique compensation scheme on the class L of
liability problems that satis�es the Axioms 1-3 and that this is the Nucleolus compensation

scheme as de�ned in De�nition 3.2. First, note that for an agent i 2 L(T ), ei = di, and thus

for i 2 L(T ), Axiom 2 requires that 'i(N; T; d) � 1
2
di. The next lemma states that when a

compensation scheme satis�es Axiom 3 and the individual upper bound requirement for all

leafs, then it also satis�es the individual upper bound requirement for all the other agents.

In fact, the condition for the leafs and Axiom 3 imply Axiom 2 (for all agents).

Lemma 5.1 Let ' on L be a compensation scheme that satis�es Axiom 3 and 'i(N; T; d) �
1
2
di for every i 2 L(T ). Then ' satis�es Axiom 2.

Proof. We prove that the upper bound holds for every other agent not being a leaf. Let j
be a player such that j 2 N n(f1g [ L(T )). Let d0 2 IRN such that d0i = di for i 2 N nF 0j (T )
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and d0j = ej �
P

k2FT (j) 'k(N; T; d) � ej. By subsequently applying Axiom 3 for all players

in FT (j), it follows that (N n FT (j); T (N n FT (j)); d0) 2 L and

'j(N; T; d) = 'j(N n FT (j); T (N n FT (j)); d0):

Since j is a leaf on the subtree (N n FT (j); T (N n FT (j)), it follows that

'j(N n FT (j); T (N n FT (j)); d0) �
1

2
d0j �

1

2
ej: 2

The next theorem states that the Nucleolus compensation scheme is the unique com-

pensation scheme that satis�es Axiom 1 and 3 and the individual upper bounds (of Axiom

2) for the leafs. It is the main step to reach our main theorem.

Theorem 5.2 Let ' on the class L of liability problems be a compensation scheme that
satis�es Axioms 1 and 3 and for every (N; T; d) 2 L the individual upper bound requirement
'i(N; T; d) � 1

2
ei for every i 2 L(T ). Then '(N; T; d) = Nuc(N; T; d).

Proof. We prove that for every liability problem, the Axioms 1 and 3 and the upper bound
requirements for the leafs determine the outcome computed by the Nucleolus algorithm.

To simplify notation, let x = '(N; T; d). Without loss of generality, it is assumed that 1 is

the root of the tree (N; T ). We subsequently consider liability problems with respectively

jN j = 2, jN j = 3 and jN j > 3.

Case 1, jN j = 2. Consider a liability problem (N; T; d) 2 L with jN j = 2. Then, by

Axiom 1 it follows that x2 � � 2(N; T; d) =
1
2
d2 and by the upper bound requirement that

x2 � 1
2
e2 =

1
2
d2. Hence x2 = 1

2
d2, and thus x1 = d1 +

1
2
d2. This is equal to the outcome

computed by the Nucleolus algorithm.

Case 2, jN j = 3. For a liability problem (N; T; d) 2 L with jN j = 3 there are two

possibilities: either (N; T ) is a line tree (one branch) or (N; T ) is a tree with two branches.

Case 2-1. First, we consider a line tree. Without loss of generality, we assume that
p(2) = 1 and p(3) = 2. Now either d3

2
� d2+d3

3
or not.

Case 2-1-1, d3
2
� d2+d3

3
. By Axiom 1 and the individual upper bound requirement

for leaf 3, it follows that x3 = d3
2
. Next, it follows by Axioms 1 and 3 and the uniform

lower bound for leaf 2 in the subtree after removing agent 3 that x2 = d2+d3�x3
2

, and �nally

x1 = dN � x2 � x3. So x is equal to the outcome computed by the Nucleolus algorithm.

Case 2-1-2, d3
2
> d2+d3

3
. By Axiom 1, we must have that xj � d2+d3

3
for j = 1; 2; 3.

The individual upper bound for leaf 3 requires that x3 = d3
2
� c for some c � 0, and thus

d3
2
� c � d2+d3

3
. This yields c � d3

6
� d2

3
. By Axioms 1 and 3 and the uniform lower bound

for leaf 2 in the subtree after removing agent 3, it follows that x2 = d2+d3�x3
2

, and thus
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x2 =
d2+d3�x3

2
� d2+d3

3
. Substituting x3 = d3

2
� c in this inequality gives c � d3

6
� d2

3
and

thus c = d3
6
� d2

3
. This implies that x2 = x3 =

d2+d3
3

and thus x1 = d1 +
d2+d3
3
. Again x is

equal to the outcome computed by the Nucleolus algorithm.

Case 2-2. When (N; T ) is a tree with two branches we have p(2) = p(3) = 1. Without

loss of generality, let d2 � d3. By Axiom 1 and the uniform lower bound for leaf 3 it follows

that x3 = d3
2
. By Axiom 3 and case jN j = 2, x2 = d2

2
and thus x1 = d1 +

d2
2
+ d3

2
. Also in

this case we have that x is equal to the outcome computed by the Nucleolus algorithm.

Case 3, jN j > 3. We now proceed with induction. Consider a liability problem (N; T; d)

with jN j = n > 3. For any liability problem (N 0; T 0; d0) 2 L with jN 0j < n we assume

that '(N 0; T 0; d0) = Nuc(N 0; T 0; d0). To show that then x = Nuc(N; T; d) we consider two

possibilities, namely player j with minimal � j(N; T; d) is either a leaf or not.

Case 3-1. There exists i 2 L(T ) such that � i(N; T; d) = di
2
= minj2Nnf1g � j(N; T; d).

Take this leaf i (if there are multiple, take an arbitrary one). By Axiom 1 and the individual

upper bound for leaf i it follows that xi = di
2
. This is also the outcome for i as computed by

the Nucleolus algorithm, and thus xi = Nuci(N; T; d). Set N 0 = N n fig and take d0 2 IRN 0

with d0j = dj for j 2 N 0 n fp(i)g and d0p(i) = dp(i) + di � xi = dp(i) + di �Nuci(N; T; d).

Consider the lower bound liability game (N; vL) corresponding to (N;L; d). Then the

lower bound liability game corresponding to (N 0; T (N 0); d0) is the game (N 0; v0L) where v
0
L

is given by setting for S � N 0,

v0L(S) =

(
vL(S [ fig)�Nuci(N; T; d) if p(i) 2 S;
vL(S) otherwise:

It can be shown that (N 0; v0L) is the Davis-Maschler reduced game of (N; vL) on N
0 with

respect to Nuc(N;L; d).11 By this observation and the fact that the nucleolus satis-

�es Davis-Maschler consistency12, it holds that for every j 2 N 0 that Nucj(N; T; d) =

Nucj(N
0; T (N 0); d0). Further, for every j 2 N 0, we have by the induction hypothesis

11For a game (N; v) 2 G, a vector x 2 IRN and non-empty subset N 0 of N , the Davis-Maschler reduced

game (Davis and Maschler, 1965) on N 0 with respect to (N; v) and x is the game (N 0; wx) 2 G de�ned by
setting for all S � N 0,

wx(S) =

8>>>>>><>>>>>>:

v(N)�
X

i2NnN 0

xi if S = N 0;

max
T�NnN 0

�
v(S [ T )�

X
i2T

xi
�
if S 6= N 0; ;;

0 if S = ;:

12A solution f on a subclass G0 of G satis�es Davis-Maschler consistency (Davis and Maschler, 1965)
if for all (N; v) 2 G0 and every non-empty N 0 � N it holds for x = f(N; v) that the DM reduced game

(N 0; wx) 2 G0 and xN 0 = f(N 0; wx), where xN 0 � (xi)i2N 0 .
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that 'j(N
0; T (N 0); d0) = Nucj(N

0; T (N 0); d0). Hence, for every j 2 N 0 it holds that

Nucj(N; T; d) = 'j(N
0; T (N 0); d0). With Axiom 3, it now follows that for every j 2 N 0,

xj = 'j(N
0; T (N 0); d0) = Nucj(N; T; d).

Case 3-2: For all i 2 L(T ), it holds that minj2Nnf1g � j(N; T; d) < � i(N; T; d) =
di
2
.

Let k be such that � k(N; T; d) = minj2Nnf1g � j(N; T; d) and take some i 2 L(T ) such that
i 2 F 0T (k), thus i is subordinate of k. Since i 6= k, we have that also p(i) 2 F 0T (k). From

the Nucleolus algorithm we obtain that

Nuci(N; T; d) = Nucp(i)(N; T; d) = � k(N; T; d): (5.2)

By Axiom 1, we have that xi � � k(N; T; d) = Nuci(N; T; d). Suppose that xi > Nuci(N; T; d).

Set N 0 = N nfig and take d0 2 IRN 0
with d0j = dj for j 2 N 0nfp(i)g and d0p(i) = dp(i)+di�xi.

By Axiom 3, we have that

xp(i) = 'p(i)(N
0; T (N 0); d0) (5.3)

and by the induction hypothesis,

'p(i)(N
0; T (N 0); d0) = Nucp(i)(N

0; T (N 0); d0): (5.4)

Take d00 2 IRN 0
with d00j = dj for j 2 N 0 n fp(i)g and d00p(i) = dp(i) + di � Nuci(N; T; d).

Since by assumption xi > Nuci(N; T; d), and thus d0p(i) < d00p(i), it follows from applying the

Nucleolus algorithm that

Nucp(i)(N
0; T (N 0); d0) < Nucp(i)(N

0; T (N 0); d00): (5.5)

By the fact that the lower bound liability game corresponding to (N 0; T (N 0); d00) is the

Davis-Maschler reduced game of (N; vL) on N 0 with respect to Nuc(N; T; d), it follows

with Davis-Maschler consistency that

Nucp(i)(N
0; T (N 0); d00) = Nucp(i)(N; T; d): (5.6)

From the (in)equalities (5.2)-(5.6) it follows that

xp(i) < Nucp(i)(N; T; d) = � k(N; T; d);

which contradicts Axiom 1. Therefore, for every i 2 L(T )\F 0T (k), xi = Nuci(N; T; d). For

every i 2 L(T )\F 0T (k), let N 0 = N nfig. Then it follows similar as above and from Axiom
3 that for every j 2 N 0, xj = Nucj(N; T; d). 2

Theorem 5.2 shows that if a compensation scheme satis�es Axioms 1 and 3 and the

individual upper bound for the leafs, then it must be the nucleolus. On the other hand, we
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argue that the Nucleolus compensation scheme satis�es the Axioms 1, 2 and 3. First, from

Lemma 3.7 and the algorithm it follows that the nucleolus compensation scheme satis�es

Axiom 1. From the proof of Theorem 5.2 it follows that then Nucleolus compensation

scheme satis�es Axiom 3 and the individual upper bound for the leafs. It then follows by

Lemma 5.1 that Axiom 2 is satis�ed. This yields our main result.

