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Abstract 

In order to study the dynamic changes in gas concentration, to reduce gas hazards, and to 

protect and improve mining safety, a new method is proposed to predict gas concentration. 

The method is based on the opposite degree algorithm. Priori and posteriori values, opposite 

degree computation, opposite space, prior matrix, and posterior matrix are 6 basic concepts of 

opposite degree algorithm. Several opposite degree numerical formulae to calculate the 

opposite degrees between gas concentration data and gas concentration data trends can be 

used to predict empirical results. The opposite degree numerical computation (OD-NC) 

algorithm has greater accuracy than several common prediction methods, such as RBF 

(Radial Basis Function) and GRNN (General Regression Neural Network). The prediction 

mean relative errors of RBF, GRNN and OD-NC are 7.812%, 5.674% and 3.284%, 

respectively. Simulation experiments shows that the OD-NC algorithm is feasible and 

effective. 

 

Keywords: Gas concentration, opposite degree algorithm, data prediction, mining safety, 

numerical simulations. 

JEL: C53, C63, L71. 
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1 Introduction 

Mine gases can result in hypoxia, asphyxia, or even burning and explosions, so it is an 

important indicator to detect gas concentration for coal mine gas safety. Gas 

concentration must be maintained at a reasonable level as it indicates that the coal 

mine is safe. In China, for example, gas concentration security issues lead to many 

casualties each year, as shown in Table 1 (see [1]). For available data from 2008 to 

2012, total Chinese coal mine gas accidents totalled 675, which led to 3039 deaths. 

 

Table 1  

Annual coal mine gas accidents statistics for 2008-2012 

Year 2008 2009 2010 2011 2012 Total Number 

Accidents Times 182 157 145 119 72 675 

Number of Deaths 778 755 623 553 459 3039 

 

 

At the international level, prediction of gas concentration is also a serious issue, so it 

is not surprising that significant research has been conducted to predict gas 

concentration. Fang [2] used numerical methods to predict gas concentration in 1993. 

Zhou [3] established the gas concentration fuzzy time series forecasting model in 

1995, and applied the model to the Sichuan Furong Mining Bureau Baijiao Mine. The 

model to prevent gas explosion accidents was subsequently used to predict gas 

concentration [3]. 

 

In 2008, Obst et al. [4] used echoes to monitor coal mine gas concentration, while 

Sikora et al. [5] presented mixed adaptive system prediction method of time series 

continuous gas monitoring. In 2010, Wei et al. [6] analyzed forecasting methods based 

on the gas concentration HJM model and Monte Carlo simulation methods. 

 

Wang et al. [7] analyzed the gas concentration prediction methods based on 
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transformed wavelet and optimized predictor in 2011. Unnikrishna Menon at al. [8] 

argued in 2012 that gas concentration and prominent detection security is important 

for the protection of mine workers and areas close to the mines, and designed gas 

wireless sensor networks (WSN), where the semiconductor gas sensor had a low 

power consumption and high sensitivity. Optimizing power is based on energy 

efficient clustering protocols, so that the goal of outburst warning can be achieved [8]. 

 

Intelligent methods in the prediction of gas emission rates and concentration are 

increasing, including neural networks and genetic algorithms. These methods have 

certain advantages and disadvantages. For example, neural networks require a large 

amount of data and are prone to the “less learning” and “over-learning” phenomena, 

leading to the prediction accuracy that is not high. BP neural network will be affected 

by the network structure, with initial connection weights and thresholds set for 

training [9].  

 

Genetic algorithms use selecting, crossover and mutation operations for computation. 

It has a strong global processing capacity, but local processing capacity can be weak 

[10]. Therefore, in order to further improving forecast accuracy and the adaptability of 

the algorithm, in this paper we propose a new intelligent algorithm which can be 

applied to the prediction of mine gas concentration. 

 

2. Basic Concepts of the Opposite Degree Algorithm 

Gas data are dynamic, and the gas relationship with available data can be represented 

by the Opposite Degree (OD). The greater is the opposite degree, the greater are the 

differences between two associated variables; the smaller is the opposite degree, the 

smaller are the differences between two associated variables. The opposite degrees are 

predominantly related with the following six concepts [11-14]. 

 

1) a priori value 
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Priori value refers to the data that have been used for training, and hence are obtained 

in advance. 

 

2) a posteriori value 

Posteriori analysis is used to predict the value. Posteriori value is the value associated 

with a certain set of properties. 

