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Abstract

The present paper studies a generalization of the less-than-truckload pickup and delivery prob-
lem. The problem at hand arises in the hinterland of container terminal where empty and loaded
containers have to be transported between a container depot and a set of customer locations.
However, requests including empty containers are only partially specified. That is, either the
pickup location or the delivery location of a request including the transportation of an empty
container is a priori known. Customers who demand an empty container do not care which
specific empty container is provided, i.e., while the delivery location is given, the pickup loca-
tion is part of the problem’s solution. To solve this problem, an iterated three-phase heuristic is
introduced. The first phase completes the partially specified requests, the second phase solves
a standard pickup and delivery problem, the third phase changes parameters of the objective
function and the process iterates. Computational results on a set of 1,000 test instances are
presented.

1 Introduction

The maritime container traffic increased from the year 2000 to the year 2010 by more than 40%.
Containerization of transport processes is considered a world-wide success story. Nevertheless,
it also leads to new problems. Due to trade imbalances, supply and demand of empty containers
may significantly differ in different geographical regions. On the global level, for example,
Asia exports significantly more goods to Europe and North America than vice versa. Therefore,
a surplus of empty containers exists in Europe and North America while a shortage of empty
containers exists in Asia. To balance supply and demand, the problem of repositioning empty
containers has to be solved. This repositioning problem does not only arise on the global level
between continents, but also on the local level among shippers or consignees in the hinterland
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of an intermodal container terminal like a seaport or a railway station. More importantly, those
drayage operations are responsible for the bigger part of the transport costs of a global supply
chain. Increasing the efficiency of drayage operations can therefore significantly contribute to
reducing transportation related supply chain costs.

In this paper, we study the problem of truck-based repositioning of empty containers in the
hinterland of a container terminal between shippers and consignees of containers. We denote
the problem as the container pickup and deliver problem (CPDP). From a research perspec-
tive, the CPDP is interesting, because it generalizes the well-known less-than-truckload pickup
and delivery problem with time windows (PDPTW). In extension of the PDPTW, some of the
requests in the CPDP are only partially specified. That is, for some requests either a pickup
location or a delivery location has to be determined as part of the problem’s solution. Depend-
ing on what decision is made to complete these partially specified requests, the total number
of pickup and delivery requests is variable. In order to solve the CPDP an iterated three-phase
heuristic is presented which solves the CPDP in a sequential way.

The remaining paper is organized as follows. Section 2 describes the CPDP and reviews
related literature. Section 3 presents an iterative three-phase heuristic to solve the CPDP. The
performance of the heuristic is evaluated in Section 4. Section 5 concludes the paper.

2 Hinterland Transportation of Loaded and Empty 20-foot
and 40-foot Containers

A generalization of the well-known less-than-truckload pickup and delivery problem with time
windows is presented in Section 2.1. It is denoted as the container pickup and delivery problem.
Related literature to the container pickup and delivery problem is discussed in Section 2.2.

2.1 The Container Pickup and Delivery Problem

The CPDP generalizes the well-known PDPTW. For an in-depth discussion of the PDPTW and
its variants we refer to literature reviews like, e.g., Savelsbergh and Sol (1995).

We first introduce the PDPTW. We are given a complete graph. The nodes of this graph
consists of i = 1, ..n customer locations and a vehicle depot i = 0. The distance between two
nodes i and j is given by di j. We assume, one distance unit is equal to one unit of driving time.
For each customer node i and the vehicle depot 0, a time window [ei, li] is given by the earliest
ei and latest li starting time of a service. The service duration required for handling of goods at
customer i is given by si. The time window [0s,0e] of the single depot 0 defines the planning
horizon of the problem which usually covers one working shift.

