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SPECTRALLY-CORRECTED ESTIMATION FOR HIGH-DIMENSIONAL MARKOWITZ
MEAN-VARIANCE OPTIMIZATION!

ZuiponG Bar?, Hua Li°, Micuarr McALeerC9€T anp Wing-Keung WongED

Abstract

This paper considers the portfolio problem for high dimensional data when the dimension and size
are both large. We analyze the traditional Markowitz mean-variance (MV) portfolio by large dimension
matrix theory, and find the spectral distribution of the sample covariance is the main factor to make
the expected return of the traditional MV portfolio overestimate the theoretical MV portfolio. A cor-
rection is suggested to the spectral construction of the sample covariances to be the sample spectrally-
corrected covariance, and to improve the traditional MV portfolio to be spectrally corrected. In the
expressions of the expected return and risk on the MV portfolio, the population covariance matrix is
always a quadratic form, which will direct MV portfolio estimation. We provide the limiting behavior
of the quadratic form with the sample spectrally-corrected covariance matrix, and explain the superior
performance to the sample covariance as the dimension increases to infinity proportionally with the
sample size. Moreover, this paper deduces the limiting behavior of the expected return and risk on
the spectrally-corrected MV portfolio, and illustrates the superior properties of the spectrally-corrected
MYV portfolio. In simulations, we compare the spectrally-corrected estimates with the traditional and
bootstrap-corrected estimates, and show the performance of the spectrally-corrected estimates are the
best in portfolio returns and portfolio risk. We also compare the performance of the new proposed es-
timation with different optimal portfolio estimates for real data from S&P 500. The empirical findings

are consistent with the theory developed in the paper.
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1. INTRODUCTION

Mean-Variance (MV) portfolio optimization has been one of the most important topics in
finance since Markowitz (1952) developed the theory. It provides a powerful tool for investors
to allocate their wealth, incorporating their preferences according to their expectations of re-
turns and risks. According to the theory, portfolio optimizers respond to the uncertainty of an
investment by selecting portfolios that maximize profit, subject to achieving a specified level of
calculated risk or, equivalently, minimize variance subject to obtaining a predetermined level of

expected gain (see Markowitz (1952, 1959, 1991); Kroll et al. (1984)).

More precisely, we assume that there are p branches of assets with random returns r =
(r1,--- ,rp)", having expectation g = (uy,--- ,p,)" and covariance matrix £ = (07;). For any
investable capital, C, and investment plan, ¢ = (cy, ..., cp)T, satisfying Zle ¢; = C, the antici-
pated return is a random variable, ¢’ r, with expectation, ¢’ u, and variance or risk, ¢’ Z¢. For
convenience, we also call ¢ = (cy,...,c,)” a portfolio. Without loss of generality, we assume
C < 1, in which the strict inequality infers that portfolio optimizers invest their wealth only
partially. We further assume that short selling is allowed; that is, any component of ¢ could be

negative.

In this model, the MV portfolio optimization problem can be reformulated as:
(1.1) max ¢’ g, subject to ¢’1 < 1 and ¢’ Z¢ < o7,
in which 1 represents the vector of ones, and 0'(2) is a given level of risk. We call R = max ¢’ u
satisfying (1.1) the optimal expected (OE) return, and the solution ¢ to the maximization
the optimal allocation (OA) plan. Bai et al. (2009) extend the separation theorem (Cass and
Stiglitz (1970)) and the mutual fund theorem (Merton (1972)) to obtain the analytical solution

of equation (1.1), as shown in the following proposition:!

'In the expression of c, Z‘;ZX:I,Z is the solution of (1.1) only with one restriction ¢’ Z¢ < o, if it satisfies ¢’ 1 < 1,
that is, % < 1. This is the OA plan. Otherwise, ¢(u, £) = Tz + b(g, ¥) (2*1,1 - %2711). See Bai et al,

(2009) and the references therein for further information.
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ProrposiTiON 1.1 For the optimization problem shown in (1.1), the optimal allocation and the

corresponding expected return are:

oozl if o017z <1
12) ec=c@x) = | VW>H . VI
11 b 3 2—1 1" ﬂz—ll . ool' U 1
1711 + (ﬂa ) H— 17311 lf \/m > 1,

and

(13)  R:=RuX) = (c(p.2) p,

respectively, in which:

(LS, 172107 - 1
(u,2) = ur>- 1711 — (78 1p)? -

Proposition 1.1 provides investors with the best OA plan with the corresponding OE return,
and also an excellent solution to Markowitz’s MV optimization procedure. However, in real-life
applications, practitioners have to estimate both an unknown expectation, g, and an unknown
covariance matrix, . Nevertheless, in classical estimation, the sample mean and sample covari-
ance are not consistent estimates of their counterpart parameters in the Markowitz optimization
problem. In the past five decades, there have been over 300 papers written on the estimation of

M, as mentioned in the report of Green et al. (2013), with many possible estimates of pu.

Nevertheless, a difficult task is how to provide accurate estimates of the population covari-
ance matrix to be used in the expression of the OA plan (1.2) that will lead to a more accurate
estimate of the MV optimal return. In contrast, there have been few papers written on how to

estimate the covariance matrix accurately.

It is well known that the sample covariance matrix is not a good choice as the estimator of the
population covariance matrix in the MV optimization. This is because the sample covariance
matrix tends to be far from its population counterpart when the dimension of the sample plays
an important role compared with the sample size. When the dimension of the sample and the
sample size increase to infinity proportionally, it is well known that: (1) the spectral distribu-
tion of the sample covariance matrix follows the MP-Law when the population covariance is a
unit matrix (see Marcenko and Pastur (1967)); or (2) follows a nonrandom distribution with the
form of several implicit functions for the common population covariance when the population

covariance satisfies some regularity conditions (Siverstein (1995)).



This finding gives inspiration to explore further information for the population covariance
matrix, including the spectral structure (see, for example, El Karoui (2008), Rao et al. (2008),
Mestre (2008), Bai et al. (2010), Li et al. (2013), Li and Yao (2013) among others), and the
eigenvector matrix (Bai et al. (2007), Siverstein (1990, 1989, 1984)) among others, when both

the dimension and the size of the sample are large.

In this paper, we apply the spectral theory of the population covariance to correct the spectrum
of the sample covariance matrix that enables further development of the spectrally-corrected
(SC) estimates for the MV portfolio optimization. We first develop some limiting properties for
the SC estimates for both return and risk in the MV portfolio optimization. Thereafter, we com-
pare the SC estimates with the corresponding traditional plug-in (PI) and bootstrap-corrected

(BC) estimates (see Bai et al. (2009) and the references therein for further information).

There are many proposals to improve the population covariance matrix estimation, which
can be divided into two schools. The first suggests building on the additional knowledge in the
estimation process, such as sparseness, graph model or factor model (see Bickel and Levina
(2008), Rohde and Tsybakov (2011), Cai et al. (2012), Ravikumar et al. (2008), Rajaratnam et
al. (2008), Khare and Rajaratnam (2011), Fan et al. (2008), among others). The second recom-
mends correcting the spectrum of the sample covariance, such as the optimal linear shrinkage
estimator in Ledoit and Wolf (2004) and the nonlinear shrinkage estimator in Ledoit and Wolf
(2012). The SC estimates given in this paper belong to the second school. We improve estima-
tion about the quadratic form associated with the population covariance matrix and its inverse.

The details are given in the following sections.

The organization of this paper is as follows: In Section 2, we discuss the Markowitz MV
optimization enigma, and develop some properties for the limiting behavior of the classical
Markowitz optimal portfolio estimator. In Section 3, BC estimation has been designed to solve
the protfolio estimator but its performance in risk is even worse than the classical Markowitz
optimal portfolio, that is the PI portfolio. In Sections 4 and 5, we introduce the SC method
and derive properties for the limiting behavior of the SC optimal portfolio estimator. Simula-
tion studies and empirical illustrations are provided in Sections 6 and 7. Section 8 gives some

concluding remarks.



2. PLUG-IN ESTIMATION AND MARKOWITZ MEAN-VARIANCE OPTIMIZATION ENIGMA

We denote, fi, and, f), as the estimates of the population mean, g, and covariance matrix,
(PCOV), respectively, for the random return vector r. Substitution of f and £ in (1.2) gives the
OA estimate and the corresponding random portfolio return as:

2.1) é=c(y) and r.=@r.

Then, for the expectation, R; = €u, and the risk (or variance), 0'2 ¢’X¢, we have following

proposition:

ProposiTION 2.1 For the optimization problem shown in (1.1) and given i and 3, the expecta-

tion, Re, and risk, 0'%, of the random portfolio return, re, respectively are:

o) ﬂ,ffll:l lf‘ 0'01’271[1 < 1
22) Re = ﬂ@ @ -
ro-1p -1 . ool’2”
. 13-11 +bé(llz ”_aéﬂz 1) lf‘ '—ﬂ'fﬁlﬂ > 1,
an
0'6 Cuu lf 0'01’2’1[:[ <1
.| Vit <"
(23) O-c el 2 2 . 0'01,271ﬂ
m + bé(e,w - 261@61,# + aéel,l) lf m > 1,
114 1$-1102— A A A A
in which ag = == A be = \/ﬂ'ilitfﬁllll_o(;ilﬂ)z’ ey = X7'ZE0, e = T27'EX71, and

From Proposition 2.1, R; is a function of the quadratic form a’$~'b, and o7} is a function of
a’ﬁ‘lZﬁ‘lb, in which a and b could be g, 1, or fi. In order to obtain improved estimates for the
return and risk, we intend to obtain improved estimates for both a’~~'b and a’£~'3%"'b. For
purposes of obtaining a superior estimate 2 of , so that it will provide improved performance in
both (2.2) and (2.3), we develop properties for a’$~'b and a’$~'3%~'b. Estimation of a quadratic
form, a%~'b, closer to its population counterpart is more important than making £~ closer to
~~! in the Euclidean distance. For simplicity, let :

24) ¢*(A)=a’A"'b and ¢P(A)=a’A"'ZA'D,
for A = X or any estimate 3. For an estimate £ of X, (/)g(ﬁl) 18 an accurate estimate of ¢;’(Z) and
¢P(2) is an accurate estimate of ¢P(Z) if ¢?() is close to #P(T) and P() is close to ¥P(Z) for

any large sample size n.



2.1. The limiting behavior of the sample covariance matrix

It is standard practice to use the sample covariance matrix in PCOV estimation. This practice
is useful if the effect of the dimension of the sample is neglectable when compared with the
sample size since, in the classical limit theory, the sample covariance matrix is a consistent
estimator of the PCOV as the sample size tends to infinity for a given dimension. However,
in the large dimensional setup, in which both of the sample size and dimension are large, the
classical law of large numbers is not applicable because the sample covariance matrix diverges
from the PCOV. In the large dimensional setup, the most interesting situation is when the sample
size, n, and the dimension, p, increase to infinity proportionally, such that:

25 p/n—-y>0 with p,n— 0.
The statement in (2.5) is the fundamental assumption in this paper. In addition, we consider
y € (0,1) and do not study the case where y > 1 as we have to deal with the inverse of the

singular matrix in the latter case, which is not the purpose of the paper.

Under this assumption, the limiting properties of the sample covariance have been well in-

vestigated, and we will use this property to study Markowitz’s MV optimization estimation.

