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Abstract

We present a theory explaining the impact of ability tracking on academic performance

based on grading policies. Our model distinguishes between initial ability, which is mainly

determined by parental background, and eagerness to extend knowledge. We show that

achievements of low ability students may be higher in a comprehensive school system, even

if there are no synergy effects from teaching different students together. This arises because

the comprehensive school sets a compromise standard which exceeds the standard from the

low ability track. Moreover, if students with lower initial ability have higher eagerness to

learn, merging classes will increase average performance.
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1 Introduction

A major controversy in education policy concerns whether students should be taught in com-

prehensive schools or whether classes should be tracked according to ability. For example, in

Germany the results of the first PISA tests raised a debate about making the school system more

comprehensive. Such a policy is motivated by the idea that mixing good and mediocre students

improves the performance of mediocre students without harming the good students too much.

This reasoning is largely supported by empirical research which often finds that tracking, or the

ability composition of classes, affect the performance of individual students.

While such peer group effects seem to be well documented empirically, the mechanism

driving them is rarely discussed. A possible explanation states that good students help mediocre

colleagues to pass the exam and in addition learn by explaining the subject. Formally this can

be modeled by a learning production function which depends on the average ability in class

like in Arnott and Rowse (1987) and in Epple, Newlon and Romano (2002). While we do not

question the relevance of this explanation, in this paper we present a complementary theory

which is based on the schools’ grading policy. We show that the incentives created by grading

standards alone can explain many empirical results on tracking without refering to any direct

impact of classmates’ ability on individual performance.

The idea of the peer goup effect goes back to the 1970’s where this effect was first analyzed

in the US. In this decade, for example Summers and Wolfe (1977) empirically analyzed the

performance of students from the Philadelphia school district. They came to the conclusion

that a high share of good students has a positive effect on the mediocre students, while the good

students are not harmed. On the other hand the performance of both types is reduced if the share

of mediocre students is too high. Summers and Wolfe conclude that in this case both mediocre

and good students do not deploy their full potential.

Following up on this early contribution, a large literature has emerged which empirically

analyzes peer group effects and the impact of tracking on educational outcomes. Surveys of

this literature are provided by Meier and Schütz (2008) and Brunello and Checchi (2007). This

research investigates the impact of tracking on average academic performance and on perfor-

mance of students with different abilities. The latter question is linked to equality of opportunity,

in the sense that academic achievement should not depend on the social background. This is

especially relevant in the case of early tracking, since family background is likely to strongly

influence the ability in the first years of schooling.

In this line of research Argys, Rees and Brewer (1996) find that the abolishment of tracking

in the US would result in a large increase in performance of students in low ability classes,
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but on the other hand would decrease performance of students in high achieving classes. Sim-

ilarly Woessmann (2010) concludes that less tracking leads to more equality of opportunity.

In addition, Hanushek and Wößmann (2006) find a tendency that early tracking reduces aver-

age performance, but this cannot be found in all investigated countries. Waldinger (2006) also

comes to the conclusion that early tracking of students with non-academic family background

results in low academic achievement. He argues that the difference in achievement based on

family background is already present before tracking takes place. Tracking does not reinforce

this difference, but comprehensive schooling would reduce it.

Several contributions come to somewhat different conclusions, suggesting positive effects

of tracking. Figlio and Page (2002) find no evidence that low ability students are harmed in

a tracked environment, but that they may, in contrast, gain in a tracked class. The work by

Kim, Lee and Lee (2008) uses data from South Korea, where tracking takes place in about

half of the existing schools. Their main result states that tracking raises average achievement.

It helps students above median ability and does not lower the achievement of students below

it. Another study which does not yield negative effects of tracking is provided by Betts and

Shkolnik (2000). According to their results, tracking does not significantly change achievement

of low ability students. It has a small negative effect on students with moderate ability and a

small positive effect on high ability students, which cancel out in average performance.

Summing up, the empirical literature agrees more or less that the family background plays

a major role for academic achievement. This is reinforced by tracking, at least when tracking

occurs early. Most studies also conclude that equality of opportunity is promoted by compre-

hensive schooling, in the sense that the achievement gap between students of different abilities

or backgrounds is narrowed. In contrast, there does not seem to be clear evidence on whether

average achievement rises or falls when students are tracked.

In this paper we provide a simple model which can account for these facts. In the model

there are two types of students distinguished by ability. These students are taught either in

tracked classes or in a comprehensive school. The instrument of the school is the graduation

standard, which is the level of performance required to pass the exam. In setting the standard,

the school trades off wages of graduates, which rise in the standard, against effort costs required

to meet a more demanding standard.

