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SPECTRALLY-CORRECTED ESTIMATION FOR HIGH-DIMENSIONAL MARKOWITZ

MEAN-VARIANCE OPTIMIZATION1

Zhidong Baia, Hua Lib, MichaelMcAleercdef andWing-KeungWonggh

Abstract

This paper considers the portfolio problem for high dimensional data when the dimension and size

are both large. We analyze the traditional Markowitz mean-variance (MV) portfolio by large dimension

matrix theory, and find the spectral distribution of the sample covariance is the main factor to make

the expected return of the traditional MV portfolio overestimate the theoretical MV portfolio. A cor-

rection is suggested to the spectral construction of the sample covariances to be the sample spectrally-

corrected covariance, and to improve the traditional MV portfolio to be spectrally corrected. In the

expressions of the expected return and risk on the MV portfolio, the population covariance matrix is

always a quadratic form, which will direct MV portfolio estimation. We provide the limiting behavior

of the quadratic form with the sample spectrally-corrected covariance matrix, and explain the superior

performance to the sample covariance as the dimension increases to infinity proportionally with the

sample size. Moreover, this paper deduces the limiting behavior of the expected return and risk on

the spectrally-corrected MV portfolio, and illustrates the superior properties of the spectrally-corrected

MV portfolio. In simulations, we compare the spectrally-corrected estimates with the traditional and

bootstrap-corrected estimates, and show the performance of the spectrally-corrected estimates are the

best in portfolio returns and portfolio risk. We also compare the performance of the new proposed es-

timation with different optimal portfolio estimates for real data from S&P 500. The empirical findings

are consistent with the theory developed in the paper.

Keywords: Markowitz Mean-Variance Optimization, Optimal Return, Optimal Portfolio Allocation,
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1. INTRODUCTION

Mean-Variance (MV) portfolio optimization has been one of the most important topics in

finance since Markowitz (1952) developed the theory. It provides a powerful tool for investors

to allocate their wealth, incorporating their preferences according to their expectations of re-

turns and risks. According to the theory, portfolio optimizers respond to the uncertainty of an

investment by selecting portfolios that maximize profit, subject to achieving a specified level of

calculated risk or, equivalently, minimize variance subject to obtaining a predetermined level of

expected gain (see Markowitz (1952, 1959, 1991); Kroll et al. (1984)).

More precisely, we assume that there are p branches of assets with random returns r =

(r1, · · · , rp)T , having expectation µ = (µ1, · · · , µp)T and covariance matrix Σ = (σi j). For any

investable capital, C, and investment plan, c = (c1, ..., cp)T , satisfying
∑p

i=1 ci = C, the antici-

pated return is a random variable, cT r, with expectation, cTµ, and variance or risk, cT Σc. For

convenience, we also call c = (c1, ..., cp)T a portfolio. Without loss of generality, we assume

C ≤ 1, in which the strict inequality infers that portfolio optimizers invest their wealth only

partially. We further assume that short selling is allowed; that is, any component of c could be

negative.

In this model, the MV portfolio optimization problem can be reformulated as:

max cTµ, subject to cT 1 ≤ 1 and cT Σc ≤ σ2
0,(1.1)

in which 1 represents the vector of ones, and σ2
0 is a given level of risk. We call R = max cTµ

satisfying (1.1) the optimal expected (OE) return, and the solution c to the maximization

the optimal allocation (OA) plan. Bai et al. (2009) extend the separation theorem (Cass and

Stiglitz (1970)) and the mutual fund theorem (Merton (1972)) to obtain the analytical solution

of equation (1.1), as shown in the following proposition:1

1In the expression of c, σ0Σ−1µ
µT Σ−1µ is the solution of (1.1) only with one restriction cT Σc ≤ σ0, if it satisfies cT 1 ≤ 1,

that is, σ01T Σ−1µ
√
µΣ−1µ

≤ 1. This is the OA plan. Otherwise, c(µ,Σ) = Σ−11
1T Σ−11 + b(µ,Σ)

(
Σ−1µ −

1T Σ−1µ
1T Σ−11 Σ−11

)
. See Bai et al.

(2009) and the references therein for further information.
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Proposition 1.1 For the optimization problem shown in (1.1), the optimal allocation and the

corresponding expected return are:

c := c(µ,Σ) =


σ0Σ−1µ
√
µT Σ−1µ

if σ01T Σ−1µ
√
µT Σ−1µ

≤ 1,

Σ−11
1T Σ−11 + b(µ,Σ)

(
Σ−1µ −

1T Σ−1µ
1T Σ−11 Σ−11

)
if σ01T Σ−1µ

√
µT Σ−1µ

> 1,
(1.2)

and

R := R(µ,Σ) = (c(µ,Σ))′ µ ,(1.3)

respectively, in which:

b(µ,Σ) =

√
1T Σ−11σ2

0 − 1
µT Σ−1µ1T Σ−11 − (1T Σ−1µ)2 .

Proposition 1.1 provides investors with the best OA plan with the corresponding OE return,

and also an excellent solution to Markowitz’s MV optimization procedure. However, in real-life

applications, practitioners have to estimate both an unknown expectation, µ, and an unknown

covariance matrix, Σ. Nevertheless, in classical estimation, the sample mean and sample covari-

ance are not consistent estimates of their counterpart parameters in the Markowitz optimization

problem. In the past five decades, there have been over 300 papers written on the estimation of

µ, as mentioned in the report of Green et al. (2013), with many possible estimates of µ.

Nevertheless, a difficult task is how to provide accurate estimates of the population covari-

ance matrix to be used in the expression of the OA plan (1.2) that will lead to a more accurate

estimate of the MV optimal return. In contrast, there have been few papers written on how to

estimate the covariance matrix accurately.

It is well known that the sample covariance matrix is not a good choice as the estimator of the

population covariance matrix in the MV optimization. This is because the sample covariance

matrix tends to be far from its population counterpart when the dimension of the sample plays

an important role compared with the sample size. When the dimension of the sample and the

sample size increase to infinity proportionally, it is well known that: (1) the spectral distribu-

tion of the sample covariance matrix follows the MP-Law when the population covariance is a

unit matrix (see Marcenko and Pastur (1967)); or (2) follows a nonrandom distribution with the

form of several implicit functions for the common population covariance when the population

covariance satisfies some regularity conditions (Siverstein (1995)).
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This finding gives inspiration to explore further information for the population covariance

matrix, including the spectral structure (see, for example, El Karoui (2008), Rao et al. (2008),

Mestre (2008), Bai et al. (2010), Li et al. (2013), Li and Yao (2013) among others), and the

eigenvector matrix (Bai et al. (2007), Siverstein (1990, 1989, 1984)) among others, when both

the dimension and the size of the sample are large.

In this paper, we apply the spectral theory of the population covariance to correct the spectrum

of the sample covariance matrix that enables further development of the spectrally-corrected

(SC) estimates for the MV portfolio optimization. We first develop some limiting properties for

the SC estimates for both return and risk in the MV portfolio optimization. Thereafter, we com-

pare the SC estimates with the corresponding traditional plug-in (PI) and bootstrap-corrected

(BC) estimates (see Bai et al. (2009) and the references therein for further information).

There are many proposals to improve the population covariance matrix estimation, which

can be divided into two schools. The first suggests building on the additional knowledge in the

estimation process, such as sparseness, graph model or factor model (see Bickel and Levina

(2008), Rohde and Tsybakov (2011), Cai et al. (2012), Ravikumar et al. (2008), Rajaratnam et

al. (2008), Khare and Rajaratnam (2011), Fan et al. (2008), among others). The second recom-

mends correcting the spectrum of the sample covariance, such as the optimal linear shrinkage

estimator in Ledoit and Wolf (2004) and the nonlinear shrinkage estimator in Ledoit and Wolf

(2012). The SC estimates given in this paper belong to the second school. We improve estima-

tion about the quadratic form associated with the population covariance matrix and its inverse.

The details are given in the following sections.

The organization of this paper is as follows: In Section 2, we discuss the Markowitz MV

optimization enigma, and develop some properties for the limiting behavior of the classical

Markowitz optimal portfolio estimator. In Section 3, BC estimation has been designed to solve

the protfolio estimator but its performance in risk is even worse than the classical Markowitz

optimal portfolio, that is the PI portfolio. In Sections 4 and 5, we introduce the SC method

and derive properties for the limiting behavior of the SC optimal portfolio estimator. Simula-

tion studies and empirical illustrations are provided in Sections 6 and 7. Section 8 gives some

concluding remarks.
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2. PLUG-IN ESTIMATION AND MARKOWITZ MEAN-VARIANCE OPTIMIZATION ENIGMA

We denote, µ̂, and, Σ̂, as the estimates of the population mean, µ, and covariance matrix, Σ

(PCOV), respectively, for the random return vector r. Substitution of µ̂ and Σ̂ in (1.2) gives the

OA estimate and the corresponding random portfolio return as:

ĉ = c(µ̂, Σ̂) and rc = ĉ′r.(2.1)

Then, for the expectation, Rĉ = ĉµ, and the risk (or variance), σ2
ĉ = ĉ′Σĉ, we have following

proposition:

Proposition 2.1 For the optimization problem shown in (1.1) and given µ̂ and Σ̂, the expecta-

tion, Rĉ, and risk, σ2
ĉ , of the random portfolio return, rĉ, respectively are:

Rĉ =


σ0 µ′Σ̂−1µ̂
√
µ̂′Σ̂−1µ̂

if σ01′Σ̂−1µ̂
√
µ̂′Σ̂−1µ̂

≤ 1,

µ′Σ̂−11
1′Σ̂−11 + bĉ

(
µ′Σ̂−1µ̂ − aĉ µ

′Σ̂−11
)

if σ01′Σ̂−1µ̂
√
µ̂′Σ̂−1µ̂

> 1,
(2.2)

and

σ2
ĉ =


σ2

0 eµ,µ
µ̂′Σ̂−1µ̂ if σ01′Σ̂−1µ̂

√
µ̂′Σ̂−1µ̂

≤ 1,

e1,1

(1′Σ̂−11)2 + b2
ĉ
(
eµ,µ − 2aĉe1,µ + a2

ĉe1,1
)

if σ01′Σ̂−1µ̂
√
µ̂′Σ̂−1µ̂

> 1,
(2.3)

in which aĉ =
1′Σ̂−1µ̂
1′Σ−11 , bĉ =

√
1′Σ̂−11σ2

0−1

µ̂′Σ̂−1µ̂1′Σ̂−11−(1′Σ̂−1µ̂)2 , eµ,µ = µ̂′Σ̂−1ΣΣ̂−1µ̂, e1,1 = 1′Σ̂−1ΣΣ̂−11, and

e1,µ = 1′Σ̂−1ΣΣ̂−1µ̂.

From Proposition 2.1, Rĉ is a function of the quadratic form a′Σ̂−1b, and σ2
ĉ is a function of

a′Σ̂−1ΣΣ̂−1b, in which a and b could be µ, 1, or µ̂. In order to obtain improved estimates for the

return and risk, we intend to obtain improved estimates for both a′Σ̂−1b and a′Σ̂−1ΣΣ̂−1b. For

purposes of obtaining a superior estimate Σ̂ of Σ, so that it will provide improved performance in

both (2.2) and (2.3), we develop properties for a′Σ̂−1b and a′Σ̂−1ΣΣ̂−1b. Estimation of a quadratic

form, aΣ̂−1b, closer to its population counterpart is more important than making Σ̂−1 closer to

Σ−1 in the Euclidean distance. For simplicity, let :

φb
a(A) = a′A−1b and ϕb

a(A) = a′A−1ΣA−1b,(2.4)

for A = Σ or any estimate Σ̂. For an estimate Σ̂ of Σ, φb
a(Σ̂) is an accurate estimate of φb

a(Σ) and

ϕb
a(Σ̂) is an accurate estimate of ϕb

a(Σ) if φb
a(Σ̂) is close to φb

a(Σ) and ϕb
a(Σ̂) is close to ϕb

a(Σ) for

any large sample size n.
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2.1. The limiting behavior of the sample covariance matrix

It is standard practice to use the sample covariance matrix in PCOV estimation. This practice

is useful if the effect of the dimension of the sample is neglectable when compared with the

sample size since, in the classical limit theory, the sample covariance matrix is a consistent

estimator of the PCOV as the sample size tends to infinity for a given dimension. However,

in the large dimensional setup, in which both of the sample size and dimension are large, the

classical law of large numbers is not applicable because the sample covariance matrix diverges

from the PCOV. In the large dimensional setup, the most interesting situation is when the sample

size, n, and the dimension, p, increase to infinity proportionally, such that:

p/n→ y > 0 with p, n→ ∞ .(2.5)

The statement in (2.5) is the fundamental assumption in this paper. In addition, we consider

y ∈ (0, 1) and do not study the case where y > 1 as we have to deal with the inverse of the

singular matrix in the latter case, which is not the purpose of the paper.

Under this assumption, the limiting properties of the sample covariance have been well in-

vestigated, and we will use this property to study Markowitz’s MV optimization estimation.

Suppose that xk = (x1k, · · · , xpk)′ (k = 1, 2, · · · , n) are i.i.d. random vectors with mean vector,

µ, and covariance matrix, Σ. Define the sample covariance matrix as:

Sn =
1

n − 1

n∑
k=1

(xk − x)(xk − x)′,(2.6)

in which x =
∑n

k=1 xk/n is the sample mean. For any p × p real symmetric S, the empirical

spectral distribution (ESD) FS is defined as:

FS(x) =
1
p

p∑
i=1

δ[λi,+∞)(x),(2.7)

where λ1 ≥ λ2 ≥ · · · ≥ λp are the eigenvalues of S, and δA(x) is 1 if x ∈ A and 0 otherwise.