Suppose that X, = (x5, -+, xx) (kK =1,2,---,n) are i.1.d. random vectors with mean vector,

M, and covariance matrix, X. Define the sample covariance matrix as:
1 © _ .,
26)  8y=— > (e —D(x X,
n-—1 =
in which X = }}_, X;/n is the sample mean. For any p X p real symmetric S, the empirical

spectral distribution (ESD) F® is defined as:

1 p
QT P =) fie ()
i=1

where 4} > A, > -+ > A4, are the eigenvalues of S, and d4(x) is 1 if x € A and 0 otherwise.

For a distribution sequence F,, = F i if it converges to a nonrandom distribution F as p/n —
y > 0 with p,n — oo, F is called the limiting spectral distribution (LSD) of the sequence of {S,,}.
We let m denote the Stieltjes transform” of F = yF + (1 — y)&y. There is an obvious one-to-one

mapping between F and m, where m is the unique solution on the upper complex plane of the

%If F(x) is a function of bounded variation on the real line, then its Stieltjes transform is defined by mp(z) =
f/%_zdF(/l), z€ C*, and so m(z) = —? + ym(z) for any z € C*.



following Marcenko-Pastur equation (see Siverstein (1995)):

1 tdH(t)
2. = —— *
28) z m+yf1+tm zeC,

in which H = lim,,_,., F=.

According to the spectrum analysis of the sample covariance, we deduce the limiting behavior
of the quadratic form a’pS,;lbp and a;,SngS;lbp for any pair of sequences {a,} and {b,} under
appreciate regularity conditions. Consider the following assumptions that will often be used
below:

Assumption (I) Z, = (z,,--- ,2,) = (2 j)pn in Whichz;j; i =1,--- ,p,j=1,--- ,n)arei.id.
random variables, with Ez;; = 0, Elz;;|* = 1, Elz;;|* < 0, and x;, = p + Z},/zzk, where %, is
a spectrally bounded nonsingular matrix, and k = 1,2,--- ,n;

Assumption (Il) X, = V,A, V' is nonrandom Hermitian and nonnegative definite with its
spectral norm bounded in p, where V,, = (Vi ,,V2,,,--+, V) and
(2.9)  Ay(r,w,) =diag(t1,,,7L,,,...7.1,) (T >1>-->11),
in whicht = (t1,...,7.), W, = (p1, ..., pL)/ P, p1 + ... + pL = p, and 1, is the p; dimension
unit matrix (i = 1, ..., L).

Assumption (II) w, — w = (W, wy,...,wr), as p — oo, (W + wy + -+ +wp = 1).

We now present some results that form the foundation of the paper in the following theorem:

THEOREM 2.1 Under Assumption (1), if the empirical spectral distribution (see (4.3)) of X,

F%, converges to a given distribution function H, we have:

e a,’>'b, o ~ a,’7'b
(2.10) a,’S;'b, — ﬁ — 0 and a,'S;'%,S,'b, — (”1_—”;’
in probability for any pair of uniform bounded sequences {a,} and {b,}, where S, is defined in

(2.6).

— 0

We conduct Monte Carlo simulations to check the assertions made in Theorem 2.1, and dis-
play the simulation results in Observations 6.1 and 6.2 in the Simulation Section. The simulation
results displayed in Observation 6.1 confirm that the assertion shown in the first limiting equa-
tion (2.10) holds true, while the simulation results displayed in Observation 6.2 confirm that the
second limiting equation (2.10) holds true.

Applying Theorem 2.1, the quadratic form (that is, a,’S;,'b,) with the inverse of S, is asymp-
totically (1 — y)~! (> 1) times that of (that is, ap’Z;Ibp) with Z;l. This property could be used

to explain the Markowitz mean-variance optimization enigma, which will be discussed in detail
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in the next subsection.

2.2. Markowitz mean-variance optimization enigma

Before discussing the solution for the Markowitz mean-variance optimization enigma, we
examine the performance of the sample covariance matrix in the MV optimization portfolio by
assuming that the estimates of the population mean vector are fixed. In this paper, we examine
the property of the portfolio®:

(2.11) ¢, =c,S,),

which is constructed by plugging S, into (1.2), and then the property of its expected return
given by ¢,u, (denoted as R,). Bai et al. (2009) refer to ¢(%,S,) and ¢(X,S,)'X as “plug-in
allocation” and “plug-in return,” respectively. The values of ¢(X, S,,) and ¢(X, S,,)’X are obtained
from plugging both S, and X into (1.2). Define:

(2.12) R, =c,u, and Risk{ =c,X,c,.

As X is a consistent estimator of u, without loss of generality, in this paper we refer to ¢, as

“plug-in allocation”, R, = ¢,u,, as “plug-in return,” and Risk? = ¢,X,¢, as “plug-in risk”.

According to the classical theory of large numbers, as n — oo, S, is a consistent estimator
of X for given p, so that as n — oo for a given p, R, is consistent for R. However, if p tends
to infinity, R, could become an inaccurate estimate of R. Bai et al. (2009) have analyzed this

situation. We extend their work by deriving the following lemma and theorem:

LemMma 2.1 Under Assumptions (1) to (Ill), supposing (\/lﬁ, \/L;,)’ (\/lﬁ, IL) and (L ﬂ) be-

T (L1 1Ll

long to Q = {(vl,vz) U, Ul vy =d;i €R,i=1,---, Lmax {|[ui |, |lvall} < M(> 0)}, we have:

112—11 1/2—1 rz—l
2.13) N e LNy LN

p A/l ’ [ell ’

I/SZII 0 I,SZI[J 0 H'Sﬁlﬂ 0
(2.14) » = YS11s il - YSi,» and e = VSuu

1'S;'2S-1 1'S;'5S wWS1ES-u
(215) n n _),)/35,0 , n n _),)/3g0 , and n n _),)/35,0 .

P v vVollll e [lpall? s

inwhichy=1/(1-y)(0<y<1).

3In order to eliminate the disturbance from the estimation of u, we consider it as a known vector. In the empirical
analysis, we select X as f1, which is a consistent estimator of u.
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Tueorem 2.2 Under Assumptions (1) to (I1l), if oo = &/ A/p, I/ /P = & + o(1) then, for
three pairs of sequences (#, L) ( LK ) and (L L) in Q, we have:

Vo P \ Ve il e
a. the limit of the theoretical optimal return R exists and:
§0éu A[Sh if  &os)/Snu < 1,

2.16) R— 0 0 0 12
Sty [ Siséo-! o _ i : 0 /.0
J St * & Shust—(s1,)? (g#’y St if fogl’”/gy’” > L

b. the limit of “the plug-in return” exists and:

obu 7S, if  NYéos)Isou < 1,

(217) Rp — 0 0 22 -1 0 )2
Sip Siié0~Y o _ i) : 0 /.0
Eu 3, + Yéu \/ ERr e (gﬂ,ﬂ & if \/7605‘1#/9‘#,# > 1.

c. the limit of p - Risk, exists and:

p Y& if \/7505'(1),”/ gB# <L
(2.18) p - Risk! — ye260 -1 (s.)
&) 0 0 . 0 /.0
Yty SusT 1St (g/t,/t a ﬁ) if \/75091,/1/ Suu > 1,

inwhichy = 1/(1 —y) (0 <y < 1). In addition, p - Risk! — oo, asy — 1.
From Theorem 2.2, we have the following remark:

RemARK 2.1  According to (2.16) and (2.17), we have:
a. when fog‘(l)’# < y1-ys), or §og?# > ¢, the plug-in return R,, is always asymptotically
greater than the theoretical optimal return;
b. when fog?# < A1 - ygg’ﬂ, the plug-in return R, is asymptotically 1/ /1 —y times the
theoretic optimal return R;
c. when \J1 -y < fog(l’,ﬂ <y, we have:
R = fof,u ‘\,S‘g,ya

and

S & Jg?,lfg—a—y)(o _(g‘f,ﬂﬂ)

Ry, = g“T + 0 0 St 0
sti 1=y \shst, —(s),) Y,

according to (1.2) and (2.17).

Theorem 2.2 and Remark 2.1 show that the findings in Bai et al. (2009) that the plug-in return,
R,, 1s asymptotically greater than its corresponding theoretical optimal return, R, holds only in

point a. of Remark 2.1, but not in point b. Thus, one should not be surprised if the plug-in return,
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R,, 1s smaller than its corresponding theoretical optimal return, R. We show that it is possible
that the plug-in return, R, is smaller than its corresponding theoretical optimal return, R, in the

following example :

ExampLe 2.1  Considering the special case in which X, = I, and &, = 1, we have g‘(l)’l = 5'2,,1 =

1, and so, when /1 —y < 5'(1),# <1:
W =s))

R=¢, and R,=¢, g?’#+ =y

For a small enough'y, we have R, < R as Ig?’“| < 1in(2.13).

In order to demonstrate the assertions in Theorem 2.2, we simulate the plug-in returns, R,
and its corresponding theoretical optimal return, R, by setting the population covariance to be
a unit matrix. We display the results in Figure 1. From the figure, R, can be larger than R, and
the deviation between R, and R increases exponentially when the number of assets increases.
Bai et al. (2009) call this phenomenon “over-prediction”, which is consistent with the finding
in Remark 2.1 points a and b. The result is also consistent with the finding in Theorem 2.2 that

the plug-in estimator is not accurate for the return estimation in the optimal portfolio.

We also note that the plug-in estimator is inaccurate in the plug-in risk defined in (2.12)
because, as y increases toward 1, the risk of the portfolio ¢(u, S,) will increase dramatically. In
order to demonstrate this phenomenon, we conduct simulations for the performance of the plug-
in risk for different pairs of (p, n) by setting the risk level oy = 1 in (1.1), and report the results
in Table 1. From the table, we find that all risk! > 3 and risk? could be larger than 100 when
p/n = 0.9. This means that the plug-in portfolio not only has the over-prediction problem for
the estimated return, but also yields much higher risk than its corresponding theoretical optimal

portfolio. Table I'V provides further information and confirmation of the result.

3. BOOTSTRAP-CORRECTED ESTIMATION

In order to circumvent the limitation of the plug-in estimation, Bai et al. (2009) introduce
a bootstrap-corrected approach to improve estimation and solve the over-prediction problem.
The bootstrap-corrected method requires a draw from the resample x* = {x],--- ,X;} of the p-
variate normal distribution with mean, g, and covariance matrix, S,, as defined in equation (2.6).

Thereafter, one has to compute the sample covariance matrix from the resample y*, denoted as
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S, and then plug S; into (1.2) to obtain ¢, := ¢(i,S;) and R}, := R(u,S;). Under suitable
conditions, Bai et al. (2009) prove the following proposition to provide asymptotic properties

for the bootstrap-corrected estimation :

ProposiTioN 3.1  Under Assumption (1) and using the bootstrapped plug-in procedure, as de-
scribed above, the bootstrap-corrected allocation, c;,, and bootstrap-corrected return esti-
mate, R, are:

@31 ecp=c,+ Ly(cp —-¢,) and R,=R,+ %(Rp -R)),

wherey = 1/(1 =), and ¢, and R, are plug-in allocation and return, respectively.

The bootstrap-corrected allocation is deduced from correcting the bias of R, and so it is
expected to circumvent the over-prediction problem. Bai et al. (2009) conduct simulations to
show that the bootstrap-corrected allocation is indeed closer to the theoretical allocation than is
the plug-in allocation, and the bootstrap-corrected return performs better than the plug-in return.
We conduct simulations to reexamine the issue and find that, under Assumptions (I) to (III), the
bootstrap-corrected allocation is indeed closer to the theoretical allocation than is the plug-in
allocation, and the bootstrap-corrected return performs better than the plug-in return. However,
we also find that the bootstrap-corrected return could sometimes be smaller than its theoretical
optimal return, or even be negative. This shows that the bootstrap-corrected approach can be
improved.

