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Abstract

We investigate high-frequency volatility models for analyzing intra-day tick by

tick stock price changes using Bayesian estimation procedures. Our key interest

is the extraction of intra-day volatility patterns from high-frequency integer price

changes. We account for the discrete nature of the data via two different approaches:

ordered probit models and discrete distributions. We allow for stochastic volatility

by modeling the variance as a stochastic function of time, with intra-day periodic

patterns. We consider distributions with heavy tails to address occurrences of jumps

in tick by tick discrete prices changes. In particular, we introduce a dynamic version

of the negative binomial difference model with stochastic volatility. For each model

we develop a Markov chain Monte Carlo estimation method that takes advantage of

auxiliary mixture representations to facilitate the numerical implementation. This

new modeling framework is illustrated by means of tick by tick data for several

stocks from the NYSE and for different periods. Different models are compared

with each other based on predictive likelihoods. We find evidence in favor of our

preferred dynamic negative binomial difference model.
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1 Introduction

High-frequency price changes observed at stock, futures and commodity markets can

typically not be regarded as continuous variables. In most electronic markets, the smallest

possible price difference is set by the regulator or the trading platform. Here we develop

and investigate dynamic models for high-frequency integer price changes that take the

discreteness of prices into account. We explore the dynamic properties of integer time

series observations. In particular, we are interested in the stochastic volatility dynamics

of price changes within intra-daily time intervals. This information can be used for the

timely identification of changes in volatility and to obtain more accurate estimates of

integrated volatility.

In the current literature on high-frequency returns, price discreteness is typically ne-

glected. However, the discreteness can have an impact on the distribution of price changes

and on its volatility; see, for example, Security and Exchange Commission Report (2012),

Chakravarty et al. (2004) and Ronen and Weaver (2001). Those assets that have prices

with a spread of almost always equal to one tick are defined as large tick assets; see, Eisler

et al. (2012). These large tick assets are especially affected by the discreteness through

the effect of different quoting strategies on these assets; see the discussions in Chordia

and Subrahmanyam (1995) and Cordella and Foucault (1999). Also the effect of liquidity

on large tick assets can be substantial as it is documented by O’Hara et al. (2014) and

Ye and Yao (2014). Many large tick assets exist on most US exchange markets as the

tick size is set to only one penny for stocks with a price greater than 1$ by the Security

and Exchange Commission in Rule 612 of the Regulation National Market System. Hence

almost all low price stocks are large tick assets. Moreover, many future contracts are not

decimalized for example, five-years U.S Treasury Note futures and EUR/USD futures fall

into this category (see Dayri and Rosenbaum (2013)).

The relevance of discreteness and its effect on the analysis of price changes have been

the motivation to develop models that account for integer prices. Similar to the case

of continuous returns, we are primarily interested in the extraction of volatility from

discrete price changes. We consider different dynamic model specifications for the high-

frequency integer price changes with a focus on the modeling and extraction of stochastic

volatility. We have encountered the studies of Müller and Czado (2006) and Stefanos

(2015) who propose ordered probit models with time-varying variance specifications. We

adopt their modeling approaches as a reference and also use their treatments of Bayesian

estimation. The main novelty of our study is the specification of a new model for tick

by tick price changes based on the discrete negative binomial distribution which we shall

refer to shortly as the ∆NB distribution. The properties of this distribution are explored

in detail in our study. In particular, the heavy tail properties are emphasized. In our

analysis, we adopt the ∆NB distribution conditional on a Gaussian latent state vector
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process which represent the components of the stochastic volatility process. The volatility

process accounts for the periodic pattern in high-frequency volatility due to intra-day

seasonal effects such as the opening, lunch and closing hours. Our Bayesian modeling

approach provides a flexible and unified framework to fit the observed tick by tick price

changes. The ∆NB properties closely mimic the empirical stylized properties of trade by

trade price changes. Hence we will argue that the ∆NB model with stochastic volatility

is an attractive alternative to models based on the Skellam distribution as suggested

earlier; see Koopman et al. (2014). We further decompose the unobserved log volatility

into intra-daily periodic and transient volatility components. We propose a Bayesian

estimation procedure using standard Gibbs sampling methods. Our procedure is based

on data augmentation and auxiliary mixtures; it extends the auxiliary mixture sampling

procedure proposed by Frühwirth-Schnatter and Wagner (2006) and Frühwirth-Schnatter

et al. (2009). The procedures are implemented in a computationally efficient manner.

In our empirical study we consider six stocks from the NYSE in a volatile week in

October 2008 and a calmer week in April 2010. We compare the in-sample and out-

of-sample fits of four different model specifications: ordered probit model based on the

normal and Student’s t distributions, the Skellam distribution and the ∆NB model. We

compare the models in terms of Bayesian information criterion and predictive likelihoods.

We find that the ∆NB model is favored for stocks with a relatively low tick size and in

periods of more volatility.

Our study is related to different strands in the econometrics literature. Modeling

discrete price changes with static Skellam and ∆NB distributions has been introduced by

Alzaid and Omair (2010) and Barndorff-Nielsen et al. (2012). The dynamic specification

of the Skellam distribution and its (non-Bayesian) statistical treatment have been explored

by Koopman et al. (2014). Furthermore, our study is related to Bayesian treatments of

stochastic volatility models for continuous returns; see, for example, Chib et al. (2002),

Kim et al. (1998), Omori et al. (2007) and, more recently, Stroud and Johannes (2014). We

extend this literature on trade by trade price changes by explicitly accounting for prices

discreteness and heavy tails of the tick by tick return distribution. These extensions

are explored in other contexts in Engle (2000), Czado and Haug (2010), Dahlhaus and

Neddermeyer (2014) and Rydberg and Shephard (2003).

The remainder is organized as follows. In Section 2 we review different dynamic model

specifications for high-frequency integer price changes. We give most attention to the

introduction of the dynamic ∆NB distribution. Section 3 develops a Bayesian estimation

procedure based on Gibbs sampling, mainly for the ∆NB case of which the Skellam

is a special case. In Section 4 we present the details of our empirical study including a

description of our dataset, the data cleaning procedure, the presentation of our estimation

results and a discussion of our overall empirical findings. Section 5 concludes.
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2 Dynamic models for discrete price changes

In this section we first review the modeling of integer valued variables using ordered

probit models based on normal and Student’s t distributions with stochastic volatility.

Next we introduce the dynamic negative binomial difference (∆NB) model with stochastic

volatility and discuss its features. The dynamic Skellam model is a special case of ∆NB.

2.1 Ordered normal stochastic volatility model

In econometrics, the ordered probit model is typically used for the modeling of ordinal

variables. But we can also adopt the ordered probit model in a natural way for the

modeling of discrete price changes. In this approach we effectively round a realization

from a continuous distribution to its nearest integer. The continuous distribution can be

subject to stochastic volatility; this extension is relatively straightforward. Let r∗t be the

continuous return which is rounded to rt = k when r∗t ∈ [k − 0.5, k + 0.5). We observe

rt and we regard r∗t as a latent variable. By neglecting the discreteness of rt during the

estimation procedure, we clearly would distort the measurement of the scaling or variation

of r∗t . Therefore we need to take account of the rounding of rt by specifying an ordered

probit model with rounding thresholds [k− 0.5, k + 0.5). We assume that the underlying

distribution for r∗t is subject to stochastic volatility. We obtain the following specification

rt = k, with probability Φ

(
k + 0.5

exp(ht/2)

)
− Φ

(
k − 0.5

exp(ht/2)

)
, for k ∈ Z, (1)

for t = 1, . . . , T , where ht is the logarithm of the time varying stochastic variance for

the standard normal distribution with cumulative density function Φ(·) for the latent

variable r∗t . Similar ordered probit specifications with stochastic volatility are introduced

by Müller and Czado (2006) and Stefanos (2015). The dynamic model specification for

ht is given by

ht = µh + xt, xt+1 = ϕxt + ηt, ηt ∼ N
(
0, σ2

η

)
, (2)

for t = 1, . . . , T , where µh is the unconditional mean of the log volatility of the continuous

returns, xt is a zero mean autoregressive process (AR) of order one, that is AR(1), with

ϕ as the persistence parameter for the log volatility process and σ2
η as the variance of

the Gaussian disturbance term ηt. The mean µh represents the daily log volatility and

the autoregressive process xt captures the changes in log volatility due to firm specific or

market information experienced during the day. The latent variable xt is specified as an

AR(1) process with zero mean; this restriction is enforced to allow for the identification

of µh.

The basic model specification (1) - (2) accounts for the discreteness of the prices via
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the ordered probit specification and for intra-day volatility clustering via the possibly

persistent dynamic process of xt. The model captures the salient empirical features of

high-frequency trade by trade price changes. Another stylized fact of intra-day price

changes is the seasonality pattern in the volatility process. In particular, the volatility at

the opening minutes of the trading day is high, during the lunch-hour it is lowest, and

at the closing minutes it is increasing somewhat. We can account for such an intra-day

volatility pattern by including a cubic spline in the log volatility specification, that is

ht = µh + st + xt, E(st) = 0, (3)

where st is a normalized spline function with its unconditional mean equal to zero. This

specification implies a decomposition of the variance of the continuous return distribution

r∗t into a deterministic daily seasonal pattern st and a stochastically time varying signal

xt. We use intradaily cubic spline function, constructed from K + 1 piecewise cubic

polynomials, to capture the daily seasonality. We adopt the representation of Poirier

(1973) where the periodic cubic spline st is based on K knots and the regression equation

st = wtβ (4)

where wt is a 1×K weight vector and β is a K×1 vector which contains values of the spline

function at the K knots. Further details about the spline and the Poirier representation

are presented in Appendix B. For alternative treatments of intra-daily seasonality, we

refer to Bos (2008), Stroud and Johannes (2014) and Weinberg et al. (2007).

The model can be modified and extended in several ways. First, we can account for the

market microstructure noise observed in tick by tick returns (see for example, Aı̈t-Sahalia

et al. (2011) and Griffin and Oomen (2008)) by including an autoregressive moving average

(ARMA) process in the specification of the mean of r∗t . In a similar way, we can facilitate

the incorporation of explanatory variables such as market imbalance which can also have

predictive power. Second, to include predetermined announcement effects, we can include

regression effects in the specification as proposed in Stroud and Johannes (2014). Third,

it is possible that the unconditional mean µh of the volatility of price changes is time

varying. For example, we may expect that for larger price stocks the volatility is higher

and therefore the volatility is not properly scaled when the price has changed. The time-

varying conditional mean of the volatility can be easily incorporated in the model, by

specifying a random walk dynamics for µh, which would allow for smooth changes in the

mean over time. For our current purposes below we can rely on the specification as given

by equation (3).
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2.2 Ordered t stochastic volatility model

It is well documented in the financial econometrics literature that asset prices are sub-

ject to jumps; see, for example, Aı̈t-Sahalia et al. (2012). However, the ordered normal

specification, as we have introduced it above, does not deliver sufficiently heavy tails

in its asset price distribution to accommodate the jumps that are typically observed in

high-frequency returns. To account for the jumps more appropriately, we can consider a

heavy tailed distribution instead of the normal distribution. In this way we can assign

probability mass to the infrequently large jumps in asset returns. An obvious choice for a

heavy tailed distribution is the Student’s t-distribution which would imply the following

specification,

rt = k, with probability T
(

k + 0.5

exp(ht/2)
, ν

)
− T

(
k − 0.5

exp(ht/2)
, ν

)
, for k ∈ Z, (5)

which effectively replaces model equation (1), where T (·, ν) is the cumulative density

function of the Student’s t-distribution with ν as the degrees of freedom parameter. The

model specification for ht is provided by equation (2) or (3).

The parameter vector of this model specification is denoted by ψ and includes the

degrees of freedom ν, the unconditional mean of log volatility µh, the volatility persistence

coefficient ϕ, the variance of the log volatility disturbance σ2
η, and the unknown vector

β in (4) with values of the spline at its knot positions. In case of the normal ordered

probit specification, we can rely on the same parameters but without ν. The estimation

procedure for these unknown parameters in the ordered probit model specifications are

carried out by standard Baysian simulation methods for which the details are provided in

Appendix C.