For a distribution sequence Fn = FSn , if it converges to a nonrandom distribution F as p/n→

y > 0 with p, n→ ∞, F is called the limiting spectral distribution (LSD) of the sequence of {Sn}.

We let m denote the Stieltjes transform2 of F = yF + (1 − y)δ0. There is an obvious one-to-one

mapping between F and m, where m is the unique solution on the upper complex plane of the

2If F(x) is a function of bounded variation on the real line, then its Stieltjes transform is defined by mF(z) =∫
1
λ−z dF(λ), z ∈ C+, and so m(z) = −

1−y
z + ym(z) for any z ∈ C+.
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following Marc̆enko-Pastur equation (see Siverstein (1995)):

z = −
1
m

+ y
∫

tdH(t)
1 + tm

z ∈ C+ ,(2.8)

in which H = limp→∞ FΣp .

According to the spectrum analysis of the sample covariance, we deduce the limiting behavior

of the quadratic form a′pS−1
n bp and a′pS−1

n ΣS−1
n bp for any pair of sequences {ap} and {bp} under

appreciate regularity conditions. Consider the following assumptions that will often be used

below:

Assumption (I) Zp = (z1, · · · , zn) = (zi, j)p,n, in which zi, j (i = 1, · · · , p, j = 1, · · · , n) are i.i.d.

random variables, with Ezi j = 0, E|zi j|
2 = 1, E|zi j|

4 < ∞, and xk = µ+ Σ
1/2
p zk, where Σp is

a spectrally bounded nonsingular matrix, and k = 1, 2, · · · , n;

Assumption (II) Σp = Vp∆pV′p is nonrandom Hermitian and nonnegative definite with its

spectral norm bounded in p, where Vp = (V1,p1 ,V2,p2 , · · · ,VL,pL) and

∆p(τ,wp) = diag(τ1Ip1 , τ2Ip2 , ..., τLIpL) (τ1 > τ2 > · · · > τL),(2.9)

in which τ = (τ1, ..., τL), wp = (p1, ..., pL)/p, p1 + ... + pL = p, and Ipi is the pi dimension

unit matrix (i = 1, ..., L).

Assumption (III) wp → w = (w1,w2, ...,wL), as p→ ∞, (w1 + w2 + · · · + wL = 1).

We now present some results that form the foundation of the paper in the following theorem:

Theorem 2.1 Under Assumption (I), if the empirical spectral distribution (see (4.3)) of Σp,

FΣ, converges to a given distribution function H, we have:

ap
′S−1

n bp −
ap
′Σ−1

p bp

(1 − y)
−→ 0 and ap

′S−1
n ΣpS−1

n bp −
ap
′Σ−1bp

(1 − y)3 −→ 0(2.10)

in probability for any pair of uniform bounded sequences {ap} and {bp}, where Sn is defined in

(2.6).

We conduct Monte Carlo simulations to check the assertions made in Theorem 2.1, and dis-

play the simulation results in Observations 6.1 and 6.2 in the Simulation Section. The simulation

results displayed in Observation 6.1 confirm that the assertion shown in the first limiting equa-

tion (2.10) holds true, while the simulation results displayed in Observation 6.2 confirm that the

second limiting equation (2.10) holds true.

Applying Theorem 2.1, the quadratic form (that is, ap
′S−1

n bp) with the inverse of Sn is asymp-

totically (1 − y)−1 (> 1) times that of (that is, ap
′Σ−1

p bp) with Σ−1
p . This property could be used

to explain the Markowitz mean-variance optimization enigma, which will be discussed in detail
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in the next subsection.

2.2. Markowitz mean-variance optimization enigma

Before discussing the solution for the Markowitz mean-variance optimization enigma, we

examine the performance of the sample covariance matrix in the MV optimization portfolio by

assuming that the estimates of the population mean vector are fixed. In this paper, we examine

the property of the portfolio3:

cp = c(µ,Sn),(2.11)

which is constructed by plugging Sn into (1.2), and then the property of its expected return

given by c′pµp (denoted as Rp). Bai et al. (2009) refer to c(x̄,Sn) and c(x̄,Sn)′x̄ as “plug-in

allocation” and “plug-in return,” respectively. The values of c(x̄,Sn) and c(x̄,Sn)′x̄ are obtained

from plugging both Sn and x̄ into (1.2). Define:

Rp = c′pµp and Riskp
c = c′pΣpcp .(2.12)

As x̄ is a consistent estimator of µ, without loss of generality, in this paper we refer to cp as

“plug-in allocation”, Rp = c′pµp as “plug-in return,” and Riskp
c = c′pΣpcp as “plug-in risk”.

According to the classical theory of large numbers, as n → ∞, Sn is a consistent estimator

of Σ for given p, so that as n → ∞ for a given p, Rp is consistent for R. However, if p tends

to infinity, Rp could become an inaccurate estimate of R. Bai et al. (2009) have analyzed this

situation. We extend their work by deriving the following lemma and theorem:

Lemma 2.1 Under Assumptions (I) to (III), supposing
(

1
√

p ,
1
√

p

)
,
(

1
√

p ,
µ
‖µ‖

)
and

(
µ
‖µ‖ ,
µ
‖µ‖

)
be-

long to Ω =
{
(υ1, υ2) : υT

1 UpiU
T
pi
υ2 = di ∈ R, i = 1, · · · , L,max {‖υ1‖, ‖υ2‖} ≤ M(> 0)

}
, we have:

1′Σ−1
p 1

p
→ ς0

1,1,
1′Σ−1

p µ
√

p‖µ‖
→ ς0

1,µ, and
µ′Σ−1

p µ

‖µ‖2
→ ς0

µ,µ;(2.13)

1′S−1
n 1
p
→ γς0

1,1,
1′S−1

n µ
√

p‖µ‖
→ γς0

1,µ , and
µ′S−1

n µ

‖µ‖2
→ γς0

µ,µ;(2.14)

1′S−1
n ΣS−1

n 1
p

→ γ3ς0
1,1,

1′S−1
n ΣS−1

n µ
√

p‖µ‖
→ γ3ς0

1,µ , and
µ′S−1

n ΣS−1
n µ

‖µ‖2
→ γ3ς0

µ,µ;(2.15)

in which γ = 1/(1 − y) (0 < y < 1).

3In order to eliminate the disturbance from the estimation of µ, we consider it as a known vector. In the empirical
analysis, we select x as µ̂, which is a consistent estimator of µ.
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Theorem 2.2 Under Assumptions (I) to (III), if σ0 = ξ0/
√

p, ‖µ‖/
√

p = ξµ + o(1) then, for

three pairs of sequences
(

1
√

p ,
1
√

p

)
,
(

1
√

p ,
µ
‖µ‖

)
and

(
µ
‖µ‖ ,
µ
‖µ‖

)
in Ω, we have:

a. the limit of the theoretical optimal return R exists and:

R −→


ξ0ξµ

√
ς0
µ,µ if ξ0ς

0
1,µ/ς

0
µ,µ < 1,

ξµ
ς0

1,µ

ς0
1,1

+ ξµ

√
ς0

1,1ξ0−1

ς0
µ,µς

0
1,1−(ς0

1,µ)2

(
ς0
µ,µ −

(ς0
1,µ)2

ς0
1,1

)
if ξ0ς

0
1,µ/ς

0
µ,µ > 1,

(2.16)

b. the limit of “the plug-in return” exists and:

Rp −→


ξ0ξµ

√
γς0

µ,µ if
√
γξ0ς

0
1,µ/ς

0
µ,µ < 1,

ξµ
ς0

1,µ

ς0
1,1

+ γξµ

√
ς0

1,1ξ
2
0−γ

−1

ς0
µ,µς

0
1,1−(ς0

1,µ)2

(
ς0
µ,µ −

(ς0
1,µ)2

ς0
1,1

)
if

√
γξ0ς

0
1,µ/ς

0
µ,µ > 1.

(2.17)

c. the limit of p · Riskp exists and:

p · Riskp
c →


γ2ξ2

0 if
√
γξ0ς

0
1,µ/ς

0
µ,µ < 1,

γ + γ ·
γξ2

0ς
0
1,1−1

ς0
µ,µς

0
1,1−ς

2
1,µ

(
ς0
µ,µ −

(
ς0

1,µ

)2

ς0
1,1

)
if

√
γξ0ς

0
1,µ/ς

0
µ,µ > 1,

(2.18)

in which γ = 1/(1 − y) (0 < y < 1). In addition, p · Riskp
c → ∞, as y→ 1.

From Theorem 2.2, we have the following remark:

Remark 2.1 According to (2.16) and (2.17), we have:

a. when ξ0ς
0
1,µ <

√
1 − yς0

µ,µ or ξ0ς
0
1,µ > ς0

µ,µ, the plug-in return Rp is always asymptotically

greater than the theoretical optimal return;

b. when ξ0ς
0
1,µ <

√
1 − yς0

µ,µ, the plug-in return Rp is asymptotically 1/
√

1 − y times the

theoretic optimal return R;

c. when
√

1 − yς0
µ,µ < ξ0ς

0
1,µ < ς

0
µ,µ, we have:

R = ξ0ξµ

√
ς0
µ,µ,

and

Rp = ξµ
ς0

1,µ

ς0
1,1

+
ξµ

1 − y

√√
ς0

1,1ξ
2
0 − (1 − y)

ς0
µ,µς

0
1,1 − (ς0

1,µ)
2

ς0
µ,µ −

(ς0
1,µ)

2

ς0
1,1

 ,
according to (1.2) and (2.17).

Theorem 2.2 and Remark 2.1 show that the findings in Bai et al. (2009) that the plug-in return,

Rp, is asymptotically greater than its corresponding theoretical optimal return, R, holds only in

point a. of Remark 2.1, but not in point b. Thus, one should not be surprised if the plug-in return,
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Rp, is smaller than its corresponding theoretical optimal return, R. We show that it is possible

that the plug-in return, Rp, is smaller than its corresponding theoretical optimal return, R, in the

following example :

Example 2.1 Considering the special case in which Σp = Ip and ξ0 = 1, we have ς0
1,1 = ς0

µ,µ =

1, and so, when
√

1 − y < ς0
1,µ < 1:

R = ξµ and Rp = ξµ

ς0
1,µ +

√
y(1 − ς0

1, u)

1 − y

 .
For a small enough y, we have Rp < R as |ς0

1,µ| < 1 in (2.13).

In order to demonstrate the assertions in Theorem 2.2, we simulate the plug-in returns, Rp,

and its corresponding theoretical optimal return, R, by setting the population covariance to be

a unit matrix. We display the results in Figure 1. From the figure, Rp can be larger than R, and

the deviation between Rp and R increases exponentially when the number of assets increases.

Bai et al. (2009) call this phenomenon “over-prediction”, which is consistent with the finding

in Remark 2.1 points a and b. The result is also consistent with the finding in Theorem 2.2 that

the plug-in estimator is not accurate for the return estimation in the optimal portfolio.

We also note that the plug-in estimator is inaccurate in the plug-in risk defined in (2.12)

because, as y increases toward 1, the risk of the portfolio c(µ,Sn) will increase dramatically. In

order to demonstrate this phenomenon, we conduct simulations for the performance of the plug-

in risk for different pairs of (p, n) by setting the risk level σ0 = 1 in (1.1), and report the results

in Table I. From the table, we find that all riskp
c > 3 and riskp

c could be larger than 100 when

p/n = 0.9. This means that the plug-in portfolio not only has the over-prediction problem for

the estimated return, but also yields much higher risk than its corresponding theoretical optimal

portfolio. Table IV provides further information and confirmation of the result.

3. BOOTSTRAP-CORRECTED ESTIMATION

In order to circumvent the limitation of the plug-in estimation, Bai et al. (2009) introduce

a bootstrap-corrected approach to improve estimation and solve the over-prediction problem.

The bootstrap-corrected method requires a draw from the resample χ∗ = {x∗1, · · · , x
∗
n} of the p-

variate normal distribution with mean, µ, and covariance matrix, Sn, as defined in equation (2.6).

Thereafter, one has to compute the sample covariance matrix from the resample χ∗, denoted as
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S∗n, and then plug S∗n into (1.2) to obtain c∗p := c(µ,S∗n) and R∗p := R(µ,S∗n). Under suitable

conditions, Bai et al. (2009) prove the following proposition to provide asymptotic properties

for the bootstrap-corrected estimation :

Proposition 3.1 Under Assumption (I) and using the bootstrapped plug-in procedure, as de-

scribed above, the bootstrap-corrected allocation, cb, and bootstrap-corrected return esti-

mate, Rb, are:

cb = cp +
1
√
γ

(cp − c∗p) and Rb = Rp +
1
√
γ

(Rp − R∗p),(3.1)

where γ = 1/(1 − y), and cp and Rp are plug-in allocation and return, respectively.

The bootstrap-corrected allocation is deduced from correcting the bias of Rp, and so it is

expected to circumvent the over-prediction problem. Bai et al. (2009) conduct simulations to

show that the bootstrap-corrected allocation is indeed closer to the theoretical allocation than is

the plug-in allocation, and the bootstrap-corrected return performs better than the plug-in return.