 

3) opposite degree computation 

Opposite degree is the difference between the a priori and a posteriori values, and 

range from ( , )−∞ +∞ . 

 

Usually, the a priori value is A, the a posteriori value is B, denoted as O(A,B), and can 

be obtained using formula (1), as follows: 

 









>
=

<
=

−
=

ABforpositive
BAfor

ABfornegative

A
ABBAO

，
，0

,
),(             (1) 

 

4) opposite space 

Flat space and three-dimensional space are the most common vector spaces. The flat 

space is the vector space R2, which consists of the real pairs: 

 

2 {( , ) : , }R x y x y R= ∈ .                   (2) 

 

The vector space R3 is three-dimensional space, which consists of all ordered triple 

real arrays: 

 

3 {( , , ) : , , }R x y z x y z R= ∈ .                (3) 

 

5 
 



The concept of R2 and R3 can be extended to high-dimensional space. Setting the 

length as n, an ordered array (Vector space Rn) is given in formula (4): 

 

1 2 1 2{( , ,..., ) : , ,..., }n
n nR x x x x x x R= ∈             (4) 

where {1,2,..., }j n∈ . 

 

In the multi-dimensional space, the calculation of the opposite degree is changed to 

the vector calculation. The a priori value is changed to the a priori vector, 

1 2( , ,..., )mA A A A= , while the a posteriori value changed to the a posteriori vector, 

1 2( , ,..., )mB B B B= . The calculations are shown in formulae (5) and (6): 

 

1 1 1 2 2 2( , ) { ( , ), ( , ),..., ( , )}m m mO A B O A B O A B O A B=          (5) 

1 1 1

2 2 2

( , )
( , )

( , )
...

( , )m m m

O A B
O A B

O A B

O A B

 
 
 =
 
 
 

                      (6) 

 

5) a priori matrix 

The a priori matrix is a matrix (data set) that is used to train the prediction method. 

The a priori matrices are obtained in advance of the numerical matrix, consisting of 

the a priori numerical composition, ija ( ij m na A ×∈ , 1 i m≤ ≤ , 1 j n≤ ≤ ). They 

include the n  column properties, with each column having m  row data, and each 

row of data corresponding to the a priori values, ir  ( ir R∈ ，1 i m≤ ≤ ). 

 

The given prior matrix m nA ×  is shown in formula (7): 
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...
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where it’s a priori numerical column vector is R . 

 

1

2

...

m

r
r

R

r

 
 
 =
 
 
 

                           (8) 

 

6) a posteriori matrix 

The a posteriori matrix refers to a matrix (data set) that has been used for predictive 

analysis. The a posteriori matrix is composed of the value of the a posteriori kjb  

( kj p nb B ×∈ , 1 k p≤ ≤ , 1 j n≤ ≤ ), including n  column properties, with each column 

property having p  rows of data, and each row corresponding to the a posterior value, 

ks  ( ks S∈ , 1 k p≤ ≤ ). Opposite degree calculations require the a posteriori 

predicted values. 

 

The given a posteriori matrix, p nB × , is shown in formula (9): 

 

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n
p n

p p pn

b b b
b b b

B

b b b

×

 
 
 =
 
 
  

                     (9) 

 

The opposite degree algorithm can be used to predict the value of the a posteriori 

matrix, p nB × , corresponding to the column vector S : 
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                         (10) 

 

3. Opposite Degree Algorithm - Numerical Computation 

As there can be many non-linear relationships, how to calculate the distance between 

these values is very important. We could consider using the method of numerical 

calculation of the opposite degree algorithm. The smaller is opposite degree between 

two gas emission quantities, the closer they will be; when two gas emission opposite 

degrees are greater, the further apart will the difference be between them. Similarly, 

the smaller are the opposite degree related indicators between two sets of gas 

emission data, the closer they will be; the greater are the opposite degree related 

indicators between two sets of gas emission data, the greater will be the difference. 

 

Due to the opposite degree vector being constructed by opposite degree components, 

the opposite degree space is constituted by opposite degree vectors. Therefore, the 

calculations of the opposite degrees is clearly closed, resulting in the collection of the 

operation as the opposite degree space. The main steps of the opposite degree 

numerical computation algorithm can be summarized in the following four steps: 

 

1) Establish populations of neural networks, and compute the basic 

characteristics of the a priori values. Calculating the value of the basic characteristics 

of the a priori initial opposite degree of the individual data, from the population 

correlation network, will facilitate calculation of the weights. 