2.3 Dynamic ∆NB model

Positive integer variables can alternatively be modeled directly via discrete distributions

such as the Poisson or the negative binomial, see Johnson et al. (2005). These well-

known distributions only provide support to positive integers. When modeling price

differences, we also need to allow for negative integers. For example, in this case, the

Skellam distribution can be considered, see Skellam (1946). The specification of these

distributions can be extended to stochastic volatility model straightforwardly. However,

the analysis and estimation based on such models are more intricate. In this context,

Alzaid and Omair (2010) advocates the use of the Skellam distribution based on the

difference of two Poisson random variables. Barndorff-Nielsen et al. (2012) introduces

the negative binomial difference (∆NB) distribution which have fatter tails compared to

the Skellam distribution. Next we review the ∆NB distribution and its properties. We
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further introduce a dynamic version of the ∆NB model from which the dynamic Skellam

model is a special case.

The ∆NB distribution is implied by the construction of the difference of two negative

binomial random variables which we denote by NB+ and NB− where the variables have

number of failures λ+ and λ−, respectively, and failure rates ν+ and ν−, respectively. We

denote the ∆NB variable as the random variable R and is simply defined as

R = NB+ −NB−. (6)

We then assume that R is distributed as

R ∼ ∆NB(λ+, ν+, λ−, ν−), (7)

where ∆NB is the difference negative binomial distribution with probability mass function

given by

f∆NB(r;λ+, ν+, λ−, ν−) = m×

d
+ × F

(
ν+ + r, ν−, r + 1; λ̃+λ̃−

)
, if r ≥ 0,

d− × F
(
ν+, ν− − r,−r + 1; λ̃+λ̃−

)
, if r < 0,

where m = (ν̃+)
ν+

(ν̃−)
ν−

, d[s] = (λ̃[s])r(ν [s])r / r!,

ν̃ [s] =
ν [s]

λ[s] + ν [s]
, λ̃[s] =

λ[s]

λ[s] + ν [s]
,

for [s] = +,−, and with the hypergeometric function

F (a, b, c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where (x)n is the Pochhammer symbol of falling factorial and is defined as

(x)n = x(x− 1)(x− 2) · · · (x− n+ 1) =
Γ(x+ 1)

Γ(x− n+ 1)
. (8)

More details about the ∆NB distribution, its probability mass function and properties

are provided by Barndorff-Nielsen et al. (2012). For example, the ∆NB distribution has

the following first and second moments

E(R) = λ+ − λ−, Var(R) = λ+

(
1 +

λ+

ν+

)
+ λ−

(
1 +

λ−

ν−

)
. (9)

The variables ν+, ν−, λ+ and λ− are treated typically as unknown coefficients.

An important special case is the zero mean ∆NB distribution which is obtained when
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λ = λ+ = λ− and ν = ν+ = ν−. The probability mass function for the corresponding

random variable R is given by

f0(r;λ, ν) =

(
ν

λ+ ν

)2ν (
λ

λ+ ν

)|r|
Γ(ν + |r|)

Γ(ν)Γ(|r|+ 1)
F

(
ν + |r|, ν, |r|+ 1;

(
λ

λ+ ν

)2
)
.

In this case we have obtained a zero mean random variable R with its variance given by

Var(R) = 2λ

(
1 +

λ

ν

)
. (10)

We denote the distribution for the zero mean random variable R by ∆NB(λ, ν). This

random variable R can alternatively be considered as being generated from a compound

Poisson process, that is

R =
N∑
i=1

Mi, (11)

where random variable N is generated by the Poisson distribution with intensity

λ × (z1 + z2), z1, z2 ∼ Ga(ν, ν) (12)

with Ga(ν, ν) being the Gamma distibution, having its shape and scale both equal to ν,

and where indicator variable Mi is generated as

Mi =

1, with probability P (Mi = 1) = z1 / (z1 + z2),

−1, with probability P (Mi = −1) = z2 / (z1 + z2).
(13)

We will use this representation of a zero mean ∆NB variable for developments below.

In the empirical analyses of this study, we adopt the zero inflated versions of the ∆NB

distributions, because empirically we observe a clear overrepresentation of trade by trade

price changes that are equal to zero. The number of these zero price changes are especially

high for the more liquid stocks. This is due to the available volumes on best bid and ask

prices which are relatively much higher. Hence the price impact of one trade is much

lower as a result. The zero inflated version is accomplished by the specification of the

random variable R0 as

r0 =

r, with probability (1− γ)f∆NB(r;λ+, ν+, λ−, ν−),

0, with probability γ + (1− γ)f∆NB(0;λ+, ν+, λ−, ν−),

where f∆NB(r;λ+, ν+, λ−, ν−) is the probability mass function for r and 0 < γ < 1 is

treated as a fixed and unknown coefficient. We denote the zero inflated ∆NB probability

mass function with f0.
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The dynamic specifications of the ∆NB distributions can be obtained by letting the

variables ν [s] and/or λ[s] be time-varying random variables, for [s] = +,−. We opt to

have a time-varying λ[s] since it is more natural for an intensity than a degrees of freedom

parameter to vary over time. We restrict our analysis to the zero inflated zero mean

∆NB distribution f0(rt;λt, ν) which means we use zero inflation and we assume that the

degree of freedom parameters for positive and negative price changes are the same and

λt = λ+
t = λ−t . Taking the above considerations into account, the dynamic ∆NB model

can be specified as above but with

λt = exp(ht),

where ht is specified as in equation (2) or (3). Hence this dynamic specification is similar

to the one described in Section 2.1 for the ordered normal specification.

2.4 Dynamic Skellam model

The dynamic ∆NB model embeds the dynamic Skellam model as considered by Koopman

et al. (2014). It is obtained as the limiting case of letting ν go to infinity, that is ν →∞;

for a derivation and further details, see Appendix A.

3 Bayesian estimation procedures

Bayesian estimation procedures for the ordered normal and ordered Student’s t stochastic

volatility models are discussed by Müller and Czado (2006) and Stefanos (2015); their

procedures, with some details, are presented in Appendix C.

Here we develop a Bayesian estimation procedure for observations yt, with t = 1, . . . , T ,

coming from the dynamic ∆NB model. We provide the details of the procedure and discuss

its computational implementation. Our reference dynamic ∆NB model is given by

yt ∼ f0(yt;λt, ν), λt = exp ht, (14)

ht = µh + st + xt, st = wtβ, xt+1 = ϕxt + ηt,

where ηt ∼ N
(
0, σ2

η

)
, for t = 1, . . . , T . The details of the model are discussed in Section

2. The variable parameters ν, µh, β, ϕ and σ2
η are static while xt is a latent variable

that is modeled as a stationary autoregressive process. The intra-day seasonal effect st is

represented by a Poirier spline; see Appendix B.

Our proposed Bayesian estimation procedure aims to estimate all static variables

jointly with the time-varying signal h1, . . . , hT for the dynamic ∆NB model. It is based

on Gibbs sampling, data augmentation and auxiliary mixture sampling methods which
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are developed by Frühwirth-Schnatter and Wagner (2006) and Frühwirth-Schnatter et al.

(2009). At each time point t, for t = 1, . . . , T , we introduce a set of latent auxiliary

variables to facilitate the derivation of conditional distributions. By introducing these

auxiliary variables we are able to specify the model as a linear state space model with

non-Gaussian observation disturbances. Moreover using an auxiliary mixture sampling

procedure, we can even obtain conditionally an approximating linear Gaussian state space

model. In such a setting, we can exploit highly efficient Kalman filtering and smoothing

procedures for the sampling of many full paths for the dynamic latent variables. These

ingredients are key for a computational feasible implementation of our estimation process.

3.1 Data augmentation: our latent auxiliary variables

We use the following auxiliary variables for the data augmentation. We define Nt as the

sum of NB+ and NB−, the gamma mixing variables zt1 and zt2. Moreover conditional

on zt1 , zt2 and the intensity λt, we can interpret Nt as a Poisson process on [0, 1] with

intensity (zt1 + zt2)λt based on the result in equation (12). We can introduce the latent

arrival time of the Nt-th jump of the Poisson process τt2 and the arrival time between the

Nt-th and Nt + 1-th jump of the process τt1 for every t = 1, . . . , T . The interarrival time

τt1 can be assumed to come from an exponential distribution with intensity (zt1 + zt2)λt

while the Ntth arrival time can be treated as the gamma distributed variable with density

function Ga(Nt, (zt1 + zt2)λt). We have

τt1 =
ξt1

(zt1 + zt2)λt
, ξt1 ∼ Exp(1) (15)

τt2 =
ξt2

(zt1 + zt2)λt
, ξt2 ∼ Ga(Nt, 1), (16)

where we can treat ξt1 and ξt2 as auxiliary variables. By taking the logarithm of the

equations and substituting the definition of log λt from equation (3), we can rewrite the

above equations as

− log τt1 = log(zt1 + zt2) + µh + st + xt + ξ∗t1, ξ∗t1 = − log ξt1 (17)

− log τt2 = log(zt1 + zt2) + µh + st + xt + ξ∗t2, ξ∗t2 = − log ξt2. (18)

These equations are linear in the state vector, which would facilitate the use of Kalman

filtering. However, the error terms ξ∗t1 and ξ∗t2 are non-normal. We can adopt solutions as in

Frühwirth-Schnatter and Wagner (2006) and Frühwirth-Schnatter et al. (2009) where the

gamma and exponential distributions are approximated by normal mixture distributions.
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In particular, we can specify the approximations as

fξ∗(x;Nt) ≈
C(Nt)∑
i=1

ωi(Nt)φ (x,mi(Nt), vi(Nt)) , (19)

where C(Nt) is the number of mixture components at time t, for t = 1, . . . , T , ωi(Nt) is

the weight, and φ(x,m, v) is the normal density for variable x with mean m and variance

v. These approximations remain to depend on Nt because the log gamma distribution is

not canonical and it has different shapes for different values of Nt.

3.2 Mixture indicators for obtaining conditional linear model

Conditional on N ,z1, z2,τ1 ,τ2 and C = {ctj, t = 1, . . . , T, j = 1, . . . ,min(Nt + 1, 2)} we

can write the following state space form

ỹt︸︷︷︸
min(Nt+1,2)×1

=

[
1 wt 1

1 wt 1

]
︸ ︷︷ ︸

min(Nt+1,2)×(K+2)

 µh

β

xt


︸ ︷︷ ︸
(K+2)×1

+ εt︸︷︷︸
min(Nt+1,2)×1

, εt ∼ N (0,Ht) (20)

αt+1 =

 µh

β

xt+1


︸ ︷︷ ︸

(K+2)×1

=

 1 0 0

0 IK 0

0 0 ϕ


︸ ︷︷ ︸

(K+2)×(K+2)

 µh

β

xt


︸ ︷︷ ︸
(K+2)×1

+

 0

0

ηt+1


︸ ︷︷ ︸

(K+2)×1

, ηt+1 ∼ N (0, σ2
η)(21)

(22)

where  µh

β

x1


︸ ︷︷ ︸
(K+2)×1

∼ N


 µ0

β0

0


︸ ︷︷ ︸
(K+2)×1

,

 σ2
µ 0 0

0 σ2
βIK 0

0 0 σ2
η/(1− ϕ2)


︸ ︷︷ ︸

(K+2)×(K+2)

 (23)

Ht = diag(v2
ct1

(1), v2
ct,2

(Nt)) and

ỹt︸︷︷︸
min(Nt+1,2)×1

=

(
− log τt1 −mct1(1)− log(zt1 + zt2)

− log τt2 −mct2(Nt)− log(zt1 + zt2)

)
(24)

Using the mixture of normal approximation of ξ∗t1 and ξ∗t2, allows us to build an efficient

Gibbs sampling procedure where we can sample the latent state paths in one block,

efficiently using Kalman filtering and smoothing techniques.
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3.3 The sampling of event times Nt

The remaining challenge is the sampling of Nt as all the other full conditionals are stan-

dard. We notice that conditional on zt1 , zt2 and the intensity λt, the Nt’s are independent

over time. We have

p(N |γ, ν, µh, ϕ, σ2
η, s, x, z1, z2, y) =

T∏
t=1

p(Nt|γ, λt, zt1, zt2, yt), (25)

where the t element vectors (v1, . . . , vt) containing time dependent variables for all time

time periods, are denoted by v, the variable without a subscript. For a given time index

t, we can draw Nt from a discrete distribution with

p(Nt|γ, λt, zt1, zt2, yt) =
p(Nt, yt|γ, λt, zt1, zt2)

p(yt|γ, λt, zt1, zt2)

=
p(yt|Nt, γ, λt, zt1, zt2)p(Nt|γ, λt, zt1, zt2)

p(yt|γ, λt, zt1, zt2)

=
[
γ1{yt=0} + (1− γ)p (yt|Nt, λt, zt1, zt2)

]
× p(Nt|γ, λt, zt1, zt2)

p(yt|γ, λt, zt1, zt2)
(26)

The denominator in equation (26) is a Skellam distribution with intensity λtzt1 andλtzt2.