Main result
A compensation scheme ' on the class L of liability problems satis�es Axioms 1, 2 and 3
if and only if '(N; T; d) = Nuc(N; T; d).

The main result says that there is a unique compensation scheme supported by tort law

bounds on the compensations (Axioms 1 and 2) and a type of case-system consistency (Ax-

iom 3). This compensation scheme assigns to every liability problem the Rawlsian outcome

given by the nucleolus. Finally, we check logical independence of the three axioms.

� Let '1 be the compensation scheme that assigns to every (N; T; d) 2 L compensations
given by '1i (N; T; d) = minj2Nnf1g � j(N; T; d) for every i 6= 1 and '11(N; T; d) =

dN �
P

i6=1 '
1
i (N; T; d). Then '

1 satis�es Axioms 1 and 2, but not Axiom 3.

� Let '2 be the compensation scheme that assigns to every (N; T; d) 2 L compensations
given by '2i (N; T; d) = di, for every i 2 N . Then '2 satis�es Axioms 1 and 3, but

not Axiom 2.

� Let '3 be the compensation scheme given by '3(N; T; d) = Sh(N; vL) for every

(N; T; d) 2 L. Then '3 satis�es Axiom 2 and Axiom 3 (see Katsev, 2009), but

not Axiom 1.

6 Concluding remarks

In this paper we considered the Nucleolus compensation scheme as a compensation scheme

for liability problems, where causation of the cumulative injury results from multiple se-

quences of wrongful acts by di¤erent parties. It appears that the Nucleolus compensation

scheme of a liability problem can be simply computed by using an algorithm for the nu-

cleolus of a corresponding liability game. A very appealing property of the Nucleolus

compensation scheme is that with respect to the additional damages of the coalitions, the

smallest cost saving over all coalitions is made as large as possible, then the second smallest

is made as large as possible, then the third smallest, and so on.

We also characterized the nucleolus compensation scheme by three axioms: a uniform

lower bound, an individual upper bound and an axiom on case-system consistency. All these
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three axioms are derived from stylized facts concerning tort law. As noticed in Section 3,

the class of lower-bound liability games is equivalent to the class of peer-group games.

For this latter class Katsev (2009, chapter 6) provides a characterization of the Shapley

value, namely the Shapley value is the unique e¢ cient allocation rule on the class of peer-

group games that satis�es leaf consistency, the weak veto property, top monotonicity and

independence of non-subordinates.13 All these �ve axioms (including e¢ ciency) are logically

independent. The weak veto property states that player i pays at least the same as any

other player when dj = 0 for every j 6= i. Top monotonicity states that top player 1 pays at

least the same amount as any other player. Finally independendence of non-subordinates

states that if the damage of only one player i changes, then the compensations to be paid

by the subordinates of i do not change.

We are now ready to compare the Shapley compensation scheme and the nucleolus

compensation scheme by their sets of characterizing axioms. It is easy to verify that also the

Nucleolus compensation scheme satis�es the weak veto property and top monotonicity, but

not independence of non-subordinates. So, the Nucleolus compensation scheme satis�es

all above Shapley axioms, except the independence of non-subordinates. On the other

hand the Shapley compensation scheme satis�es leaf consistency and the individual upper

bound, but not the uniform lower bound. So, the two solutions have in common that

both satisfy leaf consistency, individual upper bound, the weak veto property and top

monotonicity. Then the Nucleolus compensation scheme satis�es uniform lower bound but

not independence of non-subordinates, whereas the Shapley compensation scheme satis�es

the latter but not the former. Although the two solutions di¤er in only one axiom, the

di¤erences in the actual outcome for a speci�c liability problem might be quite big. When i

is a leaf of the tree, then equation (3.1) shows that according to the Shapley compensation

scheme the damage di is equally shared by i and all its superiors. In particular, in a linear

tree with n tortfeasors the last one pays only a share 1
n
of its own damage di. On the

other hand, according to the Nucleolus compensation scheme the share of a leaf i in its

own damage di can be 1
2
and this indeed happens when di is relatively small compared to

the damages of its superiors. In fact, for a linear tree with n tortfeasors the uniform lower

bound implies that the damage dn of leaf n is shared equally amongst all tortfeasors when

dj = 0 for every superior j of leaf n, whereas together with the individual upper bound it

also implies that n pays half of its own damage when dn is small compared to the other

damages. So, while according to the Shapley compensation leaf n is always held responsible

for precisely share 1
n
of its own damage, according to the Nucleolus compensation scheme

13Also in Ferey and Dehez (2015) an axiomatization of the Shapley value on the class of (linear) lower-

bound liability games is given. In fact, in this axiomatization leaf consistency, the weak veto property and

top monotonicity are replaced by the single axiom of zero immediate damage, saying that a player i pays

the same as its predecessor p(i) if the damage of the predecessor is equal to zero.
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the responsibility of a leaf for its own damage is 1
2
when his damage is small, but it might

decrease to a share of only 1
n
(as in the Shapley compensation scheme) when his damage

is large compared to the damages of his superiors. In fact, we have seen in Section 3 that

both the Shapley compensation scheme and the nucleolus compensation scheme satisfy

weak monotonicity, saying that a tortfeasor never pays a higher compensation than his

predecessor.

Finally, we discuss what happens when the population of the tortfeasors is increasing.

Suppose that a new tortfeasor arrives at the end of a branch of the tree, so he is added as

new leaf to one of the leafs of the existing tree. One may wonder whether every original

tortfeasor pays in the new situation at least the same as in the original situation. If the

answer for this question is negative, then it might be that some of the original tortfeasors

have an incentive to increase the population of the tortfeasors, which leads to an increase of

the total damage. From this aspect, it is appropriate to require that a compensation scheme

satis�es leaf population monotonicity, stating that when a new tortfeasor arrives, in the

new situation every original tortfeasor pays at least the same as in the original situation.

If this property is satis�ed, then no original tortfeasor has an incentive to increase the

population of the tortfeasors.

From equation (3.1) it follows immediately that the Shapley value satis�es the leaf

population property. When a new tortfeasor arrives, then his (additional) damage is equally

shared amongst himself and his superiors with no e¤ect on how the other damages are

shared. So, the question is whether also the Nucleolus compensation scheme satis�es leaf

population monotonicity. This answer is a¢ rmative and follows from a result in Katsev

(2009, chapter 6), who shows that when d and d0 are such that d0i � di for every i 2 N , then
every tortfeasor should pay at d0 at least the same as at d. So, for a given tree with a �xed

set of tortfeasors, the compensations to be paid by the tortfeasors are non-decreasing in

the damages.14 Now, suppose a new tortfeasor is added. Then, according to the Nucleolus

compensation scheme this tortfeasor pays at most half of its damage and leaf consistency

says that the others have to pay according to the original situation, but with the damage of

the predecessor of the new leaf replaced by the sum of its own damage and the remaining

part of the damage of the new tortfeasor. So, the new situation reduces to the old situation,

but with higher damage for the predecessor of the new leaf. So, by the result of Katsev

it follows that every original tortfeasor pays at least the same as before. Hence also the

Nucleolus compensation scheme satis�es leaf population monotonicity.

14In the literature this is known as resource monotonicity, but here the resources are the damages.
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Abstract

For joint liability problems concerning tort law, a legal compensation scheme may be

based on lower and upper bounds of compensation for injury and on case-system consis-

tency. Introducing several properties inspired from this observation, we analyze compen-

sation schemes axiomatically under the situation where causation of the cumulative injury

appears in multiple sequences of wrongful acts. The situation underlying the model is

described by a rooted-tree graph. We show that there is a unique compensation scheme

that satis�es three axioms, one about lower bounds of individual compensations, one about

upper bounds of individual compensations, and one about case-system consistency. This

unique compensation scheme is the nucleolus of an associated liability game.

Keywords: Liability problems, Tort law, Rooted-tree graph, Axiomatization, Nucleolus,
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1 Introduction

In this paper we consider situations in which an injured party su¤ers damages caused by

wrongful acts performed subsequently by a sequence of injuring parties. The wrongful

acts are causally related in the sense that any wrongful act in the sequence would not

have occurred if any of the preceding wrongful acts would not have occurred. So, the

second (wrongful) act can only occur after the �rst (wrongful) act has occurred, the third

(wrongful) act can only occur when both the �rst and the second (wrongful) acts have

occurred and so on. Any wrongful act results in an amount of damage to the injured party.

The injuring parties are the tortfeasors who can be considered to be jointly liable for the

full damage. The problem is how to apportion the full damage amongst the tortfeasors. In

many real life situations, this problem is brought to court. This sharing problem is referred

to as the Liability problem.

Historically, common law did not accept any apportionment among the tortfeasors, but

evolution of common law in the 19th and 20th centuries led to the third Restatement of

Torts (May 1999), providing basic principles and rules to apportion the damages. How-

ever, a systematic apportionment method is still the subject of research. In the existing

literature on law and economics, it is a central topic to clarify whether or not a legal

compensation scheme for liability problems is useful, see for instance Landes and Posner

(1980), Shavell (1983), and Parisi and Singh (2010). These authors analyze the functioning

of compensation schemes from the viewpoint of incentives. On the other hand, the view-

point of fairness is also important. In fact, tort law prescribes an award of damages to

achieve fair compensation for injury, see Boston (1995-1996). Although a few researchers

have investigated the normative topic of liability problems (for instance, see Dehez and

Ferey (2013) and Ferey and Dehez (2015)), this topic still needs further investigation.

In this paper, we analyze the functioning of compensation schemes from the viewpoint

of fairness. For this purpose, we take an axiomatic approach.1 The axioms proposed in this

paper are derived by taking into account tort law. Furthermore, we are interested in the

situation where the determination of causal weights between the injuring parties is di¢ cult

in the following two senses. First, since a judge determines causal weights subjectively, fair

compensation for injury may be di¢ cult. Second, if the judge�s transaction cost of this

determination is high, then the determination may be impossible. Under this situation,

we axiomatize the compensation scheme associated with the �di¤erence principle of social

justice�à la Rawls (1971).