We call the risk of the bootstrap-corrected return:

(3.2)  Riskl =c,Z,¢,
“bootstrap-corrected risk.” According to (3.1) and Part ¢ of Theorem 2.2, we obtain the fol-

lowing theorem:

THEOREM 3.1  Under Assumption (1), for any given p, we have:
(3.3)  p-Risk? = p-Risk! + O(y™'"),
inwhichy=1/(1-y) - o0, asy — 1.

In the simulation study, we find that the bootstrap-corrected risk is not stable, and is some-
times even higher than the plug-in risk, Risk?, defined in (2.12), implying that the bootstrap-
corrected risk, Risk?, could perform even worse than the plug-in risk. We report Risk’ and Risk?
in Table I for the following cases: (a) fix p/n = 0.5, and vary p from 100 to 500; and (b) fix
p = 252 and vary p/n = 0.5 to 0.9, with 0y = 1 in both situations. We obtain the following
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results: (1) the performance of both plug-in and bootstrap-corrected risks are inaccurate as all
exceed 3; (2) when p = 252 and vary p/n from 0.5 to 0.6, both plug-in and bootstrap-corrected
risks are greater than 100; and (3) the bootstrap-corrected risk is larger than the plug-in risk
in all cases reported in Table 1. The results in Table IV confirm that the performance of both

plug-in and bootstrap-corrected risks can be inaccurate.

4. THE LIMITING BEHAVIOR OF THE SAMPLE SPECTRALLY-CORRECTED COVARIANCE MATRIX

According to the theory of large dimensional random matrix, the sample covariance matrix
deviates from the population covariance matrix dramatically as p,n — oo when its ratio is
y = p/n > 0. In order to explain this phenomenon, we express the spectral decomposition for
the sample covariance matrix as :

4.1 S,=UA,U,

in which A, = diag(Ay,...,4,) (43 > A, > --- > 4,) is the eigenvalue matrix, and U, is the
corresponding matrix of eigenvectors. In order to solve the problem of the large deviations, the
deviation of the sample covariance from the PCOV estimation can be separated into two parts,
namely: (i) the deviation of the eigenvalue matrix of the sample covariance; and (ii) the corre-

sponding eigenvector matrix.

For data of large dimensions, it is well known that the eigenvalue matrix of the sample covari-
ance is far from the PCOV matrix (see Bai et al. (2007)). However, it is still an open problem as
how best to correct the eigenvectors for the PCOV. First, we have to correct the spectral element,
and thereafter correct the corresponding eigenvector. Correcting both the spectral element and
the corresponding eigenvector to improve the PCOV estimation is a useful approach. There are
many papers on the spectral estimation of the PCOV for the large dimensional data (see, for ex-
ample, Mestre (2008), Li and Yao (2013), Li et al. (2013), Yao et al. (2012), EI Karoui (2008)).
The problem is complicated as the eigenvector matrix of the PCOV is not unique when there
are two or more eigenvalues of the PCOV of the same value. Therefore, we make the following

conjecture:

CoNJECTURE 4.1 It is not possible to obtain an efficient estimate for the eigenvector.

In order to provide a possible solution to the problem stated in Conjecture 4.1, we propose

an approach to correct the eigenvalue matrix of S,, and thereafter obtain the sample spectral
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corrected covariance matrix:

42) S,=UA,U,

in which A, is given by (2.9). We believe that this estimate will outperform the sample co-
variance matrix in estimating the quadratic form of the PCOV. We will develop asymptotic
properties for the limiting behavior of ¢:,f (§,,) = ap’§,‘llbp, and then conduct simulations to

show that ¢2§ (§n) performs better than ¢::I’j S, =a p’S,;lb s

Before making the comparison, for a given p X p symmetric matrix A, define the empirical

spectral distribution (ESD) as:
1 p
@3 Fw=- Z] ey XER,

inwhich A% <42 <--- < /lf; are the eigenvalues of A, and /i, denotes the indicator function.

THEOREM 4.2 Under Assumptions (I) to (IIl), assume FS has a limit spectral distribution
FT™Y, with L splitting support, ©.* Then for any pair of sequences {a,} and {b,} in Q (as defined

in Lemma 2.1), we have:

L L

~ dk Tk(l/lj — Tj)
44 a’S;'b,— » — ) —L L =¢@a,b) as.,
pom ,Z:; T ; 7 — T4)
where u; is the solution of 1 + yfﬁdFT’w(t) =0 forany j=1,--- ,Lwithty > u; > 1, >

<o > 1. > u > 0, and ¢(a, b) is the limit ofap’g,;lbp.

We conduct Monte Carlo simulations to check that the assertion made in Theorem 4.2 holds
true, and display the simulation results in Observation 6.1 in the Simulation Section. The sim-
ulation results displayed in Observation 6.1 confirm that the assertion shown Theorem 4.2 is
correct.

As explained in Section 2, the accurvacy of the portfolio optimization depends on the accu-
racy of the estimates of the quadratic forms a;Z“b » listed in (1.2) and (1.3). For simplicity, we
let ¢Z§ (A) = a;)A‘lb,,, as defined in (2.4), for A = X or any estimate T of X. The traditional esti-
mate qb:,)]’j(Sn) = a},S;lbp is asymptotically equal to a;,E‘lbp /(1 —y), and answers the following
question: (1) What is the characteristic of ¢(a, b) defined in (4.4), and (2) does ¢(a, b) approach
or diverge from a/,x"'b, /(1 — y) as compared with gb:If(E) = a,%"'b,? We hypothesize that S,
defined in (4.2) will perform better than the sample covariance matrix S, defined in (2.6) in the

sense that it provides better estimates of ng;’ (2), as shown in the following conjecture:

“The L splitting support is the support of F7¥ that can be covered by L disjoint intervals.



14

CoNJECTURE 4.3 Under the conditions stated in Theorem 4.2, when p is large, we have:
a;Z‘lbp <g¢(a,b) < ya;Z‘lbp if a;Z‘lbp > 0,

a;,Z‘lbp > ¢(a,b) > ya},Z‘lbp if a’pZ‘lbp <0,

where y = 1/(1 —y), and ¢(a,b) is the limit of a,’S;'b,, as defined in Theorem 4.2.

(4.5)

We conduct Monte Carlo simulations to check the assertion made in Conjecture 4.3, and
display the result in Observation 6.1. The simulations confirm the assertion is correct. From the
above discussion and the simulations, we expect C([l,gn) will perform better than c(y, S,) in
estimating ¢(u, 2) in (1.2) in portfolio optimization. Nonetheless, besides using the estimate of
c(u, X), we have to check the accuracy in estimating the risk defined in (2.3). For any portfolio
strategy, the corresponding risk is an important measure to evaluate the performance of the
strategy. From (2.3), one could find that the risk, o (u, Z) is determined by ¢, (Z) =a’$ 33 b
fora,b =1, and u (see (2.4)). Considering 3= Sn, we have following theorem:

THeOREM 4.4 Under Assumptions (I) and (1), for any pair of sequences {a,} and {b,} in Q, we

have:

4.6) a,S;'5S.'b, _’deﬂk(z A(L(‘; —ﬂk)] = o@b) as.
J

Similar to Conjecture 4.3 to hypothesize the behavior of ¢(a, b) defined in Theorem 4.2, we
have the following conjecture to hypothesize the behavior of o(a, b) defined in Theorem 4.4:

ConNJEcTURE 4.5  Under the conditions stated in Theorem 4.4, when p is large, we have:
a;,Z‘lbp < o(a,b) < y3a;72‘1bp if a;)Z‘lb,, >0,

a,x"'b, > o(a,b)>y'a,x'b, if aT'b,<0,

in whichy = 1/(1 —y), and o(a,b) is the limiting behavior ofa 1ZS 1bp, as defined in (4.6).

“4.7)

Conjecture 4.3 hypothesizes the behavior of the estimates of the components for the optimal
return, while Conjecture 4.5 hypothesizes the behavior of the estimates of the components for
risk. Therefore, we conduct simulations to check whether we could reject the assertions made
for the estimates of the risk components in Conjecture 4.5, and in Theorems 2.1 and 4.2. In
the simulations, we compute goa"(Z)( gba”(Z) =a/ x'b)), o(a,b), (pa"(S )(= a,S;'=S;'b,) and
goa" (S )= ap S-!3S- -b,), and report the results in Table I1I. We find that: (1) gpa”(Z) <o(a,b) <
Y’ ()Oa,, "(2); (2) o(a, b) is close to soa”(E) 3y soa"(E) is further from soa”(E) 4) soa‘”(S ) — o(a,b)
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with small standard deviation; and (5) goZS(S,,) — 73902:(2) with a much higher standard devi-
ation than for (p:;’ (S,). For example, when y = 0.9 in Panel A of Table III, <pla’l’; (Z) = 2.1266,
o(a,b) = 4.3561, y3g02;’(2) = 2126.6, ¢:Z(§n) = 6.7951 with standard deviation = 2.1544,
while goZ}’j(Sn) = 3422.9 with standard deviation = 7450.3. The results support the assertions

that (,02]’: (§n) is a more accurate estimate of d;g (2) than is go:]’: (S,).

5. THE SPECTRALLY-CORRECTED OPTIMAL PORTFOLIO

We now develop the theory of the spectrally-corrected estimation for the optimal portfolio.
Suppose the expected return vector, u, is given, and plugging the sample spectrally-corrected
covariance matrix into (1.2) gives the spectrally-corrected optimal portfolio:

(5.1) ¢, =S,
where ¢(-, -) is defined in (1.2). As the estimator S, is obtained by correcting the eigenvalues of
the sample covariance, c;, it is the spectrally-corrected allocation. The corresponding expected
portfolio return is:

R, =c

which is the spectrally-corrected return. We state the formula in the following proposition:

ProposiTiON 5.1  Under Assumption (1), we have:

To 1S, 1 if ij;% <1,

W51 a1, (U8’ . ool'S;
lzg;]1+bs(”sn”_W if W>1,

in which by = b(y,gn). In addition, the spectrally-corrected risk (that is, the risk of the

52) R;=

spectrally-corrected allocation) is:

Risk = &3¢,

Ugﬂ’g';l Zg';lﬂ . aol'S;' U
Tol On =0 2 <1,
(5.3) = HsH if s,y
. - Q-1
(445, (B ~CNZLA+b,E-0) i b,

_ 81 o _ g _Is,'pg
where A = ST B=S,'u and C = TS S, 1.

Next, we examine the asymptotic behavior of R, and Risk; in the following subsections.