We can calculate probability

p (yt|Nt, λt, zt1, zt2) (27)

using the results from equation (12) condition on λt, zt1 and zt2, yt is distributed as a

marked Poisson process with marks given by

Mi =

1, with P (Mi = 1) = zt1
zt1+zt2

−1, with P (Mi = −1) = zt2
zt1+zt2

, (28)

which implies that we can represent yt as
Nt∑
i=0

Mi.

p (yt|Nt, λt, zt1, zt2) =


0 , if yt > Nt or |yt| mod 2 6= |Nt| mod 2(

Nt
Nt+yt

2

)(
zt1

zt1 + zt2

)Nt+yt
2
(

zt2
zt1 + zt2

)Nt−yt
2

, otherwise

(29)

Conditional on zt1 , zt2 and λt, Nt is a realization of a Poisson process on [0, 1] with

intensity (zt1+zt2)λt, hence the probability p(Nt|γ, λt, zt1, zt2) is a Poisson random variable

with intensity equal to λt(zt1 +zt2). We can draw Nt parallel over t = 1, . . . , T by drawing

12



a uniform random variable ut ∼ U [0, 1] and

Nt = min

{
n : ut ≤

n∑
i=0

p(i|γ, λt, zt1, zt2, yt)

}
(30)

3.4 Markov chain Monte Carlo algorithm

The complete MCMC algorithm is outlined below. Various details of the MCMC steps are

presented in Appendix D. In an algorithmic style, the MCMC steps are given as follows.

1. Initialize µh, ϕ, σ2
η, γ, ν, C , τ , N , z1, z2, s and x

2. Generate ϕ, σ2
η, µh, s and x from p(ϕ, σ2

η, µh, s, x|γ, ν, C, τ,N, z1, z2, s, y)

(a) Draw ϕ, σ2
η from p(ϕ, σ2

η|γ, ν, C, τ,N, z1, z2, s, y)

(b) Draw µh, s and x from p(µh, s, x|ϕ, σ2
η, γ, ν, C, τ,N, z1, z2, s, y)

3. Generate γ from p(γ|ν, µh, ϕ, σ2
η, x, C, τ,N, z1, z2, s, y)

4. Generate C, τ,N, z1, z2, ν from p(C, τ,N, z1, z2, ν|γ, µh, ϕ, σ2
η, x, s, y)

(a) Draw ν from p(ν|γ, µh, ϕ, σ2
η, x, s, y)

(b) Draw z1, z2 from p(z1, z2|ν, γ, µh, ϕ, σ2
η, x, s, y)

(c) Draw N from p(N |z1, z2, ν, γ, µh, ϕ, σ
2
η, x, s, y)

(d) Draw τ from p(τ |N, z1, z2, ν, γ, µh, ϕ, σ
2
η, x, s, y)

(e) Draw C from p(C|τ,N, z1, z2, ν, γ, µh, ϕ, σ
2
η, x, s, y)

5. Go to 2

To validate our estimation procedure for the dynamic Skellam and ∆NB models we

simulate 20, 000 observation and apply our MCMC procedure with 100, 000 replications,

in a single experiment. Our true parameters are chosen as µ = −1.7, ϕ = 0.97, ση =

0.02, γ = 0.001 and ν = 15 which are close to those estimated from real data in our

empirical study of Section 4. In Table 1 we summarize the results of our estimates

and their corresponding highest posterior density (HPD) regions. The results indicate

that in our stylized setting, the algorithm can estimate the parameters accurately since

the true parameters are within the HPD regions based on the estimates. The posterior

distributions of the parameters for the ∆NB model are presented in Figure 1; those for

the dynamic Skellam model are presented in Appendix D. The most atypical posterior

distributions are displayed for the autoregressive coefficient ϕ and for the state variance

σ2
η. Hence we may conclude that these parameters are the most challenging to estimate.
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Table 1: Estimation results from a dynamic Skellam and ∆NB model based on 20, 000 observations and 100, 000 iterations
from which 20, 000 used as a burn in sample.The 95 % HPD regions are in brackets.

True Skellam ∆NB True Skellam ∆NB

µ -1.7 -1.72 -1.726 β1 1.13 1.139 1.128
[-1.797,-1.642] [-1.804,-1.651] [0.884,1.392] [0.875,1.38]

ϕ 0.97 0.973 0.975 β2 -0.29 -0.306 -0.297
[0.965,0.979] [0.969,0.981] [-0.453,-0.158] [-0.448,-0.151]

σ2 0.02 0.018 0.015 β3 -0.80 -0.801 -0.793
[0.013,0.023] [0.011,0.02] [-0.943,-0.657] [-0.933,-0.65]

γ 0.001 0.005 0.003 β4 0.09 0.091 0.099
[0,0.017] [0,0.01] [-0.052,0.23] [-0.04,0.24]

ν 15 12.191
[8,16.4]
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Figure 1: Posterior distributions of the parameters from a dynamic ∆ NB model based on 20000 observations and 100000
iterations from which 20000 used as a burn in sample. Each picture shows the histogram of the posterior draws the kernel
density estimate of the posterior distribution, the HPD region and the posterior mean. The true parameters are µ = −1.7,
ϕ = 0.97 , ση = 0.02, γ = 0.001 and ν = 15.
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4 Empirical study

In this section we present and discuss the empirical findings from our analyses concerning

tick by tick price changes for six different stocks traded at the NYSE, for two different

periods. We consider two model classes and two models for each class. The first set

consists of the ordered probit models with normal and Student’s t stochastic volatility.

The second set includes the dynamic Skellam and dynamic ∆NB models. The analyses

include in-sample and out-of-sample marginal likelihood comparison of the models. Our

aims of the empirical study is twofold. First, the usefulness of the ∆NB model on a

challenging dataset is investigated. In particular, we validate our estimation procedure

and reveal possible shortcomings in the estimation of the parameters in the ∆NB model.

Second, we intend to find out what the differences are when the considered models are

based on heavy-tailed distributions (ordered t and ∆NB models) or not (ordered normal

and dynamic Skellam models). Also, we compare the different model classes: ordered

model versus integer distribution model.

4.1 Data

We have access to the Thomson Reuters Sirca dataset that contains all trades and quotes

with millisecond time stamps for all stocks listed at NYSE. We have collected the data

for Alcoa (AA), Coca-Cola (KO), International Business Machines (IBM), J.P. Morgan

(JPM), Ford (F) and Xerox (XRX). These stocks differ in liquidity and in price magnitude.

In our study we concentrate on two weeks of price changes: the first week of October

2008 and the last week of April 2010. These weeks exhibit different market sentiments

and volatility characteristics. The month of October 2008 is in the middle of the 2008

financial crises with record high volatilities and some markets experienced their worst

weeks in October 2008 since 1929. The month of April 2010 is a much calmer month with

low volatilities.

The cleaning process of the data consists of a number of filtering steps that are similar

to the procedures described in Boudt et al. (2012), Barndorff-Nielsen et al. (2008) and

Brownlees and Gallo (2006). First, we remove the quotes-only entries which is a large

portion of the data. By excluding the quotes we lose around 70− 90% of the data. In the

next step, we delete the trades with missing or zero prices or volumes. We also restrict

our analysis to the trading period. The fourth step is to aggregate the trades which have

the same time stamp. We take the trades with the last sequence number when there are

multiple trades at the same millisecond. We regard the last price as the price that we can

observe with a millisecond resolution. Finally, we treat outliers by following the rules as

suggested by Barndorff-Nielsen et al. (2008). We delete trades with prices smaller then

the bid-price minus the bid-ask spread and higher than the ask-price plus the bid-ask
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spread. Tables 2 and 3 present the descriptive statistics for our resulting data from the

3rd to 10th October 2008 and from the 23rd to 30th April 2010, respectively. A more

detailed account of the cleaning process can be found in Tables 10 and 11 in Appendix E.

We treat the periods from the 3rd to 9th October 2008 and from the 23rd to 29th April

2010 as the in-sample periods. The two out-of-sample periods are 10 October 2008 and

30 April 2010.

Table 2: Descriptive statistics of the data from 3rd to 10th October 2008. Column In displays the statistics on the
in-sample period from 3rd to 9th October 2008, while the column Out shows the descriptives for the out-of-sample period
10th October. We show the number of observations (Num.obs), average price (Avg. price), mean price change (Mean),
standard deviation of price changes (Std), minimum and max integer price changes (Min,Max) and the percentage of zeros
in the sample (% Zeros).

AA F IBM

In Out In Out In Out

Num. obs 64 807 14 385 32 756 14 313 68 002 20 800
Avg. price 16.75 11.574 3.077 2.112 96.796 87.583
Mean -0.007 -0.004 -0.007 0 -0.02 -0.004
Std 1.63 2.126 0.745 0.601 6.831 7.09
Min -33 -51 -18 -10 - 197 - 105
Max 38 39 21 9 186 140
% Zeros 48.76 48.76 77.08 77.08 39.9 39.9

JPM KO XRX

In Out In Out In Out

Num. obs 142 867 43 230 70 356 25 036 26 020 8 623
Avg. price 42.773 38.889 49.203 41.875 9.049 7.768
Mean -0.009 0.012 -0.012 0.005 -0.006 0.004
Std 2.368 2.779 1.758 2.734 0.816 1.285
Min -48 -40 -33 -50 -17 -17
Max 74 55 30 63 19 12
% Zeros 43.78 43.78 34.39 34.39 54.98 54.98

4.2 Estimation results

We start our analyses with the dynamic Skellam and ∆NB models for all considered stocks

in the periods from 3rd to 9th October 2008 and from 23rd to 29th April 2010. In this

study, after some initial experimentation, we use the following prior distributions

µh ∼ N (0, 1), βi ∼ N (0, 1),
ϕ+ 1

2
∼ B(20, 1.5),

σ2
η ∼ IG(2.5, 0.025), γ ∼ B(1.7, 10), ν ∼ DU(2, 128),

for i = 1, . . . , K, where N is the normal, B is the beta, IG is the inverse gamma, and DU
is the discrete uniform distribution. In the MCMC procedure, we draw 100, 000 samples
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Table 3: Descriptive statistics of the data from 23rd to 30th April 2010. Column In displays the statistics on the in-sample
period from 23rd to 29th October 2008, while the column Out shows the descriptives for the out-of-sample period 30th
October. We show the number of observations (Num.obs), average price (Avg. price), mean price change (Mean), standard
deviation of price change (Std), minimum and max integer price change (Min,Max) and the percentage of zeros in the
sample (% Zeros).

AA F IBM

In Out In Out In Out

Num. obs 27 550 4 883 63 241 9 894 43 606 8 587
Avg. price 13.749 13.519 13.734 13.231 130.176 129.575
Mean -0.001 -0.006 -0.001 -0.006 0.001 -0.019
Std 0.468 0.502 0.448 0.454 1.424 1.371
Min -3 -2 -5 -2 -22 -15
Max 3 2 4 3 24 9
% Zeros 75.02 75.02 79.73 79.73 51.93 51.93

JPM KO XRX

In Out In Out In Out

Num. obs 101 045 21 443 34 469 6 073 36 332 4 326
Avg. price 43.702 42.854 53.628 53.732 11.164 11.025
Mean -0.001 -0.007 -0.003 -0.006 0 -0.007
Std 0.615 0.638 0.647 0.696 0.494 0.459
Min -5 -10 -9 -5 -9 -2
Max 5 5 7 5 7 3
% Zeros 68.73 68.73 65.09 65.09 79.29 79.29

from the Markov chain and disregard the first 20, 000 draws as burn-in samples. The

results of parameter estimation for the 2008 and 2010 data periods are reported in Tables

4, 5, 6 and Tables 7, 8, 9 respectively.