The liability problem as described in Dehez and Ferey (2013) has a linear structure in

the sense that the agents are linearly ordered: the wrongful act of agent i can only occur

1Axiomatic approaches to economic allocation problems, where the axioms are based on principles of

distributive justice have been described in, e.g. Moulin (2003)

1



when all agents j < i behave wrongfully. In this paper, we consider the more general class

of liability problems with rooted-tree structure. As an example, we consider the case where

the injured party su¤ers an injury that is caused by four agents, agents 1, 2, 3, and 4.

Agent 1 has taken a wrongful act that is the root of the injury. After agent 1�s wrongful

act, agents 2 and 3 have taken wrongful acts. Without agent 1�s wrongful act, agents 2

and 3�s wrongful acts would not have occurred. On the other hand, agent 2�s wrongful

act does not a¤ect agent 3�s wrongful act and reversely. After agent�s 1 wrongful act, the

wrongful act of agent 3 might occur without the wrongful act of agent 2 and reversely, the

wrongful act of agent 2 might occur without the wrongful act of agent 3. Without the

wrongful acts of both agents 1 and 2, agent 4�s wrongful act would not have occurred. The

situation underlying this example can be modeled by the rooted-tree graph of Figure 1. In

this graph, agent 1 is located at the root and has two branches, at one branch agent 1 is

succeeded by agent 2 and agent 2 is succeeded by agent 4, at the other branch agent 1 is

succeeded by agent 3. Agents 3 and 4 are the leafs of the tree. The rooted-tree represents

the hierarchical structure of causation of the cumulative injury.

u
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@

@
@@
1

2 3

4

Figure 1: Rooted tree with two branches.

Formally, the liability problem is how to share the total damage amongst the n tortfea-

sors, called the agents and indexed by i = 1; : : : ; n. A compensation scheme is a sharing

rule that determines for every liability problem the compensations that have to be paid

by the individual tortfeasors. Note that a compensation scheme is a procedure (algorithm)

that can be applied to every liability problem.

Following the existing literature, we use several notions of damages. Here, we explain

the notions by using the case of liability problems with linear structure. Analogously to

this case, it is easy to understand the notions of damages in the case of liability problems

with rooted-tree structure. It is supposed that all damages can be measured monetary.

Every agent i has taken a wrongful act that causes an amount of damage di. However, the

wrongful act of agent i can only occur when all agents 1; : : : ; i�1 have taken wrongful acts.
So, if at least one of the wrongful acts of the agents 1; : : : ; i� 1 would not have occurred,
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then the wrongful act of agent i would not have occurred. In the existing literature, see for

instance Dehez and Ferey (2013)2, the amount di is called the direct damage resulting from

the wrongful act of i. Furthermore, for every i the cumulative damage up to i is de�ned

as ci =
Pi

k=1 dk and the additional damage of i is de�ned as ei = cn � ci�1 =
Pn

k=i dk.

So, the cumulative damage up to agent n is the total damage of the tortfeasors, while the

additional damage of i is the sum of all damages that would not have occurred without the

wrongful act of i. Finally, we have the notion of potential damage. This type of damage

is de�ned for every subset S � f1; : : : ; ng of tortfeasors. De�ne k(S) = 0 if agent 1 is not
a member of S. Otherwise, de�ne k(S) as the highest indexed member of S such that all

consecutive agents 1; : : : ; k(S) also belong to S. Then the potential damage of S is the

cumulative damage ck(S), with c0 = 0, i.e. it is sum of the damages that the members of S

cause when the members outside S do not behave wrongfully.

Dehez and Ferey (2013) introduce a certain compensation scheme formalized by causal

weights between the injuring parties and the list of additional damages. They show that

for every liability problem this compensation scheme yields the (weighted) Shapley value

of the corresponding transferable utility game (for short TU game) that assigns worth

v(S) = ck(S) to every subset S of tortfeasors, i.e., the worth of S is the potential damage of

S. The (weighted) Shapley value (Shapley 1953; Kalai and Samet 1987) is an established

solution for TU games, and it is a game theoretic expression of fairness. Several notions of

fairness underlying the Shapley value are proposed in the existing literature, for instance

see Myerson (1980) and van den Brink (2001). In Ferey and Dehez (2015) a characterization

of the compensation scheme yielding the Shapley value for liability problems is given.

As Dehez and Ferey (2013) point out, for a legal compensation scheme concerning tort

law it should be required that for every liability problem it yields individual compensations

that satisfy the following properties:

(i) Every injuring party should pay at least the potential damage that he would

have caused alone.

(ii) Every injuring party should pay at most the additional damage that he

would have caused. This principle is supported by the third Restatement of

Torts, which is formulated by the American Law Institute.

For a liability problem with rooted-tree structure, based on these two properties we

de�ne in this paper two TU games, the lower-bound liability game and the upper-bound

liability game. The �rst one assigns to every subset S of tortfeasors a worth vL(S) that is

equal to the potential damage of S. For problems with linear structure this game reduces

to the liability game as de�ned in Dehez and Ferey (2013). The upper-bound liability game

2Here and in the sequel when we refer to Dehez and Ferey (2013), see also Ferey and Dehez (2015)
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assigns to every subset S of tortfeasors a worth vU(S) that is equal to the additional damage

of S.3 It appears that these two games are the duals of each other in the game-theoretic

sense.

A vector x = (x1; : : : ; xn) of individual compensations, in the sequel shortly outcome,

is in the core of the lower-bound game if for every S it holds that
P

i2S xi � vL(S), i.e.,

the total compensation to be paid by the members of S is at least equal to their potential

damage. Also, for every S � N , x satis�es
P

i2S xi � vL(S) if and only if
P

i2S xi � vU(S),

so an outcome in the core of the lower-bound liability game satis�es the Properties (i) and

(ii) mentioned above. In fact, an outcome is in the core if and only if it satis�es this type of

properties for every subset of tortfeasors. Generalizing a result of Dehez and Ferey (2013)

for linear liability games, also for liability games with rooted tree structure the lower-bound

liability game is convex.

In this paper, we propose three axioms and we show that these three axioms determine

a unique compensation scheme that yields for every liability problem with rooted-tree

structure an outcome in the core of the lower-bound liability game. As Property (i), the

�rst axiom sets for every tortfeasor a uniform lower bound. This lower bound is the same for

every tortfeasor, and for an individual tortfeasor the best possible outcome is an outcome

in which he has to pay this lower bound. As Property (ii), the second axiom sets for every

tortfeasor an individual upper bound. This upper bound di¤ers over the tortfeasors and

gives for every tortfeasor its worst possible outcome. In order to set the lower and upper

bound axioms, per capita criteria are employed. This is because in liability problems it

is often impossible to determine the causal weights between the injuring parties. In this

situation, per capita criteria might be justi�ed. The third and last axiom stems from the

stylized fact that in the UK and America, a legal compensation scheme is based on so-called

case system consistency, see for instance Ito (1978). This requires that the compensation

scheme has the property that for every liability problem it provides an outcome that

is consistent with the outcome that the same procedure generates for a di¤erent, but

similar liability problem. In this paper, we propose leaf consistency. This type of case

system consistency requires that for every liability problem with rooted-tree structure the

compensation scheme is invariant when a leaf of the tree pays his compensation and leaves.

We show that the three axioms uniquely determine a compensation scheme. This

scheme assigns to every liability problem with rooted-tree structure the so-called nucleolus

of the lower bound liability game as outcome. The Nucleolus compensation scheme has

two appealing properties.

First, the nucleolus (Schmeidler, 1969) is an established outcome for TU games. In

fact, it is a game-theoretic expression of the �di¤erence principle of social justice�à la Rawls

3The additional damage of a subset S of tortfeasors will be de�ned formally in the next section.
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(1971). So, when it is desirable that a legal compensation scheme for liability problems is

to attain a Rawlsian outcome, the three axioms yield a useful compensation scheme.

Second, it is well known that the nucleolus of a game is in the core if the core is non-

empty. Using the fact that the upper bound liability game is the dual of the lower bound

liability game, it follows that the nucleolus of the lower bound liability game lexicographi-

cally maximizes the di¤erences vU(S)�
P

i2S xi of all subsets S of tortfeasors, i.e. it makes

the smallest di¤erence over all subsets S as high as possible, then the second smallest one,

then the third smallest one, and so on. So, it maximizes (lexicographically) over all di¤er-

ent subsets S of tortfeasors the di¤erences between the additional damage vU(S) and the

actual compensation
P

i2S xi to be paid by the members of S. Loosely speaking, it min-

imizes (lexicographically) the dissatisfactions over the subsets of tortfeasors with respect

to their �worst-case�outcomes, i.e. the outcome in which S has to pay the total amount

vU(S) of its additional damage.

The remainder of the paper is organized as follows. In Section 2, preliminaries are

given. In Section 3, the liability problem with rooted-tree structure and the corresponding

liability games are given. In Section 4, we state and discuss the three axioms to be satis�ed

by a compensation scheme. In Section 5, we show that the compensation scheme that

satis�es the axioms of Section 4 assigns to every liability problem the nucleolus of the

corresponding lower-bound liability game. Section 6 contains concluding remarks, and

discusses a comparison between the Shapley and nucleolus compensation schemes, and an

incentive problem in the situation where the population of the tortfeasors is increasing.

2 Preliminaries

A cooperative game with transferable utility, or simply a TU game, is a pair (N; v), where

N � IN is a �nite set of players, and v : 2N ! IR is a characteristic function that assigns

a worth v(S) 2 IR to every subset (usually called coalition) S of N , satisfying v(;) = 0.

A TU game (N; v) is convex if v(S [ T ) + v(S \ T ) � v(S) + v(T ) for all S; T � N . It

is concave if these inequalities are reversed. We denote by G the class of all TU games.
The subclass of all convex TU games is denoted by Gvex and the subclass of all concave
TU games by Gcave. For a game (N; v) 2 G, the dual game, denoted by (N; vd), assigns to
every coalition S what the �grand coalition�N loses if the players in S stop cooperating,

and thus is de�ned by vd(S) = v(N) � v(N n S) for all S � N . Note that vd(;) = 0 and
vd(N) = v(N). Further it holds that (N; v) 2 Gvex if and only if (N; vd) 2 Gcave.
A payo¤ vector of TU game (N; v) is a vector x 2 IRN giving a payo¤ xi 2 IR to

every player i 2 N . A payo¤ vector is e¢ cient if
P

i2N xi = v(N). Given (N; v) 2 G, the
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preimputation set of (N; v), denoted by PI(N; v), is the set of all e¢ cient payo¤ vectors.