Let R denote a set of requests. A request r ∈ R includes a pickup location r+, a delivery
location r−, and a load of volume c(r). The task of request r is to pickup the load c(r) at node
r+ and transport it to node r−. A finite set V of homogeneous vehicles is given. The maximum
transport capacity of vehicle v ∈ V is v. The currently loaded capacity of v is denoted as vc
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where vc ≤ v has to hold at every point in time. The arrival time of v at customer i is denoted as
vt

i. By assumption, the cardinality of V is large enough to fulfill all requests in R.
A feasible solution of the PDPTW requires that each request r ∈ R is serviced by one vehi-

cle. A vehicle v ∈V starts and ends its tour at the vehicle depot 0 and visits a set of customers.
Vehicle v may leave the depot not earlier than 0s and return no later than 0e. A request r ∈ R

is fulfilled by only one vehicle and the pickup location r+ has to be visited before the corre-
sponding delivery location r−. Each customer is visited only once, only during its service time
window, and the vehicle capacity v is never exceeded.

Different objective functions are discussed for the PDPTW. Popular is a lexicographic func-
tion where the number of vehicles required to fulfill all requests is minimized first and then
the total operation time of all vehicles is minimized second. In this study, the goal is to find a
feasible solution that minimizes the total operation time of all vehicles. The operation time of a
vehicle v is calculated by the point in time v returns to the vehicle depot minus the point in time
v left the vehicle depot.

As distinct from the PDPTW, the CPDP features the following additional characteristics.
Only containers are considered as a means of transport. We focus on two container sizes,
namely 20-foot and 40-foot containers. Containers may be empty or loaded. In addition to the
vehicle depot we now also include a container depot.

In the CPDP, every request includes the transport of a container. There are three types of
requests, which are described from the point of view of a customer (Schönberger et al., 2013):

i) Standard: pickup loaded container at a given customer and deliver it to a given customer
or the container depot.

ii) Store: pickup an empty container at a given customer location.
iii) Provide: deliver an empty container to a given customer.

Standard requests are traditional PDPTW requests. In Schönberger et al. (2013) they where
differentiated further into export and import request, in case they include the container terminal
(at a sea port) as a delivery or a pickup location, respectively. Store and provide requests are,
however, only partially specified. That is, either the delivery or the pickup location of such
a request is missing and has to be determined while solving the CPDP. In that sense, store
and provide requests are incomplete requests prior to planning. For a store request, the empty
container may be transported to the container depot or to any other customer that has issued
a provide request (if the container sizes of both requests are equal). On the other hand, for a
provide request, the pickup location of an empty container may be the container depot or any
customer that has issued a store request (again, if the container sizes of both requests are equal).
We assume, the container depot has a sufficient storage capacity and that it is always possible
to fulfill storage and provide requests of empty containers by means of the container depot. An
example of a feasible solution of the CPDP is shown in Figure 1. Store requests are issued by
customers 2 and 4, provide requests are issued by customers 5 and 6.

Container size is measured in twenty-foot equivalent unit (TEU). Each request r ∈R requires
a load of c(r) = 1 or c(r) = 2, where c(r) = 1 stands for a 20-foot container and c(r) = 2
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Figure 1: Example instance and solution of the CPDP

represents a 40-foot container. The maximum capacity of a vehicle is v = 2 and thus can carry a
maximum of one 40-foot container or two 20-foot containers simultaneously. Consequently, a
full truckload request includes the transportation of a 40-foot container (either empty or loaded)
and a less-than-truckload request includes the transportation of a 20-foot container (either empty
or loaded).

2.2 Related Literature

The repositioning of empty containers is a problem that arises due to trade imbalances. It is
often studied from a global point of view in the maritime transportation, where large trade
imbalances between Asia and wesetern countries exist at the moment. However, the problem is
also relevant on the local level, where it is studied in the context of the hinterland of a container
terminal (for example, a dedicated container depot, a terminal at a seaport or an intermodal
railway terminal). In these scenarios, the literature on vehicle routing problems is most relevant
to the CPDP.

Jula et al. (2005) where one of the first to investigate container drayage operations. It focuses
on the transportation of containers between port terminals, intermodal facilities, and customers.
Only full truckload requests considered and all pickup and delivery requests are known a priori,
i.e. incomplete requests are not studied. The objective function minimizes the total travel
distance.

Sterzik and Kopfer (2013) formulate the inland container transportation problem. Empty
and loaded 40-foot containers are considered as a means of transport, i.e. a full-truckload
vehicle routing problem is studied. Incomplete requests are explicitly considered. The goal is
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to minimize the total operating time.
Braekers et al. (2013) study a vehicle routing problem for drayage operations. It includes

loaded and empty 40-foot container movements, i.e. a full truckload vehicle routing problem is
studied. The objective is to lexicographically minimize number of vehicles and the total travel
distance. To deal with incomplete requests, an initial request completion phase is used to solve
the problem. We borrow this idea of a request completion phase for our solution approach.