5.1. The limiting behavior of the spectrally-corrected expected return

According to R, in (5.2), the limiting behavior depends on the quadratic forms, namely

1'S;'1, 1'S; 'y, and g’S;'u. In order to obtain a better comparison, we examine the limiting
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behavior of the quadratic forms for their corresponding parameters, namely 1'S7'1, 1’ u, and
WXy, As both |[1]| and ||u|| tend to infinity as p — oo, it is necessary to standardize the two
vectors as 1/ +/p and p/||ull, respectively. We derive the following theorem to state the asymp-
totic properties of the standardized terms 1’§;11, 1’§;1y, and y’§;1 M, and the quadratic forms

of their corresponding parameters:

Lemma 5.1 Under Assumptions (I) and (Il), for the three pairs of sequences (\/Lﬁ, \/Lﬁ),

1 M I AT .
(7[—,, ”ﬂ—”) and (HM_H’ W) in Q, we have:
I'S;'1 'S, 'u HS,'H

(5.4) g S Py _— g' Py Cll’ld —2 b s Py

With the aid of Lemma 5.1, we can derive the asymptotic properties of the limiting behavior
of the spectrally-corrected return, Ry, for the optimal portfolio, and its corresponding theoretical

optimal return, R, as shown in the following theorem:

THEOREM 5.1 Under the conditions of Theorem 4.2, and given the definitions in (2.13) and
(5.4), if oo = &0/ \/p and ||ull/ \/p = & + o(1), we have:

a. the theoretical optimal return, R, exists and satisfies:

gOfy ’\’gg,/,[ l‘f é‘:og(])”u/gg’ﬂ < 1’

R — 0 0 0y
gl " 5’1 l.fo—l 0 (5‘1 l‘) . 0 0
T+ & - =5 i > 1;
Su Sha & SinuST 1 ~(S10)? Siu Sh i foglyﬂ/gﬂsﬂ

b. the limit of the spectrally-corrected return, Ry, for the optimal portfolio exists and follows:

R ‘fOf/l \/gy,y lf é‘:Ogl,,u/gy,p < 1,
s 7 Slu 4 s11é0—1 _ (s1)? . / > 1
g” S11 {':“ Sups1,1—(s1,)? Shp S11 lf é:OS'l,,u Sip :

By using Theorem 2.2, we can show that both Lemma 5.1 and Theorem 5.1 hold.

In simulations, we compute ¢(a, b) in Table II and show that Conjecture 4.3 holds for a gen-
eral sequence pair of a, and b,. Under the assertions in Conjecture 4.3, (S1,1, S1,4> Suy) 18 closer
to (67 gg’ﬂ, sy, than is y(¢7 |, g‘g’#, s ) under the Euler distance which, in turn, implies that R,
will be closer to R than to R,,. The result is confirmed by the results in Table IV, namely that
R; is close to R, on average, with a smaller standard deviation. We discuss the issue further in
the simulation section. We conclude that Lemma 5.1, Theorem 5.1 and the simulation results in

Table IV support the conjecture that R; is proportionally consistent with the theoretical optimal
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expected return R, under appropriate regularity conditions.

5.2. The limiting behavior of the spectrally-corrected risk

According to the expression of 6% in (2.3), the limiting behavior depends on three quadratic
forms, namely 1’S;'SS "1, 1'S;'SS 'y, and w'S;'SS'pu. As both ||1]] and ||| tend to infinity
as p — oo, it is necessary to standardize these two vectors as 1/+/p and u/||ul|, respectively.
We constrain the vector sequences 1/+/p and u/||u|| satisfying €, and develop the limiting

properties for the standardized terms of ¢!(S) = il'g,leFSv;ll, HS) = ‘/ﬁh ul|1’§;12§;1u and

gaﬁ(g) = W,u’g;‘fg; 'p, as shown in the following lemma:

Lemma 5.2 Under Assumptions (1) to (I11), for three pairs of sequences (\/Lﬁ, \/Lﬁ), (\/iﬁ, ”Z—l) and

( H K ) in Q, we have:

e T
5.5) 17S;'3S 11 . 17S;'3S ' . 4 u'S'ES, .
' SR PR Cuap

p [l
inwhichy=1/(1-y)(0<y<1).

With Lemma 5.2, we develop the asymptotic property for the risk of the spectrally-corrected

portfolio, as shown in the following theorem:

THEOREM 5.2  Under the conditions stated in Theorem 4.2, and the definitions in (2.13), (5.4)
and (5.5), if oo = &/ \/p, IAll/ A/p = &4 + o(1), we have:
a. when &61,/Suy < 1, p - Risky — 004/ Sy almost surely; and

b. when &61,/S. > 1, p - Risk, converges to:

o, s11éo— 1 Oy S1u011
S1.1 SuuS11 — (5'1,;1)2 S1,1 Cil

2
s11é0— 1 $1,01, S,
2 [Qﬂ,ﬂ -2 — + ( #) Ql,l)
SupS1,1 — (1) S11 S11

almost surely.

In the simulations, we compute o(a, b) and verify Conjecture 4.5 in Table III. According
to Conjecture 4.5, (01,1, 01, Op) 1s closer to (¢¥,, ggﬂ, s than is ¥ (¢} |, ggﬂ, s ). Combined
with the conjecture that (1,1, §1,, Sy, is closer to (¢, gﬁ’ﬂ, s,) thanis y(sy . g?ﬂ, S ) P-Risk}

will be smaller than p - Risk?, as verified in Table I'V.
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ReMARK 5.1  Comparing p - Riskl in (2.18) with p - Risk{ in Theorem 5.2, p - Risk! — co as
y — 1, while p - Risk: is stable for large y € (0, 1). Thus, Risk{ performs better than does Risk?.

In the section of Simulation Study, we compute o(a, b) and verify Conjecture 4.5 in Table
III. According to Conjecture 4.5, it is reasonable to conjecture that (01,1, 01,4, Ouy) 15 closer to
(511 gfﬂ, sp,) thanis y(¢7 |, gg’,#, s,1,.)- Together with the conjecture that (¢1.1, 1. Sy i closer
to (§7 4 gg#, sy, thanis y(¢7 |, 9'(1),;,’ §.)» p-Risk; will be smaller than p-Risk¢, which is verified
in Table IV. As p - Risk? is O(y?), the same as p - RiskZ in (3.2), p - Risk® is greater than p - Risk?
asy = 1/(1 —y) — oo. From Remark 5.1 and the simulation results in Table IV, Risk; is the

smallest among Risk} (w = s, p, b).

6. SIMULATION STUDY

According to Proposition 2.1, the main factors to decide the performance of the optimal
portfolio estimation are the quadratic forms a’$~'b and a’$~'=%"'b. In Section 2, we deduced
their limiting behavior when £ = S, in Theorem 2.1. In Section 4, we deduced their limiting
behavior when £ = S, in Theorems 4.2 and 4.4. We also conjectured the relationships between
a’S;'b, and between a’S;'b, a’S;'SS'b and a’S;'=S'b, in Conjectures 4.3 and 4.5.

In the next subsection, we conduct simulations to support the assertions in Theorem 4.2, in
general, and examine whether the assertions in Conjecture 4.3 and 4.5 hold. Thereafter, we will
conduct simulations to check whether the assertions made in Theorem 4.4 and Conjecture 4.5

hold.

6.1. Simulations for a2 'b and a’S$7 '35 'b

Step 1: Set 7 = (11,...,7z) and w = (p1/p, p2/ P> ..., PLI P), With p = p; + p» + ... + pr, and obtain:
X, = diag (Tllpl, 721, ...,TLIPL) = X,(T,W, p).
Step 2: Select the vector pair (a,, b,) such that:

P1t.+pk
(6.1) > abi=di (po=0),
i=p1+..+pi-1+1

for any given d; (k = 1,2,...,L), in which a, = (a4, ...,a,) and b, = (b4, ..., b,). Here, dy
is the inner product of a, and b, on the subspace extended by the columns of V, ,, which
is given in condition b of Theorem 2.1. For any vector pair, (a,, Bp), we can construct
a, =4, and:

d - d - dy ~ di + dy - dy -~

(62) bp = (dlel, ceey dlem, ceey dibf?kfrFl’ veey dib[)k, ceey Zbﬁlfﬁ—l, veey Zb[;L N
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in which &, = (@, ..., @,), b, = (b1, ...,b,), and "¢ &by = dy.

Vary the ratio y = p/n from 0.1 to 0.9. For each value of y, generate the sample xy, ..., X,,
and evaluate the values ¢(a,b) and ¢2§(E) = a;,A“bp A = Z,gn and S,,, respectively).
Thus, according to step 2, ‘/’:;]: X) =11d, + ... + 71 d; is fixed for 7.

Repeat steps 1 to 3 a total of N = 10,000 times, and obtain the mean and standard

deviation of the simulated values for each y.

We first use the steps in Simulation 6.1 to conduct simulations to check the assertions made in

Conjecture 4.3, and whether the assertions in Theorems 2.1, and 4.2 hold. In order to check the

above, in the simulations we compute ¢,” (Z)(= a,%"'b,), ¢(a, b), ¢,"(S,)(= a,S;'b,), ¢’ (S,)(=

a}gglbp), and y¢:1’j (%), and report the results in Table 1. From the table, we obtain the following

observations:

OBSERVATION 6.1

a.
b.

C.

Confirm Conjecture 4.3 that ¢;(Z) < s(a,b) < y$,/ (2);

¢:;I: (2) is close to ¢(a,b), and ygbg: (2) is far from ¢Z§ ),

qb:]’:(S,,) and )/qb:]’j(E) are the terms in the first limiting equation (2.10) of Theorem 2.1.
We observe that the mean of (/)21’,’ (S,) is close to y¢2§ (2), with standard deviation (sd) less
than 0.82 for y < 0.5. When y > 0.5, the mean of ¢:§(Sn) is still close to y¢:; (), with
higher sd, but it is still less than 0.8 times ¢:1’)’(Z). Thus, the results confirm the assertion,
in the first limiting equation (2.10) of Theorem 2.1, that ¢:;’(S,,) - yqbgfj (2). Overall,
qb:z S,) — yqﬁ:; (2), with a much higher sd than that of ¢:§ (§,1).

s(a,b) and ¢:§ (§n) are the terms in the limiting equation (4.4) in Theorem 4.2. The value
of </):,)lf (§,,) is very close to ¢(a,b) in mean, with the sd bounded by 0.41. Thus, the results
confirm the assertion in Theorem 4.2. In addition, compared with ¢L’;’ (S,), ¢L’p(§n) has a
smaller sd, and is obvious for large y. Overall, we find that ¢2§(§n) — ¢(a,b), with small
sd.

These observations confirm that ¢2;’(§,,) is a better estimate of (/):,);’(2) than is ¢2I‘j(Sn). For
example, when y = 0.9 in Panel B of Table II, ¢;/(2) = 1.7, ¢ = 2.0066, y$,/(2) = 17,
:;(gn) = 1.9514, with sd = 0.2913, while qﬁZﬁ(Sn) = 19.060, with sd = 11.968.

In order to examine whether the assertions in both Theorem 4.4 and Conjecture 4.5 hold, we

can use the steps in Simulation 6.1 to compute o(a, b) and (pl;;’ (A) =a,A"'ZA'b, (A = %S,
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and S, respectively) in Step 3. The simulation results are reported in Table III. From the table,

we obtain the following observations:

OBSERVATION 6.2
a. Confirm Conjecture 4.5 that g, () < 0(a,b) < Y’y (2);
b. o(a,b) is close to gogl’j (2) and )/%02/‘)’ () is further from gogl’j ),
C. QDZZ (S,) and 739025 (2) are the terms in the second liming equation (2.10) of Theorem 2.1.
We observe that the mean of 9025 (S,) is close to 7390:;’ (2), with sd less than 7.2 for y < 0.5.
When y > 0.5, the mean of gogl‘j(S,,) is still close to 7390:£ (2), but the sd increases with
y, and reaches more than 3 times y3<p:1’;(2). Thus, the results confirm the assertion in the
Sn) = Year ().
d. o(a,b) and 902;’ (§n) are the terms in the limiting equation (4.7) in Theorem 4.4. The value

second limiting equation (2.10) of Theorem 2.1 that 90:1’:
of ¢2;’ (§,,) is very close to ¢(a,b) in mean, and with sd bounded by 2.2. Thus, the results
confirm the assertion in Theorem 4.4. In addition, compared with gogl’;(S,,), gogp(gn) has a
smaller sd, which is obvious for large y.

e. From c and d, goglf(S,,) - y3g0:]’j(2), with a much higher sd than that of goi,’;j@) while

90:” (§n) — o(a, b) with a small sd.

p

These observations confirm that ¢:;’(§n) is a better estimate of 90:1’)’ (2) than is gog;’(Sn). For
example, when y = 0.9 in Panel C of Table III, ¢/ (X) = 2.2666, ¢2(S,) = 4.7502, with

sd = 1.1209, while gogl‘:(Sn) =3617.4, with sd = 7589.3.