Further, the imputation set, denoted by I(N; v), is the subset of all vectors in PI(N; v) that

satisfy xi � v(fig) for every i 2 N (individual rationality); the anti-imputation set, denoted

by AI(N; v), is the subset of all vectors in PI(N; v) that satisfy xi � v(fig) for every
i 2 N . Note that these sets are not-empty if and only if v(N) �

P
i2N v(fig), respectively

v(N) �
P

i2N v(fig). We denote by GI the class of all TU-games with nonempty I(N; v),
and by GAI the class of all TU-games with nonempty AI(N; v). Note that Gvex is a subset
of GI and Gcave is a subset of GAI .
The core of a game (N; v), denoted by C(N; v), is the set of (e¢ cient) payo¤ vectors

that are group stable, and is given by

C(N; v) =

(
x 2 PI(N; v)

�����X
i2S

xi � v(S) for all S � N

)
:

Note that C(N; v) is a subset of I(N; v) and that it might be empty. Every game (N; v) 2
Gvex has a non-empty core. A vector x 2 C(N; v) satis�es the requirement that for every
coalition S the total payo¤ is at least equal to its own worth. This is reasonable when

(N; v) is a pro�t game, i.e., the worth v(S) is the total revenue that the members of S

can achieve by cooperating. However, when v is a cost game, i.e., coalition S has costs

v(S) when it stands alone, then the worth should be considered as upper bounds on the

contributions. For a cost game it makes sense to apply the anti-core of a game (N; v),

denoted by AC(N; v). This set of e¢ cient payo¤ vectors is given by

AC(N; v) =

(
x 2 PI(N; v)

�����X
i2S

xi � v(S) for all S � N

)
:

The anti-core AC(N; v) is a subset of AI(N; v) and might be empty, but every game

(N; v) 2 Gcave has a non-empty anti-core.
For a given subset G 0 of the class G of all TU-games, a (single-valued) solution is a

function f that assigns to every game (N; v) in G 0 a payo¤ vector f(N; v) 2 PI(N; v).

Note that in this paper we require that a solution assigns to each game an e¢ cient payo¤

vector. The best-known solution on the class G of all TU-games is the Shapley value
(Shapley, 1953), denoted Sh. This solution assigns to every game (N; v) 2 G the payo¤
vector Sh(N; v) given by4

Shi(N; v) =
X

S�N :i2S

(jN j � jSj)!(jSj � 1)!
jN j! (v(S)� v(S n fig)) for all i 2 N:

So, for every player i 2 N the payo¤ is a weighted sum of its marginal contributions

v(S)� v(S n fig) to the coalitions S containing i. When (N; v) is convex, then Sh(N; v) 2
4For a �nite set A, we denote by jAj the number of elements in A (cardinality of A).
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C(N; v). However, in general, on the domain of TU games with non-empty cores it might

be that the Shapley value is not in the core. Further it holds that the Shapley value is

self-dual (see Kalai and Samet (1987)), saying that for every (N; v) 2 G it holds that
Sh(N; vd) = Sh(N; v).5

Another well-known solution on the class of all TU-games is the prenucleolus. Given a

TU game (N; v) 2 G, we de�ne for payo¤ vector x 2 PI(N; v) and coalition S � N the

excess of S with respect to x as

e(S; x; v) � v(S)�
X
i2S

xi:

When the payo¤s are revenues, i.e., the payo¤s are payments to the players, the excess

e(S; x; v) can be seen as a measure of dissatisfaction of coalition S. The bigger the excess of

S and thus the bigger the di¤erence between its own worth v(S) and its payo¤
P

i2S xi re-

ceived by the members of S, the more dissatis�ed coalition S is. Now, let �(x; v) 2 IR2N be
the vector obtained by arranging all the excesses in non-increasing order, so the �rst com-

ponent of �(x; v) is the excess of a coalition with the highest excess, the second component

is the excess of a coalition with the highest excess under the remaining coalitions, and so on.

Then the prenucleolus is the solution on G that assigns to every game (N; v) 2 G the unique
vector in PI(N; v) that minimizes lexicographically the dissatisfactions. To be precise, the

prenucleolus assigns to every game (N; v) the unique payo¤ vector x 2 PI(N; v) such that
for every y 2 PI(N; v) n fxg there exist a component k such that �h(x; v) = �h(y; v) for all

h < k, and �k(x; v) < �k(y; v), i.e. the prenucleolus assigns to (N; v) 2 G the unique payo¤
vector x 2 PI(N; v), such that for every other vector y 2 PI(N; v) there exists a number
k such that the k� 1 biggest excesses of x and y are equal and the next biggest excess of x
is smaller than the next biggest excess of y. We denote the prenucleolus of a game (N; v)

by PNuc(N; v).

The nucleolus is a solution de�ned for every game with I(N; v) not-empty, so on the

subclass of games GI . It assigns to every (N; v) 2 GI the unique individually rational payo¤
vector x 2 I(N; v) that minimizes lexicographically the dissatisfactions over all vectors in
I(N; v). We denote the nucleolus of a game (N; v) by Nuc(N; v). When the core is non-

empty, Nuc(N; v) 2 C(N; v). Further, on the class of games with non-empty C(N; v) the

nucleolus coincides with the prenucleolus (Schmeidler, 1969). In particular it holds that

Nuc(N; v) = PNuc(N; v) when (N; v) is convex.

Similarly, for a game (N; v) we de�ne the anti-prenucleolus, denoted APNuc(N; v), and

for a game (N; v) in the subclass GAI the anti-nucleolus, denoted ANuc(N; v). The anti-
prenucleolus is the unique payo¤vector x 2 PI(N; v) such that��(v; x) is lexicographically

5The notion of (self-)duality plays an important role in axiomatizing solutions for TU games. For

instance, see Oishi, Nakayama, Hokari, and Funaki (2016).
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smaller than ��(v; y) for every y 2 PI(N; v), i.e., it is the unique vector in PI(N; v) that
minimizes lexicographically the vector of negative excesses

P
i2S xi � v(S) for all S � N .

So, for a cost game, the anti-prenucleolus lexicographically maximizes the cost savings

v(S)�
P

i2S xi for all S � N . The anti-nucleolus assigns to every (N; v) 2 GAI the unique
payo¤ vector x 2 I(N; v) that minimizes lexicographically the vector of negative excesses
over all vectors in AI(N; v). When the anti-core is non-empty, ANuc(N; v) 2 AC(N; v).

When (N; v) 2 Gcave it holds that ANuc(N; v) = APNuc(N; v).

In the next sections the following proposition, which follows from Oishi and Nakayama

(2009), will appear to be useful. Recall that (N; v) 2 Gvex if and only if (N; vd) 2 Gcave.

Proposition 2.1 For every (N; v) 2 Gvex it holds that

(i) AC(N; vd) = C(N; v),

(ii) ANuc(N; vd) = Nuc(N; v).

We now introduce rooted trees. First, a directed graph or digraph is a pair (N;D), where

N is a set of nodes and the collection of ordered pairs D � f(i; j)ji; j 2 N; i 6= jg is a set
of arcs. In this paper, the nodes represent the players in a game, and therefore we refer to

the nodes as players. We denote the set of all digraphs by D. For (N;D) 2 D, a sequence
of k di¤erent players (i1; :::; ik) is a (directed) path if (il; il+1) 2 D for l = 1; :::; k � 1.
For i 2 N , a player j 2 N is a subordinate of i if there is a path (i1; :::; ik) with i1 = i

and ik = j. Player i is a superior of j if and only if j is a subordinate of i. We denote

FD(i) as the set of subordinates of i and PD(i) as the set of superiors of i in (N;D).

We also denote F 0D(i) = FD(i) [ fig and P 0D(i) = PD(i) [ fig. Also for all S � N we

de�ne FD(S) = [i2S FD(i) and similarly PD(S) = [i2S PD(i), F 0D(S) = [i2S F 0D(i) and
P 0D(S) = [i2S P 0D(i).
A node i 2 N is called a top player in (N;D) if PD(i) = ;. A digraph (N;D) is a

(directed) rooted tree with root i when (i) player i is the unique top player and (ii) for all

j 6= i there is a unique path from i to j. In the sequel we denote by Dt the class of rooted
trees and an element of Dt by (N; T ). Note that for a rooted tree (N; T ) with root i it
holds that FT (i) = N n fig and for every node j 6= i there is precisely one player k 2 PT (j)
such that (k; j) 2 T . This player is called the predecessor of j and denoted by p(j). A

player is called a leaf of (N; T ) if FT (i) = ;. We denote the set of all leafs by L(T ). We
say that a tree (N; T ) is linear if jL(T )j = 1. In this case it holds that for every player k
not in L(T ) there is precisely one h such that (k; h) 2 T . For a tree (N; T ) with root i, let
M � N be such that (i) jM j � 2, (ii) i 2 M , (iii) for every j 2 M n fig all nodes on the
(unique) directed path from i to j are also in M . Then (M;T (M)) denotes the subtree of

(N; T ) restricted to M and T denotes the collection of all subtrees (M;T (M)) of (N; T ).
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A permission tree game is a triple (N; v; T ) withN � IN a �nite set of players, (N; v) 2 G
a TU-game and (N; T ) 2 Dt a rooted tree on N . In those games, it is assumed that the
tree represents a hierarchy that imposes restrictions on the forming of coalitions. Solutions

for permission tree games have been discussed in for instance van den Brink, Herings, van

der Laan and Talman (2016) and van den Brink, Dietz, van der Laan and Xu (2015). One

of these solutions is the permission value, based on the so-called conjunctive approach to

permission structures as developed in Gilles, Owen and van den Brink (1992). In this

approach, it is assumed that a coalition is feasible if and only if for every player in the

coalition all its predecessors are also in the coalition. feasible coalitions is given by

�T = fS � N jPT (i) � S for all i 2 S g :

In this paper we only consider triples (N; v; T ) with the permission structure (N; T ) 2 Dt a
rooted tree. We denote by GT the collection of all permission tree games. A (single-valued)
solution f on GT assigns a unique payo¤ vector f(N; v; T ) 2 IRN to every (N; v; T ) 2 GT .
For S � N , let �T (S) =

S
R2�T :R�S R be the largest feasible subset

6 of S. Following Gilles

Owen and van den Brink (1992), the induced permission restricted game of (N; v; T ) is the

game (N; rN;v;T ) 2 G given by

rN;v;T (S) = v(�T (S)) for all S � N;

and the permission value  on GT is the solution that assigns to every (N; v; T ) 2 GT the
Shapley value of the associated permission restricted game, thus

 (N; v; T ) = Sh(N; rN;v;T ) for all (N; v; T ) 2 GT :

3 Liability problems with rooted-tree structure

A liability problem with rooted-tree structure (shortly a liability problem) is a triple (N; T; d)

with (N; T ) 2 Dt a rooted tree on N and d 2 IRN+ a pro�le of non-negative damages, with
di the (direct) damage caused by tortfeasor i 2 N . We denote the class of all liability

problems by L. We also de�ne the following notions.