All previously mentioned papers consider full truckload transportation. In contrast to that,
Vidovic et al. (2011) propose a model with less-than-truckload requests related to the VRP
with backhauls. Empty and loaded container movements are considered. However, all empty
containers are either picked up or delivered to the container terminal. That is, the possibility
of including street-turns by using other customers as source or sink for empty containers is not
considered.

Zhang et al. (2015) solve the container truck transportation problem for full and empty con-
tainer drayage consisting of 20-foot and 40-foot containers. Inbound requests need the move-
ment of a loaded container from a terminal and release an empty container after it is unpacked at
the consignee. Outbound requests require an empty container to load the goods. These empty
containers are picked up or delivered to a container depot or terminal. The utilization of a
street-turn for empty container repositioning is not considered.

Schönberger et al. (2013) present a mixed integer model of the CPDP which takes into
account that pickup or delivery locations for empty container requests have to be determined.
However, a commercial solver was not able to compute solutions for instances of a practical
relevant size in reasonable time. Recently, Funke and Kopfer (2015) propose a matheuristic
approach for solving a multi-size container transportation problem. Partially specified requests
as well as the use of a container depot and street-turns are considered. The model differs from
the CPDP as it assumes that each container (empty or loaded, respectively) is immediately
processed after arriving at the customer location and is hereafter available as loaded or empty
container, respectively, and ready onward transport by the vehicle.

3 An Iterated Three-Phase Heuristic

To solve the CPDP an iterative three-phase is introduced and referred to as I3PH. An overview
is given by Algorithm 1. Sequentially, the heuristic first solves the problem of completing all
partially specified requests (Phase 1, see Section 3.1). With all requests defined, a PDPTW is
solved in Phase 2 (see Section 3.2). Finally, Phase 3 modifies some model parameters used
during Phase 1 and all three phases are repeated (see Section 3.3) until a termination criterion
is met.

3.1 Phase 1: Request Completion

In Phase 1, the provide and store requests are completed. Both types of requests are denoted as
partially specified requests (PSR). They involve transportation of empty containers. For each
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Input: CPDP instance, no. of iterations

while Weight adjustment not completed do
Phase 1: Request completion;
Phase 2: Pickup and delivery problem;
Phase 3: Weight adjustment;

return feasible tour plan;
Algorithm 1: Overview of the iterated three-phase heuristic I3PH

container size – only 20-foot and 40-foot a considered here – a container assignment problem
(CAP) is solved via a MIP-solver. Both instances of the CAP model are linked via weighting
parameters related to the travel distance δ20,δ40 and temporal closeness τ20,τ40 between loca-
tions that demand or supply 20-foot or 40-foot containers. The following holds in all phases of
I3PH: δ20 + τ20 ≡ 1 and δ40 + τ40 ≡ 1 with δ20,δ40,τ20,τ40 ≥ 0.

The CAP is related to linear assignment problems (see e.g. Burkard et al., 2009). CAP is
defined by formulas (1) to (4) and assumes homogenous container sizes. Therefore, the CAP is
solve twice in Phase 1, once for all customers with 20-foot empty container requests and once
for customers involving 40-foot empty container requests.

min f (x) =
m

∑
i=0

n

∑
j=0

(δ ·di j + τ · tw
i j) · xi j (1)

s.t.
n

∑
j=0

xi j = 1 i = 1, . . . ,m (2)

m

∑
i=0

xi j = 1 j = 1, . . . ,n (3)

xi j ∈ {0,1} i = 0, . . . ,m j = 0, . . . ,n (4)