We consider two different dimensions of ability. The first dimension represents the en-

dowment a student starts with. This endowment is the ability a student has when the tracking

decision is taken. It results from previous learning, which is determined by family background

and former schooling. Clearly, the earlier tracking occurs, the more relevant is the family back-

ground. We assume that students can reach an academic performance corresponding to the
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endowment without effort cost.

The second dimension of ability is the eagerness to learn or to improve personal achieve-

ment. This is the student’s potential a teacher can work with. This dimension determines how

hard is is for students to raise performance beyond their initial ability. Importantly, we do not

exclude the case where students with low initial endowment have high eagerness to learn or

vice versa.

We distinguish between the objective function of the student or teacher, and the objective the

parents or society may have. While the latter only care for academic performance, the student

incurs costs in terms of stress. We assume that the teacher takes these costs into account when

setting the standard, implying that he or she chooses a standard below the standard preferred by

society. This modeling is motivated by the emphasis which policy makers and researchers put

on performance measuring tests like PISA and TIMMS, which disregard effort costs.

In this framework we characterize the standards chosen by tracked schools and by a com-

prehensive school, and compare the resulting academic achievements of both types of students.

We show that it depends on the parameters whether students with lower initial endowment gain

from a comprehensive school. In essence this occurs when their eagerness to learn is not too

different from the eagerness of students with high initial endowment. In this case also the

achievement gap between both types declines when classes are merged. This arises because in

a comprehensive school the teacher is forced to set the standard as a compromise. This pushes

lower ability students to higher achievement at the cost of stressing them excessively.

In a further result we compare average academic performance in the tracked and compre-

hensive school system. In line with the empirical literature, both systems may dominate in that

respect. The average performance in the comprehensive system is higher if students with lower

initial endowment have higher eagerness to learn. In this case the tracked system does not make

full use of the learning potential of students with low initial endowment, on which tracking is

based. In contrast, if students with low initial endowment also have lower eagerness to learn,

average performance goes down when classes are merged.

It is worth noting that these results crucially depend on the two specific elements of our

model. First, when all students have the same eagerness to learn and hence differ only in one

dimension of ability, then a compromise standard at the comprehensive school necessarily leads

to the same average performance as the separate standards of tracked schools. Second, in our

model non-tracking will always be dominated by tracking if teachers and society share the

same objective function. In the comprehensive school a unique standard must be chosen and

one degree of freedom is given up. Therefore maximization of either average performance or

welfare is carried out under an additional restriction in the comprehensive school, and a tracked
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school system is always preferable.

Our paper contributes to the theory of grading, initiated by Costrell (1994) and Betts (1998).

We build upon the traditional model of Costrell, where students weigh the advantage of a degree

against the disadvantage of exerting sufficient effort to pass the standard which is set by the

teacher. Costrell (1997) puts his model into the context of central or decentralized standards.

Since a centralized standard is uniform and decentralized standards are specific, this setting is

similar to a comparison of untracked and tracked school systems. In addition Costrell’s model,

similarly to ours, allows for differences in abilities among schools. However, the focus of

his analysis is different from ours. His main issue is that individual schools can free-ride on

the tough standards of other schools in the case where employers can only observe the average

achievement of graduates from all schools. In contrast we focus on tracking according to ability.

Moreover, as stressed above, our model extends Costrell’s setup by assuming two dimensions

of ability and by replacing the ever positive marginal costs of learning by the idea that a certain

performance level can be reached without costs.

2 The model

There are two types of students i ∈ {l;h} which differ in ability. We consider two dimensions of

ability. The first dimension, which we label endowment or initial ability, represents the level of

performance a student can achieve without feeling stressed. We assume that students actually

like to think, solve problems, and participate in class and that they feel bored if courses do

not challenge them enough. Each individual of type i has the same initial endowment γi={l;h}.

We assume γl < γh, so that students of type l have lower endowment than students of type

h. To interpret the nature of differences in the initial endowment, we observe that the level

of performance achievable without feeling stressed most likely depends on previous learning.

Moreover, it is natural to think that γi is largely determined by the upbringing and the parental

background of students, as mentioned in the introduction.

The second dimension of ability, labeled ai for type i, expresses the ease of learning. This

parameter measures how much stress a student feels if he or she pushes performance beyond his

or her initial ability γi. We can interpret ai as the individual intellectual capacity and motivation

of the student. Since a student with a low academic background can well be highly motivated

or intelligent, we allow for the case al > ah. This describes the situation where students of type

l have low initial endowment of ability but high eagerness and capacity to learn.

Depending on both dimensions of ability a student has costs ci to achieve a certain level of
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education, denoted by ei:

ci(ei) =
1

2ai
(ei − γi)

2
. (1)

Here the inverse of ai enters the marginal cost of learning. There is a minimum at ei = γi, where

costs are zero. At this point the student’s academic performance is just his or her initial ability.