2) Assess the fitness by calculating the weights, which are used to give the 

“individual data items / indicators” relative importance, and then select the value of 

the a posteriori values. 

3) Select high fitness data. The opposite degree algorithm performed the 
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calculations, and the comparisons based on weights and various parameters. 

4) According to the parameters calculated, predict the a posteriori values. 

 

As a result, the opposite degree numerical computation (OD-NC) method can be used 

based on matrix operations. The OD-NC steps are shown as follows: 

 

1) Calculate the opposite degree matrix of the training sample. The opposite 

degree matrix, iO (1 i m≤ ≤ ), is the opposite degree between the i th row of 

m nA R×  and the m th row of m nA R× , where m nA R×  is composed of matrix 

m nA ×  and vector R , with m  rows and 1n +  columns. The calculation of 

the matrix of opposite degrees is shown in formulae (11) and (12): 

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

( , ) ( , ) ... ( , ) ( , )
( , ) ( , ) ... ( , ) ( , )

... ... ... ... ...
( , ) ( , ) ... ( , ) ( , )

i i n in i

i i n in i
i

m i m i mn in m i

O a a O a a O a a O r r
O a a O a a O a a O r r

O

O a a O a a O a a O r r

 
 
 =
 
 
 

         (11) 

1 11 2 12 1 1

11 12 1 1

1 21 2 22 2 2

21 22 2 2

1 1 2 2

1 2

...

...

...... ... ... ...

...

i i in n i

n

i i in n i

ni

i mi m i m in mn

mm m mn

a a a a a a r r
a a a r

a a a a a a r r
a a a rO

r ra a a a a a
ra a a

− − − − 
 
 
 − − − −
 =  
 
 

−− − − 
  

            (12) 

 

2) Calculate weights, where jω  represents the weight of each data ( ija ), and is 

based on the following steps: 

 

(1) Remove all the 0 rows from matrix iO , which gives iO′ , as all the 0 rows 

cannot be used to compute the weights. There are i  matrices, which can be 

composed of matrix O′ , as shown in formula (13): 
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(2) The last column is a reference value for prediction, namely O′′ . The 

calculation of the matrix of the weights is given in formula (14):  

 

''
1
''

'' 2

''

2 1 21 11 2 1 22 12 2 1 2 1

3 1 31 11 3 1 32 12 3 1 3 1

1 1

...
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m
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O
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(3) Calculate absolute values, where the weights denote the important levels: 
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                           (15) 

 

(4) Calculate the mean value of each column. Prior to any calculations, part of 

the column may contain “E”, in which case the results of the "E" are deleted from the 

data, and calculate the mean value, with iω  taken as the mean value for each column. 

The default value of the “E” is 0. The calculations are shown in formula (16): 

 

2 1 2 1 3 1 3 1 1 1,(| ( ( , ), ( , )) | | ( ( , ), ( , )) | ... | ( ( , ), ( , )) |)
( 1)

i

i i i i m m m i miO O r r O a a O O r r O a a O O r r O a a
m m

ω

− −

=

+ + +
⋅ −

∑ (16) 

 

(5) Calculate the weight. First, calculate the reciprocal of the mean value; second, 

obtain the sum; and finally, divide the total weight by the sum. The weight for each 

column is jω , and the calculation is shown in formula (17): 

 

1 2

1

1 1 1...

i
i

n

ω
ω

ω ω ω

=
+ + +

                    (17) 

 

3) Calculate the prediction sample opposite degree matrix. kO
∧

is the opposite 

degree matrix based on the opposite degree calculation of row k  (1 k p≤ ≤ ) of p nB ×  

and row m  of m nA × , as given below 
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 
 

− − − 
  

        (18) 

 

4) Calculate the test sample’s mean opposite degree and weighted opposite 

degree. The calculation methods of the mean opposite degree, kjξ (1 i m≤ ≤ ，1 k p≤ ≤ ，

1 j m≤ ≤ ), and the weighted opposite degree, kjξ
∧

(1 i m≤ ≤ ，1 k p≤ ≤ ，1 j m≤ ≤ ), are 

given in formulae (19) and (20), respectively: 

 

1 2 2( , ) ( , ) ... ( , ))i k i k in kn
kj

O a b O a b O a b
n

ξ
+ + +

= ∑（           (19) 