Let 1, . . . ,m denote pickup locations of empty containers (given in the CPDP as part of a
store requests) and let 1, . . . ,n denote delivery locations of empty containers (given in the CPDP
as part of a provide requests). Index 0 denotes a container depot. We assume the storage capac-
ity of the container depot is sufficiently large and there are at least as many empty containers
available so that each provide request may be serviced from the container depot. The decision
variables (4) are binary. If xi j = 1 an empty container at customer i (pickup location) shall be
transported to customer j (delivery location), xi j = 0 otherwise. The constraints (2) ensure that
each store request with a given pickup location i is assigned to one delivery location j (either
the container depot or a customer with a provide request). On the other hand, constraints (3)
ensure that each provide request with a delivery location j is assigned to one pickup location i

(either the container depot or a customer with a store request).
The objective function (1) minimizes the total assignment costs. They depend on two cri-

teria: First, on the Euclidean distance di j between nodes i and j weighted by parameter δ .
Second, on the waiting time tw

i j of a vehicle that visits node j after node i weighted by τ . Note,
while distances are given parameters in the CPDP, the waiting time has to be extracted from a
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1

Figure 2: Two CAP solutions which complete empty container requests (left δ20 = 1, right
δ20 = 0)

feasible solution of the CPDP.
Figure 2 shows two possible solutions when solving the problem for empty 20-foot contain-

ers with different weights. The purpose of the weights δ and τ is to balance the geographical

closeness and the temporal matching (under time windows) of pickup and deliver locations.
Furthermore, by setting other parameters of the CAP during preprocessing, it is easily possible
to force or forbid assignments, e.g. because the involved time windows do not match or offer a
clear disadvantage. The weights δ20,δ40,τ20,τ40 are updated in Phase 3 of the heuristic which
results in a higher solution diversity.

From computational tests, it appears that the completion of 40-foot container requests is
significantly more critical with respect to the performance of the heuristic I3PH. This is reason-
able, because a 40-foot container request is always a FTL pickup and delivery request. If such
a FTL completion decision is bad from the CPDP routing point of view, it is much harder to fix
it during Phase 2 than to fix a bad decision involving a 20-foot container which leads to LTL
request that can be integrated in more ways into different tours.

3.2 Phase 2: Pickup and Delivery Problem

Phase 2 of the heuristic I3PH solves a standard PDPTW. Many sophisticated approaches are
discussed in the literature that can deal very well with this subproblem of the CPDP. The ap-
proach used here is straight forward. At first, a set of feasible single-vehicle tours is generated
by means of an insertion procedure. Afterwards, a subset of these tours is selected via solving
a set covering problem. That is, a subset of tours is selected such that each request is fulfilled
and the total operation time of all vehicles is minimized.

In order to generate feasible one-vehicle tours for pickup and delivery requests, three well-
known neighborhood moves from Li and Lim (2003) are used. The first move is is the shift

operator. It selects a request and tries to insert it into another tour. The request is shifted to that
tour which leads to the highest decrease of the total operation time to. The move is applied to
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Input: current operation time f (x) of solution x, current minimum operation time to,best

(δ best
20 ,τbest

20 ,δ best
40 ,τbest

40 )← (1,0,1,0) ;
foreach c ∈ (40,20) do

for i← 0 to i = 4 do
δc← 0.25 · i ; /* δ20 + τ20 ≡ 1 and δ40 + τ40 ≡ 1 always holds */
R← Phase 1(δc) ; /* Complete requests */
x← Phase 2(R) ;
if f (x)< to,best then

to,best ← f (x);
δ best

c ← δc ;

Algorithm 2: Weight adjustment in Phase 3

every request. The second move is the exchange operator. It tries to move a request from the
current tour to another tour and in return, remove a request from the other tour and insert it into
the current tour. It is applied to every request. The exchange move which results in the highest
decrease of the total operation time to is realized. The third move is rearrange. It tries to switch
the position of two customer nodes within a tour. The move with the highest decrease of the
total operation time to is realized. The move continues with the next request in the current tour
and continues with requests from other tours.

3.3 Phase 3: Weight Adjustment

As could be noticed from some computational experiments, it appears that the best values for
the weighting parameters depend for the most part on the actual instance. Therefore, Phase 3
tries to tune these parameters at runtime of the heuristic I3PH . Phase 3 (see Algorithm 2)
updates the weighting parameters δ and τ used in Phase 1 for request completion. In general,
the change of these parameters leads to different types of requests and even a different number
of requests. This diversity shall be exploited by changing the weighting parameters.