We conduct simulations to reexamine the issue and find that, under Assumptions (I) to (III), the

bootstrap-corrected allocation is indeed closer to the theoretical allocation than is the plug-in

allocation, and the bootstrap-corrected return performs better than the plug-in return. However,

we also find that the bootstrap-corrected return could sometimes be smaller than its theoretical

optimal return, or even be negative. This shows that the bootstrap-corrected approach can be

improved.

We call the risk of the bootstrap-corrected return:

Riskb
c = c′bΣpcb(3.2)

“bootstrap-corrected risk.” According to (3.1) and Part c of Theorem 2.2, we obtain the fol-

lowing theorem:

Theorem 3.1 Under Assumption (I), for any given p, we have:

p · Riskb
c = p · Riskp

c + O(γ−1/2),(3.3)

in which γ = 1/(1 − y)→ ∞, as y→ 1.

In the simulation study, we find that the bootstrap-corrected risk is not stable, and is some-

times even higher than the plug-in risk, Riskp
c , defined in (2.12), implying that the bootstrap-

corrected risk, Riskb
c , could perform even worse than the plug-in risk. We report Riskp

c and Riskb
c

in Table I for the following cases: (a) fix p/n = 0.5, and vary p from 100 to 500; and (b) fix

p = 252 and vary p/n = 0.5 to 0.9, with σ0 = 1 in both situations. We obtain the following
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results: (1) the performance of both plug-in and bootstrap-corrected risks are inaccurate as all

exceed 3; (2) when p = 252 and vary p/n from 0.5 to 0.6, both plug-in and bootstrap-corrected

risks are greater than 100; and (3) the bootstrap-corrected risk is larger than the plug-in risk

in all cases reported in Table I. The results in Table IV confirm that the performance of both

plug-in and bootstrap-corrected risks can be inaccurate.

4. THE LIMITING BEHAVIOR OF THE SAMPLE SPECTRALLY-CORRECTED COVARIANCE MATRIX

According to the theory of large dimensional random matrix, the sample covariance matrix

deviates from the population covariance matrix dramatically as p, n → ∞ when its ratio is

y = p/n > 0. In order to explain this phenomenon, we express the spectral decomposition for

the sample covariance matrix as :

Sn = U′nΛnUn(4.1)

in which Λn = diag(λ1, ..., λp) (λ1 ≥ λ2 ≥ · · · ≥ λp) is the eigenvalue matrix, and Un is the

corresponding matrix of eigenvectors. In order to solve the problem of the large deviations, the

deviation of the sample covariance from the PCOV estimation can be separated into two parts,

namely: (i) the deviation of the eigenvalue matrix of the sample covariance; and (ii) the corre-

sponding eigenvector matrix.

For data of large dimensions, it is well known that the eigenvalue matrix of the sample covari-

ance is far from the PCOV matrix (see Bai et al. (2007)). However, it is still an open problem as

how best to correct the eigenvectors for the PCOV. First, we have to correct the spectral element,

and thereafter correct the corresponding eigenvector. Correcting both the spectral element and

the corresponding eigenvector to improve the PCOV estimation is a useful approach. There are

many papers on the spectral estimation of the PCOV for the large dimensional data (see, for ex-

ample, Mestre (2008), Li and Yao (2013), Li et al. (2013), Yao et al. (2012), El Karoui (2008)).

The problem is complicated as the eigenvector matrix of the PCOV is not unique when there

are two or more eigenvalues of the PCOV of the same value. Therefore, we make the following

conjecture:

Conjecture 4.1 It is not possible to obtain an efficient estimate for the eigenvector.

In order to provide a possible solution to the problem stated in Conjecture 4.1, we propose

an approach to correct the eigenvalue matrix of Sn, and thereafter obtain the sample spectral
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corrected covariance matrix:

S̃n = U′n∆pUn,(4.2)

in which ∆p is given by (2.9). We believe that this estimate will outperform the sample co-

variance matrix in estimating the quadratic form of the PCOV. We will develop asymptotic

properties for the limiting behavior of φbp
ap (̃Sn) = ap

′S̃−1
n bp, and then conduct simulations to

show that φbp
ap (̃Sn) performs better than φbp

ap (Sn) = ap
′S−1

n bp.

Before making the comparison, for a given p × p symmetric matrix A, define the empirical

spectral distribution (ESD) as:

FA(x) =
1
p

p∑
i=1

I{λA
i ≤x}, x ∈ R,(4.3)

in which λA
1 ≤ λ

A
2 ≤ · · · ≤ λ

A
p are the eigenvalues of A, and I{·} denotes the indicator function.

Theorem 4.2 Under Assumptions (I) to (III), assume FSn has a limit spectral distribution

Fτ,w, with L splitting support, Θ.4 Then for any pair of sequences {ap} and {bp} in Ω (as defined

in Lemma 2.1), we have:

ap
′S̃−1

n bp −→

L∑
k=1

dk

τk

L∑
j=1

τk(u j − τ j)
τ j(u j − τk)

� ς(a,b) a.s.,(4.4)

where u j is the solution of 1 + y
∫

t
u−t dFτ,w(t) = 0, for any j = 1, · · · , L with τ1 > u1 > τ2 >

· · · > τL > uL > 0, and ς(a,b) is the limit of ap
′S̃−1

n bp.

We conduct Monte Carlo simulations to check that the assertion made in Theorem 4.2 holds

true, and display the simulation results in Observation 6.1 in the Simulation Section. The sim-

ulation results displayed in Observation 6.1 confirm that the assertion shown Theorem 4.2 is

correct.

As explained in Section 2, the accurvacy of the portfolio optimization depends on the accu-

racy of the estimates of the quadratic forms a′pΣ−1bp listed in (1.2) and (1.3). For simplicity, we

let φbp
ap (A) = a′pA−1bp, as defined in (2.4), for A = Σ or any estimate Σ̂ of Σ. The traditional esti-

mate φbp
ap (Sn) = a′pS−1

n bp is asymptotically equal to a′pΣ−1bp/(1 − y), and answers the following

question: (1) What is the characteristic of ς(a,b) defined in (4.4), and (2) does ς(a,b) approach

or diverge from a′pΣ−1bp/(1 − y) as compared with φbp
ap (Σ) = a′pΣ−1bp? We hypothesize that S̃n

defined in (4.2) will perform better than the sample covariance matrix Sn defined in (2.6) in the

sense that it provides better estimates of φbp
ap (Σ), as shown in the following conjecture:

4The L splitting support is the support of Fτ,w that can be covered by L disjoint intervals.
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Conjecture 4.3 Under the conditions stated in Theorem 4.2, when p is large, we have:
a′pΣ−1bp < ς(a,b) < γa′pΣ−1bp if a′pΣ−1bp > 0,

a′pΣ−1bp > ς(a,b) > γa′pΣ−1bp if a′pΣ−1bp < 0 ,
(4.5)

where γ = 1/(1 − y), and ς(a,b) is the limit of ap
′S̃−1

n bp, as defined in Theorem 4.2.

We conduct Monte Carlo simulations to check the assertion made in Conjecture 4.3, and

display the result in Observation 6.1. The simulations confirm the assertion is correct. From the

above discussion and the simulations, we expect c(µ, S̃n) will perform better than c(µ,Sn) in

estimating c(µ,Σ) in (1.2) in portfolio optimization. Nonetheless, besides using the estimate of

c(µ,Σ), we have to check the accuracy in estimating the risk defined in (2.3). For any portfolio

strategy, the corresponding risk is an important measure to evaluate the performance of the

strategy. From (2.3), one could find that the risk, σ2(µ, Σ̂), is determined by ϕb
a(Σ̂) = a′Σ̂−1ΣΣ̂−1b

for a,b = 1, and µ (see (2.4)). Considering Σ̂ = S̃n, we have following theorem:

Theorem 4.4 Under Assumptions (I) and (II), for any pair of sequences {ap} and {bp} in Ω, we

have:

ap
′S̃−1

n ΣS̃−1
n bp −→

L∑
k=1

dkλk

 L∑
j=1

(u j − λ j)
λ j(u j − λk)


2

� %(a,b) a.s.(4.6)

Similar to Conjecture 4.3 to hypothesize the behavior of ς(a,b) defined in Theorem 4.2, we

have the following conjecture to hypothesize the behavior of %(a,b) defined in Theorem 4.4:

Conjecture 4.5 Under the conditions stated in Theorem 4.4, when p is large, we have:
a′pΣ−1bp < %(a,b) < γ3a′pΣ−1bp if a′pΣ−1bp > 0 ,

a′pΣ−1bp > %(a,b) > γ3a′pΣ−1bp if a′pΣ−1bp < 0 ,
(4.7)

in which γ = 1/(1 − y), and %(a,b) is the limiting behavior of a′pS̃−1
n ΣS̃−1

n bp, as defined in (4.6).

Conjecture 4.3 hypothesizes the behavior of the estimates of the components for the optimal

return, while Conjecture 4.5 hypothesizes the behavior of the estimates of the components for

risk. Therefore, we conduct simulations to check whether we could reject the assertions made

for the estimates of the risk components in Conjecture 4.5, and in Theorems 2.1 and 4.2. In

the simulations, we compute ϕbp
ap (Σ)(= φ

bp
ap (Σ) = a′pΣ−1bp), %(a,b), ϕbp

ap (Sn)(= apS−1
n ΣS−1

n bp) and

ϕ
bp
ap (̃Sn)(= apS̃−1

n ΣS̃−1
n bp), and report the results in Table III. We find that: (1) ϕbp

ap (Σ) < %(a,b) <

γ3ϕ
bp
ap (Σ); (2) %(a,b) is close to ϕbp

ap (Σ); (3) γ3ϕ
bp
ap (Σ) is further from ϕ

bp
ap (Σ); (4) ϕbp

ap (̃Sn)→ %(a,b)
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with small standard deviation; and (5) ϕbp
ap (Sn) → γ3ϕ

bp
ap (Σ) with a much higher standard devi-

ation than for ϕbp
ap (̃Sn). For example, when y = 0.9 in Panel A of Table III, ϕbp

ap (Σ) = 2.1266,

%(a,b) = 4.3561, γ3ϕ
bp
ap (Σ) = 2126.6, ϕbp

ap (̃Sn) = 6.7951 with standard deviation = 2.1544,

while ϕbp
ap (Sn) = 3422.9 with standard deviation = 7450.3. The results support the assertions

that ϕbp
ap (̃Sn) is a more accurate estimate of ϕbp

ap (Σ) than is ϕbp
ap (Sn).

5. THE SPECTRALLY-CORRECTED OPTIMAL PORTFOLIO

We now develop the theory of the spectrally-corrected estimation for the optimal portfolio.

Suppose the expected return vector, µ, is given, and plugging the sample spectrally-corrected

covariance matrix into (1.2) gives the spectrally-corrected optimal portfolio:

cs := c(µ, S̃n),(5.1)

where c(·, ·) is defined in (1.2). As the estimator S̃n is obtained by correcting the eigenvalues of

the sample covariance, cs, it is the spectrally-corrected allocation. The corresponding expected

portfolio return is:

Rs = c′s µ,

which is the spectrally-corrected return. We state the formula in the following proposition:

Proposition 5.1 Under Assumption (I), we have:

Rs =


σ0

√
µ′S̃−1

n µ if σ01′S̃−1
n µ√

µ′S̃−1
n µ

< 1 ,

µ′S̃−1
n 1

1′S̃−1
n 1

+ bs

(
µ′S̃−1

n µ −
(1′S̃−1

n µ)2

1′S̃−1
n 1

)
if σ01′S̃−1

n µ√
µ′S̃−1

n µ
> 1 ,

(5.2)

in which bs = b(µ, S̃n). In addition, the spectrally-corrected risk (that is, the risk of the

spectrally-corrected allocation) is:

Risks
c = ĉ′sΣĉs

=


σ2

0µ′S̃−1
n ΣS̃−1

n µ
µ′S̃−1

n µ
if σ01′S̃−1

n µ√
µ′S̃−1

n µ
< 1 ,

[A′ + bs (B′ − C′)] Σ [A + bs (B − C)] if σ01′S̃−1
n µ√

µ′S̃−1
n µ

> 1 ,
(5.3)

where A =
S̃−1

n 1
1′S̃−1

n 1
, B = S̃−1

n µ, and C =
1′S̃−1

n µ
1′S̃−1

n 1
S̃−1

n 1.

Next, we examine the asymptotic behavior of Rs and Risks
c in the following subsections.

5.1. The limiting behavior of the spectrally-corrected expected return

According to Rs in (5.2), the limiting behavior depends on the quadratic forms, namely

1′S̃−1
n 1, 1′S̃−1

n µ, and µ′S̃−1
n µ. In order to obtain a better comparison, we examine the limiting
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behavior of the quadratic forms for their corresponding parameters, namely 1′Σ−11, 1′Σ−1µ, and

µ′Σ−1µ. As both ‖1‖ and ‖µ‖ tend to infinity as p → ∞, it is necessary to standardize the two

vectors as 1/√p and µ/‖µ‖, respectively. We derive the following theorem to state the asymp-

totic properties of the standardized terms 1′S̃−1
n 1, 1′S̃−1

n µ, and µ′S̃−1
n µ, and the quadratic forms

of their corresponding parameters:

Lemma 5.1 Under Assumptions (I) and (II), for the three pairs of sequences
(

1
√

p ,
1
√

p

)
,(

1
√

p ,
µ
‖µ‖

)
and

(
µ
‖µ‖ ,
µ
‖µ‖

)
in Ω, we have:

1′S̃−1
n 1
p
→ ς1,1,

1′S̃−1
n µ

√
p‖µ‖

→ ς1,µ , and
µ′S̃−1

n µ

‖µ‖2
→ ςµ,µ,(5.4)

in which γ = 1/(1 − y) (0 < y < 1).