 1 1 1 2 2 2( , ) ( , ) ... ( , ) )kj i k i k in kn nO a b O a b O a bξ ω ω ω
∧

= ⋅ + ⋅ + + ⋅∑（     (20) 

 

5) Calculate alternative data row. According to formula (21), select the rows that 

contain klβ (1 k p≤ ≤ ，1 l n≤ ≤ ) as the alternative row: 

 

1 2min(| ( , ) |,| ( , ) |,...,| ( , ) |)kl n kn n kn mn knO a b O a b O a bβ = .         (21) 

 

6) Find the basis data row. Select the row with minimum value ( min( )kjξ ), and 

record its real value as ks . 

 

7) Calculate the result matrix based on formula (22): 
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where the output is the result matrix: 
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                          (23) 

 

4. Gas Concentration Analysis and Prediction Based on OD-NC 

4.1 Data sources 

We select several commonly used variables in the analysis of gas concentration: wind 

speed (m/s), temperature (℃), negative pressure (kpa), CO concentration (ppm), and 3 

minutes for the interval form time series, as shown in Table 2 [15]. 

 

The following are used to identify the variables, where G1, F1, F2, F3, F4 are wind 

speed (m/s), temperature (℃ ), negative pressure (kpa), and CO concentration (ppm), 

respectively. 

 

Table 2  

Gas concentration data 

Time (min) G1 F1 F2 F3 F4 

0:00 0.95 1.8 9.25 0.61 3.5 

0:03 0.93 1.88 9.25 0.61 3 

0:06 0.94 1.58 9.25 0.61 3 

0:09 0.93 1.8 9.25 0.61 3 

0:12 0.93 1.67 9.31 0.61 3 

0:15 0.98 1.67 9.31 0.62 3 
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0:18 0.95 1.8 9.31 0.61 3 

0:21 0.95 1.8 9.31 0.61 3 

0:24 0.95 1.89 9.31 0.61 3 

0:27 0.94 1.88 9.31 0.61 2 

0:30 0.94 1.89 9.31 0.61 2 

0:33 0.93 1.8 9.31 0.61 2 

0:36 0.95 1.8 9.31 0.61 2.5 

0:39 0.95 1.67 9.31 0.61 3 

0:42 0.93 1.99 9.31 0.61 3 

0:45 0.94 1.89 9.31 0.61 3 

0:48 0.98 1.88 9.31 0.61 12 

0:51 1.02 1.78 9.31 0.61 18.75 

0:54 1.05 1.67 9.38 0.61 20.75 

0:57 1.01 1.89 9.38 0.61 17.75 

1:00 1 1.89 9.38 0.61 7.5 

1:03 0.98 1.67 9.38 0.61 5 

1:06 0.95 1.88 9.38 0.61 4.5 

1:09 0.95 2.08 9.38 0.61 3.5 

1:12 0.98 1.99 9.38 0.61 3.5 

1:15 0.95 1.78 9.38 0.6 3.5 

1:18 0.95 1.78 9.38 0.6 3.5 

1:21 0.98 1.89 9.38 0.61 3.5 

1:24 0.98 1.67 9.31 0.6 3 

1:27 0.98 1.99 9.31 0.6 3 

 

 

The time series is not included in the calculations, and the final gas concentration data 

are shown in Table 3. In the comparisons, we select the top 22 groups as training 

samples, and the last 8 groups as test samples. 
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Table 3  

Final gas concentration data 

No. F1 F2 F3 F4 G1 

1 1.8 9.25 0.61 3.5 0.95 

2 1.88 9.25 0.61 3 0.93 

3 1.58 9.25 0.61 3 0.94 

4 1.8 9.25 0.61 3 0.93 

5 1.67 9.31 0.61 3 0.93 

6 1.67 9.31 0.62 3 0.98 

7 1.8 9.31 0.61 3 0.95 

8 1.8 9.31 0.61 3 0.95 

9 1.89 9.31 0.61 3 0.95 

10 1.88 9.31 0.61 2 0.94 

11 1.89 9.31 0.61 2 0.94 

12 1.8 9.31 0.61 2 0.93 

13 1.8 9.31 0.61 2.5 0.95 

14 1.67 9.31 0.61 3 0.95 

15 1.99 9.31 0.61 3 0.93 

16 1.89 9.31 0.61 3 0.94 

17 1.88 9.31 0.61 12 0.98 

18 1.78 9.31 0.61 18.75 1.02 

19 1.67 9.38 0.61 20.75 1.05 

20 1.89 9.38 0.61 17.75 1.01 

21 1.89 9.38 0.61 7.5 1 

22 1.67 9.38 0.61 5 0.98 

23 1.88 9.38 0.61 4.5 0.95 

24 2.08 9.38 0.61 3.5 0.95 

25 1.99 9.38 0.61 3.5 0.98 
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26 1.78 9.38 0.6 3.5 0.95 