Total damage For S � N , the total damage of S is dS =
P

j2S dj.

Cumulative damage For S � N , the cumulative damage up to S is cS =
P

j2P 0T (S)
dj.

Additional damage For S � N , the additional damage of S is eS =
P

j2F 0T (S)
dj.

Potential damage For every subset S � N , the potential damage of S is bS =
P

j2S:PT (j)�S dj.

6Every coalition having a unique largest feasible subset follows from the fact that �T is union closed,

i.e. for every E;F 2 �T it holds that E [ F 2 �T
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The total damage of S is the sum of the damages of the players in S. The cumulative

damage of S is the sum of the damages of the players in S and all their superiors. The

additional damage of S is the sum of the damages of the players in S and all their sub-

ordinates and can be seen as the sum of all damages that would have been avoided when

none of the members of S exercised a wrongful act. The potential damage of S is the sum

of all damages that the members of S cause when the members outside S do not behave

wrongfully. In case the tree is linear and S = fjg for some j 2 N , these notions coincide
with the notions of Dehez and Ferey (2013) as discussed in the Introduction. For ease

of notation we denote dS = di if S = fig and similarly for the other notions. Note that
dN = cN = eN = bN , and for the root i, di = ci = bi and ei =

P
j2F 0T (i)

dj = dN . The

following example illustrates the di¤erent notions of damages mentioned above.

Example 3.1 Consider six players and rooted-tree (N; T ) with N = f1; 2; 3; 4; 5; 6g and
T = f(1; 2); (2; 3); (2; 4); (1; 5); (5; 6)g, see Figure 2. Table 1 gives the four notions of
damages for two di¤erent sets S. Note that dN =

P
i2N di.

u u

u
u

u

u�
�
�
�
�
�
�
�
��

@
@

@
@@
1

2 5

63 4

Figure 2: Rooted tree with six players.
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Table 1. Four notions of damages for the tree of Figure 2.
S = f1; 4; 6g S = f2; 6g

Total damage dS d1 + d4 + d6 d2 + d6

Cumulative damage cS dN � d3 d1 + d2 + d5 + d6

Additional damage eS dN d2 + d3 + d4 + d6

Potential damage bS d1 0

Given (N; T; d) 2 L, an allocation for (N; T; d) is a non-negative vector x 2 IRN+ such
that

P
i2N xi = dN . A compensation scheme for liability problems is a mapping ' on L

that associates with every problem (N; T; d) 2 L an allocation '(N; T; d) 2 IRN+ .
We generalize the liability game as de�ned by Dehez and Ferey (2013) for liability

problems with linear structure to the class of liability problems with rooted tree structure.

For liability problem (N; T; d) 2 L the corresponding lower-bound liability game is the

game (N; vL) where the worth of a coalition S is its potential damage, i.e. for all S � N ,

vL(S) = bS:

Dehez and Ferey (2013) focus on the Shapley value of the (lower-bound) liability game.

In the sequel we de�ne the Shapley value of a liability problem (N; T; d) as the Shapley

value of the corresponding lower-bound liability game. Formally we have the following

de�nition.

De�nition 3.2 The Shapley compensation scheme is the mapping Sh on L that associates
with every problem (N; T; d) 2 L the Shapley value of its corresponding lower-bound liability
game (N; vL):

Sh(N; T; d) � Sh(N; vL):

In the literature on game theory, the lower-bound liability game is known as the peer-

group game associated to peer-group situation (N; T; d), see e.g. Brânzei, Fragnelli and

Tijs (2002). A peer-group game, and so the game (N; vL), is convex. Further it holds

that (N; vL) is the permission restricted game (N; rN;v;T ) of the additive game (N; v) with

characteristic function de�ned as v(S) = dS for all S � N . Therefore, the Shapley value

of game (N; vL) is equal to the permission value of the permission tree game (N; T; v).

Since (N; vL) is convex, its Shapley value is in its core: Sh(N; vL) 2 C(N; vL). It follows

that
P

i2S Shi(N; T; d) =
P

i2S Shi(N; vL) � vL(S) for every S � N and thus the Shapley

compensation scheme satis�es the requirement that for every S � N the total compensation

paid by its members is at least equal to vL(S), being the potential damage of S. The
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Shapley compensation scheme thus satis�es Property (i) of the Introduction as required in

Dehez and Ferey (2013).

While Dehez and Ferey (2013) focus on the Shapley value of the (lower-bound) liability

game, in this paper we consider the nucleolus. We de�ne the nucleolus compensation

scheme as the mapping that assigns to every liability problem (N; T; d) the nucleolus of its

corresponding lower-bound liability game (N; vL).

De�nition 3.3 The nucleolus compensation scheme is the mapping Nuc on L that as-

sociates with every problem (N; T; d) 2 L the nucleolus of its corresponding lower-bound
liability game (N; vL):

Nuc(N; T; d) � Nuc(N; vL):

Since the nucleolus of a game is in its core (if the latter is non-empty), the Nu-

cleolus compensation scheme satis�es the requirement that for every S � N the to-

tal compensation paid by its members is at least equal to the potential damage of S

(
P

i2S Nuci(N; T; d) =
P

i2S Nuci(N; vL) � vL(S) for every S � N) and thus respects

Property (i) of the Introduction. Nevertheless, we now run into a di¢ culty about the

interpretation of the core and nucleolus. Typically it is considered to be desirable that

a payo¤ vector is in the core of the game. This is called core-stability, saying that every

coalition S gets at least its own worth v(S) and so the members of S don�t have an incen-

tive to deviate from the grand coalition N . However, this holds for pro�t games in which

v(S) is the worth that the members of S can earn by themselves without cooperating with

the others, and the entries of x yield payo¤s that are paid to the players. In contrast to

this usual situation, the Shapley value or the nucleolus of a liability game gives a vector

of compensations to be paid by the players in the game, i.e., by the tortfeasors. They are

not looking for core stability, on the contrary they want to pay as little as possible.

Therefore, the lower-bound liability game should not be considered as a game that is

played by the tortfeasors themselves, but as a model to help the court to determine the

compensations to be paid to the injured party. With this interpretation the game gives

for every subset (coalition) of tortfeasors, the lower-bounds of their compensations and for

instance the Shapley value or the nucleolus can be applied to determine how much every

coalition has to pay in addition to its lower bound vL(S). According to the Shapley value,

these additional payments are determined by the marginal contributions of the players.7

In contrast, the nucleolus is determined by the excesses of the coalitions. However, for

a liability game (N; vL) the excess e(S; x; vL) = vL(S) �
P

i2S xi is now a measure of

7Since the marginal contributions of a player do not depend on the damages of his superiors in the

tree, this also implies that the Shapley value satis�es the property that the compensation to be paid by a

tortfeasor does not depend on the damages of its superiors, see Ferey and Dehez (2015).
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satisfaction of S at x, because the bigger the excess is, the lower the total amount of

compensation that the members of S have to pay. So, while in a game in which the payo¤

vector yields payments to the players the nucleolus minimizes lexicographically the vector

of dissatisfactions, in the liability game the nucleolus minimizes lexicographically the vector

of satisfactions. This is counterintuitive. Even if we consider the game as a model used by

the court to determine the compensations, there is no a priori reason to do so.

Nevertheless, the Nucleolus compensation scheme is justi�ed as a reasonable solution

when we consider the second requirement of Dehez and Ferey (2013), namely that every

tortfeasor should pay at most the additional damage that he would have caused, see Prop-

erty (ii) in the Introduction. This principle is supported by the third Restatement of Torts

as formulated by the American Law Institute. Based on this property, we de�ne for a

liability problem (N; T; d) 2 L the corresponding upper-bound liability game as the game
(N; vU) de�ned by setting, for all S � N ,

vU(S) = eS;

i.e. the worth of a coalition S is the additional damage that the agents in S might cause.8

The next lemma states that (N; vU) is the dual game of (N; vL). Because (N; vL) is convex

this implies that (N; vU) is concave.

Lemma 3.4 For a liability problem (N; T; d) 2 L, the upper-bound liability game (N; vU)
is the dual of the lower-bound liability game (N; vL).

Proof. For S � N , we have that vL(S) = bS =
P

j2S:PT (j)�S dj. Now, note that

fj 2 S : PT (j) � Sg = S n FT (N n S);

i.e., for every S � N , the set of players in S such that all their predecessors are also in S

coincides with the set of players in S that are not subordinates of the players in N n S.
With F 0T (N n S) = FT (N n S) [ (N n S) it follows that S n FT (N n S) = N n F 0T (N n S).
Hence for every S � N we obtain that vL(S) =

P
j2N :j 62F 0T (NnS)

dj and thus

vdL(S) = vL(N)� vL(N n S) =
X
j2N

dj �
X

j2N :j 62F 0T (Nn(NnS))

dj =

X
j2F 0T (Nn(NnS))

dj =
X

j2F 0T (S)

dj = eS = vU(S): 2

8For a liability problem with linear structure the game (N; vU ) is a so-called airport game, see Littlechild

and Owen (1973).
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We now have the following proposition, where statement (i) follows because the Shap-

ley value is self-dual and the other two statements follow from applying Proposition 2.1 to

the convex game (N; vL) and its dual (N; vU).

Proposition 3.5 For every liability problem (N; T; d) 2 L the corresponding games (N; vL)
and (N; vU) satisfy the following statements:

(i) Sh(N; vL) = Sh(N; vU),

(ii) C(N; vL) = AC(N; vU),

(iii) Nuc(N; vL) = ANuc(N; vU).