With the aid of Lemma 5.1, we can derive the asymptotic properties of the limiting behavior

of the spectrally-corrected return, Rs, for the optimal portfolio, and its corresponding theoretical

optimal return, R, as shown in the following theorem:

Theorem 5.1 Under the conditions of Theorem 4.2, and given the definitions in (2.13) and

(5.4) , if σ0 = ξ0/
√

p and ‖µ‖/
√

p = ξµ + o(1), we have:

a. the theoretical optimal return, R, exists and satisfies:

R −→


ξ0ξµ

√
ς0
µ,µ if ξ0ς

0
1,µ/ς

0
µ,µ < 1,

ξµ
ς0

1,µ

ς0
1,1

+ ξµ

√
ς0

1,1ξ0−1

ς0
µ,µς

0
1,1−(ς1,µ)2

(
ς0
µ,µ −

(ς0
1,µ)2

ς0
1,1

)
if ξ0ς

0
1,µ/ς

0
µ,µ > 1;

b. the limit of the spectrally-corrected return, Rs, for the optimal portfolio exists and follows:

Rs −→

 ξ0ξµ
√
ςµ,µ if ξ0ς1,µ/ςµ,µ < 1,

ξµ
ς1,µ

ς1,1
+ ξµ

√
ς1,1ξ0−1

ςµ,µς1,1−(ς1,µ)2

(
ςµ,µ −

(ς1,µ)2

ς1,1

)
if ξ0ς1,µ/ςµ,µ > 1.

By using Theorem 2.2, we can show that both Lemma 5.1 and Theorem 5.1 hold.

In simulations, we compute ς(a,b) in Table II and show that Conjecture 4.3 holds for a gen-

eral sequence pair of ap and bp. Under the assertions in Conjecture 4.3, (ς1,1, ς1,µ, ςµ,µ) is closer

to (ς0
1,1, ς

0
1,µ, ς

0
µ,µ) than is γ(ς0

1,1, ς
0
1,µ, ς

0
µ,µ) under the Euler distance which, in turn, implies that Rs

will be closer to R than to Rp. The result is confirmed by the results in Table IV, namely that

Rs is close to R, on average, with a smaller standard deviation. We discuss the issue further in

the simulation section. We conclude that Lemma 5.1, Theorem 5.1 and the simulation results in

Table IV support the conjecture that Rs is proportionally consistent with the theoretical optimal
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expected return R, under appropriate regularity conditions.

5.2. The limiting behavior of the spectrally-corrected risk

According to the expression of σ̂2 in (2.3), the limiting behavior depends on three quadratic

forms, namely 1′S̃−1
n ΣS̃−1

n 1, 1′S̃−1
n ΣS̃−1

n µ, and µ′S̃−1
n ΣS̃−1

n µ. As both ‖1‖ and ‖µ‖ tend to infinity

as p → ∞, it is necessary to standardize these two vectors as 1/√p and µ/‖µ‖, respectively.

We constrain the vector sequences 1/√p and µ/‖µ‖ satisfying Ω, and develop the limiting

properties for the standardized terms of ϕ1
1(̃S) = 1

p1′S̃−1
n ΣS̃−1

n 1, ϕµ1 (̃S) = 1
√

p‖µ‖1
′S̃−1

n ΣS̃−1
n µ and

ϕ
µ
µ(̃S) = 1

‖µ‖2µ
′S̃−1

n ΣS̃−1
n µ, as shown in the following lemma:

Lemma 5.2 Under Assumptions (I) to (III), for three pairs of sequences
(

1
√

p ,
1
√

p

)
,
(

1
√

p ,
µ
‖µ‖

)
and(

µ
‖µ‖ ,
µ
‖µ‖

)
in Ω, we have:

1T S̃−1
n ΣS̃−1

n 1
p

→ %1,1,
1T S̃−1

n ΣS̃−1
n µ

√
p‖µ‖

→ %1,µ, and
µT S̃−1

n ΣS̃−1
n µ

‖µ‖2
→ %µ,µ,(5.5)

in which γ = 1/(1 − y) (0 < y < 1).

With Lemma 5.2, we develop the asymptotic property for the risk of the spectrally-corrected

portfolio, as shown in the following theorem:

Theorem 5.2 Under the conditions stated in Theorem 4.2, and the definitions in (2.13), (5.4)

and (5.5), if σ0 = ξ0/
√

p, ‖µ‖/
√

p = ξµ + o(1), we have:

a. when ξ0ς1,µ/ςµ,µ < 1, p · Risks
c → ξ0%µ,µ/ςµ,µ almost surely; and

b. when ξ0ς1,µ/ςµ,µ > 1, p · Risks
c converges to:

%1,1

ς1,1
+ 2

√
ς1,1ξ0 − 1

ςµ,µς1,1 − (ς1,µ)2

%1,µ

ς1,1
−
ς1,µ%1,1

ς2
1,1


+

ς1,1ξ0 − 1
ςµ,µς1,1 − (ς1,µ)2

%µ,µ − 2
ς1,µ%1,µ

ς1,1
+

(
ς1,µ

ς1,1

)2

%1,1


almost surely.

In the simulations, we compute %(a,b) and verify Conjecture 4.5 in Table III. According

to Conjecture 4.5, (%1,1, %1,µ, %µ,µ) is closer to (ς0
1,1, ς

0
1,µ, ς

0
µ,µ) than is γ3(ς0

1,1, ς
0
1,µ, ς

0
µ,µ). Combined

with the conjecture that (ς1,1, ς1,µ, ςµ,µ) is closer to (ς0
1,1, ς

0
1,µ, ς

0
µ,µ) than is γ(ς0

1,1, ς
0
1,µ, ς

0
µ,µ), p·Risks

c

will be smaller than p · Riskp
c , as verified in Table IV.
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Remark 5.1 Comparing p · Riskp
c in (2.18) with p · Risks

c in Theorem 5.2, p · Riskp
c → ∞ as

y→ 1, while p ·Risks
c is stable for large y ∈ (0, 1). Thus, Risks

c performs better than does Riskp
c .

In the section of Simulation Study, we compute %(a,b) and verify Conjecture 4.5 in Table

III. According to Conjecture 4.5, it is reasonable to conjecture that (%1,1, %1,µ, %µ,µ) is closer to

(ς0
1,1, ς

0
1,µ, ς

0
µ,µ) than is γ3(ς0

1,1, ς
0
1,µ, ς

0
µ,µ). Together with the conjecture that (ς1,1, ς1,µ, ςµ,µ) is closer

to (ς0
1,1, ς

0
1,µ, ς

0
µ,µ) than is γ(ς0

1,1, ς
0
1,µ, ς

0
µ,µ), p ·Risks

c will be smaller than p ·Riskp
c , which is verified

in Table IV. As p ·Riskb
c is O(γ2), the same as p ·Riskp

c in (3.2), p ·Riskb
c is greater than p ·Risks

c

as γ = 1/(1 − y) → ∞. From Remark 5.1 and the simulation results in Table IV, Risks
c is the

smallest among Riskw
c (w = s, p, b).

6. SIMULATION STUDY

According to Proposition 2.1, the main factors to decide the performance of the optimal

portfolio estimation are the quadratic forms a′Σ̂−1b and a′Σ̂−1ΣΣ̂−1b. In Section 2, we deduced

their limiting behavior when Σ̂ = Sn in Theorem 2.1. In Section 4, we deduced their limiting

behavior when Σ̂ = S̃n in Theorems 4.2 and 4.4. We also conjectured the relationships between

a′S−1
n b, and between a′S̃−1

n b, a′S−1
n ΣS−1

n b and a′S̃−1
n ΣS̃−1

n b, in Conjectures 4.3 and 4.5.

In the next subsection, we conduct simulations to support the assertions in Theorem 4.2, in

general, and examine whether the assertions in Conjecture 4.3 and 4.5 hold. Thereafter, we will

conduct simulations to check whether the assertions made in Theorem 4.4 and Conjecture 4.5

hold.

6.1. Simulations for a′Σ̂−1b and a′Σ̂−1ΣΣ̂−1b

Step 1: Set ~τ = (τ1, ..., τL) and ~w = (p1/p, p2/p, ..., pL/p), with p = p1 + p2 + ...+ pL, and obtain:

Σp = diag
(
τ1Ip1 , τ2Ip2 , ..., τLIpL

)
:= Σp(~τ, ~w, p).

Step 2: Select the vector pair (ap,bp) such that:
p1+...+pk∑

i=p1+...+pk−1+1

aibi = dk (p0 = 0),(6.1)

for any given dk (k = 1, 2, ..., L), in which ap = (a1, ..., ap) and bp = (b1, ..., bp). Here, dk

is the inner product of ap and bp on the subspace extended by the columns of Vk,pk which

is given in condition b of Theorem 2.1. For any vector pair, (ãp, b̃p), we can construct

ap = ãp and:

bp =

(
d1

d̃1
b̃1, ...,

d1

d̃1
b̃p1 , ...,

dk

d̃k
b̃p̃k−1+1, ...,

dk

d̃k
b̃p̃k , ...,

dL

d̃L
b̃p̃L−1+1, ...,

dL

d̃L
b̃p̃L

)
,(6.2)
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in which ãp = (ã1, ..., ãp), b̃p = (b̃1, ..., b̃p), and
∑p1+...+pk

i=p1+...+pk−1+1 ãib̃i = d̃k.

Step 3: Vary the ratio y = p/n from 0.1 to 0.9. For each value of y, generate the sample x1, ..., xn,

and evaluate the values ς(a,b) and φbp
ap (Σ) = a′pA−1bp (A = Σ, S̃n and Sn, respectively).

Thus, according to step 2, φbp
ap (Σ) = τ1d1 + ... + τLdL is fixed for ~τ.

Step 4: Repeat steps 1 to 3 a total of N = 10, 000 times, and obtain the mean and standard

deviation of the simulated values for each y.

We first use the steps in Simulation 6.1 to conduct simulations to check the assertions made in

Conjecture 4.3, and whether the assertions in Theorems 2.1, and 4.2 hold. In order to check the

above, in the simulations we compute φbp
ap (Σ)(= a′pΣ−1bp), ς(a,b), φbp

ap (Sn)(= a′pS−1
n bp), φbp

ap (̃Sn)(=

a′pS̃−1
n bp), and γφbp

ap (Σ), and report the results in Table II. From the table, we obtain the following

observations:

Observation 6.1

a. Confirm Conjecture 4.3 that φbp
ap (Σ) < ς(a,b) < γφbp

ap (Σ);

b. φbp
ap (Σ) is close to ς(a,b), and γφbp

ap (Σ) is far from φ
bp
ap (Σ);

c. φbp
ap (Sn) and γφ

bp
ap (Σ) are the terms in the first limiting equation (2.10) of Theorem 2.1.

We observe that the mean of φbp
ap (Sn) is close to γφbp

ap (Σ), with standard deviation (sd) less

than 0.82 for y ≤ 0.5. When y > 0.5, the mean of φbp
ap (Sn) is still close to γφbp

ap (Σ), with

higher sd, but it is still less than 0.8 times φbp
ap (Σ). Thus, the results confirm the assertion,

in the first limiting equation (2.10) of Theorem 2.1, that φbp
ap (Sn) → γφ

bp
ap (Σ). Overall,

φ
bp
ap (Sn)→ γφ

bp
ap (Σ), with a much higher sd than that of φbp

ap (̃Sn).

d. ς(a,b) and φbp
ap (̃Sn) are the terms in the limiting equation (4.4) in Theorem 4.2. The value

of φbp
ap (̃Sn) is very close to ς(a,b) in mean, with the sd bounded by 0.41. Thus, the results

confirm the assertion in Theorem 4.2. In addition, compared with φbp
ap (Sn), φb

ap
(̃Sn) has a

smaller sd, and is obvious for large y. Overall, we find that φbp
ap (̃Sn)→ ς(a,b), with small

sd.

These observations confirm that φbp
ap (̃Sn) is a better estimate of φbp

ap (Σ) than is φbp
ap (Sn). For

example, when y = 0.9 in Panel B of Table II, φbp
ap (Σ) = 1.7, ς = 2.0066, γφbp

ap (Σ) = 17,

φ
bp
ap (̃Sn) = 1.9514, with sd = 0.2913, while φbp

ap (Sn) = 19.060, with sd = 11.968.

In order to examine whether the assertions in both Theorem 4.4 and Conjecture 4.5 hold, we

can use the steps in Simulation 6.1 to compute %(a,b) and ϕbp
ap (A) = a′pA−1ΣA−1bp (A = Σ, S̃n
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and Sn, respectively) in Step 3. The simulation results are reported in Table III. From the table,

we obtain the following observations:

Observation 6.2

a. Confirm Conjecture 4.5 that ϕbp
ap (Σ) < %(a,b) < γ3ϕ

bp
ap (Σ);

b. %(a,b) is close to ϕbp
ap (Σ) and γ3ϕ

bp
ap (Σ) is further from ϕ

bp
ap (Σ);

c. ϕbp
ap (Sn) and γ3ϕ

bp
ap (Σ) are the terms in the second liming equation (2.10) of Theorem 2.1.

We observe that the mean of ϕbp
ap (Sn) is close to γ3ϕ

bp
ap (Σ), with sd less than 7.2 for y ≤ 0.5.