27 1.78 9.38 0.6 3.5 0.95 

28 1.89 9.38 0.61 3.5 0.98 

29 1.67 9.31 0.6 3 0.98 

30 1.99 9.31 0.6 3 0.98 

 

 

4.2 Gas concentration prediction based on OD-NC 

The calculation procedure is based on the OD-NC algorithm. The prediction results 

are given in formula (24): 

 

0.9671
0.9096
0.8966
0.9449
0.9449
0.9628
0.9464
0.9265

S
∧

 
 
 
 
 
 =  
 
 
 
 
  

                        (24) 

 

4.3 Gas concentration analysis based on OD-NC 

In order to analyze the accuracy of the OD-NC algorithm, we provide a comparative 

analysis of the RBF, GRNN and OD-NC algorithms. The RBF (Radial Basis Function) 

is a radial basis function neural network, and the GRNN (General Regression Neural 

Network) algorithm is a generalized regression neural network.  

 

These three algorithms are designed for processing the data in Table 3. For purposes 

of comparison with the real values, the three methods are used to predict the real 

values in Table 4 and Figure 1, to predict the relative errors of the results in Table 5, 

and to predict the mean relative errors of the results in Table 6.  
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Table 4  

Prediction results 

No. Real Value (%) 
Prediction Value (%) 

OD-NC RBF GRNN 

1 0.95 0.9671 0.7791 0.9574 

2 0.95 0.9096 0.8571 0.8089 

3 0.98 0.8966 0.8919 0.8897 

4 0.95 0.9449 0.9274 0.9528 

5 0.95 0.9449 0.9274 0.9528 

6 0.98 0.9628 0.9229 0.9540 

7 0.98 0.9464 0.8998 0.8994 

8 0.98 0.9265 0.9117 0.8910 

 

 

Table 5  

Relative errors of the three methods 

No. 
Relative Error (%) 

OD-NC RBF GRNN 

1 0.0180 0.1799 0.0078 

2 0.0425 0.0978 0.1485 

3 0.0851 0.0899 0.0921 

4 0.0054 0.0238 0.0029 

5 0.0054 0.0238 0.0029 

6 0.0176 0.0583 0.0265 

7 0.0343 0.0818 0.0822 

8 0.0546 0.0697 0.0908 
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Table 6  

Mean relative errors of the three methods 

Method OD-NC RBF GRNN 

Mean Relative Error (%) 3.2837 7.8120 5.6736 

 

 

From the above tables, the relative error and mean relative error are compared. The 

OD-NC algorithm is superior to the RBF and GRNN algorithms. From Figure 1, it is 

intuitive to see the prediction results of the different methods, which shows that the 

real value is close to the OD-NC prediction results. In Table 6, the OD-NC relative 

error control in less than 4%. Therefore, the OD-NC algorithm is a feasible and 

effective method for predicting gas concentration. 

 

 

Figure 1  

Prediction results 
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4. Concluding Remarks 

The paper introduced the concept of opposites, constructed opposite degree algorithm, 

and discussed the OD-NC algorithm principle, as follows: (1) the opposite degree 

algorithm was obtained by cyclic matrix and data, and by expressing the relationship 

of the training data; (2) calculated the effect of data and matrix of the predicted value, 

obtained the degree of opposition, and then analyzed the influencing factors of weight; 

(3) according to the weight values and testing data of opposite degree mean and the 

weighted opposite degree, determined the reference for calculation; and (4) through 

the opposite degree algorithm, calculated numerical data can be predicted.  

 

The prediction results showed that: (1) the OD-NC algorithm was superior to the 

competing RBF and GRNN algorithms; and (2) the mean error of the OD-NC 

algorithm was controlled within 4%, which was lower than for the other methods. 

Therefore, the OD-NC algorithm was feasible and effective in the prediction and 

analysis of gas concentration. 
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