Phase 3 begins adjusting the weights δ40 and τ40, if the majority of the PSR include 40-foot
containers, else δ20 and τ20 are adjusted first. The parameter δ40 is decremented by one fourth
while δ20 is constant. The value for δ40 which leads to the best solution is fixed and the search
modifies the values δ20. Note, due to δ20 + τ20 ≡ 1 and δ40 + τ40 ≡ 1 the values for τ20 and τ40

change accordingly. Finally, when the best weight combination has been identified, one final
run with a significantly higher number of iterations is performed.

4 Results of Computational Experiments

In order to understand the performance of the heuristic as well as the effects of problem char-
acteristics, a computational study was performed. Section 4.1 describes the setup of this study,
Section 4.2 studies the effects of using different weights during Phase 1 of the heuristic, and
Section 4.3 analyses the effect of different container sizes on the performance of the heuristic.
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4.1 Setup of Computational Study

The heuristic was implemented in Java 8 and tested on an Intel Core I5, 2.5 Ghz CPU with 8
GB system memory. Within Phase 2 2,500 iterations to generate routes were used for test 100
customer instances and 1,000 iterations were used for 200 and 400 customer instances.

There are no benchmark instances in the literature for the CPDP with heterogenous container
sizes. However, only recently Funke and Kopfer (2015) introduced instances which are related
to CPDP but assume a slightly different model. Therefore, the well-known instances of Li and
Lim (2003) for the PDPTW are extended. Six new sets of instances were generated based on
the Li and Lim instances that include 100, 200 and 400 customers. From each original instance,
for a percentage of PSR-ratio of requests either the pickup location or the delivery location
has been deleted in order to generate partially specified requests. Also, the load of all requests
requests was updated to either 1 TEU or 2 TEU.

To estimate the general performance of Phase 2, a comparison with solutions from the liter-
ature is possible. For some of the 100 customer instances, very good solutions with a deviation
of less than three percent are computed by Phase 2. However, on average over all 100 customer
instances, the performance is inferior compared to specialised state-of-the-art approaches for
the PDPTW. These drawbacks appear negligible, as the focus is on the integration of simultane-
ously routing loaded and empty containers of heterogenous size, rather than developing a new
heuristic for the well-known PDPTW.

4.2 Effect of Different Distance Weights on the Solution

The first test studies the effects of using different values for the weights δ20 and δ40 which are
used in Phase 1. Table 1 shows the results for the test instance plc205 with 50 percent partially
specified requests and 20 percent 20-foot containers. The planning horizon of this instance is
rather long, i.e., the choice of the values for δ20 and δ40 have a high impact on the solution
quality as more waiting times and thus longer operational times are possible.

The first column of Table 1 shows the current iteration, the second and third column present
the used weights δ20 and δ40 used in function (1). Note, δ20 +τ20 ≡ 1 and δ40 +τ40 ≡ 1 always
holds. Columns four to seven show performance criteria of a solution: overall operation time
to, total travel distance d, total waiting time of all vehicles tw, and the number of required
vehicles n. The three rightmost columns show performance criteria which refer only to the
partially specified requests of this instance. The no. of requests states the number of fully
defined requests which are generated from the given partially defined requests during Phase 1.
Column dPSR gives the total travel distance for the set of the partially defined requests, column
twPSR states the total waiting time when fulfilling the partially specified requests.

The presented weight combinations where chosen as follows: The initial values are δ20 =

1.0 and δ40 = 0.0. Giving those customers with 40-foot containers the highest priority, because
80 percent of the customers require a 40-foot container, the value for δ40 was increased in
0.25 steps. Among these five tests, the minimum overall weighting time to was achieved for
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Table 1: Effect of distance weights for the test instance plc205 (50% PSR, 20% 20-foot con-
tainers)

Weighting Performance PSR only

iteration δ20 δ40 to d tw n no. of requests dPSR twPSR

1 1.00 0.00 26500 3254 10640 17 45 1361 2540
2 1.00 0.25 23620 2845 10868 13 45 1361 2540
3 1.00 0.50 23848 2665 11276 15 30 504 2360
4 1.00 0.75 24222 2696 11798 13 29 480 2408
5 1.00 1.00 28839 2920 16911 14 25 354 7851

6 0.75 0.25 23074 2712 9914 14 33 574 50
7 0.50 0.25 23103 3037 9619 13 33 574 50
8 0.25 0.25 23330 3040 9663 14 34 634 0
9 0.00 0.25 23314 2836 9669 15 35 668 0

δ40 = 0.25. Now, the parameter δ40 is fixed to δ40 = 0.25 while all remaining values for δ20

are tested in equidistant steps of 0.25. In terms of to the weighting δ20 = 0.75 and δ40 = 0.25
provided the best results.