When y > 0.5, the mean of ϕbp
ap (Sn) is still close to γ3ϕ

bp
ap (Σ), but the sd increases with

y, and reaches more than 3 times γ3ϕ
bp
ap (Σ). Thus, the results confirm the assertion in the

second limiting equation (2.10) of Theorem 2.1 that ϕbp
ap (Sn)→ γ3ϕ

bp
ap (Σ).

d. %(a,b) and ϕbp
ap (̃Sn) are the terms in the limiting equation (4.7) in Theorem 4.4. The value

of φbp
ap (̃Sn) is very close to ς(a,b) in mean, and with sd bounded by 2.2. Thus, the results

confirm the assertion in Theorem 4.4. In addition, compared with ϕbp
ap (Sn), ϕb

ap
(̃Sn) has a

smaller sd, which is obvious for large y.

e. From c and d, ϕbp
ap (Sn) → γ3ϕ

bp
ap (Σ), with a much higher sd than that of ϕbp

ap (̃Sn) while

ϕ
bp
ap (̃Sn)→ %(a,b) with a small sd.

These observations confirm that ϕbp
ap (̃Sn) is a better estimate of ϕbp

ap (Σ) than is ϕbp
ap (Sn). For

example, when y = 0.9 in Panel C of Table III, ϕbp
ap (Σ) = 2.2666, ϕbp

ap (̃Sn) = 4.7502, with

sd = 1.1209, while ϕbp
ap (Sn) = 3617.4, with sd = 7589.3.

Now we are ready to conduct simulations in the next subsection to compare both return and

risk performances of the proposed spectrally-corrected estimates with those of the plug-in and

bootstrap-corrected estimates. In order to do so, we compare the performance of cs with cp and

cb in equations (2.2) and (2.3) in terms of expected return and risk.

6.2. Simulations for the optimal portfolio estimates

Given a p-dimension nonzero vector, µ = (µ1, · · · , µp)′, and a positive definite matrix, Σ =

(σi j), which is assumed to be diagonal for simplicity, we state the simulation procedure as

follows:

Step 1: Generate n vectors of returns, r = (r1, · · · , rp), for the p-branch of assets from a popula-

tion with mean, µ, and covariance matrix, Σ.
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Step 2: Use equations (2.2) and (2.3) to compute the optimal allocation, c, and the expected re-

turn, R, for the plug-in, bootstrap-corrected, and the proposed spectrally-corrected esti-

mates, as follows:

(i) use equation (2.11) to compute cp, the first equation in (3.1) to compute cb, and

equation (5.1) to compute cs; then

(ii) substitute cw into the formula, Rw = c′w µ, to obtain the corresponding expected

return, Rw = c′w µ, for w = p, s, b.

Step 3: Compute Rw − R, ‖cw − c‖ and c′wΣcw (w = p, s, b).

Step 4: Repeat Steps 1 to 3 a total of N times, and calculate the means and standard deviations

for Rw, Rw − R, ‖cw − c‖ and c′wΣcw (w = p, s, b).

Select a random vector as the population, µ, and consider three different, Σ, where each Σ

contains three or four different eigenvalues. For each set of µ and Σ, conduct simulations ac-

cording to the above steps, and compute the means and standard deviations of Rw, Rw − R, and

c′wΣcw (w = p, s, b), in which p is fixed and y = p/n increases from 0.1 to 0.9. In order to

make comparisons easier, we compute the percentage of the means of Rs − R over R. In Table

IV, we present the simulated results for the three different populations in Panels A, B and C,

respectively.

We first compare the expected returns of the optimal portfolio estimates. From all the panels,

we have the following observations: (1) the mean of the spectrally-corrected portfolio return,

Rs, is the closest estimate to the expected return, R, of the theoretical MV optimal portfolio,

followed by that of the bootstrap-corrected portfolio return, Rb, then the mean of the plug-in

portfolio return, Rp, with
∣∣∣Rs−R

∣∣∣ as the smallest, followed by
∣∣∣Rb−R

∣∣∣, and
∣∣∣Rp−R

∣∣∣ is the largest

for any y = 0.1 to 0.9; (2) the sd of
∣∣∣Rs −R

∣∣∣ is the smallest, followed by
∣∣∣Rp −R

∣∣∣, while the sd of∣∣∣Rb − R
∣∣∣ is the largest for any y = 0.1 to 0.9; (3) both the spectrally-corrected portfolio return,

Rs, and the bootstrap-corrected portfolio return, Rb, underestimate the expected return, R, of

the theoretical MV optimal portfolio, while the plug-in portfolio return, Rp, overestimates the

expected return, R, for any y = 0.1 to 0.9; (4) the underestimation of the spectrally-corrected

portfolio return, Rs, is very small (from 0.01% to 1.58%) for any y; (5) the underestimation

of the bootstrap-corrected portfolio return, Rb, could be small for small y, but large for large

y (from 0.27% to 115.9%); (6) the overestimation of the plug-in portfolio return, Rp, is very
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large (from 5.25% to 159.4%). Now we compare the risk for the different portfolio estimates.

In Table IV, we set the risk level at σ2
0 = 1. From the table, we notice that: (7) all the Riskw

are larger than σ2
0 for any w = p, b, s, and for any y = 0.1 to 0.9. Thus, one should select the

portfolio estimate in which the risk is not too far from σ2
0.

From Table IV, we have the following observations: (8) the spectrally-corrected risk, Risks,

is the smallest, followed by the plug-in risk, Riskp, while the bootstrap-corrected risk, Riskb, is

the largest for any y = 0.1 to 0.9; (9) the sd of the spectrally-corrected risk, Risks, is the smallest

for any y = 0.1 to 0.9; (10) comparing the sd of the plug-in risk, Riskp, and of the bootstrap-

corrected risk, Riskb, the former is smaller for small y (< 0.3) and large y (> 0.7), while the

latter is smaller for y = 0.3 and 0.4 to 0.7.

Now we use the results show in Table IV to illustrate the above observations, especially to

show that the spectrally-corrected estimates are the best of the three estimates. In each panel,

p = 100 is given, and n varies such that y = p/n increases from 0.1 to 0.9. As the conclusions

drawn from the other panels are the same as that drawn from Panel A, we illustrate the above

observations by analyzing the results from only Panel A of Table IV, as follows:

(1) The spectrally-corrected estimates perform the best in terms of the expected return:

(a) When y = 0.1, Rs is only 0.14% (with sd=0.0132) below R, Rp is 5.25% (with

sd=0.0242) higher than R, and Rb is 0.31%(with sd=0.0344) higher than R, on av-

erage. On the other hand, when y = 0.9, Rs is still only 1.5% (with sd=0.0641)

below R, Rp is 159.41% (with sd=1.2518) higher than R, and Rb is 81.62% (with

sd=1.8346) below R on average.

(b) The ratio y has the smallest influence on the expected return of the spectrally-

corrected portfolio when compared with the plug-in and bootstrap-corrected esti-

mates. When y increases from 0.1 to 0.9, the range of |(Rĉ − R)/R| for ĉ = cs is the

smallest, from 0.14% to 1.58%, with sd from 0.0132 to 0.0641, the range for cp is

from 5.25% to 159.41%, with sd from 0.0242 to 1.2518, while that for cb is from

0.31% to 81.62%, with sd from 0.0344 to 1.8346.

(2) The spectrally-corrected estimation performs the best in term of risk:

(a) When y = 0.1, Risks is 1.0771 (with sd=0.0312), Riskp = 1.2323 (with sd=0.0609),
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and Riskb = 1.2452 (with sd=0.0806). On the other hand, when y = 0.9, Risks is

still small at 2.2 (with sd=0.5822), Riskp increases to 86.581 (with sd=86.581), and

Riskb goes beyond 150 (with sd 170.23).

(b) The ratio y has the smallest influence on the risk of the spectrally-corrected portfolio,

when compared with the plug-in and bootstrap-corrected estimates because Riskcs

is the smallest, from 1.0771 to 2.1382, with sd from 0.0312 to 0.5822. On the other

hand, both Riskcb and Riskcp are very large, from 1.2452 to 151.27, with sd from

0.0806 to 151.27, for cb, and from 1.2323 to 86.581, with sd from 0.0609 to 78.657,

for cp.

(c) For a given method, such as plug-in estimate, the ratio y is smaller, the performance

of cs is better which also holds for the other two methods. For example, the per-

centage of the absolute value of the err ratio, (Rĉ − Rc)/Rc increases from 0.14%

(sd=0.0132) to 1.58% (sd=0.0641), and of Riskĉ from 1.0771 (sd=0.0312) to 2.1382

(0.5822), as ĉ = cs.

From the above discussion, we conclude that, as Rp has an unacceptably high level of over-

estimation, and high risk, Rp is not as stable as Rs or Rb. On the other hand, Rb corrects the

overestimation of Rp, but: (a) the sd of
∣∣∣Rb − R

∣∣∣ is the largest; (b) the bootstrap-corrected risk,

Riskb, is the largest for y = 0.1 to 0.9; (c) the sd of Riskb is the largest for small y, as well as

for large y. Thus, we conclude that Rb is not a good choice for the optimal portfolio return. In

addition, we conclude that the spectrally-corrected portfolio return, Rs, is the best estimate for

the optimal portfolio return when compared with Rp and Rb because: (a) although Rs underes-

timates the expected return, R, of the theoretical MV optimal portfolio, the underestimation is

the smallest for any y = 0.1 to 0.9; (b) the mean of Rs is the closest estimate to R, with the

sd of
∣∣∣Rs − R

∣∣∣ the smallest for any y = 0.1 to 0.9 when compared with both Rp and Rb; (c) the

spectrally-corrected risk, Risks, is the smallest, and its sd is also the smallest for any y = 0.1 to

0.9.

7. EMPIRICAL ILLUSTRATION

In this section, we compare the performance of different optimal portfolio estimates for real

data from S&P 500. We choose the largest 500 stocks with the highest capitalization from

the S&P 500 index from January 1, 2004 to December 31, 2013, and compute their weekly

logarithmic returns.
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As we will compare the performance of ĉs with the portfolios ĉp, ĉb and ĉ0 for different

numbers, p, of stocks, we set p = 50, 100, 200, and 300 (that is, y = 0.1, 0.2, 0.4 and 0.6),

respectively, and choose p stocks randomly from 500 stocks in the S&P 500 index. We select

the sample mean, µ̂, as the estimate of the µ vector, and then obtain ĉw (w = p, s, b). Thereafter,

we estimate the expected returns of each cw as R̂w = ĉ′wµ̂. It is reasonable for the influence of

the sample means in these three portfolios to be the same.

As some studies, for example, Frankfurter et al. (1971), find the portfolio, ĉp, to be less

effective than an equally weighted portfolio, we include the estimates of the equally-weighted

(EW) portfolio in the empirical illustrations for purposes of comparison. We denote the “equally

weighted portfolio estimates” as ĉ0 = 1/p, repeat the procedure N times, and plot the results

in Figures 3 to 6. In these figures, we denote R̂w (w = p, s, b, 0) as the SC, PI, BC and EW

returns, respectively. The line axes are the repeating time, and the pairs of means and standard

deviations are reported for each type of expected return estimates.

The existing literature on the portfolio optimization theory shows that: (1) the plug-in esti-

mates over estimate the theoretical expected return of the optimal portfolio; and (2) the plug-in

estimates are likely not as effective as the equally-weighted estimates; as shown in Section 6, (3)

bootstrap-corrected estimates under estimate the theoretical expected return of the optimal port-

folio; as discussed in Section 2, (4) spectrally-corrected estimates provide consistent estimates

for the theoretical expected return of the optimal portfolio. The results shown in the figures

support the above findings that the plug-in optimal returns are the largest, while the bootstrap-

corrected optimal returns are the smallest, with the equally-weighted and spectrally-corrected

optimal returns lying in between.

In addition, we observe that the difference between the plug-in, bootstrap-corrected, equally-

weighted, and spectrally-corrected optimal returns are small for y = 0.1 and 0.2, and increase for

y = 0.4 and 0.6. The plug-in return is always larger than the other three estimates, and increases

faster than the spectrally-corrected return as y increases. In order to compare variability, as

expected, the sd of the equally weighted return is the smallest. On the other hand, when y = 0.2,

the sd of the plug-in return is smaller than that of the spectrally-corrected return. However, when

y increases, the sd of the spectrally-corrected estimate is smaller. In addition, from the figures,
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the bootstrap-corrected return is always less than zero, while the equally-weighted return is

close to zero. All of these observations are consistent with the estimation theory of portfolio

optimization and the simulations, as discussed in Sections 2 and 6.

8. CONCLUSION

The purpose of the paper was to solve the “Markowitz optimization enigma” by developing

new covariance estimates to capture the essence of portfolio selection. By using large dimen-

sional data analysis, we proved that the expected return of the plug-in allocation is always larger

than that of the optimal portfolio in most situations when the number of assets is large. We note

that Bai et al. (2009) proved a similar result under a much tighter condition, while in this paper

we develop more general results under weaker conditions. For example, we proved that in cer-

tain situations, the expected return of the plug-in allocation is
√
γ =

√
1/(1 − y) times greater

than that of the optimal portfolio while, in other situations, it is still greater than the optimal

portfolio.