The unconditional mean volatility differ across stocks and time periods. The uncon-

ditional mean of the latent state is higher for stocks with higher price and it is higher

in the more volatile periods in 2008. These results are consistent with intuition but we

should not take strong conclusions from these findings. For example, we cannot compare

the means between models as they have somewhat different meanings in different model

specifications. The estimated AR(1) coefficients for the different series range from 0.88

to 0.99. This finding suggests persistent dynamic volatility behaviour within a trading

day, even after accounting for the intra-day seasonal pattern in volatility. However, by

comparing the two different periods, we find that the transient volatility is less persistent

in the more volatile crises period. We only included the zero inflation specification for the

∆NB and dynamic Skellam distributions when additional flexibility appears to be needed

in the observation density. This flexibility has been required for higher price stocks and

during the more volatile periods. In case of the April 2010 period we used the zero in-

flation only for IBM, while in the October 2008 period we included the zero inflation for

all stocks expect for the two lowest price stocks F and XRX. The estimates for the zero
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Table 4: Estimation results from a dynamic Skellam and ∆ NB model for Alcoa (AA) and Ford (F)
during the period from 3rd to 9th October 2008. The posterior mean estimates are based on 100,000
iterations (20,000 used as burn-in). The 95 % HPD regions are in brackets. MaxIneff and minESS are
maximum inefficiency among parameters and minimum effective sample size, respectively.

AA F

Skellam Ord Norm ∆NB Ord t Skellam Ord Norm ∆NB Ord t

µ -0.179 0.403 -0.264 0.394 -1.874 -1.561 -1.864 -1.53
[-0.238,-0.12] [0.339,0.466] [-0.323,-0.204] [0.321,0.467] [-1.944,-1.803] [-1.619,-1.501] [-1.935,-1.792] [-1.587,-1.473]

φ 0.927 0.914 0.941 0.941 0.938 0.881 0.945 0.892
[0.921,0.934] [0.906,0.922] [0.933,0.947] [0.933,0.951] [0.929,0.949] [0.869,0.895] [0.936,0.954] [0.88,0.905]

σ2 0.211 0.32 0.126 0.188 0.114 0.286 0.093 0.231
[0.194,0.23] [0.287,0.353] [0.109,0.148] [0.157,0.226] [0.096,0.136] [0.252,0.323] [0.077,0.107] [0.203,0.259]

γ 0.247 0.277 0.243 0.287
[0.238,0.255] [0.268,0.284] [0.233,0.252] [0.279,0.295]

β1 0.434 0.454 0.372 0.47 0.296 0.303 0.289 0.296
[0.327,0.543] [0.342,0.569] [0.272,0.477] [0.343,0.596] [0.158,0.436] [0.187,0.418] [0.151,0.432] [0.182,0.41]

β2 -0.184 -0.2 -0.151 -0.217 -0.116 -0.12 -0.114 -0.119
[-0.272,-0.097] [-0.292,-0.109] [-0.236,-0.07] [-0.32,-0.116] [-0.221,-0.008] [-0.209,-0.033] [-0.223,-0.005] [-0.204,-0.03]

ν 8.684 16.828 14.389 98.252
[6.4,11.2] [10.8,24.2] [10.4,18.2] [60.4, 128]

maxIneff 2 820.98 1 175.6 8 166.65 9 218.06 1 756.28 221.98 1 022.51 362.84
minESS 28.36 68.05 9.8 8.68 45.55 360.39 78.24 220.49

Table 5: Estimation results from a dynamic Skellam and ∆ NB model for International Business Machines
(IBM) and JP Morgan (JPM) during the period from 3rd to 9th October 2008. The posterior mean
estimates are based on 100,000 iterations (20,000 used as burn-in). The 95 % HPD regions are in
brackets. MaxIneff and minESS are maximum inefficiency among parameters and minimum effective
sample size, respectively.

IBM JPM

Skellam Ord Norm ∆NB Ord t Skellam Ord Norm ∆NB Ord t

µ 1.939 2.708 1.252 2.73 0.236 0.913 0.233 0.952
[1.865,2.013] [2.633,2.783] [1.203,1.299] [2.657,2.806] [0.191,0.28] [0.866,0.961] [0.191,0.277] [0.906,0.999]

φ 0.882 0.894 0.936 0.898 0.898 0.903 0.904 0.908
[0.874,0.891] [0.888,0.901] [0.931,0.941] [0.892,0.905] [0.895,0.903] [0.898,0.907] [0.9,0.91] [0.903,0.912]

σ2 0.84 0.767 0.12 0.698 0.449 0.496 0.386 0.437
[0.757,0.915] [0.71,0.821] [0.108,0.131] [0.649,0.749] [0.424,0.474] [0.466,0.521] [0.356,0.404] [0.409,0.462]

γ 0.279 0.295 0.3 0.299 0.198 0.233 0.204 0.241
[0.274,0.286] [0.29,0.301] [0.295,0.305] [0.294,0.304] [0.191,0.204] [0.228,0.239] [0.198,0.21] [0.236,0.247]

β1 0.283 0.307 0.208 0.318 0.357 0.382 0.343 0.379
[0.161,0.414] [0.171,0.441] [0.121,0.297] [0.183,0.45] [0.284,0.432] [0.303,0.463] [0.271,0.414] [0.299,0.459]

β2 0.075 0.069 0.02 0.056 0.011 0.023 0.015 0.019
[-0.035,0.183] [-0.045,0.186] [-0.055,0.097] [-0.06,0.171] [-0.056,0.076] [-0.052,0.094] [-0.049,0.081] [-0.053,0.091]

ν 2 82.281 88.472 124.04
[2,2] [44.9, 127.5] [76.4,98.8] [ 116.5, 128]

maxIneff 16 517.03 953.63 2 661.61 2 571.53 6 351.47 2 862.84 12 600.8 6 550.42
minESS 4.84 83.89 30.06 31.11 12.6 27.94 6.35 12.21
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Table 6: Estimation results from a dynamic Skellam and ∆ NB model for Coca-Cola (KO) and Xerox
(XRX) during the period from 3rd to 9th October 2008. The posterior mean estimates are based on
100,000 iterations (20,000 used as burn-in). The 95 % HPD regions are in brackets. MaxIneff and
minESS are maximum inefficiency among parameters and minimum effective sample size, respectively.

KO XRX

Skellam Ord Norm ∆NB Ord t Skellam Ord Norm ∆NB Ord t

µ 0.182 0.864 0.146 0.861 -1.42 -1.155 -1.419 -1.332
[0.141,0.224] [0.82,0.908] [0.106,0.189] [0.816,0.906] [-1.474,-1.364] [-1.202,-1.107] [-1.474,-1.364] [-1.405,-1.26]

φ 0.938 0.94 0.942 0.943 0.925 0.749 0.94 0.96
[0.932,0.944] [0.934,0.945] [0.937,0.948] [0.938,0.949] [0.909,0.94] [0.718,0.779] [0.928,0.952] [0.949,0.97]

σ2 0.081 0.087 0.068 0.079 0.073 0.503 0.049 0.036
[0.072,0.09] [0.077,0.098] [0.06,0.076] [0.068,0.089] [0.056,0.091] [0.44,0.574] [0.036,0.061] [0.025,0.048]

γ 0.104 0.144 0.102 0.145
[0.097,0.11] [0.139,0.15] [0.095,0.109] [0.14,0.152]

β1 0.569 0.611 0.542 0.613 0.565 0.601 0.535 0.607
[0.501,0.639] [0.54,0.685] [0.475,0.61] [0.539,0.687] [0.452,0.679] [0.506,0.696] [0.421,0.649] [0.468,0.75]

β2 -0.209 -0.235 -0.195 -0.238 -0.143 -0.148 -0.132 -0.151
[-0.278,-0.141] [-0.307,-0.162] [-0.261,-0.128] [-0.311,-0.165] [-0.23,-0.055] [-0.222,-0.076] [-0.22,-0.041] [-0.26,-0.041]

ν 34.682 122.006 8.791 5.046
[28.6,41.8] [ 110.9, 128] [6.2,12] [4.7,5.5]

maxIneff 1 295.71 199.34 2 013.99 277.22 1 131.81 543.75 1 604.94 400.61
minESS 61.74 401.32 39.72 288.58 70.68 147.13 49.85 199.69

Table 7: Estimation results from a dynamic Skellam and ∆ NB model for Alcoa (AA) and Ford (F) during
the period from 23rd to 29th April 2010. The posterior mean estimates are based on 100,000 iterations
(20,000 used as burn-in). The 95 % HPD regions are in brackets. MaxIneff and minESS are maximum
inefficiency among parameters and minimum effective sample size, respectively.

AA F

Skellam Ord Norm ∆NB Ord t Skellam Ord Norm ∆NB Ord t

µ -2.23 -1.915 -2.227 -1.898 -2.397 -2.037 -2.393 -2.005
[-2.29,-2.17] [-1.96,-1.869] [-2.288,-2.167] [-1.943,-1.854] [-2.442,-2.351] [-2.07,-2.005] [-2.436,-2.348] [-2.036,-1.973]

φ 0.956 0.9 0.958 0.917 0.942 0.888 0.944 0.906
[0.944,0.968] [0.881,0.921] [0.947,0.971] [0.898,0.933] [0.933,0.951] [0.876,0.901] [0.936,0.953] [0.894,0.918]

σ2 0.029 0.081 0.027 0.058 0.061 0.124 0.057 0.086
[0.02,0.04] [0.061,0.105] [0.018,0.039] [0.043,0.075] [0.051,0.078] [0.105,0.142] [0.046,0.068] [0.072,0.101]

γ

β1 0.037 0.038 0.037 0.038 0.148 0.131 0.149 0.128
[-0.052,0.13] [-0.032,0.106] [-0.056,0.13] [-0.032,0.107] [0.089,0.207] [0.089,0.175] [0.09,0.206] [0.086,0.171]

β2 -0.041 -0.033 -0.041 -0.034 -0.188 -0.161 -0.188 -0.157
[-0.138,0.057] [-0.107,0.04] [-0.137,0.061] [-0.107,0.04] [-0.259,-0.115] [-0.213,-0.107] [-0.26,-0.115] [-0.208,-0.103]

ν 20.367 114.925 27.436 121.529
[15,25.8] [93, 128] [21.4,33.8] [ 109.9, 128]

maxIneff 3 243.85 326.86 1 399.33 200.48 2 297.71 278.35 3 321.8 279.19
minESS 24.66 244.76 57.17 399.04 34.82 287.41 24.08 286.55
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Table 8: Estimation results from a dynamic Skellam and ∆ NB model for International Business Machines
(IBM) and JP Morgan (JPM) during the period from 23rd to 29th April 2010. The posterior mean
estimates are based on 100,000 iterations (20,000 used as burn-in). The 95 % HPD regions are in
brackets. MaxIneff and minESS are maximum inefficiency among parameters and minimum effective
sample size, respectively.

IBM JPM

Skellam Ord Norm ∆NB Ord t Skellam Ord Norm ∆NB Ord t

µ -0.088 0.511 -0.216 0.423 -1.674 -1.408 -1.673 -1.505
[-0.16,-0.014] [0.444,0.579] [-0.296,-0.135] [0.312,0.535] [-1.716,-1.632] [-1.43,-1.386] [-1.716,-1.631] [-1.546,-1.464]

φ 0.974 0.947 0.983 0.991 0.992 0.872 0.993 0.988
[0.966,0.981] [0.934,0.96] [0.978,0.989] [0.988,0.994] [0.99,0.994] [0.858,0.887] [0.991,0.994] [0.985,0.991]

σ2 0.026 0.076 0.011 0.007 0.002 0.114 0.002 0.004
[0.018,0.035] [0.05,0.097] [0.006,0.015] [0.004,0.011] [0.002,0.003] [0.098,0.129] [0.002,0.003] [0.003,0.006]

γ 0.286 0.312 0.269 0.316
[0.276,0.297] [0.303,0.322] [0.257,0.283] [0.308,0.325]

β1 0.473 0.488 0.424 0.547 0.195 0.244 0.195 0.229
[0.357,0.591] [0.385,0.589] [0.312,0.546] [0.375,0.722] [0.124,0.266] [0.207,0.281] [0.121,0.266] [0.16,0.295]

β2 0.206 0.244 0.181 0.209 0.029 0.022 0.029 0.014
[0.084,0.327] [0.14,0.348] [0.059,0.302] [0.02,0.397] [-0.039,0.1] [-0.013,0.057] [-0.043,0.098] [-0.051,0.079]

ν 6.241 9.35 36.288 9.476
[4.4,8] [8,10.7] [29.6,43.8] [8.8,10.1]

maxIneff 4 024.03 907.22 2 445.44 469.68 2 963.88 621.05 625.7 275.89
minESS 19.88 88.18 32.71 170.33 26.99 128.81 127.86 289.97

Table 9: Estimation results from a dynamic Skellam and ∆ NB model for Coca-Cola (KO) and Xerox
(XRX) during the period from 23rd to 29th April 2010. The posterior mean estimates are based on
100,000 iterations (20,000 used as burn-in). The 95 % HPD regions are in brackets. MaxIneff and
minESS are maximum inefficiency among parameters and minimum effective sample size, respectively.