Now we are ready to conduct simulations in the next subsection to compare both return and
risk performances of the proposed spectrally-corrected estimates with those of the plug-in and
bootstrap-corrected estimates. In order to do so, we compare the performance of ¢, with ¢, and

¢, in equations (2.2) and (2.3) in terms of expected return and risk.

6.2. Simulations for the optimal portfolio estimates

Given a p-dimension nonzero vector, g = (u;,- -+ ,u,)’, and a positive definite matrix, X =
(0j), which is assumed to be diagonal for simplicity, we state the simulation procedure as
follows:

Step 1: Generate n vectors of returns, r = (ry,--- ,r,), for the p-branch of assets from a popula-

tion with mean, g, and covariance matrix, X.
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Step 2: Use equations (2.2) and (2.3) to compute the optimal allocation, ¢, and the expected re-
turn, R, for the plug-in, bootstrap-corrected, and the proposed spectrally-corrected esti-

mates, as follows:

(1) use equation (2.11) to compute ¢, the first equation in (3.1) to compute ¢, and

equation (5.1) to compute c;; then

(11) substitute ¢,, into the formula, R, = ¢|, u, to obtain the corresponding expected

return, R,, = ¢, u, forw = p, s, b.

Step 3: Compute R,, — R, ||c,, — ¢|| and ¢ 2¢,, (W = p, 5, D).
Step 4: Repeat Steps 1 to 3 a total of N times, and calculate the means and standard deviations
forR,, R, — R, |lc,, — ¢|| and ¢, X¢,, (W = p, 5, D).

Select a random vector as the population, u, and consider three different, X, where each X
contains three or four different eigenvalues. For each set of g and X, conduct simulations ac-
cording to the above steps, and compute the means and standard deviations of R,,, R,, — R, and
¢, xc, (w = p,s,b), in which p is fixed and y = p/n increases from 0.1 to 0.9. In order to
make comparisons easier, we compute the percentage of the means of R; — R over R. In Table
[V, we present the simulated results for the three different populations in Panels A, B and C,

respectively.

We first compare the expected returns of the optimal portfolio estimates. From all the panels,
we have the following observations: (1) the mean of the spectrally-corrected portfolio return,
Ry, is the closest estimate to the expected return, R, of the theoretical MV optimal portfolio,
followed by that of the bootstrap-corrected portfolio return, R,, then the mean of the plug-in
R, — R| as the smallest, followed by |R;7 -R
R, — R| is the smallest, followed by |R »—R

,and |Rp —R| is the largest
, while the sd of

portfolio return, R,,, with

for any y = 0.1 to 0.9; (2) the sd of

|Rb - R| is the largest for any y = 0.1 to 0.9; (3) both the spectrally-corrected portfolio return,
R;, and the bootstrap-corrected portfolio return, Rj, underestimate the expected return, R, of
the theoretical MV optimal portfolio, while the plug-in portfolio return, R,,, overestimates the
expected return, R, for any y = 0.1 to 0.9; (4) the underestimation of the spectrally-corrected
portfolio return, Ry, is very small (from 0.01% to 1.58%) for any y; (5) the underestimation
of the bootstrap-corrected portfolio return, R, could be small for small y, but large for large

y (from 0.27% to 115.9%); (6) the overestimation of the plug-in portfolio return, R, is very
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large (from 5.25% to 159.4%). Now we compare the risk for the different portfolio estimates.
In Table IV, we set the risk level at 0'3 = 1. From the table, we notice that: (7) all the Risk,,
are larger than 0'% for any w = p, b, s, and for any y = 0.1 to 0.9. Thus, one should select the

portfolio estimate in which the risk is not too far from o7,

From Table IV, we have the following observations: (8) the spectrally-corrected risk, Risk;,
is the smallest, followed by the plug-in risk, Risk,, while the bootstrap-corrected risk, Risk;, is
the largest for any y = 0.1 to 0.9; (9) the sd of the spectrally-corrected risk, Risk, is the smallest
for any y = 0.1 to 0.9; (10) comparing the sd of the plug-in risk, Risk,, and of the bootstrap-
corrected risk, Risk,, the former is smaller for small y (< 0.3) and large y (> 0.7), while the

latter is smaller for y = 0.3 and 0.4 to 0.7.

Now we use the results show in Table IV to illustrate the above observations, especially to
show that the spectrally-corrected estimates are the best of the three estimates. In each panel,
p = 100 is given, and n varies such that y = p/n increases from 0.1 to 0.9. As the conclusions
drawn from the other panels are the same as that drawn from Panel A, we illustrate the above
observations by analyzing the results from only Panel A of Table IV, as follows:

(1) The spectrally-corrected estimates perform the best in terms of the expected return:

(a) When y = 0.1, R, is only 0.14% (with sd=0.0132) below R, R, is 5.25% (with
sd=0.0242) higher than R, and R;, is 0.31%(with sd=0.0344) higher than R, on av-
erage. On the other hand, when y = 0.9, R; is still only 1.5% (with sd=0.0641)
below R, R, is 159.41% (with sd=1.2518) higher than R, and R, is 81.62% (with
sd=1.8346) below R on average.

(b) The ratio y has the smallest influence on the expected return of the spectrally-
corrected portfolio when compared with the plug-in and bootstrap-corrected esti-
mates. When y increases from 0.1 to 0.9, the range of |(R; — R)/R| for ¢ = ¢, is the
smallest, from 0.14% to 1.58%, with sd from 0.0132 to 0.0641, the range for ¢, is
from 5.25% to 159.41%, with sd from 0.0242 to 1.2518, while that for ¢, is from
0.31% to 81.62%, with sd from 0.0344 to 1.8346.

(2) The spectrally-corrected estimation performs the best in term of risk:

(a) Wheny = 0.1, Risk, is 1.0771 (with sd=0.0312), Risk, = 1.2323 (with sd=0.0609),



23

and Risk, = 1.2452 (with sd=0.0806). On the other hand, when y = 0.9, Risk; is
still small at 2.2 (with sd=0.5822), Risk, increases to 86.581 (with sd=86.581), and
Risk;, goes beyond 150 (with sd 170.23).

(b) The ratio y has the smallest influence on the risk of the spectrally-corrected portfolio,
when compared with the plug-in and bootstrap-corrected estimates because Risk,,
is the smallest, from 1.0771 to 2.1382, with sd from 0.0312 to 0.5822. On the other
hand, both Risk., and Risk., are very large, from 1.2452 to 151.27, with sd from
0.0806 to 151.27, for ¢, and from 1.2323 to 86.581, with sd from 0.0609 to 78.657,

for c,,.

(c) For a given method, such as plug-in estimate, the ratio y is smaller, the performance
of ¢, is better which also holds for the other two methods. For example, the per-
centage of the absolute value of the err ratio, (R; — R.)/R. increases from 0.14%
(sd=0.0132) to 1.58% (sd=0.0641), and of Risk; from 1.0771 (sd=0.0312) to 2.1382
(0.5822), as ¢ = c,.

From the above discussion, we conclude that, as R, has an unacceptably high level of over-
estimation, and high risk, R, is not as stable as R, or R,. On the other hand, R, corrects the
overestimation of R, but: (a) the sd of |Rb - R| is the largest; (b) the bootstrap-corrected risk,
Risky, is the largest for y = 0.1 to 0.9; (c) the sd of Risk, is the largest for small y, as well as
for large y. Thus, we conclude that R, is not a good choice for the optimal portfolio return. In
addition, we conclude that the spectrally-corrected portfolio return, Ry, is the best estimate for
the optimal portfolio return when compared with R, and R, because: (a) although R, underes-
timates the expected return, R, of the theoretical MV optimal portfolio, the underestimation is
the smallest for any y = 0.1 to 0.9; (b) the mean of R; is the closest estimate to R, with the
sd of

R, — R| the smallest for any y = 0.1 to 0.9 when compared with both R, and R,; (c) the
spectrally-corrected risk, Risk;, is the smallest, and its sd is also the smallest for any y = 0.1 to

0.9.

7. EMPIRICAL ILLUSTRATION

In this section, we compare the performance of different optimal portfolio estimates for real
data from S&P 500. We choose the largest 500 stocks with the highest capitalization from
the S&P 500 index from January 1, 2004 to December 31, 2013, and compute their weekly

logarithmic returns.
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As we will compare the performance of €, with the portfolios ¢,, ¢, and €, for different
numbers, p, of stocks, we set p = 50, 100, 200, and 300 (that is, y = 0.1, 0.2, 0.4 and 0.6),
respectively, and choose p stocks randomly from 500 stocks in the S&P 500 index. We select
the sample mean, fi, as the estimate of the u vector, and then obtain ¢,, (w = p, s, b). Thereafter,
we estimate the expected returns of each ¢, as R, = ¢/ f1. It is reasonable for the influence of

the sample means in these three portfolios to be the same.

As some studies, for example, Frankfurter et al. (1971), find the portfolio, ¢,, to be less
effective than an equally weighted portfolio, we include the estimates of the equally-weighted
(EW) portfolio in the empirical illustrations for purposes of comparison. We denote the “equally
weighted portfolio estimates™ as ¢y = 1/p, repeat the procedure N times, and plot the results
in Figures 3 to 6. In these figures, we denote RW (w = p,s,b,0) as the SC, PI, BC and EW
returns, respectively. The line axes are the repeating time, and the pairs of means and standard

deviations are reported for each type of expected return estimates.

The existing literature on the portfolio optimization theory shows that: (1) the plug-in esti-
mates over estimate the theoretical expected return of the optimal portfolio; and (2) the plug-in
estimates are likely not as effective as the equally-weighted estimates; as shown in Section 6, (3)
bootstrap-corrected estimates under estimate the theoretical expected return of the optimal port-
folio; as discussed in Section 2, (4) spectrally-corrected estimates provide consistent estimates
for the theoretical expected return of the optimal portfolio. The results shown in the figures
support the above findings that the plug-in optimal returns are the largest, while the bootstrap-
corrected optimal returns are the smallest, with the equally-weighted and spectrally-corrected

optimal returns lying in between.

In addition, we observe that the difference between the plug-in, bootstrap-corrected, equally-
weighted, and spectrally-corrected optimal returns are small for y = 0.1 and 0.2, and increase for
y = 0.4 and 0.6. The plug-in return is always larger than the other three estimates, and increases
faster than the spectrally-corrected return as y increases. In order to compare variability, as
expected, the sd of the equally weighted return is the smallest. On the other hand, when y = 0.2,
the sd of the plug-in return is smaller than that of the spectrally-corrected return. However, when

y increases, the sd of the spectrally-corrected estimate is smaller. In addition, from the figures,
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the bootstrap-corrected return is always less than zero, while the equally-weighted return is
close to zero. All of these observations are consistent with the estimation theory of portfolio

optimization and the simulations, as discussed in Sections 2 and 6.