Statement (i) implies that the Shapley value of the lower-bound liability game is equal

to the Shapley value of the upper-bound liability game. Since (N; vL) convex and thus

Sh(N; vL) 2 C(N; vL), statement (ii) implies that Sh(N; vL) 2 AC(N; vU), and thus

Sh(N; vL) satis�es for every coalition S the upper-bound requirement that
P

i2S Shi(N; vL) �
eS. This also holds for Nuc(N; vL). From statement (iii) it follows that Nuc(N; vL) lexico-

graphically maximizes the cost savings vU(S) �
P

i2S xi with respect to the upper-bound

liability game. So, when the court decides to implement Nuc(N; vL) = ANuc(N; vU), the

smallest cost saving over all coalitions S is made as large as possible, then the second

smallest is made as large as possible, then the third smallest, and so on. This is a very

desirable property and gives a strong motivation for the use of the nucleolus.

We now consider the computation of the compensations for both the Shapley value and

the nucleolus. The Shapley value is easy to compute for liability games. Recall that (N; vL)

is the peer-group game associated to the peer-group situation (N; T; d) and also that it is

the permission restricted game (N; rN;v;T ) of the additive game (N; v) with its characteristic

function de�ned as v(S) = dS for all S � N . For these games, it is well-known that the

Shapley value distributes the damage di of a player i 2 N equally amongst player i and

all its superiors in (N; T ). This gives the following expression for the compensation to be

paid by a tortfeasor j 2 N according to the Shapley compensation scheme:

Shj(N; T; d) =
X

i2F 0T (j)

di
jP 0T (i)j

: (3.1)

So, when applying the Shapley value the compensation to be paid by tortfeasor j is the

sum of all his shares in the damages of himself and his subordinates.

There is no explicit formula available for the nucleolus, but the nucleolus compensations

can be computed by the algorithm given in Brânzei, Solymosi and Tijs (2005) for peer-

group games. Given a liability problem (N; T; d) 2 L, we assume without loss of generality
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that 1 2 N is the root of (N; T ). For a subtree (M;T (M)) 2 T (see Section 2), let

(M;T (M); a), a 2 IRM+ be a liability problem on M . We de�ne for every j 2M n f1g,

� j(M;T (M); a) �

P
k2F 0

T (M)
(j) ak

jF 0T (M)(j)j+ 1
:

The Nucleolus compensation scheme is obtained by the following algorithm, where x =

Nuc(N; T; d) � Nuc(N; vL). Recall that p(j) is the predecessor of j in (N; T ) and so also

in every subtree (M;T (M)) containing j.

Nucleolus algorithm:
Step 0: Set M = N and a = d.

Step 1: Find a j 2M n f1g such that � j(M;T (M); a) = minm2Mnf1g �m(M;T (M); a).

Step 2: For every k 2 F 0T (M)(j), set xk = � j(M;T (M); a). If jM n F 0T (M)(j)j � 2, go to

Step 3. Otherwise, set x1 = dN �
P

k2Nnf1g xk and stop.

Step 3: Set M �M n F 0T (M)(j) and set ap(j) � ap(j) + xj. Return to Step 1.

Note that in Step 2, if jM n F 0T (M)(j)j = 1, then M n F 0T (M)(j) = f1g. In the next
Example we illustrate the above procedure.

Example 3.6 Let (N; T; d) be the liability problem with rooted tree as given in Figure 2

and with vector of damages given by d = (0; 12; 40; 36; 12; 30).

Using formula (3.1) we have the following computations for the Shapley compensa-

tion scheme, starting with the leafs: Sh3(N; T; d) = d3
3
= 40

3
, Sh4(N; T; d) = d4

3
= 12,

Sh6(N; T; d) =
d6
3
= 10. Next we obtain Sh2(N; T; d) = d2

2
+ Sh3(N; T; d) + Sh4(N; T; d) =

6+ 12+ 40
3
= 94

3
, Sh5(N; T; d) = d5

2
+Sh6(N; T; d) = 6+ 10 = 16 and �nally Sh1(N; T; d) =

d1+Sh2(N; T; d)+Sh5(N; T; d) = 0+
94
3
+16 = 142

3
. Thus Sh(N; T; d) = (142

3
; 94
3
; 40
3
; 12; 16; 10).

To apply the algorithm for computing the nucleolus payo¤s, let x = Nuc(N; T; d). Then

the algorithm performs as follows.

Step 0: Set M = N and a = d:

Iteration 1:

Step 1: minf30
2
; 12+30

3
; 36
2
; 40
2
; 12+40+36

4
g = 14 = � 5(M;T (M); a):

Step 2: x5 = x6 = 14.

Step 3: Set M = f1; 2; 3; 4g and a = (d1 + 14; d2; d3; d4) = (14; 12; 40; 36).
Iteration 2:

Step 1: minf36
2
; 40
2
; 12+40+36

4
g = 18 = � 4(M;T (M); a):
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Step 2: x4 = 18.

Step 3: Set M = f1; 2; 3g and a = (d1 + 14; d2 + 18; d3) = (14; 30; 40).
Iteration 3:

Step 1: minf40
2
; 30+40

3
g = 20 = � 3(M;T (M); a).

Step 2: x3 = 20.

Step 3: Set M = f1; 2g and a = (d1 + 14; d2 + 18 + 20) = (14; 50).
Iteration 4:

Step 1: � 2(M;T (M); a) = 50
2
= 25.

Step 2: x2 = 25 and x1 = dN �
P

k2Nnf1g xk = 39. Stop.

We have found that Nuc(N; T; d) = x = (39; 25; 20; 18; 14; 14).

From formula (3.1) it follows immediately that the Shapley compensation scheme sat-

is�es monotonicity in the sense that for every player j 2 N n L(T ) it holds that j has to
pay at least as much as any of his subordinates (and strictly more when dj > 0). This

property also holds for the nucleolus compensation scheme, albeit that compensations can

be equal when dj > 0. We call this weak monotonicity.9

Lemma 3.7 Weak Monotonicity
The compensation scheme Nuc on the class L of liability problems satis�es that for every
(N; T; d) 2 L it holds for every j 2 N n L(T ) that

Nucj(N; T; d) � Nuck(N; T; d) for every k 2 FT (j):

Proof. The proof follows from the algorithm. In the �rst iteration the algorithm starts

with (N; T; d). Let k 2 N nf1g be the player such that � k(N; T; d) = minj2Nnf1g � j(N; T; d).
Then Nuch(N; T; d) = � k(N; T; d) for every h 2 F 0T (k) and so the property holds for k and
all his subordinates. In the second iteration we have M = N n F 0T (k) and the reduced
liability problem (M;T (M); a) with ap(k) = dp(k) + � k(N; T; d), and ah = dh for every

h 2 M n fp(k)g. We show that the minimal � j(M;T (M); a) in the second iteration is

at least equal to � k(N; T; d). For simplicity of notation, denote Aj = � j(N; T; d) and

nj = jF 0T (j)j for every j 2 N n f1g.
First, consider a player h 2 M that is neither a subordinate of k in (N; T; d), nor

a superior of k in (N; T; d). Then �h(M;T (M); a) = �h(N; T; d) = Ah � Ak (since Ak
was minimal in the previous iteration). Second, consider a superior h of k in (N; T; d).

Now note that in the �rst iteration nk players (k and its subordinates) have left and that

all these players paid compensation Ak, while ap(k) = dp(k) + Ak. Further note that h is

9This property is called structural monotonicity in van den Brink and Gilles (1996) who use it to

axiomatize the conjunctive (Shapley) permission value for permission restricted games.
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either p(k) itself, or it is a superior of p(k) and that Ah = 1
nh+1

P
i2F 0T (h)

ai. From this and

Ah � Ak it follows that

�h(M;T (M); a) =
(nh + 1)Ah � nkAk

nh � nk + 1
� (nh + 1)Ah � nkAh

nh � nk + 1
= Ah � Ak:

So, at the second iteration we have for every h 2 M n f1g that �h(M;T (M); a) is at

least equal to the compensation Ak assigned to k and each of its subordinates in the �rst

iteration. So, the players that leave in the second iteration have to pay at least the same

amount as the players that have left in the �rst iteration.

Continuing in this way we obtain that the assigned payo¤s are non-increasing in the

iterations. The result now follows from the fact that for any two players k and h with k a

subordinate of h, player h gets assigned its payo¤ either in the same iteration as k or in a

later iteration. 2

4 Axioms

In this section, we propose three axioms of a compensation scheme for liability problems

with rooted-tree structure. These properties are inspired from the observations concerning

tort law and case-system consistency, see Ito (1978). We then prove that the Nucleo-

lus compensation scheme is the unique compensation scheme on the class L of liability
problems with rooted-tree structure that satis�es the three properties. Without loss of

generality, we assume that for every (N; T; d) 2 L it holds that 1 2 N is the top of root

(N; T ).

The �rst axiom takes into account the tort law principle that all tortfeasors are held

jointly responsible for the total damage dN =
P

j2N dj, and therefore every tortfeasor

should pay a fair share of this total damage. According to this principle the �rst property

sets a uniform lower bound on the compensation to be paid by an individual tortfeasor.

The axiom is obtained by considering for tortfeasor i 2 N n f1g the additional damage
ei =

P
k2F 0T (i)

dk that has been caused by agent i and his subordinates. Without the

wrongful act of agent i�s predecessor p(i), the sequentially wrongful acts by agent i and his

subordinates would not have occurred. From this viewpoint, all agents in F 0T (i) and p(i)

are jointly responsible for the additional damage ei of agent i. We assume the case of torts

where the causal weights between the agents in F 0T (i) and p(i) cannot be determined and

therefore a per capita criterion is justi�ed.10 For i 2 N n f1g, this yields the per capita
10For instance, Ni and Wang (2007) use a per capita criterion to introduce the upstream equal respon-

sibility sharing method for polluted river problems.
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contribution � i(N; T; d) given by

� i(N; T; d) =
ei

jF 0T (i)j+ 1
;

i.e., � i(N; T; d) is the equal division of the additional damage ei between i, all his subordi-

nates and his predecessor.

Now, the �rst axiom requires that every tortfeasor i should pay at least the smallest

per capita contribution minj2Nnf1g � j(N; T; d), i.e., the smallest per capita contribution is

considered as a guarantee of every injuring party�s compensation for the total damage.

Axiom 1 (Uniform lower bound) A compensation scheme ' on L satis�es the uni-
form lower bound if for every (N; T; d) 2 L and every i 2 N ,

'i(N; T; d) � min
j2Nnf1g

� j(N; T; d):

We stress that this is a very weak lower bound. Note that it does not require that i

contributes at least its own per capita contribution, but the minimal per capita contribution

over all tortfeasors (except the �rst tortfeasor). In Example 3.6 it requires that every

tortfeasor pays at least the per capita contribution of agent 5, being 14.