KO XRX

Skellam Ord Norm ∆NB Ord t Skellam Ord Norm ∆NB Ord t

µ -1.636 -1.364 -1.638 -1.438 -2.334 -2.006 -2.326 -1.946
[-1.693,-1.581] [-1.403,-1.325] [-1.694,-1.582] [-1.493,-1.384] [-2.393,-2.275] [-2.05,-1.962] [-2.386,-2.266] [-1.989,-1.903]

φ 0.98 0.852 0.98 0.96 0.943 0.838 0.948 0.884
[0.973,0.987] [0.826,0.877] [0.973,0.987] [0.943,0.974] [0.929,0.959] [0.817,0.862] [0.934,0.962] [0.862,0.906]

σ2 0.007 0.144 0.007 0.021 0.059 0.231 0.05 0.129
[0.004,0.01] [0.117,0.176] [0.004,0.01] [0.011,0.033] [0.037,0.076] [0.188,0.274] [0.035,0.072] [0.097,0.161]

γ

β1 0.355 0.421 0.352 0.406 0.647 0.603 0.641 0.587
[0.268,0.443] [0.36,0.481] [0.264,0.441] [0.325,0.485] [0.553,0.739] [0.536,0.671] [0.548,0.733] [0.518,0.656]

β2 0.067 0.061 0.069 0.05 -0.457 -0.411 -0.452 -0.397
[-0.032,0.164] [-0.006,0.126] [-0.031,0.166] [-0.039,0.136] [-0.545,-0.367] [-0.475,-0.348] [-0.541,-0.362] [-0.462,-0.334]

ν 22.404 11.375 16.886 106.091
[16.6,27.8] [9.2,13.7] [12.4,22.4] [73.9, 128]

maxIneff 1 252.48 269.82 812.64 817.67 2 675.36 607.26 5 104.53 644.36
minESS 63.87 296.5 98.44 97.84 29.9 131.74 15.67 124.15
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inflation parameter γ ranges from 0.1 to 0.3. The degrees of freedom parameter ν for the

∆NB distribution is estimated as a higher value during the more quiet 2010 period which

suggests that the distribution of the tick by tick price change is closer to a thin tailed

distribution during such periods. In addition, we have found that the estimated degrees

of freedom parameter is a lower value for stocks with a higher average price.

From a more technical perspective, our study has revealed that the parameters of our

∆NB modeling framework mix relatively slowly. This may indicate that our procedure

can be rather inefficient. However, it turns out that the troublesome parameters are in all

cases the persistence parameter of the volatility process, ϕ, and the volatility of volatility,

ση. It is well established and documented that these coefficients are not easy to estimate

as they have not a direct impact on the observations as such; see the discussions in Kim

et al. (1998) and Stroud and Johannes (2014)). Furthermore, our empirical study is faced

with some challenging numerical problems. First, we should emphasize that for some

stock we analyze almost 100, 000 observations, and the shortest time series has around

30, 000 observations. Such a long time series will typically lead us to a slow mixing pro-

cess in a Bayesian MCMC estimation process because the full conditional distributions

are highly informative. Hence the role of some parameters, specifically those in the state

equation, in the estimation process is rather weak. However, we do not conclude that we

cannot estimate such parameters accurately. Our simulated experiment in the previous

section has shown that our algorithm is successful. It just requires more numerical efforts

to obtain accurate results. Second, we have anticipated that parameter estimation for the

dynamic Skellam and ∆NB models is less numerically efficient and overall more challeng-

ing when compared to the estimation for ordered normal and ordered t models. Parameter

estimation for the discrete distribution models requires more auxiliary variables and the

analysis is based on additional conditional statements.

On the basis of the output of our MCMC estimation procedure, we obtain the estimates

for the latent volatility variable ht but we can also decompose these estimates into the

corresponding components of ht, these are µh, st and xt; see equation (3). Figure 2

presents the intra-day, tick by tick Coca Cola price changes and its estimated components

st and xt for the logarithm of volatility ht in the Skellam model, from 23rd to 29th April

2010. We notice that apart from the pronounced intra-day seasonality in volatility, many

volatility changes occur within a trading day. Some of these volatility changes may have

been sparked by news announcements while others may have occurred as the result of the

trading process.

4.3 In-sample comparison

It is widely established in Bayesian studies that the computation of sequential Bayes

factors (BF ) is infeasible in this framework as it requires sequential parameter estimation.
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Figure 2: Decomposition of log volatility in the dynamic Skellam model for KO from 23rd to 29th April 2010.

The sequential estimation of the parameters in our model is computationally prohibitive

given the very high time dimensions. To provide some comparative assessments of the

four models that we have considered in our study, we follow Stroud and Johannes (2014)

and calculate Bayesian Information Criteria (BIC) for model M as

BICT (M) = −2
T∑
t=1

log p(yt|θ̂,M) + di log T (31)

where p(yt|θ,M) can be calculated by means of a particle filter and θ̂ is the posterior mean

of the parameters. The implementation of the particle filter for all considered models is

rather straightforward given the provided details of the models in Section 2. The BIC

gives an asymptotic approximation to the Bayes factor by

BICT (Mi)−BICT (Mj) ≈ −2 logBFi,j.

We will use this approximation for our sequential model comparisons.

Figures 3 and Figure 5 present the in-sample Bayes factors for the periods from 23rd to

29th October 2008 and from 3rd to 9th April 2010, respectively. These graphs are rather

insightful as they indicate that for all stocks, no evidence in favor of the ∆NB model can

be detected for the 2008 period. In the 2010 period, only the IBM stock favors the ∆NB
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distribution. In 2008 on the lower price stocks AA, F and XRX, the ordered t model seems

to provide the best fit. In 2010 the ordered normal model performs the best on the lower

priced stocks, while the high priced stocks are treated more successfully with fat tailed

distributions such as the ordered t or the ∆NB distribution models. Furthermore, we may

conclude from the sequential Bayes factor results that the ordered t and ∆NB model tends

to be favored in case sudden big jumps in volatility have occurred. Such large to extreme

realizations of price changes, possibly leading to a prolonged period of high volatility,

suggest the need of the ∆NB model. These findings are consistent with the intuition that

for time varying volatility models, the identification of parameters determining the tail

behaviour requires extreme or excessive observations in combination with low volatility.

4.4 Out-of-sample comparisons

The performances of the dynamic Skellam and ∆NB models can also be compared in

terms of predictive likelihoods. The one-step-ahead predictive likelihood for model M is

p(yt+1|y1:t,M) =∫ ∫
p(yt+1|y1:t, xt+1, θ,M)p(xt+1, θ|y1:t,M)dxt+1dθ =∫ ∫
p(yt+1|y1:t, xt+1, θ,M)p(xt+1|θ, y1:t,M)p(θ|y1:t,M)dxt+1dθ. (32)

Generally, the h-step-ahead predictive likelihood can be decomposed to the sum of one-

step-ahead predictive likelihoods via

p(yt+1:t+h|y1:t,M) =
h∏
i=1

p(yt+i|y1:t+i−1,M) =
h∏
i=1

∫ ∫
p(yt+i|y1:t+i−1, xt+i, θ,M).

× p(xt+i|θ, y1:t+i−1,M)p(θ|y1:t+i−1,M)dxt+i.dθ (33)

These results suggest that we require the computation of p(θ|y1:t+i−1,m), for i = 1, 2, . . .,

that is the posterior of the parameters using sequentially increasing data samples. It

requires the MCMC procedure to be repeated as many times as we have number of

out-of-sample observations. In our application, for each stock and each model, it implies

several thousands of MCMC replications for a predictive analysis of a single out-of-sample

day. This exercise is computationally not practical or even infeasible. However, we may

be able to rely on the approximation

p(yt+1:t+h|y1:t,M) ≈
h∏
i=1

∫ ∫
p(yt+i|y1:t+i−1, xt+i, θ,M)

× p(xt+i|θ, y1:t+i−1,M)p(θ|y1:t,M)dxt+idθ. (34)

23



This approximation is based on the notion that, after observing a considerable amount

of data, that is for t sufficiently large, the posterior distribution of the static parameters

should not change much and hence p(θ|y1:t+i−1,M) ≈ p(θ|y1:t,M).

Based on this approximation, we carry out the following exercise. From our MCMC

output we obtain a sample of posterior distributions based on the in-sample observations.

For each parameter draws from the posterior distribution we estimate the likelihood using

the particle filter for the out-of-sample period.

Figures 4 and Figure 6 present the out-of-sample sequential predictive Bayes factors

for the 10th October 2008 and 30th April 2010, respectively. On the 10th October 2008,

the dynamic Skellam model is preferred for IBM and JPM, the ordered normal model

is preferred for AA, F and KO while the ∆NB model is the preferred model for XRX.

The dynamic Skellam model for IBM and JPM is consistently winning for both the in-

sample and out-of-sample periods. On 30th April 2010 the ordered t model performs the

best for AA, F, JPM ,KO and XRX, while the ∆NB model is the best for IBM. The

different models appear only to be consistent in terms of the in-sample and out-of-sample

performances for the high price stocks.

40

30

20

10

0

10

20

30

40

Ti
ck

 r
et

ur
ns

AA

20
15
10
5

0
5
10
15
20
25

Ti
ck

 r
et

ur
ns

F

100

50

0

50

100

Ti
ck

 r
et

ur
ns

IBM

60

40

20

0

20

40

60

80
Ti

ck
 r

et
ur

ns
JPM

40

30

20

10

0

10

20

30

Ti
ck

 r
et

ur
ns

KO

20

15

10

5

0

5

10

15

20

Ti
ck

 r
et

ur
ns

XRX

03/10 06/10 07/10 08/10 09/10
150

100

50

0

50

100

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

03/10 06/10 07/10 08/10 09/10
600

400

200

0

200

400

600

800

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

03/10 06/10 07/10 08/10 09/10
300
200
100

0
100
200
300
400
500
600

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

03/10 06/10 07/10 08/10 09/10
500

0

500

1000

1500

2000

2500

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

03/10 06/10 07/10 08/10 09/10
50

0

50

100

150

200

250

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

03/10 06/10 07/10 08/10 09/10
200

150

100

50

0

50

100

150

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

In-sample BIC comparison in October 2008

Figure 3: Sequential Bayes factors approximation based on BIC on data from 3rd to 9th October 2008.
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Figure 4: Sequential predictive Bayes factors on 10th October 2008.

3

2

1

0

1

2

3

Ti
ck

 r
et

ur
ns

AA

5
4
3
2
1

0
1
2
3
4

Ti
ck

 r
et

ur
ns

F

30

20

10

0

10

20

30

Ti
ck

 r
et

ur
ns

IBM

6

4

2

0

2

4

6

Ti
ck

 r
et

ur
ns

JPM

10
8
6
4
2

0
2
4
6
8

Ti
ck

 r
et

ur
ns

KO

10
8
6
4
2

0
2
4
6
8

Ti
ck

 r
et

ur
ns

XRX

23/04 26/04 27/04 28/04 29/04
1000

800

600

400

200

0

200

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

23/04 26/04 27/04 28/04 29/04
2000

1500

1000

500

0

500

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

23/04 26/04 27/04 28/04 29/04
50

0

50

100

150

200

250

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

23/04 26/04 27/04 28/04 29/04
1400
1200
1000

800
600
400
200

0
200
400

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

23/04 26/04 27/04 28/04 29/04
700

600

500

400

300

200

100

0

100

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

23/04 26/04 27/04 28/04 29/04
700

600

500

400

300

200

100

0

100

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

In-sample BIC comparison in April 2010

Figure 5: Sequential Bayes factors approximation based on BIC on data from 23rd to 29th April 2010.