8. CONCLUSION

The purpose of the paper was to solve the “Markowitz optimization enigma” by developing
new covariance estimates to capture the essence of portfolio selection. By using large dimen-
sional data analysis, we proved that the expected return of the plug-in allocation is always larger
than that of the optimal portfolio in most situations when the number of assets is large. We note
that Bai et al. (2009) proved a similar result under a much tighter condition, while in this paper
we develop more general results under weaker conditions. For example, we proved that in cer-
tain situations, the expected return of the plug-in allocation is /y = m times greater
than that of the optimal portfolio while, in other situations, it is still greater than the optimal

portfolio.

In the Markowitz MV portfolio optimization problem, the key issue is how to estimate the
population covariance matrix accurately. In this paper, we introduced the spectrally-corrected
covariance matrix to correct the sample covariance matrix, and derived important theoretical re-
sults. We constructed the spectrally-corrected covariance, S,., as the estimate of the population
covariance matrix, and provided the limiting behavior of a’S,b for different bounded vectors a
and b when p goes to infinity, with » increasing proportionally. Our simulations demonstrated

that a’§,,b estimated a’Xb accurately.

According to the theory developed in the paper, we constructed the spectrally-corrected es-
timates, which performed more accurately than both the plug-in and the bootstrap-corrected
estimates, not only for the expected return but also for risk. As our approach is easy to imple-
ment in practice, the efficient frontier of estimates can be constructed analytically. Thus, our
proposed estimator facilitates the Markowitz MV optimization procedure, making it useful in
practice. In addition, the essence of the portfolio analysis problem can be adequately captured
by our proposed approach, which enhances the practical use of the Markowitz mean-variance

optimization procedure.
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We note that the optimal expected return estimate proposed in the paper not only represents
the optimal expected return for the best combination of stocks, but also for the best combination
of risk-free assets, bonds, stocks, and other assets. We note that normality is typically assumed
in the MV optimization problem (see, for example, Leung et al. (2012), and the references cited
therein for further information). However, in the proposed theory, we relax the normality as-
sumption to allow for the existence of fourth moments, so that the proposed spectrally-corrected
estimates could be obtained for the high-dimensional Markowitz MV portfolio optimization

when the expected returns of the assets are derived under the existence of fourth moments.

Although we have developed several important theoretical results in the paper, there are fur-
ther results for which we might conduct simulations. Further research could include developing
such relationships theoretically. The theory developed in the paper could be applied to many re-
lated theories. For example, Korkie and Turtle (2002) established a theory for the optimal return
of self-financing portfolios, for which the estimation approach developed in the paper might be

extended.

The El Karoui (2008) algorithm of estimating the population eigenvalues of large dimensional
covariance matrices, and the nonlinear shrinkage estimation of large dimensional covariance
matrices and their inverses, developed in Ledoit and Wolf (2012), could be extended for some
weaker conditions. Extensions could include incorporating their covariance estimates to de-
velop new estimates for the high dimensional Markowitz MV portfolio optimization. Menchero
et al. (2011) introduced a method called the eigen-adjusted covariance matrices, without using
random matrix theory, and presented some simulation results showing its optimality versus that
of alternative approaches. The theory developed in the paper improves their approach by incor-
porating random matrix theory into the adjustment of eigenvalues of the covariance matrices.
Thus, our approach could obtain efficient estimates of the optimal return and its correspond-
ing allocation that circumvent all four defects, namely the overprediction, underprediction and
allocation estimation problem, as well as the problem of big risk in the Markowitz portfolio

optimization.

Jacobs et al. (2005) argue that the model in (1.1), with ¢; interpreted as a short position, is

not a realistic model. They suggest that a realistic model of short constraints can be formulated
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as having 2n nonnegative “investments”, with the first n being long positions and the second n
being short positions. Thus formulated, it is a special case of what Markowitz (1959) (Chapter
8 and Appendix A) defines as the “general MV portfolio problem,” namely, to find MV efficient
portfolios subject to zero or more linear equality and/or (weak) inequality constraints. This
could be considered an extension of the problem given in (1.1). Random matrix theory may not
be able to solve this problem, but one could apply the least absolute shrinkage and selection
operator (LASSO) (see Tibshirani (1996)) to solve the problem. This would be a good direction

for purposes of extending the results in the paper.
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9. APPENDIX
9.1. Preliminaries

Before the proof of Theorem 2.1, we introduce some notation and basic facts which will be

used in the remaining parts.

Under Assumption I, let r; = fol-, and § = )., rir,. Denote g,,’,- =8S,-rr,S,; =
S, — r,r; —r;r;and §; = rS,ir;—n~'trS;}. Define:
1 1
,Bj = and ﬁij =
Q-1 Q-1
1+rJSnJ 1+r]SnU
o 1 o 1
fi=———— and Bij=—""7"77—,
’ l+n'uS,} " 1+ S,
1 v 1
b,=———— and b, = .
1+n‘1EtrS ! l1+n'EtrS: R
Further, for any p X p symmetrlc matrix A and v € R?, the following two identities hold:
VAT A lyv'A~!

n-1_ A Y ' - _
9.1) vAA+w)!= v Ay and (A+vv) A
(see (2.2) and Lemma 2.6 of Siverstein (1995)).

1+vA-ly

LemMa 9.1 Theorem 2 in Bai and Yin (1993): Let X = [X,,;u = 1,...,p;v = 1,...,n] be a
random matrix in which X, s are i.i.d. random variables with zero mean and unit variance, and
S = (1/n)XX". Then, if E|X|* < o0, as p,n — oo, p/n — y € (0, 1),

im Ay = (1= V3) and 1lim Ay = (1+ 1),

where A, and A,,,, are the smallest and largest eigenvalues of S, respectively.

Lemma 9.2 Lemma 2.1 of Bai and Silverstein (2004): Let (X;)i_, be a complex martingale

difference sequence with respect to an increasing o-field {.%;}. Then, for any k > 1:
k/2
E Z X| <KE [Z |X,-|2) .
i=1 i=1

LemMa 9.3 Lemma 2.7 of Bai and Silverstein (1998) Suppose X = (xi, ..., x,)’, where x;’s are

i.i.d. random variables with zero mean and unit variance, and B is a deterministic n X n matrix.
Then for any a > 2, we have:

a/2
EXBx - trB]® <K, ((E|x1|4 r(B)"” + Ejr, tr(B")).

LemMma 9.4 Lemma 2.3 in Bai and Silverstein (2004): Let f,(-),n = 1,2,---, be analytic in D,

a connected open set of C, satisfying |f,(2)| < M for every n and z in D, and f,(z) converges
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for each 7 in a subset of D having a limit point in D. Then there exists a function f analytic in
D, such that f,(z) — f(z) and f,(z) — [f'(2) for all z € D. Moreover, on any set bounded by
a contour interior to D, the convergence is uniform and {f,(z)} is uniformly bounded by 2M|/E,

where & is the distance between the contour and the boundary of D.

LemMa 9.5 Theorem 1.1 in Bai and Silverstein (1998): Under Assumption (I), assume F*»
converges to a given distribution function H (see (4.3)). Then for any interval [a,b] (a > 0)
lying outside the support of H, we have:

P (no eigenvalues of T, appears in [a, b] for all p) =1,
in which T, = 12127, 7/ 31,

LemMA 9.6  Theorem 1.2 Bai and Silverstein (1999): Under Assumption (I), assume F* con-
verges to a given distribution function H. Then if [a, b] (a > 0) lying outside the support of H
and not contained in [0, xy], where x, is the greatest lower bound of ®, we have:

P(/l >b and >

ip+1

<a foralllarge n) =1,
in which i, is satisfied such that:
/l > —1/m(b) and /ll " < —1/m(a),

in which m is the unique solution of (2.8).

9.2. Proof of Theorem 2.1

Part I: In this part, a S;'b, —a, % 'b,/(1 — y)| = 0in probability. Without loss of

generality, supposing u = 0, we only need to prove the following two results:

r -1 n 1 ! 7 a—1 1 7 5—1
9.2) a S, 'b, - a,S,'b,l > 0 and |a,S;'b, - l_yapr b, =0
in probability, where S, = 3L x;x].
According to (9.1), rewrite: ‘ '
el n-1,....|_ 1|a,S;'x-X'S;'b, el e
a S, 'b, - aS.'b, - TR <la,8,'x| [x'S,"b,|.

Then the first condition in (9.2) is proved only if E (ap§;1§)2 =0.
By rewriting X = L‘f Z” r; and (9.1), we have:

©93)  E(a,S;'%) = ZE 5a,S: nz (88,8, irx'S  a,).

i£]
From Lemma 9.1 and Assumptlon (I), we have:

E(,B,-apS;}r,-)z < %E( $,1%,8,1a,) < O(n™").

pnt
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Now we only need consider the second part of (9.3). Rewriting §; = Bi - Bl.zd,-, we have:

1
- ; E(,Bl-ﬁ] pSmr r;Sn ap )
Z'B‘ﬁf apS,“r r;Snj ) + % Z ((ﬂ, + BB 6JapSmr, ;S,” ) = A + A,
By the Cauchy Hélchwarz inequality and (9.1), w:ilave:
A < Zﬁlﬁj ( ;(Sr_lj Snz}) (S ! Sr:j/) b[’)

i#]

< —ZE|a S,,,,rj(er,,ﬁjrl)2 :S,”jb |
i#j

< (st (e (s

By Lemmas 9.1 and 9 3, we can deduce for any a > 4:
(9'4) ( S I‘,) = 0(1’1 a/z) and F (l’ S ) — O(n—a/z)'

p n,i J nt/

Therefore, A, = O(n™").

For A,, compute:

’11 Z ((,8, +,8,)ﬂ O; apSn,r r;SnJ )

i#]

< = Z nt]) (S_ Sn l]) al’6 '
li]
1 1 ' - 1 / 1
+Z Z a S, e (8,1 -$;1) ' S rrs;!a
i#j i#j

= Ay +Axp + Ay
From the Cauchy-Schwarz inequality and Lemma 9.1, we have:
Ay =0m™), Ap=0m") and Ay =0(n™),
that is, A, = O(n™"). Further according to (9.3), we have (9.2).

Now we focus on the limit of a},S;lb »- Rewriting:

) e 1 ’ o
a’S,'b, = 1 [(ap + bp) S;! (ap + bp) — (ap - bp) S;! (ap - bp)] :
we consider the limit of a’ S,‘,lap. According to Theorem 1 in Bai et al. (2007), we have:

. 1
r Q-1 r -1
a S a,- —_ya X a,

in probability.