The second axiom puts for every tortfeasor an individual upper bound on his compen-

sation. Also this axiom is obtained by considering for tortfeasor i 2 N n f1g the additional
damage ei that has been caused by agent i and his subordinates. Again this damage

would not have occurred without the wrongful act of agent i�s predecessor p(i). From this

viewpoint, agent i and his predecessor can be held jointly responsible for the damage ei.

Assuming again the case of torts, the causal weights between i and p(i) cannot be deter-

mined. This yields an equal division of ei between i and p(i). The second axiom requires

that every tortfeasor i 6= 1 should be held responsible for at most the half of his additional
damage ei. Since agent 1 has no predecessor, he should be held responsible for at most his

full additional damage e1, which is equal to the total damage dN .

Axiom 2 (Individual upper bounds) A compensation scheme ' on L satis�es the

individual upper bounds if for every (N; T; d) 2 L and every i 2 N n f1g,

'i(N; T; d) �
1

2
ei:

In Example 3.6 the vector of additional damages is given by e = (e1; e2; e3; e4; e5) =

(130; 88; 40; 36; 42; 30), so the upper bounds for agents 2 to 6 are, respectively, 44; 20; 18; 21

and 15.
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The third and last axiom is a type of case system consistency. Given a compensation

scheme ', consider a liability problem (N; T; d) 2 L and a tortfeasor i 2 L(T ) (thus a

tortfeasor that does not have subordinates). Since such a tortfeasor can be held responsi-

ble for at most his own damage di, we may assume that he has to pay at most di. Now

consider the related liability problem (N n fig; T (N n fig); di), where di 2 IRN is the vector
of damages given by dip(i) = dp(i) + di � 'i(N; T; d) and d

i
k = dk for every k 6= p(i) in

N n fig. So, this is the liability problem obtained from (N; T; d) by removing leaf i and

by adding the remaining damage di � 'i(N; d; T ) not paid by i to the damage dp(i) caused
by his predecessor p(i). The consistency axiom requires that the outcome chosen by a

compensation scheme for every agent j 2 N n fig should be invariant under the departure
of a leaf i 2 L(T ) of the tree.

Axiom 3 (Leaf consistency) A compensation scheme ' on L satis�es leaf consistency
if for every (N; T; d) 2 L, every i 2 L(T ) and every j 2 N n fig

'j(N n fig; T (N n fig); di) = 'j(N; T; d):

In Example 3.6, leaf consistency, for example, implies that when agent 6 leaves and pays

its nucleolus contribution 14, and we consider the new damage vector where the damage

of agent 5 is d5 + d6 � 14 = 42 � 14 = 28 and the other damages do not change, and in
the structure we just leave agent 6, then the nucleolus payo¤s of the other agents do not

change.

5 Characterization of the Nucleolus compensation scheme

In this section, we show that there is a unique compensation scheme on the class L of
liability problems that satis�es the Axioms 1-3 and that this is the Nucleolus compensation

scheme as de�ned in De�nition 3.2. First, note that for an agent i 2 L(T ), ei = di, and thus

for i 2 L(T ), Axiom 2 requires that 'i(N; T; d) � 1
2
di. The next lemma states that when a

compensation scheme satis�es Axiom 3 and the individual upper bound requirement for all

leafs, then it also satis�es the individual upper bound requirement for all the other agents.

In fact, the condition for the leafs and Axiom 3 imply Axiom 2 (for all agents).

Lemma 5.1 Let ' on L be a compensation scheme that satis�es Axiom 3 and 'i(N; T; d) �
1
2
di for every i 2 L(T ). Then ' satis�es Axiom 2.

Proof. We prove that the upper bound holds for every other agent not being a leaf. Let j
be a player such that j 2 N n(f1g [ L(T )). Let d0 2 IRN such that d0i = di for i 2 N nF 0j (T )
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and d0j = ej �
P

k2FT (j) 'k(N; T; d) � ej. By subsequently applying Axiom 3 for all players

in FT (j), it follows that (N n FT (j); T (N n FT (j)); d0) 2 L and

'j(N; T; d) = 'j(N n FT (j); T (N n FT (j)); d0):

Since j is a leaf on the subtree (N n FT (j); T (N n FT (j)), it follows that

'j(N n FT (j); T (N n FT (j)); d0) �
1

2
d0j �

1

2
ej: 2

The next theorem states that the Nucleolus compensation scheme is the unique com-

pensation scheme that satis�es Axiom 1 and 3 and the individual upper bounds (of Axiom

2) for the leafs. It is the main step to reach our main theorem.

Theorem 5.2 Let ' on the class L of liability problems be a compensation scheme that
satis�es Axioms 1 and 3 and for every (N; T; d) 2 L the individual upper bound requirement
'i(N; T; d) � 1

2
ei for every i 2 L(T ). Then '(N; T; d) = Nuc(N; T; d).

Proof. We prove that for every liability problem, the Axioms 1 and 3 and the upper bound
requirements for the leafs determine the outcome computed by the Nucleolus algorithm.

To simplify notation, let x = '(N; T; d). Without loss of generality, it is assumed that 1 is

the root of the tree (N; T ). We subsequently consider liability problems with respectively

jN j = 2, jN j = 3 and jN j > 3.

Case 1, jN j = 2. Consider a liability problem (N; T; d) 2 L with jN j = 2. Then, by

Axiom 1 it follows that x2 � � 2(N; T; d) =
1
2
d2 and by the upper bound requirement that

x2 � 1
2
e2 =

1
2
d2. Hence x2 = 1

2
d2, and thus x1 = d1 +

1
2
d2. This is equal to the outcome

computed by the Nucleolus algorithm.

Case 2, jN j = 3. For a liability problem (N; T; d) 2 L with jN j = 3 there are two

possibilities: either (N; T ) is a line tree (one branch) or (N; T ) is a tree with two branches.

Case 2-1. First, we consider a line tree. Without loss of generality, we assume that
p(2) = 1 and p(3) = 2. Now either d3

2
� d2+d3

3
or not.

Case 2-1-1, d3
2
� d2+d3

3
. By Axiom 1 and the individual upper bound requirement

for leaf 3, it follows that x3 = d3
2
. Next, it follows by Axioms 1 and 3 and the uniform

lower bound for leaf 2 in the subtree after removing agent 3 that x2 = d2+d3�x3
2

, and �nally

x1 = dN � x2 � x3. So x is equal to the outcome computed by the Nucleolus algorithm.

Case 2-1-2, d3
2
> d2+d3

3
. By Axiom 1, we must have that xj � d2+d3

3
for j = 1; 2; 3.

The individual upper bound for leaf 3 requires that x3 = d3
2
� c for some c � 0, and thus

d3
2
� c � d2+d3

3
. This yields c � d3

6
� d2

3
. By Axioms 1 and 3 and the uniform lower bound

for leaf 2 in the subtree after removing agent 3, it follows that x2 = d2+d3�x3
2

, and thus
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x2 =
d2+d3�x3

2
� d2+d3

3
. Substituting x3 = d3

2
� c in this inequality gives c � d3

6
� d2

3
and

thus c = d3
6
� d2

3
. This implies that x2 = x3 =

d2+d3
3

and thus x1 = d1 +
d2+d3
3
. Again x is

equal to the outcome computed by the Nucleolus algorithm.

Case 2-2. When (N; T ) is a tree with two branches we have p(2) = p(3) = 1. Without

loss of generality, let d2 � d3. By Axiom 1 and the uniform lower bound for leaf 3 it follows

that x3 = d3
2
. By Axiom 3 and case jN j = 2, x2 = d2

2
and thus x1 = d1 +

d2
2
+ d3

2
. Also in

this case we have that x is equal to the outcome computed by the Nucleolus algorithm.

Case 3, jN j > 3. We now proceed with induction. Consider a liability problem (N; T; d)

with jN j = n > 3. For any liability problem (N 0; T 0; d0) 2 L with jN 0j < n we assume

that '(N 0; T 0; d0) = Nuc(N 0; T 0; d0). To show that then x = Nuc(N; T; d) we consider two

possibilities, namely player j with minimal � j(N; T; d) is either a leaf or not.

Case 3-1. There exists i 2 L(T ) such that � i(N; T; d) = di
2
= minj2Nnf1g � j(N; T; d).

Take this leaf i (if there are multiple, take an arbitrary one). By Axiom 1 and the individual

upper bound for leaf i it follows that xi = di
2
. This is also the outcome for i as computed by

the Nucleolus algorithm, and thus xi = Nuci(N; T; d). Set N 0 = N n fig and take d0 2 IRN 0

with d0j = dj for j 2 N 0 n fp(i)g and d0p(i) = dp(i) + di � xi = dp(i) + di �Nuci(N; T; d).

Consider the lower bound liability game (N; vL) corresponding to (N;L; d). Then the

lower bound liability game corresponding to (N 0; T (N 0); d0) is the game (N 0; v0L) where v
0
L

is given by setting for S � N 0,

v0L(S) =

(
vL(S [ fig)�Nuci(N; T; d) if p(i) 2 S;
vL(S) otherwise:

It can be shown that (N 0; v0L) is the Davis-Maschler reduced game of (N; vL) on N
0 with

respect to Nuc(N;L; d).11 By this observation and the fact that the nucleolus satis-

�es Davis-Maschler consistency12, it holds that for every j 2 N 0 that Nucj(N; T; d) =

Nucj(N
0; T (N 0); d0). Further, for every j 2 N 0, we have by the induction hypothesis

11For a game (N; v) 2 G, a vector x 2 IRN and non-empty subset N 0 of N , the Davis-Maschler reduced

game (Davis and Maschler, 1965) on N 0 with respect to (N; v) and x is the game (N 0; wx) 2 G de�ned by
setting for all S � N 0,

wx(S) =

8>>>>>><>>>>>>:

v(N)�
X

i2NnN 0

xi if S = N 0;

max
T�NnN 0

�
v(S [ T )�

X
i2T

xi
�
if S 6= N 0; ;;

0 if S = ;:

12A solution f on a subclass G0 of G satis�es Davis-Maschler consistency (Davis and Maschler, 1965)
if for all (N; v) 2 G0 and every non-empty N 0 � N it holds for x = f(N; v) that the DM reduced game

(N 0; wx) 2 G0 and xN 0 = f(N 0; wx), where xN 0 � (xi)i2N 0 .
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that 'j(N
0; T (N 0); d0) = Nucj(N

0; T (N 0); d0). Hence, for every j 2 N 0 it holds that

Nucj(N; T; d) = 'j(N
0; T (N 0); d0). With Axiom 3, it now follows that for every j 2 N 0,

xj = 'j(N
0; T (N 0); d0) = Nucj(N; T; d).