In the Markowitz MV portfolio optimization problem, the key issue is how to estimate the

population covariance matrix accurately. In this paper, we introduced the spectrally-corrected

covariance matrix to correct the sample covariance matrix, and derived important theoretical re-

sults. We constructed the spectrally-corrected covariance, S̃n, as the estimate of the population

covariance matrix, and provided the limiting behavior of a′S̃nb for different bounded vectors a

and b when p goes to infinity, with n increasing proportionally. Our simulations demonstrated

that a′S̃nb estimated a′Σb accurately.

According to the theory developed in the paper, we constructed the spectrally-corrected es-

timates, which performed more accurately than both the plug-in and the bootstrap-corrected

estimates, not only for the expected return but also for risk. As our approach is easy to imple-

ment in practice, the efficient frontier of estimates can be constructed analytically. Thus, our

proposed estimator facilitates the Markowitz MV optimization procedure, making it useful in

practice. In addition, the essence of the portfolio analysis problem can be adequately captured

by our proposed approach, which enhances the practical use of the Markowitz mean-variance

optimization procedure.
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We note that the optimal expected return estimate proposed in the paper not only represents

the optimal expected return for the best combination of stocks, but also for the best combination

of risk-free assets, bonds, stocks, and other assets. We note that normality is typically assumed

in the MV optimization problem (see, for example, Leung et al. (2012), and the references cited

therein for further information). However, in the proposed theory, we relax the normality as-

sumption to allow for the existence of fourth moments, so that the proposed spectrally-corrected

estimates could be obtained for the high-dimensional Markowitz MV portfolio optimization

when the expected returns of the assets are derived under the existence of fourth moments.

Although we have developed several important theoretical results in the paper, there are fur-

ther results for which we might conduct simulations. Further research could include developing

such relationships theoretically. The theory developed in the paper could be applied to many re-

lated theories. For example, Korkie and Turtle (2002) established a theory for the optimal return

of self-financing portfolios, for which the estimation approach developed in the paper might be

extended.

The El Karoui (2008) algorithm of estimating the population eigenvalues of large dimensional

covariance matrices, and the nonlinear shrinkage estimation of large dimensional covariance

matrices and their inverses, developed in Ledoit and Wolf (2012), could be extended for some

weaker conditions. Extensions could include incorporating their covariance estimates to de-

velop new estimates for the high dimensional Markowitz MV portfolio optimization. Menchero

et al. (2011) introduced a method called the eigen-adjusted covariance matrices, without using

random matrix theory, and presented some simulation results showing its optimality versus that

of alternative approaches. The theory developed in the paper improves their approach by incor-

porating random matrix theory into the adjustment of eigenvalues of the covariance matrices.

Thus, our approach could obtain efficient estimates of the optimal return and its correspond-

ing allocation that circumvent all four defects, namely the overprediction, underprediction and

allocation estimation problem, as well as the problem of big risk in the Markowitz portfolio

optimization.

Jacobs et al. (2005) argue that the model in (1.1), with ci interpreted as a short position, is

not a realistic model. They suggest that a realistic model of short constraints can be formulated
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as having 2n nonnegative “investments”, with the first n being long positions and the second n

being short positions. Thus formulated, it is a special case of what Markowitz (1959) (Chapter

8 and Appendix A) defines as the “general MV portfolio problem,” namely, to find MV efficient

portfolios subject to zero or more linear equality and/or (weak) inequality constraints. This

could be considered an extension of the problem given in (1.1). Random matrix theory may not

be able to solve this problem, but one could apply the least absolute shrinkage and selection

operator (LASSO) (see Tibshirani (1996)) to solve the problem. This would be a good direction

for purposes of extending the results in the paper.
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9. APPENDIX

9.1. Preliminaries

Before the proof of Theorem 2.1, we introduce some notation and basic facts which will be

used in the remaining parts.

Under Assumption I, let ri = 1
√

nxi, and S̃n =
∑n

i=1 rir′i . Denote S̃n,i = S̃n − rir′i , S̃n,i j =

S̃n − rir′i − r jr′j and δi = r′i Ṡ
−1
n,i ri − n−1 tr Ṡ−1

n,i . Define:

β j =
1

1 + rT
j S̃−1

n, jr j

and βi j =
1

1 + rT
j S̃−1

n,i jr j

,

β̆ j =
1

1 + n−1 tr S̃−1
n, j

and β̆i j =
1

1 + n−1 tr S̃−1
n,i j

,

bn =
1

1 + n−1E tr S̃−1
n,1

and b̆n =
1

1 + n−1E tr S̃−1
n,12

.

Further, for any p × p symmetric matrix A and v ∈ Rp, the following two identities hold:

v(A + vv′)−1 =
v′A−1

1 + v′Av
and

(
A + vv′

)−1
− A−1 = −

A−1vv′A−1

1 + v′A−1v
(9.1)

(see (2.2) and Lemma 2.6 of Siverstein (1995)).

Lemma 9.1 Theorem 2 in Bai and Yin (1993): Let X = [Xu,v; u = 1, ..., p; v = 1, ..., n] be a

random matrix in which Xu,vs are i.i.d. random variables with zero mean and unit variance, and

S = (1/n)XX′. Then, if E|X|4 < ∞, as p, n→ ∞, p/n→ y ∈ (0, 1),

lim λmin =
(
1 −
√

y
)2 and lim λmax =

(
1 +
√

y
)2
,

where λmin and λmax are the smallest and largest eigenvalues of S, respectively.

Lemma 9.2 Lemma 2.1 of Bai and Silverstein (2004): Let (Xi)n
i=1 be a complex martingale

difference sequence with respect to an increasing σ-field {Fi}. Then, for any k > 1:

E

∣∣∣∣∣∣∣∑̀i=1

Xi

∣∣∣∣∣∣∣
k

≤ KE

 n∑
i=1

|Xi|
2

k/2

.

Lemma 9.3 Lemma 2.7 of Bai and Silverstein (1998) Suppose x = (x1, ..., xp)′, where x j’s are

i.i.d. random variables with zero mean and unit variance, and B is a deterministic n× n matrix.

Then for any α ≥ 2, we have:

E|x′Bx − tr B|α ≤ Kα

((
E|x1|

4 tr(B2)
)α/2

+ E|x1|
2α tr(Bα)

)
.

Lemma 9.4 Lemma 2.3 in Bai and Silverstein (2004): Let fn(·), n = 1, 2, · · · , be analytic in D,

a connected open set of C, satisfying | fn(z)| ≤ M for every n and z in D, and fn(z) converges
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for each z in a subset of D having a limit point in D. Then there exists a function f analytic in

D, such that fn(z) → f (z) and f ′n(z) → f ′(z) for all z ∈ D. Moreover, on any set bounded by

a contour interior to D, the convergence is uniform and { f ′n(z)} is uniformly bounded by 2M/ε̃,

where ε̃ is the distance between the contour and the boundary of D.

Lemma 9.5 Theorem 1.1 in Bai and Silverstein (1998): Under Assumption (I), assume FΣp

converges to a given distribution function H (see (4.3)). Then for any interval [a, b] (a > 0)

lying outside the support of H, we have:

P (no eigenvalues of Tn appears in [a, b] for all p) = 1,

in which Tn = 1
nΣ1/2ZpZ′pΣ1/2.

Lemma 9.6 Theorem 1.2 Bai and Silverstein (1999): Under Assumption (I), assume FΣp con-

verges to a given distribution function H. Then if [a, b] (a > 0) lying outside the support of H

and not contained in [0, x0], where x0 is the greatest lower bound of Θ, we have:

P
(
λSn

in
> b and λSn

in+1 < a for all large n
)

= 1,

in which in is satisfied such that:

λ
Σp

in
> −1/m(b) and λ

Σp

in+1 < −1/m(a),

in which m is the unique solution of (2.8).

9.2. Proof of Theorem 2.1

Part I: In this part, we prove
∣∣∣a′pS−1

n bp − a′pΣ−1
p bp/(1 − y)

∣∣∣→ 0 in probability. Without loss of

generality, supposing µ = 0, we only need to prove the following two results:∣∣∣∣∣a′pS−1
n bp −

n − 1
n

a′pṠ−1
n bp

∣∣∣∣∣→ 0 and
∣∣∣∣∣a′pṠ−1

n bp −
1

1 − y
a′pΣ

−1
p bp

∣∣∣∣∣→ 0(9.2)

in probability, where Ṡn = 1
n

∑n
i=1 xix′i .

According to (9.1), rewrite:∣∣∣∣∣a′pS−1
n bp −

n − 1
n

a′pṠ−1
n bp

∣∣∣∣∣ =
n − 1

n

∣∣∣∣∣∣apṠ−1
n x · x′Ṡ−1

n bp

1 + x′Ṡ−1
n x

∣∣∣∣∣∣ ≤ ∣∣∣apṠ−1
n x

∣∣∣ · ∣∣∣x′Ṡ−1
n bp

∣∣∣ .
Then the first condition in (9.2) is proved only if E

(
apS̃−1

n x
)2

= 0.

By rewriting x = 1
√

n

∑n
i=1 ri and (9.1), we have:

E
(
apS̃−1

n x
)2

=
1
n

n∑
i=1

E
(
βiapS̃−1

n,i ri

)2
+

1
n

∑
i, j

E
(
βiβ ja′pṠ−1

n,i rir′jṠ
−1
n, jap

)
.(9.3)

From Lemma 9.1 and Assumption (I), we have:

E
(
βiapṠ−1

n,i ri

)2
≤

1
n

E
(
a′pṠ−1

n,i ΣpṠ−1
n,i ap

)
≤ O(n−1).
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Now we only need consider the second part of (9.3). Rewriting βi = β̆i − β̆
2
i δi, we have:∣∣∣∣∣∣∣1n ∑

i, j

E
(
βiβ ja′pṠ−1

n,i rir′jṠ
−1
n, jap

)∣∣∣∣∣∣∣
≤

1
n

∣∣∣∣∣∣∣∑i, j

β̆iβ̆ jE
(
a′pṠ−1

n,i rir′jṠ
−1
n, jap

)∣∣∣∣∣∣∣ +
1
n

∣∣∣∣∣∣∣∑i, j

E
(
(βi + β̆i)β̆2

jδ ja′pṠ−1
n,i rir′jṠ

−1
n, jap

)∣∣∣∣∣∣∣ := A1 + A2.

By the Cauchy-Schwarz inequality and (9.1), we have:

A1 ≤
1
n

∣∣∣∣∣∣∣∑i, j

β̆iβ̆ jE
(
a′p

(
Ṡ−1

n,i − Ṡ−1
n,i j

)
rir′j

(
Ṡ−1

n, j − Ṡ−1
n,i j

)
bp

)∣∣∣∣∣∣∣
≤

1
n

∑
i, j

E
∣∣∣a′pṠn,i jr j(r′jṠ

−1
n,i jri)2r′i Ṡ

−1
n,i jbp

∣∣∣
≤

1
n

∑
i, j

(
E

(
a′pṠ−1

n,i jr j

)4
)1/4 (

E
(
r′jṠ

−1
n,i jri

)4
)1/2 (

E
(
b′pṠ−1

n,i jri

)4
)1/4

.

By Lemmas 9.1 and 9.3, we can deduce for any α ≥ 4:

E
(
a′pṠ−1

n,i ri

)α
= O(n−α/2) and E

(
r′jṠ

−1
n,i jri

)α
= O(n−α/2).(9.4)

Therefore, A1 = O(n−1).

For A2, compute:
1
n

∣∣∣∣∣∣∣∑i, j

E
(
(βi + β̆i)β̆2

jδ ja′pṠ−1
n,i rir′jṠ

−1
n, jap

)∣∣∣∣∣∣∣
≤

1
n

∑
i, j

E
∣∣∣∣a′p (

Ṡ−1
n,i − Ṡ−1

n,i j

)
rir′j

(
Ṡ−1

n, j − Ṡ−1
n,i j

)
apδi

∣∣∣∣
+

2
n

∑
i, j

E
∣∣∣∣a′pṠ−1

n,i jrir′j
(
Ṡ−1

n, j − Ṡ−1
n,i j

)
apδi

∣∣∣∣ +
1
n

∑
i, j

E
∣∣∣a′pṠ−1

n,i jrir′jṠ
−1
n,i japδi

∣∣∣
:= A21 + A22 + A23.

From the Cauchy-Schwarz inequality and Lemma 9.1, we have:

A21 = O(n−1), A22 = O(n−1) and A23 = O(n−1),

that is, A2 = O(n−1). Further according to (9.3), we have (9.2).

Now we focus on the limit of a′pṠ−1
n bp. Rewriting:

a′pṠ−1
n bp =

1
4

[(
ap + bp

)′
Ṡ−1

n

(
ap + bp

)
−

(
ap − bp

)′
Ṡ−1

n

(
ap − bp

)]
,

we consider the limit of a′pṠ−1
n ap. According to Theorem 1 in Bai et al. (2007), we have:∣∣∣∣∣a′pṠ−1

n ap −
1

1 − y
a′pΣ

−1
p ap

∣∣∣∣∣→ 0

in probability.