Part II: In this part, we prove [a/S,'Z,S;'b, —a/ X 'b, /(1 - y)3| — 0 in probability. From
(9.2) and Lemma 9.1, we have:

la/S,'s,S,'b, — /8,38, 'b,| < K|a)S,'b, — a,$,'b

,,||—>O
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in probability. Write:

. . ) >
a;S;lEPS;Ibp = hm apzpl/z (E;I/2S;12;1/2 —v- llp) Z;l/zap
d rNy—1/2 -1/2¢-1y-1/2 . -1 1/2
- lvl—r%l dv (a %) (2” Si%, —v-zl,,) z, aP)
= }/l_r)% l d fp(v)

According to Theorem 2 in Bai et al. (2011), we have:
() —m@ia,z 'a, - 0 a.s.,
in which m(z) is the Stieltjes transform of the MP-Law (see Marcenko and Pastur (1967)). From
Lemmas 9.1 and 9.4, we have:
[v)—m'(va, = 'a, —» 0 as.
Since f1;(v) and m’(vi) are continuous about v € [0, ] for small enough &£ > 0 with probability

1, then according to the Lemma in Bai and Yin (1993) and the dominant convergence theorem,

we have:
)l e d(im(vi)) ) o
aPSnlzl’Snle + —V 0 apzplap -0
in probability. Here:
d(m(vi)) \/—
b dx = ,
o 27ry b-x)(x—a)dx = )3
in which a = (1 — 4/y)* and b= (1 + /)% Part I is now ﬁnlshed O

9.3. Proof of Theorem 4.2

Since @ is the splitting support of FT*¥, there exists t = {ty, ?, ..., 7} such that t N @ = @ and

UL (121, 1) N © = ©. Now rewrite (4.1) as:

S, =Uip A1 p,Uip +---+Urp Ar, Uy,
in which A, , is the i-th p; X p; diagonal matrix of A, satisfying A, = diag(A, ,, ..., Ar,,), and
U; is the corresponding eigenvectors matrix, satisfying U, = (U ,,...,Urp,) (i = 1,...,L). We
can obtain, from Lemma 9.5, for large p:

P(eigenvalues of A; ), belongs to (f;_i, ti)) =1 (=1,..L).
Then for large enough p, we have:

a\U;,Uipb, = Fo(1) = F¥(ty) (i=1,..,1L),
in which FS(#,) = 0 and F5(z,) = 1. Thus:

ro— 1 ’ 7 1 ’ /
a,’S;'b, = ZapulplUlplb +ZapU2sz2p2

L 1 1 L 1 i
Sn ' T.w
;ﬂj_zfmdF (x)a;/lj_zf dFT¥(x) as.

tj-1

1 ’ ’
b + ...+ /I_LapUL’pLUprp
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Denote m(z) = fe(t - z)7'dFT as the Stieltjes transform of FTV, where m(z) is the unique

solution of (2.8) for z € C* with H(x) = ZiLzl wil,<,. Then we have:

aP'S lb - Z (—%ém(z)dz) a.s.,
A,

in which € is the min complex open set that includes the real set from #;_; to ¢;. In addition,
supposing that u = — (—— + ym(z)) we have:
_ 2dH (1)
LI DY ) = )
P ~n ¥p . >
T A 2mi (1+)’I%)(u—/lk)
where H(x) = Y, wil,,<, and T is a contour of the image of ¢; by u. We note that, for each z

with J(z) # 0, there is a unique solution to (2.8) whose imaginary part has the same sign as z.

Therefore, the contour I'; is well defined. According to the Residue Theorem, we have:

Uj

ng‘ 1—yft(flf§§) = _/1/1'/1,( +m k # j,
270 Jt; (14 y [ 4289) (u — Ay) Lt (14 S0 i%), k=

u—t

Finally, we have:

L L
— Ay (A — u; d cidi(d; —u

9.5) ap’S,;lbpeZ Z Ay — ) -2y o |

= A = )W - ) A el — ) = 4p)
Let ||ﬁp|| =1and ﬁ;UpkU;kﬁp = 1, we deduce'

| = A — uy) A — ux)
P (A — A)(uj - /1k) (A = ) — A)

by setting A, = I, and so:

cid (/lk - /lk(/l
9.6 . for all k.
o0 ;mwwwrm ;u—mwﬁw o

From (9.5) and (9.6), We have

/ j)
apS 1b _dez/l(uj—/lk)

This completes the proof of Theorem 4.2. 0

t#k

9.4. Proof of Theorem 4.4

We first consider the case of a, = b, = x,,. Then rewrite:

_ ra-ly go-1
I, = x,S,%,S,'x,
L
_ Q-1 r Q-1
= E 7x,'S, U, U, S, 'x

k=1

—_ 2
7 Q-1
> 70,0, 5 x|

k=1
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2

L
r'Q-1
E Tk sup  X,S.¥px| s

k=1 Yph€EG|Ypill=1
where E} is the kth e genspace of X, associated with 7,. Then we have:

~ 2
liminf I, > Z T liminf (x,S;'y,u)
for any sequence of vectors {¥,.}. Select a special sequence of vectors {y, } such that:

l1mx U, Upkypk = ¢y.

Then, according to Theorem 4.2, we have:

L 2
—_ 2 u: — /1
lim (X’ S;ly =¢? —L
( ! p,k) ‘ ; Aj(uj = 4;)

Since y,« € Ey and ||ypk|| = 1 for all p and k, we have ¢; € [— \/Ek, \/c_ik] Then:

2
/1.
liminf 1, deak (Z T )]

As the subset of unit Vectors in E is compact, for each € > 0, there exists a unit vector §, x such

that:

2 2
rp-1 'rp-lg
sup (xpo y,,,k) < (Xpo y,,,k) + ¢
Ypi€EGIYpill=1
Let ¢, = lim x;,U,,kU;,ky,,,k. Then:

. rp-1 2
limsup  sup (Xpo Yp,k)

yla,kEEk;”yﬂyk”zl

2
< hmsup(XB ypk) +¢
_ Z (uj —
/l(uj—/lk)
L
A
< dk (MJ j) + &,

= /lj(lxtj - /lk)
that 1s:
L Lo, A4

li I,= Y didy ) ——"—.

msup L, kZ:; ktk ; /l.,-(u.,- — /lj)
The general case is obtained by applying this result to the “squares’:
(9.7) (a,+b,)B,'SB '(a, +b,), (a,—b,)B,'EB;'(a,—b,),
and using the parallelogram law:

1

(98)  a,B,'SB.'b, = - (G, +b,YB,'SB, @, +b,) - (a, - b,)'B,'SB, (@, - b,)).

The proof of Theorem 4.4 is complete. 0
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TaBLE I: Risk of plug-in allocation estimates and bootstrap-corrected allocation estimates for
different values of p and p/n.

p p/n| riskf  riskb p pln risk? risk?
100 0.5 | 3.1847 3.9066 || 252 0.5 3.9408 42223
200 0.5 | 3.7771 4.3980 || 252 0.6 6.2286 6.2474
300 0.5 | 3.7881 3.8970 || 252 0.7 | 12.8308 13.5662
400 0.5 | 3.9907 4.4726 || 252 0.8 | 17.4854 18.7490
500 0.5 | 3.2959 3.6370 || 252 0.9 | 100.1979 103.5917

Note: The table compares the risk between €, and &, for the same p/n ratio with different different
number of assets, p, and for same p with different p/n ratio, where 7 is the size of the sample.

Figure 1: The theoretical optimal return R and the corresponding plug-in return R,,.

0 100 200 300 400

Number of Assets

Note: The solid and dashed lines denote the values of the theoretical optimal return, R, and the corre-
sponding plug-in return, R, respectively, as defined in Theorem 2.2.



TaBLE II: Comparison of the performances of ¢2§ (§n), ¢:§(S,,), and ¢(a,b) for p = 100

b, b,

Y 60 s@b) 60 (S)  4(S)  yha (D)
A:7=(25,10,5,1), w = 1(1,1,1,1).

0.1 1.86 1.8857  1.8832(0.0938) 2.0667(0.1308) 2.066
0.2 1.86 19153  1.91750.1330)  2.3315(0.2095) 2.325
03 1.86 1.9497  1.94820.1644)  2.6678(0.3085) 2.657
0.4 1.86 1.9896  1.98400.2065) 3.1142(0.4673) 3.1
0.5 1.86 2.0370  2.0253(0.2459)  3.7495(0.7119) 3.72
0.6 1.86 2.0953  2.08220.2783) 4.7594(1.0897) 4.65
0.7 1.86 2.1661  2.1402003138) 6.4346(1.8411) 6.2
0.8 1.86 22479  2.20270.3458) 9.6998(3.7428) 9.3
0.9 1.86 2.3540  2.24790.4005) 20.638(14.465) 18.6

B: 7=(10,5,1), W = 15(4,3,3).

1.7161  1.71590.0783) 1.8914(0.1124) 1.888
1.7348  1.73480.1149)  2.1294(0.1921) 2.125
1.7567  1.75740.1527) 2.4432(0.3064) 2.428
1.7823  1.78290.1719)  2.8605(0.4222) 2.833
1.8126  1.8105(0.1938)  3.43080.5982) 3.4
1.8498  1.845200.2431) 4.3315(1.0416) 4.25
1.8943  1.8846(0.2519) 5.9039(1.6676) 5.666
1.9444  1.9236002736) 8.90743.4104) 8.5
2.0066  1.95140.2913) 19.060(11.968) 17

C:7=(53,1),%=1(43,3).

0.1 22666 23016 2.30170.1102) 2.52160.1528) 2.5185
0.2 22666 23421 2.3396(0.1563) 2.8384(0.2550) 2.8333
0.3 22666 23892 2.386200.2061) 3.2562(0.4079) 3.2380
0.4 22666 24435 2.43430.2265 3.8107(0.5633) 3.7777
0.5 22666 25066 2.475702483) 4.5773(0.8110) 4.5333
0.6 22666 25809 2.50690.2810) 5.7787(1.3933) 5.6666
0.7 22666 2.6643 2.538202793) 7.8695(2.2318) 7.5555
0.8 22666 27502 2.56990.2882) 11.881.5272) 11.333
0.9 22666 2.8458 2.5890(0.2989) 25.446(16.054) 22.666

o)

9}
— e = e e e e
R I B N I N e Y

Note: Here y = 1/(1 — y) and ‘?521, (A) = a;A’lb »- Refer to section 6.1 for the description of the terms
used in the table.



TasLE III: Comparison of gogﬁ (gn) ‘,o:,’; (S,), and o(a, b) for p = 100

b b, (& b b
Y e o@b) @l (S)  elS) Vel
A:7=(25,10,3,1),w = %(1, 1,1,1).
0.1 21266 2.1914 2.3659 (02314) 2.9287(0.3562) 29171
02 21266 22740 2.6595 03718) 4.1816 (0.7598) 4.1535
03 21266 2.3809 3.0391 (057100 6.3114 (1.6365) 6.2000
04 21266 2.5198 3.5281 077179  10.139 (3.2253) 9.8454
0.5 21266 27045 4.1181 1.0169) 17.554 (6.6398) 17.012
0.6 2.1266 29593 4.7613 (1.3859) 35.643 (19.184) 33.228
0.7 21266 3.3045 5.4097 a.s618)  90.808 (59.328) 78.763
0.8 2.1266 3.7423 6.1136 (18169 313.58 (280.67) 265.82
09 21266 4.3561 6.7951 2.1544)  3422.9 (7450.3) 2126.6
B: 7=(10,5,1), W = 15(4,3,3).
0.1 19666 2.0169 2.1625 02026) 2.7086 (0.3294) 2.6977
0.2 1.9666 2.0828 2.4020 0.3240) 3.8685 (0.7095) 3.8410
03 19666 2.1696 2.7037 0.4896) 5.8330 (1.5159) 5.7335
04 19666 2.2835 3.0818 06354) 9.3717 (2.9528) 9.1046
0.5 19666 24349 3.4763 0.7940) 16.243 (6.1401) 15.732
0.6 19666 2.6405 3.8436 09s11) 32.984 (17.572) 30.728
0.7 1.9666 29098 4.1985 (1.0618) 83.963 (54.907) 72.837
0.8 1.9666 3.2343  4.5451 a.a7077  289.59 (263.82) 245.82
09 19666 3.6602 4.8461 129577 3134.7 (6476.9) 1966.6
C:7=(53,1), % = {5(4,3,3).
0.1 22666 2.3459 2.5079 024190 3.1210 (0.3839) 3.1091
0.2 2.2666 2.4587  2.7755 (03769) 4.4565 (0.8244) 4.4270
03 22666 2.6135 3.1020 (055700 6.7186 (1.7533) 6.6081
04 22666 2.8173 3.4696 069750 10.786 (3.4074) 10.494
0.5 22666 3.0817 3.8066 (0.8334) 18.729 (7.1874) 18.133
0.6 22666 3.4268 4.0860 0.9681) 38.021 (20.461) 35.416
0.7 22666 3.8566 4.3398 (1.0042) 96.768 (63.820) 83.948
0.8 22666 4.3472 4.5702 1.0590) 333.82 (307.84) 283.33
0.9 22666 4.9539 4.7502 (1.1209) 3617.4 (7589.3) 2266.6