25



2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

Ti
ck

 r
et

ur
ns

AA

2

1

0

1

2

3

Ti
ck

 r
et

ur
ns

F

15

10

5

0

5

10

Ti
ck

 r
et

ur
ns

IBM

10
8
6
4
2

0
2
4
6

Ti
ck

 r
et

ur
ns

JPM

6

4

2

0

2

4

6
Ti

ck
 r

et
ur

ns

KO

2

1

0

1

2

3

Ti
ck

 r
et

ur
ns

XRX

 10:00 
 30/04/10 

 11:00 
 30/04/10 

 12:00 
 30/04/10 

 13:00 
 30/04/10 

 14:00 
 30/04/10 

 15:00 
 30/04/10 

250

200

150

100

50

0

50
2 

lo
g
 B

F

Ord t
Skellam
 ∆NB

 10:00 
 30/04/10 

 11:00 
 30/04/10 

 12:00 
 30/04/10 

 13:00 
 30/04/10 

 14:00 
 30/04/10 

 15:00 
 30/04/10 

350
300
250
200
150
100

50
0

50

2 
lo

g
 B

F

Ord t
Skellam
 ∆NB

 10:00 
 30/04/10 

 11:00 
 30/04/10 

 12:00 
 30/04/10 

 13:00 
 30/04/10 

 14:00 
 30/04/10 

 15:00 
 30/04/10 

20

0

20

40

60

80

100

120

2 
lo

g
 B

F

Ord t
Skellam
 ∆NB

 10:00 
 30/04/10 

 11:00 
 30/04/10 

 12:00 
 30/04/10 

 13:00 
 30/04/10 

 14:00 
 30/04/10 

 15:00 
 30/04/10 

100

50

0

50

100

150

200

2 
lo

g
 B

F

Ord t
Skellam
 ∆NB

 10:00 
 30/04/10 

 11:00 
 30/04/10 

 12:00 
 30/04/10 

 13:00 
 30/04/10 

 14:00 
 30/04/10 

 15:00 
 30/04/10 

80

60

40

20

0

20

40

60

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

 10:00 
 30/04/10 

 11:00 
 30/04/10 

 12:00 
 30/04/10 

 13:00 
 30/04/10 

 14:00 
 30/04/10 

 15:00 
 30/04/10 

120

100

80

60

40

20

0

20

2 
lo

g 
B

F

Ord t
Skellam
 ∆NB

Out of sample predicitve likelihood comparison in April 2010

Figure 6: Sequential predictive Bayes factors on 30th April 2010.

5 Conclusion

We have reviewed and introduced dynamic models for high-frequency integer price changes.

In particular, we have introduced the dynamic negative binomial difference model, referred

to as the ∆NB model. We have developed a Markov chain Monte Carlo procedure (based

on Gibbs sampling) for the Bayesian estimation of parameters in the dynamic Skellam

and ∆NB models. Furthermore, we have demonstrated our estimation procedures for

simulated data and for real data consisting of tick by tick prices from NYSE stocks. We

have compared the in-sample and out-of-sample performances of the different models.
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A Negative Binomial distribution

Different parametrization of the NB distribution

f(k; ν, p) =
Γ(ν + k)

Γ(ν)Γ(k + 1)
pk(1− p)ν (A1)

Using

λ = ν
p

1− p
⇒ p =

λ

λ+ ν
(A2)

f(k;λ, ν) =
Γ(ν + k)

Γ(ν)Γ(k + 1)

(
λ

ν + λ

)k (
ν

ν + λ

)ν
(A3)

Mean

µ = λ (A4)

Variance

σ2 = λ

(
1 +

λ

ν

)
(A5)

Dispersion index
σ2

µ

(
1 +

λ

ν

)
(A6)

The NB distribution is over dispersed and which means that there are more intervals with

low counts and more intervals with high counts, compared to a Poisson distribution. As

we increase ν we get back to the Poisson case.

The Poisson distribution can be obtained from the NB distribution as follows

lim
ν→∞

f(k;λ, ν) =
λk

k!
lim
ν→∞

Γ(ν + k)

Γ(ν)(ν + λ)k
1(

1 + λ
ν

)ν =
λk

k!
lim
ν→∞

(ν + k − 1) . . . ν

(ν + λ)k
1(

1 + λ
ν

)ν
=

λk

k!
· 1 · 1

eλ
= Poi(λ) (A7)

The NB distribution Y ∼ NB(λ, ν) can be written as a Poisson-Gamma mixture or

Poisson distribution with Gamma heterogeneity where the Gamma heterogeneity has

mean 1.

Y ∼ Poi(λU) where U ∼ Ga(ν, ν), (A8)

where we use the Ga(α, β) is given by

f(x;α, β) =
βαxα−1e−βx

Γ(α)
(A9)
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f(k;λ, ν) =

∞∫
0

fPoisson(k;λu)fGamma(u; ν, ν)du

=

∞∫
0

(λu)ke−λu

k!

ννuνe−νu

Γ(ν)
du

=
λkνν

k!Γ(ν)

∞∫
0

e−(λ+ν)uuk+ν−1du

Substituting (λ+ ν)u = s we get

=
λkνν

k!Γ(ν)

∞∫
0

e−s
sk+ν−1

(λ+ ν)k+ν−1

1

(λ+ ν)
ds

=
λkνν

k!Γ(ν)

1

(λ+ ν)k+ν

∞∫
0

e−ssk+ν−1ds

=
λkνν

k!Γ(ν)

Γ(k + ν)

(λ+ ν)k+ν

=
Γ(ν + k)

Γ(ν)Γ(k + 1)

(
λ

ν + λ

)k (
ν

ν + λ

)ν
(A10)

B Daily volatility patterns

We want to approximate the function f : R → R with a continuous function which is

built up from piecewise polynomials of degree at most three. Let the set ∆ = {k0, . . . , kK}
denote the set of of knots kj j = 0, . . . , K. ∆ is some times called a mesh on [k0, kK ]. Let

y = {y0, . . . , yK} where yj = f(xj). We denote a cubic spline on ∆ interpolating to y as

S∆(x). S∆(x) has to satisfy

1. S∆(x) ∈ C2 [k0, kK ]

2. S∆(x) coincides with a polynomial of degree at most three on the intervals [kj−1, kj]

for j = 0, . . . , K.

3. S∆(x) = yj for j = 0, . . . , K.
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Figure 7: The picture shows the Skellam distribution with different parameters

Using the 2 we know that the S
′′
∆(x) is a linear function on [kj−1, kj] which means that

we can write S
′′
∆(x) as

S
′′

∆(x) =

[
kj − x
hj

]
Mj−1 +

[
x− kj−1

hj

]
Mj for x ∈ [kj−1, kj] (A11)

where Mj = S
′′
∆(kj) and hj = kj − kj−1. Integrating S

′′
∆(x) and solving the integrating for

the two integrating constants (using S∆(x) = yj) Poirier (1973) shows that we get

S
′

∆(x) =

[
hj
6
− (kj − x)2

2hj

]
Mj−1 +

[
(x− kj−1)2

2hj
− hj

6

]
Mj+

yj − yj−1

hj
for x ∈ [kj−1, kj]

(A12)

S∆(x) =
kj − x

6hj

[
(kj − x)2 − h2

j

]
Mj−1 +

x− kj−1

6hj

[
(x− kj−1)2 − h2

j

]
Mj

+

[
kj − x
hj

]
yj−1 +

[
x− kj−1

hj

]
yj for x ∈ [kj−1, kj] (A13)

In the above expression only Mj for j = 0, . . . , K are unknown. We can use the continuity

restrictions which enforce continuity at the knots by requiring that the derivatives are
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Figure 8: The picture shows the ∆NB distribution with different parameters

equal at the knots kj for j = 1, . . . , K − 1

S
′

∆(k−j ) = hjMj−1/6 + hjMj/3 + (yj − yj−1)/hj (A14)

S
′

∆(k+
j ) = −hj+1Mj/3− hj+1Mj+1/6 + (yj+1 − yj)/hj+1 (A15)

which yields K − 1 conditions

(1− λj)Mj−1 + 2Mj + λjMj+1 =
6yj−1

hj(hj + hj+1)
− 6yj
hjhj+1

+
6yj+1

hj+1(hj + hj+1)
(A16)

where

λj =
hj+1

hj + hj+1

(A17)

Using two end conditions we have K + 1 unknowns and K + 1 equations and we can

solve the linear equation system for Mj. Using the M0 = π0M1 and MK = πKMK−1 end
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conditions we can write

Λ︸︷︷︸
(K+1)×(K+1)

=



2 -2 π0 0 . . . 0 0 0

1-λ1 2 λ1 . . . 0 0 0

0 1-λ2 2 . . . 0 0 0
...

...
...

...
...

...

0 0 0 . . . 2 λK−2 0

0 0 0 . . . 1-λK−1 2 λK−1

0 0 0 . . . 0 -2 πK 2


(A18)

Θ =



0 0 0 . . . 0 0 0
6

h1(h1+h2)
- 6
h1h2

6
h2(h1+h2)

. . . 0 0 0

0 6
h2(h2+h3)

- 6
h2h3

. . . 0 0 0
...

...
...

...
...

...

0 0 0 . . . - 6
hK−2hK−1

6
hK−1(hK−2+hK−1)

0

0 0 0 . . . 6
hK−1(hK−1+hK)

- 6
hK−1hK

6
hK(hK−1+hK)

0 0 0 . . . 0 0 0



m︸︷︷︸
(K+1)×1

=



M0

M1

...

MK−1

MK


(A19)

y︸︷︷︸
(K+1)×1

=



y0

y1

...

yK−1

yK


(A20)

The linear equation system is given by

Λm = θy (A21)

and the solution is

m = Λ−1Θy (A22)
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Using this result and equation (A13) we can calculate

S∆(ξ)︸ ︷︷ ︸
N×1

=



S∆(ξ1)

S∆(ξ2)
...

S∆(ξN−1)

S∆(ξN)


(A23)

Lets denote P the N×(K+1) matrix where ith row i = 1, . . . , N1 given that kj−1 ≤ ξ ≤ kj

can be written as

pi︸︷︷︸
1×(K+1)

=

0, . . . , 0︸ ︷︷ ︸
first j − 2

,
kj − ξi

6hj

[
(kj − ξi)2 − h2

j

]
,
ξi − kj−1

6hj

[
(ξi − kj−1)2 − h2

j

]
, 0, . . . , 0︸ ︷︷ ︸

last K + 1− j


Moreover denote Q the N × (K + 1) matrix where ith row i = 1, . . . , N1 given that

kj−1 ≤ ξ ≤ kj can be written as

qi︸︷︷︸
1×(K+1)

=

0, . . . , 0︸ ︷︷ ︸
first j − 2

,
kj − ξi
hj

,
ξi − kj−1

hj
, 0, . . . , 0︸ ︷︷ ︸

last K + 1− j

 (A24)

Now using (A13) and (A22) we get

S∆(ξ) = Pm+Qy = PΛ−1Θy +Qy = (PΛ−1Θ +Q)y = W︸︷︷︸
N×(K+1)

y︸︷︷︸
(K+1)×1

(A25)

where

W = PΛ−1Θ +Q (A26)

In practical situations we might only know the knots but we don’t know we observe

the spline values with error. In this case we have

s = S∆(ξ) + ε = Wy + ε, (A27)

where

s︸︷︷︸
N×1

=



s1

s2

...

sN−1

sN


(A28)
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and

ε︸︷︷︸
N×1

=



ε1

ε2

...

εN−1

εN


(A29)

with

E(ε) = 0 and E(εε′) = σ2I (A30)

Notice that after fixing the knots we only have to estimate the value of the spline at he

knots and this determines the whole shape of the spline. We cab do this by simple OLS

ŷ = (W>W )−1W>s (A31)

For identification reasons we want∑
j:uniqueξj

S∆(ξj) =
∑

j:uniqueξj

wjy = w∗y = 0 (A32)

where wi is the ith row of W and

w∗︸︷︷︸
1×(K+1)

=
∑

j:uniqueξj

wj (A33)

The restriction can be enforced by one of the elements of y. This ensures that E(st) = 0

so st and µh can be identified. If we drop yK we can substitute

yK = −
K−1∑
i=0

(w∗i /w
∗
K)yi (A34)

where w∗i is the ith element of w∗. Substituting this into

∑
j:uniqueξj

S∆(ξj) =
∑

j:uniqueξj

wjy =
∑

j:uniqueξj

K∑
i=0

wjiyi =
∑

j:uniqueξj

K−1∑
i=0

wjiyi − wjK
K−1∑
i=0

(w∗i /w
∗
K)yi

=
∑

j:uniqueξj

K−1∑
i=0

(wji − wjKw∗i /w∗K)yi =
K−1∑
i=0

∑
j:uniqueξj

(wji − wjKw∗i /w∗K)yi

=
K−1∑
i=0

(w∗i − w∗Kw∗i /w∗K)yi =
K−1∑
i=0

(w∗i − w∗i )yi = 0 (A35)
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Lets partition W in the following way

W︸︷︷︸
N×(K+1)

= [W−K︸ ︷︷ ︸
N×K

: WK︸︷︷︸
N×1

] (A36)

where W−K is equal to the first K columns of W and WK is the Kth column of W .