Part II: In this part, we prove
∣∣∣a′pS−1

n ΣpS−1
n bp − a′pΣ−1

p bp/(1 − y)3
∣∣∣ → 0 in probability. From

(9.2) and Lemma 9.1, we have:∣∣∣a′pS−1
n ΣpS−1

n bp − a′pṠ−1
n ΣpṠ−1

n bp

∣∣∣ ≤ K
∣∣∣a′pS−1

n bp − a′pṠ−1
n bp

∣∣∣ ∥∥∥S−1
n

∥∥∥ ∥∥∥Ṡ−1
n

∥∥∥ ∥∥∥Σp

∥∥∥→ 0
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in probability. Write:

a′pṠ−1
n ΣpṠ−1

n bp = lim
v→0

a′pΣ
−1/2
p

(
Σ−1/2

p Ṡ−1
n Σ−1/2

p − v · iIp

)−2
Σ−1/2

p ap

= lim
v→0

d
i · dv

(
a′pΣ

−1/2
p

(
Σ−1/2

p Ṡ−1
n Σ−1/2

p − v · iIp

)−1
Σ−1/2

p ap

)
:= lim

v→0

d
i · dv

fp(v).

According to Theorem 2 in Bai et al. (2011), we have:

fp(v) − m(vi)a′pΣ
−1
p ap → 0 a.s.,

in which m(z) is the Stieltjes transform of the MP-Law (see Marcenko and Pastur (1967)). From

Lemmas 9.1 and 9.4, we have:

f ′p(v) − m′(vi)a′pΣ
−1
p ap → 0 a.s.

Since f ′p(v) and m′(vi) are continuous about v ∈ [0, ε] for small enough ε > 0 with probability

1, then according to the Lemma in Bai and Yin (1993) and the dominant convergence theorem,

we have:

a′pṠ−1
n ΣpṠ−1

n bp +
d(im(vi))

dv

∣∣∣∣∣
v=0

a′pΣ
−1
p ap → 0

in probability. Here:
d(m(vi))

dv

∣∣∣∣∣
v=0

=
i

2πy

∫ b

a
x−3

√
(b − x)(x − a)dx =

i
(1 − y)3 ,

in which a = (1 −
√

y)2 and b = (1 +
√

y)2. Part II is now finished.

9.3. Proof of Theorem 4.2

Since Θ is the splitting support of Fτ,w, there exists t = {t0, t1, ..., tL} such that t ∩ Θ = ∅ and

∪L
i=1(ti−1, ti) ∩ Θ = Θ. Now rewrite (4.1) as:

Sn = U1,p1Λ1,p1U1,p1 + · · · + UL,pLΛL,pLUL,pL ,

in which Λi,pi is the i-th pi × pi diagonal matrix of Λp satisfying Λp = diag(Λ1,p1 , ...,ΛL,pL), and

Ui is the corresponding eigenvectors matrix, satisfying Up = (U1,p1 , ...,UL,pL) (i = 1, ..., L). We

can obtain, from Lemma 9.5, for large p:

P
(
eigenvalues of Λi,pi belongs to (ti−1, ti)

)
= 1 (i = 1, ..., L).

Then for large enough p, we have:

a′pUi,piUi,pibp = FSn(ti) − FSn(ti−1) (i = 1, ..., L),

in which FSn(t0) = 0 and FSn(tL) = 1. Thus:

ap
′S̃−1

n bp =
1
λ1

a′pU1,p1U
′
1,p1

bp +
1
λ2

a′pU2,p2U
′
2,p2

bp + ... +
1
λL

a′pUL,pLU′pL
bp

=

L∑
j=1

1
λ j − z

∫ t j

t j−1

dFSn(x)→
L∑

j=1

1
λ j − z

∫ t j

t j−1

dFτ,w(x) a.s.
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Denote m(z) =
∫

Θ
(t − z)−1dFτ,w as the Stieltjes transform of Fτ,w, where m(z) is the unique

solution of (2.8) for z ∈ C+, with H(x) =
∑L

i=1 wiIτi≤x. Then we have:

ap
′S̃−1

n bp →

L∑
j=1

1
λ j

(
−

1
2πi

∮
C j

m(z)dz
)

a.s.,

in which C j is the min complex open set that includes the real set from t j−1 to t j. In addition,

supposing that u = −
(
−

1−y
z + ym(z)

)
, we have:

ap
′S̃−1

n bp →
∑

jk

dk

λ j

1
2πi

∮
Γ j

1 − y
∫

t2dH(t)
(u−t)2(

1 + y
∫

tdH(t)
u−t

)
(u − λk)

du,

where H(x) =
∑L

i=1 wiIτi≤x and Γ j is a contour of the image of C j by u. We note that, for each z

with =(z) , 0, there is a unique solution to (2.8) whose imaginary part has the same sign as z.

Therefore, the contour Γ j is well defined. According to the Residue Theorem, we have:

1
2πi

∮
Γ j

1 − y
∫

t2dH(t)
(u−t)2(

1 + y
∫

tdH(t)
u−t

)
(u − λk)

du =

 −
λ j

λ j−λk
+

u j

u j−λk
, k , j,

u j

u j−λ j
+ 1

yc j

(
1 + y

∑
t, j

ctλt
λ j−λt

)
, k = j.

Finally, we have:

ap
′S̃−1

n bp →

L∑
j=1

d j

λ j
+

L∑
k=1

∑
j,k

dkλk(λ j − u j)
λ j(u j − λk)(λ j − λk)

−
dk

λk

∑
j,k

c jλ j(λ j − uk)
ck(λk − λ j)(uk − λ j)

 .(9.5)

Let
∥∥∥ãp

∥∥∥ = 1 and ã′pUpkU′pk
ãp = 1, we deduce:

1 =
∑
j,k

λk(λ j − u j)
(λ j − λk)(u j − λk)

+ 1 −
1
ck

∑
t,k

ctλt(λk − uk)
(λk − λt)(uk − λt)

,

by setting ∆p = I, and so:∑
j,k

c jλ j(λk − uk)
ck(λk − λ j)(uk − λ j)

=
∑
j,k

λk(λ j − u j)
(λ j − λk)(u j − λk)

, for all k.(9.6)

From (9.5) and (9.6), we have:

ap
′S̃−1

n bp =

L∑
k=1

dk

L∑
j=1

(u j − λ j)
λ j(u j − λk)

.

This completes the proof of Theorem 4.2.

9.4. Proof of Theorem 4.4

We first consider the case of ap = bp = xp. Then rewrite:

Ip = xp
′S̃−1

n ΣpS̃−1
n xp

=

L∑
k=1

τkxp
′S̃−1

n UpkU
′
pk

S̃−1
n xp

=

L∑
k=1

τk

∥∥∥∥UpkU
′
pk

S̃−1
n xp

∥∥∥∥2
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=

L∑
k=1

τk

 sup
yp,k∈Ek;‖yp,k‖=1

x′pS̃−1
n yp,k

2

,

where Ek is the kth eigenspace of Σp associated with τk. Then we have:

lim inf Ip ≥
L∑

k=1

τk lim inf
(
x′pS̃−1

n yp,k

)2
,

for any sequence of vectors {yp,k}. Select a special sequence of vectors {yp,k} such that:

lim x′pUpkU
′
pk

yp,k = ck.

Then, according to Theorem 4.2, we have:

lim
(
x′pS̃−1

n yp,k

)2
= c2

k

 L∑
j=1

u j − λ j

λ j(u j − λ j)


2

.

Since yp,k ∈ Ek and ‖yp,k‖ = 1 for all p and k, we have ck ∈
[
−
√

dk,
√

dk

]
. Then:

lim inf Ip ≥
L∑

k=1

dkλk

 L∑
j=1

u j − λ j

λ j(u j − λ j)


2

.

As the subset of unit vectors in Ek is compact, for each ε > 0, there exists a unit vector ỹp,k such

that:

sup
yp,k∈Ek;‖yp,k‖=1

(
x′pB−1

p yp,k

)2
≤

(
x′pB−1

p ỹp,k

)2
+ ε.

Let c̃k = lim x′pUpkU′pk
ỹp,k. Then:

lim sup sup
yp,k∈Ek;‖yp,k‖=1

(
x′pB−1

p yp,k

)2

≤ lim sup
(
x′pB−1

p ỹp,k

)2
+ ε

= c̃2
k

L∑
j=1

(u j − λ j)
λ j(u j − λk)

+ ε

≤ dk

L∑
j=1

(u j − λ j)
λ j(u j − λk)

+ ε,

that is:

lim sup Ip =

L∑
k=1

dkλk

L∑
j=1

u j − λ j

λ j(u j − λ j)
.

The general case is obtained by applying this result to the “squares”:

(ap + bp)′B−1
p ΣB−1

p (ap + bp), (ap − bp)′B−1
p ΣB−1

p (ap − bp),(9.7)

and using the parallelogram law:

a′pB−1
p ΣB−1

p bp =
1
4

(
(ap + bp)′B−1

p ΣB−1
p (ap + bp) − (ap − bp)′B−1

p ΣB−1
p (ap − bp)

)
.(9.8)

The proof of Theorem 4.4 is complete.
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Table I: Risk of plug-in allocation estimates and bootstrap-corrected allocation estimates for
different values of p and p/n.

p p/n riskp
c riskb

c p p/n riskp
c riskb

c
100 0.5 3.1847 3.9066 252 0.5 3.9408 4.2223
200 0.5 3.7771 4.3980 252 0.6 6.2286 6.2474
300 0.5 3.7881 3.8970 252 0.7 12.8308 13.5662
400 0.5 3.9907 4.4726 252 0.8 17.4854 18.7490
500 0.5 3.2959 3.6370 252 0.9 100.1979 103.5917

Note: The table compares the risk between ĉp and ĉb for the same p/n ratio with different different
number of assets, p, and for same p with different p/n ratio, where n is the size of the sample.

Figure 1: The theoretical optimal return R and the corresponding plug-in return Rp.
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Note: The solid and dashed lines denote the values of the theoretical optimal return, R, and the corre-
sponding plug-in return, Rp, respectively, as defined in Theorem 2.2.
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Table II: Comparison of the performances of φbp
ap

(̃
Sn

)
, φbp

ap (Sn), and ς(a,b) for p = 100

y φ
bp
ap (Σ) ς(a,b) φ

bp
ap

(̃
Sn

)
φ

bp
ap (Sn) γφ

bp
ap (Σ)

A: ~τ = (25, 10, 5, 1), ~w = 1
4 (1, 1, 1, 1).

0.1 1.86 1.8857 1.8832(0.0938) 2.0667(0.1308) 2.066
0.2 1.86 1.9153 1.9175(0.1330) 2.3315(0.2095) 2.325
0.3 1.86 1.9497 1.9482(0.1644) 2.6678(0.3085) 2.657
0.4 1.86 1.9896 1.9840(0.2065) 3.1142(0.4673) 3.1
0.5 1.86 2.0370 2.0253(0.2459) 3.7495(0.7119) 3.72
0.6 1.86 2.0953 2.0822(0.2783) 4.7594(1.0897) 4.65
0.7 1.86 2.1661 2.1402(0.3138) 6.4346(1.8411) 6.2
0.8 1.86 2.2479 2.2027(0.3458) 9.6998(3.7428) 9.3
0.9 1.86 2.3540 2.2479(0.4005) 20.638(14.465) 18.6

B: ~τ = (10, 5, 1), ~w = 1
10 (4, 3, 3).

0.1 1.7 1.7161 1.7159(0.0783) 1.8914(0.1124) 1.888
0.2 1.7 1.7348 1.7348(0.1149) 2.1294(0.1921) 2.125
0.3 1.7 1.7567 1.7574(0.1527) 2.4432(0.3064) 2.428
0.4 1.7 1.7823 1.7829(0.1719) 2.8605(0.4222) 2.833
0.5 1.7 1.8126 1.8105(0.1938) 3.4308(0.5982) 3.4
0.6 1.7 1.8498 1.8452(0.2431) 4.3315(1.0416) 4.25
0.7 1.7 1.8943 1.8846(0.2519) 5.9039(1.6676) 5.666
0.8 1.7 1.9444 1.9236(0.2736) 8.9074(3.4104) 8.5
0.9 1.7 2.0066 1.9514(0.2913) 19.060(11.968) 17

C: ~τ = (5, 3, 1), ~w = 1
10 (4, 3, 3).

0.1 2.2666 2.3016 2.3017(0.1102) 2.5216(0.1528) 2.5185
0.2 2.2666 2.3421 2.3396(0.1563) 2.8384(0.2550) 2.8333
0.3 2.2666 2.3892 2.3862(0.2061) 3.2562(0.4079) 3.2380
0.4 2.2666 2.4435 2.4343(0.2265) 3.8107(0.5633) 3.7777
0.5 2.2666 2.5066 2.4757(0.2483) 4.5773(0.8110) 4.5333
0.6 2.2666 2.5809 2.5069(0.2810) 5.7787(1.3933) 5.6666
0.7 2.2666 2.6643 2.5382(0.2793) 7.8695(2.2318) 7.5555
0.8 2.2666 2.7502 2.5699(0.2882) 11.881(4.5272) 11.333
0.9 2.2666 2.8458 2.5890(0.2989) 25.446(16.054) 22.666

Note: Here γ = 1/(1 − y) and φb
ap

(A) = a′pA−1bp. Refer to section 6.1 for the description of the terms
used in the table.
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Table III: Comparison of ϕbp
ap

(̃
Sn

)
, ϕbp

ap (Sn), and %(a,b) for p = 100

y ϕ
bp
ap (Σ) %(a,b) ϕ

bp
ap

(̃
Sn

)
ϕ

bp
ap (Sn) γ3ϕ

bp
ap (Σ)

A: ~τ = (25, 10, 3, 1), ~w = 1
4 (1, 1, 1, 1).