Note: Here y = 1/(1 — y) and gp:;(A) = a/,A"'ZA"'b,. Refer to section 6.1 for the description of the

terms used in the table.
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TaBLE IV: Comparison of spectrally-corrected estimates with the plug-in and Bootstrap-

corrected estimates

Panel A: R(u,X) = 3.8190 and 0> = 1
7=(25,10,5,1), w = (0.25,0.25,0.25,0.25)
y ¢ R: 100(R; — R)/R% ¢'Xe
¢, 3.8138 (0.0503) -0.140.0132) 1.0771 0.0312)
0.1 ¢, 4.0197 ©.0924) 5.25(0.0242) 1.2323 (0.0609)
¢, 3.8071 0.1312) -0.31(0.0344) 1.2452 (0.0806)
¢, 3.8069 0.0742) -0.32(0.0194) 1.1675 (0.0536)
02 ¢, 4.2539 ©.1482) 11.390.0388) 1.5553 (0.1219)
¢, 3.7960 (0.2074) -11.60(0.0543) 1.5848 (0.1516)
¢, 3.7973 0.0948) -0.570.0248) 1.2729 0.0797)
03 ¢, 4.5373(0.2235) 11.80¢0.0585) 2.0276 (0.2342)
¢, 3.7727 (03165 -1.21(0.0829) 2.0751 (0.2609)
¢, 3.7857.128) -0.870.0295) 1.3939 (o.1121)
04 ¢, 4.8701 3401 27.52(0.0891) 2.7319 (0.4441)
¢, 3.7381 (0.5096) -2.120.1134) 2.8165 (0.4297
¢, 3.7800 (0.1343) -1.02¢0.0352) 1.5416 (0.1637)
0.5 ¢, 5.2814 5721 38.29(0.1498) 3.8820 (0.9076)
¢, 3.6502 (0.9054) -4.420.2371) 4.0793 (0.7797)
¢, 3.7679 0.1640) -1.34(0.0429) 1.7010 (0.2492)
0.6 ¢, 5.8286 (08879 52.62(0.2325) 6.0203 (1.8452)
¢, 3.5030 (1.3923) -8.27(0.3646) 6.5127 a.6391)
¢, 3.7626 (0.1891) -1.48(0.0495) 1.8649 (0.3548)
0.7 ¢, 6.5938 (1.439) 72.66(0.3770) 10.6988 (4.3778)
¢, 3.2346 (2.1844) -15.3000.5720 12.1496 (4.3399)
¢, 3.7605 0.2130) -1.530.0558) 2.0102 (0.4625)
08 ¢, 7.6161 24100 99.42(0.6311) 22.22 (12.515)
¢, 2.5653 35775 -32.83(0.9368) 28.768 (15.926)
¢, 3.7585 (0.2449) -1.580.0641) 2.1382 (0.5822)
09 ¢, 9.9073 @.7s08) 159.411.2518) 86.581 (78.657)
¢, 0.7019 (7.0065) -81.62(1.8346) 151.27 170.23)




Panel B: R(u,X) = 4.0247 and o = 1
7=(10,5,1),w = (0.4,0.3,0.3)

y ¢ R 100(R: — R)/R% e
c, 4.0196 0.0541) -0.12(0.0134 1.0708 (0.0312)
0.1 ¢, 4.2379 ©0.0981) 5.29(0.0244) 1.2326 0.0611)
¢, 4.0140 (0.1391) -0.27(0.0346) 1.2439 (0.0808)
c, 4.0122 0.0789) -0.310.0196) 1.1524 (0.0520)
02 ¢, 4.48350.1619 11.40(0.0402) 1.5532 (0.1270)
¢, 3.9983 0.2322 -0.65(0.0577) 1.5798 (0.1531)
¢, 4.0034 (0.1008) -0.53(0.0250 1.2444 0.0759)
0.3 ¢, 4.7775 02618 18.70¢0.0650) 2.0194 0.2572)
¢,  3.9629 (0.3950) -1.53(0.0981) 2.0667 (0.2655)
¢, 3.9933 0.1196) -0.780.0297) 1.3462 (0.1075)
04 ¢, 5.1088 (04302 26.94(0.1069) 2.6997 0.5118)
¢, 3.8888 0.6871) -3.380.1707) 2.8007 (0.4346)
¢, 3.9909 (0.1410) -0.84(0.0350) 1.4652 (0.1629)
0.5 ¢, 5.5241 0.7044) 37.25(0.1750) 3.8153 (1.0081)
¢, 3.7612 a.1514) -6.5500.2861) 4.0675 (0.7844)
c, 3.9828 0.1678) -1.040.0417) 1.5793 (0.2406)
0.6 ¢, 6.0615 (1.090) 50.610.2710) 5.8713 2.0261)
¢, 3.5352 1.7415) -12.160.4327) 6.5447 a.7161)
¢, 3.9844 (0.1908) -1(0.0474) 1.6811 (0.3263)
0.7 ¢, 6.8264 (1.7075 69.61(0.4243) 10.393 4.6787)
¢, 3.1870 6091 -20.81(0.6483) 12.336 (4.5793)
¢, 3.9842 0.2094) -1(0.0520) 1.7668 (0.3981)
0.8 ¢, 7.8668 (27378 95.46(0.6802) 21.589 (12.998)
c, 2.4225 @071 -39.81(1.0135) 29.425 (16.636)
¢, 3.9903 (0.2342) -0.85(0.0582) 1.8290 (0.4788)
09 ¢, 10.147 52831 152.13a.3127) 83.53 (79.77)
c, 0.2299 ¢7.7471) -94.29(1.9249) 156.9 a77.2)
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Panel C: R(u,X) = 4.3376 and o = 1
7=(5,3,1),w=1(0.4,0.3,0.3)
y ¢ R: 100(R: — R)/R% ¢'Xe
c, 4.3266 0.0679) -0.25¢0.0157) 1.0673 (0.0352)
0.1 ¢, 4.5684 ©.1088) 5.32(0.0251) 1.2319 (0.0634)
c, 4.3260 ©.1572) -0.270.0363) 1.2412 (0.0824)
c, 4.3122 0.0974) -0.590.0225) 1.1367 0.0585)
02 ¢, 481722181 11.06(0.0503) 1.5382 (0.1637)
c, 4.2767 03580 -1.40¢0.0825) 1.5646 ©.1711)
¢, 4.3022 (0.1265) -0.82(0.0292) 1.2044 (0.0930)
0.3 ¢, 5.0988 0.4000) 17.55(0.0922) 1.9699 (0.3554)
¢, 4.1712 0.6833) -3.84(0.1575) 2.0361 (0.2906)
¢, 4.3006 (0.1552) -0.85(0.0358) 1.2601 (0.1349)
04 ¢, 54127 06435 24.79(0.1484) 2.5992 (0.6690)
¢, 4.0139 1002 -7.46(0.2536) 2.7718 (0.4480)
¢, 4.3104 (0.1756) -0.63(0.0405) 1.3051 (0.1783)
0.5 ¢, 5.8043 ©0.999%) 33.81(0.2305) 3.6282 (1.2445)
¢, 3.7780 (1.6819 -12.50(0.3878) 4.0675 0.8115)
c, 4.3161 ©0.1981) -0.500.0457) 1.3257 0.2105)
06 ¢, 63027 q4782) 45.30(0.3408) 5.5166 (2.3755)
¢, 3.4027 .4206) -21.5500.5581) 6.6470 (1.8593)
¢, 4.3282 02110 -0.220.0486) 1.3450 (0.2420
0.7 ¢, 7.0149 @215 61.72(0.5098) 9.6467 (5.2082)
¢, 2.8573 3.4346) -34.13(0.7918) 12.79 (5.0708)
¢, 4.3301 0.2216) -0.170.0511) 1.3621 (0.2642)
0.8 ¢, 8.0686 33101 86.01(0.7631) 20.1585 (13.6538)
¢, 1.9350 @.9736) -55.391.1466) 30.8030 (15.0832)
c, 4.3371 02342 -0.010.0540) 1.3754 0.2839)
09 ¢, 10.35 6.0308) 138.791.3904) 77.81 (7922
¢, -0.6901 (8.9579) -115.912.0652) 166.1 (188.6)

Note: p = 100 and N = 10000. Here ¢, and ¢, represent as c(y,gn) and c(u, S,), respectively.
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Figure 2: Comparison between the Empirical and Corrected Portfolio Allocation and Returns

p=100,return comparison p=100,allocation comparison
0
2 @
o |
N
2+ 0 |
e |
w - =
0 |
=
2 o |
© - - =]
T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
p=200,return comparison p=200,allocation comparison

000510152025
I
%
'
'
'
'
)
'

T T T T T T T T T T T T
[ 5 10 15 20 25 30 0 5 10 15 20 25 30

p=300,return comparison p=300,allocation comparison

Difference Comparison

10
1
R
v
)
000510152025
I

T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Number of Simulation

Note: Here, % = R, — R, d% = R,—R, d’ = ||&, —cl|, and dZ = ||¢, — c|. Solid line is the absolute values
of dj, and dg , respectively; Dashed line is the absolute values of 2 and d%, respectively. The top, middle
and bottom two sub-figures are the plots for p = 100, 200, 300 and n = 500, respectively. The plots on
the left are the plots for a’lpe and dz, while the plots on the right are the plots for 7 and d2, respectively.
Here, the population is given according to a multivariate normal distribution with p = (1, ..., )" and
=1L



Figure 3: Comparison of Different Returns for 50 stocks in the S&P 500 as y = 0.1
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Note: We denote the Plug-in, Bootstrap-corrected, equally weighted, and Spectrally-corrected returns
as PI, BC, EW, and SC, respectively.



Figure 4: Comparison of Different Returns for 100 stocks in the S&P 500 as y = 0.2
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Note: We denote the Plug-in, Bootstrap-corrected, equally weighted, and Spectrally-corrected returns
as PI, BC, EW, and SC, respectively.
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Figure 5: Comparison of Different Returns for 200 stocks in the S&P 500 as y = 0.4
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Note: We denote the Plug-in, Bootstrap-corrected, equally weighted, and Spectrally-corrected returns
as PI, BC, EW, and SC, respectively.
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Figure 6: Comparison of Different Returns for 300 stocks in the S&P 500 as y = 0.6
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Note: We denote the Plug-in, Bootstrap-corrected, equally weighted, and Spectrally-corrected returns
as PI, BC, EW, and SC, respectively.
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