As Table 1 reveals, setting adequate weights is very important for the performance of the
heuristic. The worst solution in terms of overall operation time and total travel time is up
to 30 percent and 22 percent worse, respectively. The impact of changing δ20 appears to be
smaller than changing δ40, especially with respect to the waiting time tw. This effect may
be due to the low quota of 20-foot containers in this instance. Additionally, an inappropriate
assignment of 20-foot containers has only a minor effect on the total waiting time tw, because
instead of waiting a vehicle transporting a 20-foot container can perform a second request at
the same time. Therefore, minimizing the total travel distance becomes more important with an
increasing number of 20-foot containers and the distance weight δ20 should be set to a higher
value.

With respect to the distance weight of 40-foot containers, lower values are usually better,
since a good performance for the transport of 40-foot containers depends on short waiting times.
When transporting a 40-foot container, there is no other option but to deliver it to the assigned
customer. If the time window of said customer is very different from the time window of the
pickup node, the vehicle has no other option but to wait until the customer starts its service.
Therefore, temporal closeness is very important for 40-foot container movements. However,
if the value of the distance weight for 40-foot containers is δ40 = 0, every provide and store
request for a 40-foot container is served by the container depot. This leads to a significant
increase in total distance d as shown Table 1 because every empty container request is served
by the container depot.

4.3 Effect of Different Mixtures of Container Sizes

The influence of an increasing ratio of 20-foot containers among all serviced containers is stud-
ied. Everything equal, more 20-foot containers implies more comprehensive options for routing
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Figure 3: Influence of different percentages of container sizes on solution and performance

which should increase the difficulty of an instance of the CPDP. For this test, the results from all
test instances were aggregated over each subset of instances. Table 2 shows the median, mean
and standard deviation for the total operation time to, the number of tours n and the required
computing times in seconds.

The results reveal that the heuristic works as expected. An increasing ratio of 20-foot con-
tainers leads to a significant decrease of operation time to and in the number of required tours
n. However, the computational time increases due to more options for routing. Figure 3 under-
lines this effect. It shows the averaged results over all 100 and all 200 customer instances at
which the averaged results for the group of instances with 80 percent 20-foot containers was de-
fined as 100 percent. Figure 3 emphasizes the significant influence of the percentage of 20-foot
containers on the solution and performance of the algorithm. Again, the inability of carrying
multiple 40-foot containers simultaneously is probably the main reason for higher operation
times which are caused by higher waiting times. Two findings may be inferred from Table 2.
First, considering the transport of heterogenous container sizes like 20-foot and 40-foot con-
tainers simultaneously might increase the efficiency of planning significantly and lead to lower
costs solutions. Second, in instances with heterogenous container sizes, partially specified re-
quests with a higher load (i.e., 40-foot containers) appear to have a significantly higher effect
on the total performance of the algorithm than those with a lower load (i.e., 20-foot containers).

5 Conclusion and Outlook

A iterated three-phase heuristic for the container pickup and delivery problem (CPDP) has been
introduced. The CPDP generalizes the PDPTW and arises in the hinterland of an intermodal
container terminal. It deals with the transportation of 20-foot and 40-foot containers which
may be empty or loaded. To solve the CPDP, the heuristic has to deal with partially specified
requests. The performance of the heuristic has been discussed on the basis of computational

11



experiments for over 1,000 test instances. To improve the quality of the heuristic, future research
should try to analyse solutions in more comprehensive way in Phase 3 and use this data to find
better solutions to the request completion problem of Phase 1 in the sense, that a more efficient
routing of the vehicles and containers is possible.
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