0.1 2.1266 2.1914 2.3659 (0.2314) 2.9287(0.3562) 2.9171
0.2 2.1266 2.2740 2.6595 (0.3718) 4.1816 (0.7598) 4.1535
0.3 2.1266 2.3809 3.0391 (0.5710) 6.3114 (1.6365) 6.2000
0.4 2.1266 2.5198 3.5281 (0.7717) 10.139 (3.2253) 9.8454
0.5 2.1266 2.7045 4.1181 (1.0169) 17.554 (6.6398) 17.012
0.6 2.1266 2.9593 4.7613 (1.3859) 35.643 (19.184) 33.228
0.7 2.1266 3.3045 5.4097 (1.5618) 90.808 (59.328) 78.763
0.8 2.1266 3.7423 6.1136 (1.8169) 313.58 (280.67) 265.82
0.9 2.1266 4.3561 6.7951 (2.1544) 3422.9 (7450.3) 2126.6

B: ~τ = (10, 5, 1), ~w = 1
10 (4, 3, 3).

0.1 1.9666 2.0169 2.1625 (0.2026) 2.7086 (0.3294) 2.6977
0.2 1.9666 2.0828 2.4020 (0.3240) 3.8685 (0.7095) 3.8410
0.3 1.9666 2.1696 2.7037 (0.4896) 5.8330 (1.5159) 5.7335
0.4 1.9666 2.2835 3.0818 (0.6354) 9.3717 (2.9528) 9.1046
0.5 1.9666 2.4349 3.4763 (0.7940) 16.243 (6.1401) 15.732
0.6 1.9666 2.6405 3.8436 (0.9811) 32.984 (17.572) 30.728
0.7 1.9666 2.9098 4.1985 (1.0618) 83.963 (54.907) 72.837
0.8 1.9666 3.2343 4.5451 (1.1707) 289.59 (263.82) 245.82
0.9 1.9666 3.6602 4.8461 (1.2957) 3134.7 (6476.9) 1966.6

C: ~τ = (5, 3, 1), ~w = 1
10 (4, 3, 3).

0.1 2.2666 2.3459 2.5079 (0.2419) 3.1210 (0.3839) 3.1091
0.2 2.2666 2.4587 2.7755 (0.3769) 4.4565 (0.8244) 4.4270
0.3 2.2666 2.6135 3.1020 (0.5570) 6.7186 (1.7533) 6.6081
0.4 2.2666 2.8173 3.4696 (0.6975) 10.786 (3.4074) 10.494
0.5 2.2666 3.0817 3.8066 (0.8334) 18.729 (7.1874) 18.133
0.6 2.2666 3.4268 4.0860 (0.9681) 38.021 (20.461) 35.416
0.7 2.2666 3.8566 4.3398 (1.0042) 96.768 (63.820) 83.948
0.8 2.2666 4.3472 4.5702 (1.0590) 333.82 (307.84) 283.33
0.9 2.2666 4.9539 4.7502 (1.1209) 3617.4 (7589.3) 2266.6

Note: Here γ = 1/(1 − y) and ϕbp
ap

(A) = a′pA−1ΣA−1bp. Refer to section 6.1 for the description of the
terms used in the table.
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Table IV: Comparison of spectrally-corrected estimates with the plug-in and Bootstrap-
corrected estimates

Panel A: R(µ,Σ) = 3.8190 and σ2 = 1
~τ = (25, 10, 5, 1) , ~w = (0.25, 0.25, 0.25, 0.25)

y ĉ Rĉ 100(Rĉ − R)/R% ĉ′Σĉ
cs 3.8138 (0.0503) -0.14(0.0132) 1.0771 (0.0312)

0.1 cp 4.0197 (0.0924) 5.25(0.0242) 1.2323 (0.0609)

cb 3.8071 (0.1312) -0.31(0.0344) 1.2452 (0.0806)

cs 3.8069 (0.0742) -0.32(0.0194) 1.1675 (0.0536)

0.2 cp 4.2539 (0.1482) 11.39(0.0388) 1.5553 (0.1219)

cb 3.7960 (0.2074) -11.60(0.0543) 1.5848 (0.1516)

cs 3.7973 (0.0948) -0.57(0.0248) 1.2729 (0.0797)

0.3 cp 4.5373(0.2235) 11.80(0.0585) 2.0276 (0.2342)

cb 3.7727 (0.3165) -1.21(0.0829) 2.0751 (0.2609)

cs 3.7857(0.1128) -0.87(0.0295) 1.3939 (0.1121)

0.4 cp 4.8701 (0.3401) 27.52(0.0891) 2.7319 (0.4441)

cb 3.7381 (0.5096) -2.12(0.1134) 2.8165 (0.4297)

cs 3.7800 (0.1343) -1.02(0.0352) 1.5416 (0.1637)

0.5 cp 5.2814 (0.5721) 38.29(0.1498) 3.8820 (0.9076)

cb 3.6502 (0.9054) -4.42(0.2371) 4.0793 (0.7797)

cs 3.7679 (0.1640) -1.34(0.0429) 1.7010 (0.2492)

0.6 cp 5.8286 (0.8879) 52.62(0.2325) 6.0203 (1.8452)

cb 3.5030 (1.3923) -8.27(0.3646) 6.5127 (1.6391)

cs 3.7626 (0.1891) -1.48(0.0495) 1.8649 (0.3548)

0.7 cp 6.5938 (1.4396) 72.66(0.3770) 10.6988 (4.3778)

cb 3.2346 (2.1844) -15.30(0.5720) 12.1496 (4.3399)

cs 3.7605 (0.2130) -1.53(0.0558) 2.0102 (0.4625)

0.8 cp 7.6161 (2.4100) 99.42(0.6311) 22.22 (12.515)

cb 2.5653 (3.5775) -32.83(0.9368) 28.768 (15.926)

cs 3.7585 (0.2449) -1.58(0.0641) 2.1382 (0.5822)

0.9 cp 9.9073 (4.7808) 159.41(1.2518) 86.581 (78.657)

cb 0.7019 (7.0065) -81.62(1.8346) 151.27 (170.23)
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Panel B: R(µ,Σ) = 4.0247 and σ2 = 1
~τ = (10, 5, 1) , ~w = (0.4, 0.3, 0.3)

y ĉ Rĉ 100(Rĉ − R)/R% ĉ′Σĉ
cs 4.0196 (0.0541) -0.12(0.0134) 1.0708 (0.0312)

0.1 cp 4.2379 (0.0981) 5.29(0.0244) 1.2326 (0.0611)

cb 4.0140 (0.1391) -0.27(0.0346) 1.2439 (0.0808)

cs 4.0122 (0.0789) -0.31(0.0196) 1.1524 (0.0520)

0.2 cp 4.4835 (0.1619) 11.40(0.0402) 1.5532 (0.1270)

cb 3.9983 (0.2322) -0.65(0.0577) 1.5798 (0.1531)

cs 4.0034 (0.1008) -0.53(0.0250) 1.2444 (0.0759)

0.3 cp 4.7775 (0.2618) 18.70(0.0650) 2.0194 (0.2572)

cb 3.9629 (0.3950) -1.53(0.0981) 2.0667 (0.2655)

cs 3.9933 (0.1196) -0.78(0.0297) 1.3462 (0.1075)

0.4 cp 5.1088 (0.4302) 26.94(0.1069) 2.6997 (0.5118)

cb 3.8888 (0.6871) -3.38(0.1707) 2.8007 (0.4346)

cs 3.9909 (0.1410) -0.84(0.0350) 1.4652 (0.1629)

0.5 cp 5.5241 (0.7044) 37.25(0.1750) 3.8153 (1.0081)

cb 3.7612 (1.1514) -6.55(0.2861) 4.0675 (0.7844)

cs 3.9828 (0.1678) -1.04(0.0417) 1.5793 (0.2406)

0.6 cp 6.0615 (1.0906) 50.61(0.2710) 5.8713 (2.0261)

cb 3.5352 (1.7415) -12.16(0.4327) 6.5447 (1.7161)

cs 3.9844 (0.1908) -1(0.0474) 1.6811 (0.3263)

0.7 cp 6.8264 (1.7075) 69.61(0.4243) 10.393 (4.6787)

cb 3.1870 (2.6091) -20.81(0.6483) 12.336 (4.5793)

cs 3.9842 (0.2094) -1(0.0520) 1.7668 (0.3981)

0.8 cp 7.8668 (2.7378) 95.46(0.6802) 21.589 (12.998)

cb 2.4225 (4.0791) -39.81(1.0135) 29.425 (16.636)

cs 3.9903 (0.2342) -0.85(0.0582) 1.8290 (0.4788)

0.9 cp 10.147 (5.2831) 152.13(1.3127) 83.53 (79.77)

cb 0.2299 (7.7471) -94.29(1.9249) 156.9 (177.2)
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Panel C: R(µ,Σ) = 4.3376 and σ2 = 1
~τ = (5, 3, 1) , ~w = (0.4, 0.3, 0.3)

y ĉ Rĉ 100(Rĉ − R)/R% ĉ′Σĉ
cs 4.3266 (0.0679) -0.25(0.0157) 1.0673 (0.0352)

0.1 cp 4.5684 (0.1088) 5.32(0.0251) 1.2319 (0.0634)

cb 4.3260 (0.1572) -0.27(0.0363) 1.2412 (0.0824)

cs 4.3122 (0.0974) -0.59(0.0225) 1.1367 (0.0585)

0.2 cp 4.8172 (0.2181) 11.06(0.0503) 1.5382 (0.1637)

cb 4.2767 (0.3580) -1.40(0.0825) 1.5646 (0.1711)

cs 4.3022 (0.1265) -0.82(0.0292) 1.2044 (0.0930)

0.3 cp 5.0988 (0.4000) 17.55(0.0922) 1.9699 (0.3554)

cb 4.1712 (0.6833) -3.84(0.1575) 2.0361 (0.2906)

cs 4.3006 (0.1552) -0.85(0.0358) 1.2601 (0.1349)

0.4 cp 5.4127 (0.6435) 24.79(0.1484) 2.5992 (0.6690)

cb 4.0139 (1.1002) -7.46(0.2536) 2.7718 (0.4480)

cs 4.3104 (0.1756) -0.63(0.0405) 1.3051 (0.1783)

0.5 cp 5.8043 (0.9996) 33.81(0.2305) 3.6282 (1.2445)

cb 3.7780 (1.6819) -12.50(0.3878) 4.0675 (0.8115)

cs 4.3161 (0.1981) -0.50(0.0457) 1.3257 (0.2105)

0.6 cp 6.3027 (1.4782) 45.30(0.3408) 5.5166 (2.3755)

cb 3.4027 (2.4206) -21.55(0.5581) 6.6470 (1.8593)

cs 4.3282 (0.2110) -0.22(0.0486) 1.3450 (0.2420)

0.7 cp 7.0149 (2.2115) 61.72(0.5098) 9.6467 (5.2082)

cb 2.8573 (3.4346) -34.13(0.7918) 12.79 (5.0708)

cs 4.3301 (0.2216) -0.17(0.0511) 1.3621 (0.2642)

0.8 cp 8.0686 (3.3101) 86.01(0.7631) 20.1585 (13.6538)

cb 1.9350 (4.9736) -55.39(1.1466) 30.8030 (18.0832)

cs 4.3371 (0.2342) -0.01(0.0540) 1.3754 (0.2839)

0.9 cp 10.35 (6.0308) 138.79(1.3904) 77.81 (79.22)

cb -0.6901 (8.9579) -115.91(2.0652) 166.1 (188.6)

Note: p = 100 and N = 10000. Here cs and cp represent as c(µ, S̃n) and c(µ,Sn), respectively.
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Figure 2: Comparison between the Empirical and Corrected Portfolio Allocation and Returns
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Note: Here, db
R = R̂b−R, dp

R = R̂p−R, db
c = ‖ĉb−c‖, and dp

c = ‖ĉp−c‖. Solid line is the absolute values
of dc

p and dR
p , respectively; Dashed line is the absolute values of db

c and dp
c , respectively. The top, middle

and bottom two sub-figures are the plots for p = 100, 200, 300 and n = 500, respectively. The plots on
the left are the plots for dp

R and db
R, while the plots on the right are the plots for dp

c and db
c , respectively.

Here, the population is given according to a multivariate normal distribution with µ = (µ1, ..., µp)T and
Σ = I.
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Figure 3: Comparison of Different Returns for 50 stocks in the S&P 500 as y = 0.1
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Note: We denote the Plug-in, Bootstrap-corrected, equally weighted, and Spectrally-corrected returns
as PI, BC, EW, and SC, respectively.
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Figure 4: Comparison of Different Returns for 100 stocks in the S&P 500 as y = 0.2
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Note: We denote the Plug-in, Bootstrap-corrected, equally weighted, and Spectrally-corrected returns
as PI, BC, EW, and SC, respectively.
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Figure 5: Comparison of Different Returns for 200 stocks in the S&P 500 as y = 0.4
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PI return (0.6207,0.0264)
BC return (−0.4905,0.0350)
SC return (0.4479,0.0222)
EV return (−0.0019,7.5421e−05)

Note: We denote the Plug-in, Bootstrap-corrected, equally weighted, and Spectrally-corrected returns
as PI, BC, EW, and SC, respectively.
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Figure 6: Comparison of Different Returns for 300 stocks in the S&P 500 as y = 0.6
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PI return (0.9374,0.0332)
SC return (0.5743,0.0169)
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BC return (−3.3473e+03,4.5223e+03)
EV return (−0.0019, 4.008e−05)

Note: We denote the Plug-in, Bootstrap-corrected, equally weighted, and Spectrally-corrected returns
as PI, BC, EW, and SC, respectively.
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