Moreover

w∗︸︷︷︸
1×(K+1)

= [w∗−K︸︷︷︸
1×K

: w∗K︸︷︷︸
1×1

] (A37)

We can define

W̃︸︷︷︸
N×K

= W−K︸ ︷︷ ︸
N×K

− 1

w∗K
WK︸︷︷︸
N×1

w∗−K︸︷︷︸
1×K

(A38)

and we have

s = S∆(ξ) + ε = W̃︸︷︷︸
N×K

ỹ︸︷︷︸
K×1

+ε. (A39)

C MCMC estimation of the ordered t-SV model

In this section, the t element vectors (v1, . . . , vt) containing time dependent variables for

all time time periods, are denoted by v, the variable without a subscript.

C.1 Generating the parameters x, µh, ϕ, σ
2
η (Step 2)

Notice that conditional on C = {ct, t = 1, . . . , T} , r∗t we have

2 log r∗t = µ+ st + xt + log λt +mct + εt, εt ∼ N (0, v2
ct) (A40)

which implies the following following state space form

ỹt =
[

1 wt 1
]

︸ ︷︷ ︸
1×(K+2)

 µ

β

xt


︸ ︷︷ ︸
(K+2)×1

+εt, εt ∼ N (0, v2
ct) (A41)

αt+1 =

 µ

β

xt+1


︸ ︷︷ ︸

(K+2)×1

=

 1 0 0

0 IK 0

0 0 ϕ


︸ ︷︷ ︸

(K+2)×(K+2)

 µ

β

xt


︸ ︷︷ ︸
(K+2)×1

+

 0

0

ηt+1


︸ ︷︷ ︸

(K+2)×1

, ηt+1 ∼ N (0, σ2
η) (A42)
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where  µ

β

x1


︸ ︷︷ ︸
(K+2)×1

∼ N


 µ0

β0

0


︸ ︷︷ ︸
(K+2)×1

,

 σ2
µ 0 0

0 σ2
βIK 0

0 0 σ2
η/(1− ϕ2)


︸ ︷︷ ︸

(K+2)×(K+2)

 , (A43)

and

ỹt = 2 log r∗t − log λt −mrt1 (A44)

First we draw ϕ, σ2
η from p(ϕ, σ2

η|γ, ν, C, τ,N, z1, z2, s, y). Notice that

p(ϕ, σ2
η|γ, ν, C, τ,N, z1, z2, s, y) = p(ϕ, σ2

η|ỹt, C,N) ∝ p(ỹt|ϕ, σ2
η, C,N)p(ϕ)p(σ2

η), (A45)

where ỹt is defined above in equation (A67). The likelihood can be evaluated using stan-

dard Kalman filtering and prediction error decomposition (see e.g, Durbin and Koopman

(2012)) taking advantage of fact that conditional on the auxiliary variables we have a

linear Gaussian state space form given by equation (A64),(A65), (A66) and (A67). We

draw from the posterior using an adaptive random walk Metropolis-Hastings step pro-

posed by Roberts and Rosenthal (2009). Conditional on ϕ, σ2
η we draw µh, s and x from

p(µh, s, x|ϕ, σ2
η, γ, ν, C, τ,N, z1, z2, s, y), which is done simulating from the smoothed state

density of the linear Gaussian state space model given by (A41),(A42), (A43) and (A44).

We use the simulation smoother proposed by Durbin and Koopman (2002).

C.2 Generating γ (Step 3)

p(γ|ν, µ, ϕ, σ2
η, x, s, C, y, r

∗
t ) = p(γ|ν, h, y) (A46)

because given ν, h and y, the variables C,ϕ, σ2
η, r
∗
t are redundant.

p(γ|ν, h, y) ∝ p(y|γ, ν, h)p(γ|ν, h) = p(y|γ, ν, h)p(γ) (A47)
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as γ is independent from ν and h.

p(y|γ, ν, h)p(γ) =
T∏
t=1

{
γ1{yt=0} + (1− γ)

×
[
T
(
yt + 0.5

exp(ht/2)
, ν

)
− T

(
yt − 0.5

exp(ht/2)
, ν

)]}
γa−1(1− γ)b−1

B(a, b)

∝
T∏
t=1

{
γa(1− γ)b−11{yt=0} + γa−1(1− γ)b

×
[
T
(
yt + 0.5

exp(ht/2)
, ν

)
− T

(
yt − 0.5

exp(ht/2)
, ν

)]}
,

where T (·, ν) is the Student’s t density function with mean zero scale one and degree

of freedom parameter ν. We sample from this posterior using an adaptive random walk

Metropolis-Hastings sampler by Roberts and Rosenthal (2009).

C.3 Generating r∗

p(r∗|γ, ν, µ, ϕ, σ2
η, x, s, C, λ, y) = p(r∗|γ, h, λ, y) =

T∏
t=1

p(r∗t |γ, ht, λt, yt) (A48)

Using the law of total probability

p(r∗t |γ, ν, ht, yt) = p(r∗t |γ, ν, ht, λt, yt, zero)p(zero|γ, ht, λt, yt)

+ p(r∗t |γ, ht, λt, yt, non-zero)p(non-zero|γ, ht, λt, yt) (A49)

Where p(r∗t |γ, ht, λt, yt, zero) is a normal density with zero mean and variance λt exp(ht)

truncated to the interval [yt − 0.5, yt + 0.5]. If yt = 0 then

p(zero|γ, ht, yt = 0) =
p(zero, γ, ht, yt = 0)

p(γ, ht, yt = 0)
=
p(yt = 0|zero, γ, ht)p(zero|γ, ht)

p(yt = 0|γ, ht)

=
1× γ

γ + (1− γ)
[
Φ
(

0.5√
λt exp(ht/2)

)
− Φ

(
−0.5√

λt exp(ht/2)
,
)] (A50)

If yt = k 6= 0 then

p(zero|γ, ht, yt = k) =
p(zero, γ, ht, yt = k)

p(γ, ht, yt = k)

=
p(yt = k|zero, γ, ht)p(zero|γ, ht)

p(yt = k|γ, ht)
= 0 (A51)

Moreover p(non-zero|γ, ht, yt) = 1− p(zero|γ, ht, yt).
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C.4 Generating ν and λ

To sample ν and λ we use the method by Stroud and Johannes (2014). We can decompose

the posterior density as

p(ν, λ|γ, ϕ, σ2
η, h, C, y, r

∗) = p(ν, λ|h, r∗) = p(λ|ν, h, r∗)p(ν|h, r∗) (A52)

Note that we have to following mixture representation

r∗t = exp(ht/2)
√
λtεt εt ∼ N (0, 1) λt ∼ IG(ν/2, ν/2) (A53)

which implies

p(ν|h, r∗) ∝
T∏
t=1

p

(
r∗t

exp(ht/2)

∣∣∣∣ht, ν) p(ν) (A54)

where

p

(
r∗t

exp(ht/2)

∣∣∣∣ht, ν) ∼ tν(0, 1) (A55)

and the prior ν ∼ DU(2, 128) which leads to the posterior

p(ν|h, r∗) ∝
T∏
t=1

p

(
r∗t

exp(ht/2)

∣∣∣∣ht, ν) =
T∏
t=1

gν∗

(
r∗t

exp(ht/2)

)
=

T∏
t=1

gν∗ (wt) (A56)

where wt = r∗t / exp(ht/2).

To avoid the computationally intense evaluation of these probabilities we can use a

Metropolis-Hastings update. We can draw the proposal ν∗ from the neighbourhood of

the current value ν(i) using a discrete uniform distribution ν∗ ∼ DU(ν(i)− δ, ν(i) + δ) and

accept with probability

min

{
1,

∏T
t=1 gν∗(yt)∏T
t=1 gν(i)(yt)

}
(A57)

δ is chosen such that the acceptance rate is reasonable.

p(λ|ν, h, r∗) =
T∏
t=1

p(λt|ν, ht, r∗t ) ∝
T∏
t=1

p(r∗t |λt, ν, ht)p(λt|ν) (A58)

where

p

(
r∗t

exp(ht/2)

∣∣∣∣λt, ν, ht) ∼ N (0, λt) (A59)

p(λt|ν) ∼ IG(ν/2, ν/2) (A60)
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p(λt|ν, ht, r∗t ) ∼ IG

ν + 1

2
,
ν +

(
r∗t

exp(ht/2)

)2

2

 (A61)

D MCMC estimation of the dynamic ∆NB model

In this section, the t element vectors (v1, . . . , vt) containing time dependent variables for

all time time periods, are denoted by v, the variable without a subscript.

D.1 Generating the parameters x, µh, ϕ, σ
2
η (Step 2)

Notice that conditional on C = {ctj, t = 1, . . . , T, j = 1, . . . ,min(Nt + 1, 2)} , τ , N ,γ and

s we have

− log τt1 = log(zt1 + zt2) + µh + st + xt +mct1(1) + εt1, εt1 ∼ N (0, v2
ct1

(1)) (A62)

and

− log τt2 = log(zt1 + zt2) + µh + st + xt +mct2(Nt) + εt2, εt2 ∼ N (0, v2
ct2

(Nt)) (A63)

which implies the following state space form

ỹt︸︷︷︸
min(Nt+1,2)×1

=

[
1 wt 1

1 wt 1

]
︸ ︷︷ ︸

min(Nt+1,2)×(K+2)

 µh

β

xt


︸ ︷︷ ︸
(K+2)×1

+ εt︸︷︷︸
min(Nt+1,2)×1

, εt ∼ N (0,Ht) (A64)

αt+1 =

 µh

β

xt+1


︸ ︷︷ ︸

(K+2)×1

=

 1 0 0

0 IK 0

0 0 ϕ


︸ ︷︷ ︸

(K+2)×(K+2)

 µh

β

xt


︸ ︷︷ ︸
(K+2)×1

+

 0

0

ηt+1


︸ ︷︷ ︸

(K+2)×1

, (A65)

where ηt+1 ∼ N (0, σ2
η) and

 µh

β

x1


︸ ︷︷ ︸
(K+2)×1

∼ N


 µ0

β0

0


︸ ︷︷ ︸
(K+2)×1

,

 σ2
µ 0 0

0 σ2
βIK 0

0 0 σ2
eta/(1− ϕ2)


︸ ︷︷ ︸

(K+2)×(K+2)

 (A66)
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Ht = diag(v2
ct1

(1), v2
ct,2

(Nt)) and

ỹt︸︷︷︸
min(Nt+1,2)×1

=

(
− log τt1 −mrt1(1)− log(zt1 + zt2)

− log τt2 −mrt2(Nt)− log(zt1 + zt2)

)
(A67)

First we draw ϕ, σ2
η from p(ϕ, σ2

η|γ, ν, C, τ,N, z1, z2, s, y). Notice that

p(ϕ, σ2
η|γ, ν, C, τ,N, z1, z2, s, y) = p(ϕ, σ2

η|ỹt, C,N) ∝ p(ỹt|ϕ, σ2
η, C,N)p(ϕ)p(σ2

η), (A68)

where ỹt is defined above in equation (A67). The likelihood can be evaluated using stan-

dard Kalman filtering and prediction error decomposition (see e.g, Durbin and Koopman

(2012)) taking advantage of fact that conditional on the auxiliary variables we have a

linear Gaussian state space form given by equation (A64),(A65), (A66) and (A67). We

draw from the posterior using an adaptive random walk Metropolis-Hastings step pro-

posed by Roberts and Rosenthal (2009). Conditional on ϕ, σ2
η we draw µh, s and x from

p(µh, s, x|ϕ, σ2
η, γ, ν, C, τ,N, z1, z2, s, y), which is done simulating from the smoothed state

density of the linear Gaussian state space model given by (A64),(A65), (A66) and (A67).