Case 3-2: For all i 2 L(T ), it holds that minj2Nnf1g � j(N; T; d) < � i(N; T; d) =
di
2
.

Let k be such that � k(N; T; d) = minj2Nnf1g � j(N; T; d) and take some i 2 L(T ) such that
i 2 F 0T (k), thus i is subordinate of k. Since i 6= k, we have that also p(i) 2 F 0T (k). From

the Nucleolus algorithm we obtain that

Nuci(N; T; d) = Nucp(i)(N; T; d) = � k(N; T; d): (5.2)

By Axiom 1, we have that xi � � k(N; T; d) = Nuci(N; T; d). Suppose that xi > Nuci(N; T; d).

Set N 0 = N nfig and take d0 2 IRN 0
with d0j = dj for j 2 N 0nfp(i)g and d0p(i) = dp(i)+di�xi.

By Axiom 3, we have that

xp(i) = 'p(i)(N
0; T (N 0); d0) (5.3)

and by the induction hypothesis,

'p(i)(N
0; T (N 0); d0) = Nucp(i)(N

0; T (N 0); d0): (5.4)

Take d00 2 IRN 0
with d00j = dj for j 2 N 0 n fp(i)g and d00p(i) = dp(i) + di � Nuci(N; T; d).

Since by assumption xi > Nuci(N; T; d), and thus d0p(i) < d00p(i), it follows from applying the

Nucleolus algorithm that

Nucp(i)(N
0; T (N 0); d0) < Nucp(i)(N

0; T (N 0); d00): (5.5)

By the fact that the lower bound liability game corresponding to (N 0; T (N 0); d00) is the

Davis-Maschler reduced game of (N; vL) on N 0 with respect to Nuc(N; T; d), it follows

with Davis-Maschler consistency that

Nucp(i)(N
0; T (N 0); d00) = Nucp(i)(N; T; d): (5.6)

From the (in)equalities (5.2)-(5.6) it follows that

xp(i) < Nucp(i)(N; T; d) = � k(N; T; d);

which contradicts Axiom 1. Therefore, for every i 2 L(T )\F 0T (k), xi = Nuci(N; T; d). For

every i 2 L(T )\F 0T (k), let N 0 = N nfig. Then it follows similar as above and from Axiom
3 that for every j 2 N 0, xj = Nucj(N; T; d). 2

Theorem 5.2 shows that if a compensation scheme satis�es Axioms 1 and 3 and the

individual upper bound for the leafs, then it must be the nucleolus. On the other hand, we
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argue that the Nucleolus compensation scheme satis�es the Axioms 1, 2 and 3. First, from

Lemma 3.7 and the algorithm it follows that the nucleolus compensation scheme satis�es

Axiom 1. From the proof of Theorem 5.2 it follows that then Nucleolus compensation

scheme satis�es Axiom 3 and the individual upper bound for the leafs. It then follows by

Lemma 5.1 that Axiom 2 is satis�ed. This yields our main result.

Main result
A compensation scheme ' on the class L of liability problems satis�es Axioms 1, 2 and 3
if and only if '(N; T; d) = Nuc(N; T; d).

The main result says that there is a unique compensation scheme supported by tort law

bounds on the compensations (Axioms 1 and 2) and a type of case-system consistency (Ax-

iom 3). This compensation scheme assigns to every liability problem the Rawlsian outcome

given by the nucleolus. Finally, we check logical independence of the three axioms.

� Let '1 be the compensation scheme that assigns to every (N; T; d) 2 L compensations
given by '1i (N; T; d) = minj2Nnf1g � j(N; T; d) for every i 6= 1 and '11(N; T; d) =

dN �
P

i6=1 '
1
i (N; T; d). Then '

1 satis�es Axioms 1 and 2, but not Axiom 3.

� Let '2 be the compensation scheme that assigns to every (N; T; d) 2 L compensations
given by '2i (N; T; d) = di, for every i 2 N . Then '2 satis�es Axioms 1 and 3, but

not Axiom 2.

� Let '3 be the compensation scheme given by '3(N; T; d) = Sh(N; vL) for every

(N; T; d) 2 L. Then '3 satis�es Axiom 2 and Axiom 3 (see Katsev, 2009), but

not Axiom 1.

6 Concluding remarks

In this paper we considered the Nucleolus compensation scheme as a compensation scheme

for liability problems, where causation of the cumulative injury results from multiple se-

quences of wrongful acts by di¤erent parties. It appears that the Nucleolus compensation

scheme of a liability problem can be simply computed by using an algorithm for the nu-

cleolus of a corresponding liability game. A very appealing property of the Nucleolus

compensation scheme is that with respect to the additional damages of the coalitions, the

smallest cost saving over all coalitions is made as large as possible, then the second smallest

is made as large as possible, then the third smallest, and so on.

We also characterized the nucleolus compensation scheme by three axioms: a uniform

lower bound, an individual upper bound and an axiom on case-system consistency. All these
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three axioms are derived from stylized facts concerning tort law. As noticed in Section 3,

the class of lower-bound liability games is equivalent to the class of peer-group games.

For this latter class Katsev (2009, chapter 6) provides a characterization of the Shapley

value, namely the Shapley value is the unique e¢ cient allocation rule on the class of peer-

group games that satis�es leaf consistency, the weak veto property, top monotonicity and

independence of non-subordinates.13 All these �ve axioms (including e¢ ciency) are logically

independent. The weak veto property states that player i pays at least the same as any

other player when dj = 0 for every j 6= i. Top monotonicity states that top player 1 pays at

least the same amount as any other player. Finally independendence of non-subordinates

states that if the damage of only one player i changes, then the compensations to be paid

by the subordinates of i do not change.

We are now ready to compare the Shapley compensation scheme and the nucleolus

compensation scheme by their sets of characterizing axioms. It is easy to verify that also the

Nucleolus compensation scheme satis�es the weak veto property and top monotonicity, but

not independence of non-subordinates. So, the Nucleolus compensation scheme satis�es

all above Shapley axioms, except the independence of non-subordinates. On the other

hand the Shapley compensation scheme satis�es leaf consistency and the individual upper

bound, but not the uniform lower bound. So, the two solutions have in common that

both satisfy leaf consistency, individual upper bound, the weak veto property and top

monotonicity. Then the Nucleolus compensation scheme satis�es uniform lower bound but

not independence of non-subordinates, whereas the Shapley compensation scheme satis�es

the latter but not the former. Although the two solutions di¤er in only one axiom, the

di¤erences in the actual outcome for a speci�c liability problem might be quite big. When i

is a leaf of the tree, then equation (3.1) shows that according to the Shapley compensation

scheme the damage di is equally shared by i and all its superiors. In particular, in a linear

tree with n tortfeasors the last one pays only a share 1
n
of its own damage di. On the

other hand, according to the Nucleolus compensation scheme the share of a leaf i in its

own damage di can be 1
2
and this indeed happens when di is relatively small compared to

the damages of its superiors. In fact, for a linear tree with n tortfeasors the uniform lower

bound implies that the damage dn of leaf n is shared equally amongst all tortfeasors when

dj = 0 for every superior j of leaf n, whereas together with the individual upper bound it

also implies that n pays half of its own damage when dn is small compared to the other

damages. So, while according to the Shapley compensation leaf n is always held responsible

for precisely share 1
n
of its own damage, according to the Nucleolus compensation scheme

13Also in Ferey and Dehez (2015) an axiomatization of the Shapley value on the class of (linear) lower-

bound liability games is given. In fact, in this axiomatization leaf consistency, the weak veto property and

top monotonicity are replaced by the single axiom of zero immediate damage, saying that a player i pays

the same as its predecessor p(i) if the damage of the predecessor is equal to zero.
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the responsibility of a leaf for its own damage is 1
2
when his damage is small, but it might

decrease to a share of only 1
n
(as in the Shapley compensation scheme) when his damage

is large compared to the damages of his superiors. In fact, we have seen in Section 3 that

both the Shapley compensation scheme and the nucleolus compensation scheme satisfy

weak monotonicity, saying that a tortfeasor never pays a higher compensation than his

predecessor.

Finally, we discuss what happens when the population of the tortfeasors is increasing.

Suppose that a new tortfeasor arrives at the end of a branch of the tree, so he is added as

new leaf to one of the leafs of the existing tree. One may wonder whether every original

tortfeasor pays in the new situation at least the same as in the original situation. If the

answer for this question is negative, then it might be that some of the original tortfeasors

have an incentive to increase the population of the tortfeasors, which leads to an increase of

the total damage. From this aspect, it is appropriate to require that a compensation scheme

satis�es leaf population monotonicity, stating that when a new tortfeasor arrives, in the

new situation every original tortfeasor pays at least the same as in the original situation.

If this property is satis�ed, then no original tortfeasor has an incentive to increase the

population of the tortfeasors.

From equation (3.1) it follows immediately that the Shapley value satis�es the leaf

population property. When a new tortfeasor arrives, then his (additional) damage is equally

shared amongst himself and his superiors with no e¤ect on how the other damages are

shared. So, the question is whether also the Nucleolus compensation scheme satis�es leaf

population monotonicity. This answer is a¢ rmative and follows from a result in Katsev

(2009, chapter 6), who shows that when d and d0 are such that d0i � di for every i 2 N , then
every tortfeasor should pay at d0 at least the same as at d. So, for a given tree with a �xed

set of tortfeasors, the compensations to be paid by the tortfeasors are non-decreasing in

the damages.14 Now, suppose a new tortfeasor is added. Then, according to the Nucleolus

compensation scheme this tortfeasor pays at most half of its damage and leaf consistency

says that the others have to pay according to the original situation, but with the damage of

the predecessor of the new leaf replaced by the sum of its own damage and the remaining

part of the damage of the new tortfeasor. So, the new situation reduces to the old situation,

but with higher damage for the predecessor of the new leaf. So, by the result of Katsev

it follows that every original tortfeasor pays at least the same as before. Hence also the

Nucleolus compensation scheme satis�es leaf population monotonicity.

14In the literature this is known as resource monotonicity, but here the resources are the damages.
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