We use the simulation smoother proposed by Durbin and Koopman (2002).

D.2 Generating γ (Step 3)

p(γ|ν, µh, ϕ, σ2
η, x, C, s, τ,N, z1, z2, y) = p(γ|ν, µh, s, x, y) (A69)

because given ν, λ and y, the variables C, τ,N, z1, z2 are redundant.

p(γ|ν, µh, s, x, y) ∝ p(y|γ, ν, µh, s, x)p(γ|ν, µh, s, x) = p(y|γ, ν, µh, s, x)p(γ) (A70)

as γ is independent from ν and λt = exp(µh + st + xt).

p(y|γ, ν, µh, x)p(γ) =
T∏
t=1

[
γ1{yt=0} + (1− γ)

(
ν

λt + ν

)2ν (
λt

λt + ν

)|yt| Γ(ν + |yt|)
Γ(ν)Γ(|yt|)

× F

(
ν + yt, ν, yt + 1;

(
λt

λt + ν

)2
)]

γa−1(1− γ)b−1

B(a, b)

∝
T∏
t=1

[
γa(1− γ)b−11{yt=0} + γa−1(1− γ)b

(
ν

λt + ν

)2ν (
λt

λt + ν

)|yt|
× Γ(ν + |yt|)

Γ(ν)Γ(|yt|)
F

(
ν + yt, ν, yt + 1;

(
λt

λt + ν

)2
)]

We sample from this posterior using an adaptive random walk Metropolis-Hastings sam-

pler.
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D.3 Generating C, τ,N, z1, z2, ν (Step 4)

We can decompose the joint posterior of C, τ,N, z1, z2, ν into

p(C, τ,N, z1, z2, ν|γ, µh, ϕ, σ2
η, s, x, y) = p(C|τ,N, z1, z2γ, p, µh, ϕ, σ

2
η, s, x, y)

× p(τ |N, z1, z2γ, ν, µh, ϕ, σ
2
η, s, x, y)

× p(N |z1, z2γ, ν, µh, ϕ, σ
2
η, s, x, y)

× p(z1, z2|γ, ν, µh, ϕ, σ2
η, s, x, y)

× p(ν|γ, µh, ϕ, σ2
η, s, x, y) (A71)

Generating ν (Step 4a)

Note that

p(ν|γ, µh, ϕ, σ2
η, s, x, y) = p(ν|γ, λ, y)

∝ p(ν, γ, λ, y)

= p(y|γ, λ, ν)p(λ|γ, ν)p(γ|ν)p(ν)

= p(y|γ, λ, ν)p(λ)p(γ)p(ν)

∝ p(y|γ, λ, ν)p(ν) (A72)

where p(y|γ, λ, ν) is a product of zero inflated ∆NB probability mass functions.

We draw ν using a discrete uniform prior ν ∼ DU(2, 128) and a random walk proposal

in the following fashion as suggested by Stroud and Johannes (2014) for degree of free-

dom parameter of a t density. We can write the posterior as a multinomial distribution

p(ν|µh, x, z1, z2) ∼M(π∗2, . . . , π
∗
128) with probabilities

π∗ν ∝
T∏
t=1

[
γI{yt=0} + (1− γ)f∆NB(yt;λt, ν)

]
=

T∏
t=1

gν(yt) (A73)

To avoid the computationally intense evaluation of these probabilities we can use a

Metropolis-Hastings update. We can draw the proposal ν∗ from the neighbourhood of

the current value ν(i) using a discrete uniform distribution ν∗ ∼ DU(ν(i)− δ, ν(i) + δ) and

accept with probability

min

{
1,

∏T
t=1 gν∗(yt)∏T
t=1 gν(i)(yt)

}
(A74)

δ is chosen such that the acceptance rate is reasonable.
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Generating z1, z2 (Step 4b)

Notice that z1, z2 are independent given γ, µh, s, x, y.

p(z1, z2|γ, ν, µh, ϕ, σ2
η, s, x, y) =

T∏
t=1

p(zt1, zt2|γ, ν, µh, ϕ, σ2
η, st, xt, yt) (A75)

p(zt1, zt2|γ, ν, µh, ϕ, σ2
η, st, xt, yt) ∝ p(zt1, zt2, γ, ν, µh, ϕ, σ

2
η, st, xt, yt)

= p(yt|zt1, zt2, γ, ν, µh, ϕ, σ2
η, st, xt)

× p(zt1, zt2|γ, ν, µh, ϕ, σ2
η, st, xt) (A76)

p(zt1, zt2|γ, ν, µh, ϕ, σ2
η, st, xt, yt) ∝ g(zt1, zt2)

ννzνt1e
−νzt1

Γ(ν)

ννzνt2e
−νzt2

Γ(ν)
(A77)

where

g(zt1, zt2) =

[
γ1{yt=0} + (1− γ) exp [−λt(zt1 + zt2)]

(
zt1
zt2

) yt
2

I|yt|(2λt
√
zt1zt2)

]
(A78)

with λt = exp(µh + st + xt). We can carry out an independent MH step by sampling

z∗1t, z
∗
2t from Ga(λt, ν) and accept it with probability

min

{
g(z∗1t, z

∗
2t)

g(zt1, zt2)
, 1

}
(A79)

Generating N (Step 4c)

Note that condition on on zt1 , zt2 and the intensity λt the Nt are independent over time,

hence

p(N |γ, ν, µh, ϕ, σ2
η, s, x, z1, z2, y) =

T∏
t=1

p(Nt|γ, λt, zt1, zt2, yt). (A80)

For a given t we can draw Nt from a discrete distribution with

p(Nt|γ, λt, zt1, zt2, yt) =
p(Nt, yt|γ, λt, zt1, zt2)

p(yt|γ, λt, zt1, zt2)

=
p(yt|Nt, γ, λt, zt1, zt2)p(Nt|γ, λt, zt1, zt2)

p(yt|γ, λt, zt1, zt2)

=
[
γ1{yt=0} + (1− γ)p (yt|Nt, λt, zt1, zt2)

]
× p(Nt|γ, λt, zt1, zt2)

p(yt|γ, λt, zt1, zt2)
(A81)

44



The denominator in equation (A81) is a Skellam distribution with intensity λtzt1 andλtzt2.

We can calculate probability

p (yt|Nt, λt, zt1, zt2) (A82)

using the results from equation (12) condition on λt, zt1 and zt2, yt is distributed as a

marked Poisson process with marks given by

Mi =

1, with P (Mi = 1) = zt1
zt1+zt2

−1, with P (Mi = −1) = zt2
zt1+zt2

, (A83)

which implies that we can represent yt as
Nt∑
i=0

Mi.

p (yt|Nt, λt, zt1, zt2) =


0 , if yt > Nt or |yt| mod 2 6= |Nt| mod 2(

Nt
Nt+yt

2

)(
zt1

zt1 + zt2

)Nt+yt
2
(

zt2
zt1 + zt2

)Nt−yt
2

, otherwise

(A84)

Conditional on zt1 , zt2 and λt, Nt is a realization of a Poisson process on [0, 1] with

intensity (zt1+zt2)λt, hence the probability p(Nt|γ, λt, zt1, zt2) is a Poisson random variable

with intensity equal to λt(zt1 +zt2). We can draw Nt parallel over t = 1, . . . , T by drawing

a uniform random variable ut ∼ U [0, 1] and

Nt = min

{
n : ut ≤

n∑
i=0

p(i|γ, λt, zt1, zt2, yt)

}
(A85)

Generating τ (Step 4d)

Notice that p(τ |N, z1, z2, γ, ν, µh, ϕ, σ
2
η, x, y) = p(τ |N,µh, z1, z2, s, x). Moreover

p(τ |µh, z1, z2, s, x) =
T∏
t=1

p(τ1t, τ2t|Nt, µh, zt1, zt2, st, xt)

=
T∏
t=1

p(τ1t|τ2t, Nt, µh, zt1, zt2, st, xt)p(τ2t|Nt, µh, zt1, zt2, st, xt)

where we can sample from p(τ2t|Nt, µh, zt1, zt2, st, xt) using the fact that conditionally on

Nt the arrival time τ2t of the Ntth jump is the maximum of Nt uniform random variables

and it has a Beta(Nt, 1) distribution. The arrival time of the (Nt + 1)th jump after 1 is

exponentially distributed with intensity λt(zt1 + zt2), hence

τ1t = 1 + ξt − τ2t ξt ∼ Exp(λt(zt1 + zt2)) (A86)
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Generating C (Step 4e)

Notice that

p(C|τ,N, z1, z2, γ, ν, µh, ϕ, σ
2
η, s, x, y) = p(C|τ,N, z1, z2, ν, s, x) (A87)

Moreover

p(C|τ,N, z1, z2, ν, s, x) =
T∏
t=1

min(Nt+1,2)∏
j=1

p(rtj|τt, Nt, µh, zt1, zt2, st, xt) (A88)

Sample ct1 from the following discrete distribution

p(ct1|τt, Nt, µh, zt1, zt2, st, xt) ∝ wk(1)ϕ(− log τ1t − log[λt(zt1 + zt2)],mk(1), v2
k(1)) (A89)

where k = 1, . . . , C(1) If Nt > 0 then draw rt2 from the discrete distribution

p(ct2|τt, Nt, µh, zt1, zt2, st, xt) ∝ wk(Nt)ϕ(− log τ1t − log[λt(zt1 + zt2)],mk(Nt), v
2
k(Nt))

for k = 1, . . . , C(Nt)

These algorithmic details also apply to the dynamic Skellam model. Illustrations of

the resulting posterior distributions of the parameters are given in Figure 1 for our ∆NB

model and in Figure 9 for the dynamic Skellam model.

E Log returns versus price changes

Stock prices can be quoted as a multiple of the tick size. As a consequence prices are

defined on a discrete grid, where the grid points are a tick size distance away from each

other. We can write the prices at time tj as

p(tj) = n(tj)g (A90)

where g is the tick size which can be the function of the price on some exchanges and

n(tj) is a natural number, denoting the location of the price on the grid. Modelling trade

by trade returns can pose difficulty as the effect of price discreteness on a few seconds

frequency is pronounced compared to lower frequencies such as one hour or one day. As

described in Münnix et al. (2010), the problem is that the return distribution is a mixture

of return distributions ri, which correspond to fix price changes ig

ri =

{
p(tj)− p(tj−1)

p(tj−1)

∣∣∣∣ p(tj)− p(tj−1) = [n(tj)− n(tj−1)] g = i(tj)g = ig

}
(A91)
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Figure 9: The posterior distribution of the parameters from a dynamic Skellam model based on 20000 observations and
100000 iterations from which 20000 used as a burn in sample. Each picture shows the histogram of the posterior draws
the kernel density estimate of the posterior distribution, the HPD region and the posterior mean. The true parameters are
µ = −1.7, ϕ = 0.97 , σ = 0.02, γ = 0.001

where i(tj) is an integer, which express the price change in terms of ticks. The ri distri-

butions are on the intervals (for positive i)[
ig

max pi
,

ig

min pi

]
, (A92)

where

pi =

{
p(tj−1)

∣∣∣∣ p(tj)− p(tj−1) = [n(tj)− n(tj−1)] g = i(tj)g = ig

}
(A93)

These interval and the center of the intervals ci can be approximated byig
p̄
,
ig

p︸︷︷︸
 , (A94)

and

ci ≈
ig

2

 1

p︸︷︷︸ −
1

p̄

 (A95)

as max pi ≈ p̄ and min pi ≈ p︸︷︷︸ for i close to 0.

First, note that the intervals corresponding to zero price change and one tick changes

are always non-overlapping. Secondly, the center of the intervals are approximately
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equally spaced, however the intervals for higher absolute value changes are wider, which

means that the intervals are getting more and more overlapping as |i| is increasing.

Thirdly, the intervals are less overlapping when the price is lower, the volatility is higher

or the tick size is bigger. Figure 10 shows the empirical trade by trade return distribution

of several stocks from the New York Stock Exchange (NYSE).
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Figure 10: Empirical distribution of the tick by tick log returns during October 2008 for Alcoa (AA), Ford (F), International
Business Machines (IBM),JP Morgan (JPM), Coca-Cola (KO) and Xerox (X)
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Figure 11: Empirical distribution of the tick returns along with fitted Skellam density during October 2008 for Alcoa
(AA), Ford (F), International Business Machines (IBM),JP Morgan (JPM), Coca-Cola (KO) and Xerox (X)
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