The cost function, shown in figure 1, represents the idea that demanding less effort leads to

higher costs in terms of being bored.

ci

ei
0

beingbeing
bored stressed

γi

Figure 1: Cost as a function of effort for a student of type i. When effort equals initial ability

γi, marginal cost of effort is zero.

We now turn to the examination and the labor market. We start in this section by analyzing

the case where students are taught in classes tracked according to type. The school or the teacher

set a standard si which is measured in the same units as the level of education ei. The level of

personal education must be at least as high as the standard of the school in order to pass the

final exam and graduate. The students decide to become graduates or not and, conditional on

this, which academic performance to achieve. This decision is based on the cost of effort and

the wages for non-graduates w0i and graduates w1i. This formulation assumes that employers

observe a student’s type i and whether he or she graduated or not. However, the individual

performance ei is unknown to the employer and therefore does not enter the wage.

Conditional on the decision to pass the exam or not, the student chooses performance to

maximize utility. We denote the utility achieved in case of passing (not passing) by u1i (u0i):

u1i = max
ei

{w1i − ci(ei)|ei ≥ si} ⇒
{

ei = si if si ≥ γi

ei = γi if si < γi

u0i = max
ei

{w0i − ci(ei)} ⇒ ei = γi .

(2)

Anticipating this choice, a student graduates if u1i ≥ u0i. We assume that students expect w1i ≥
w0i. One can see from equation (4) below that this expectation is confirmed in equilibrium. The
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graduation choice is then given by:

max{u0i;u1i}=















u1i if si < γi

u1i if w1i − ci(si)−w0i ≥ 0 and si ≥ γi

u0i if w1i − ci(si)−w0i < 0 and si ≥ γi .

(3)

In equilibrium, the wage after passing the exam w1i must be equal to the expected produc-

tivity of graduates of class i. We normalize productivity to be measured in the same units as

academic performance. Therefore w1i equals the education level of graduates of class i. In the

same way the wage w0i is given by the academic performance of non-graduates. From equation

(2) we have:

w0i = γi ⇒ no exam

w1i = max{si;γi} ⇒ exam .
(4)

We now turn to the choice of standard si by the teacher. The teacher maximizes utility of

all students. Thus, we assume that the teacher cares about the disutility of learning of his or her

students. Inserting (4) and (1) into (3) shows that in the case where si ≥ γi, the student chooses

to graduate if si−γi ≤ 2ai. Using this, (2) and (4) in (3) shows that utility of all students of type

i is given by:

Vi(si) =

{

γi if si < γi or si − γi > 2ai

si − 1
2ai

(si − γi)
2 if si ≥ γi and si − γi ≤ 2ai .

The optimal standard s∗i is determined by:

∂Vi

∂si
= 1− 1

ai
(si − γi)

!
= 0 ⇒ s∗i = ai + γi . (5)

The chosen standard reflects both dimensions of ability.

Comparing the two standards, the typical case is given by s∗h > s∗l , where h-students enjoy

an advantage compared to l-students in terms of total ability:

ah + γh > al + γl . (6)

In this case one can clearly label both types of students as l-low and h-high ability. However

we do not rule out the opposite case, where

ah + γh ≤ al + γl . (7)

Thus, we allow the learning capacity of l-students to be so much higher than the one of h-

students that it overcompensates the disadvantage of initial endowment of the l-students.
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3 Merging classes

The previous analysis dealt with separated classes i ∈ {l;h}. In contrast in this section we

consider the case where both classes can be mixed together in one comprehensive school. We

denote the share of h-students in the comprehensive school by 0 < d < 1. The teacher sets a

common standard s applying to all students in the mixed class. The teacher’s objective function

is the aggregate utility of all students, denoted by V (s). We continue to assume that employers

are able to observe the standard of the school and the type of an applicant i. Therefore, for any

given standard s, individual choices of students are still determined by (2) and (3) and wages

are still given by (4), where si is replaced by s.

Depending on the standard, one of four constellations can occur. First, all students choose

a performance equal to their initial ability γi. We denote the value of the school’s objective

function in this case by Ṽ0. Since in this case every student of type i earns a wage equal to γi and

has no cost, it follows Ṽ0 = γl(1−d)+ γhd. This constellation will not occur in equilibrium.

Second, only for the l-students the standard is binding, while the h-students choose per-

formance γh. Using the wage (4) and the cost function (1), aggregate utility in this case is

Ṽl(s) =
[

s− 1
2al

(s− γl)
2
]

(1−d)+ γhd.

Third, both types of students choose to graduate and have to incur effort costs to do so. Then

performance of students of both types just meets the standard s. Hence, the school’s objective

is Ṽ (s) =
[

s− 1
2al

(s− γl)
2
]

(1−d)+
[

s− 1
2ah

(s− γh)
2
]

d.

Fourth, l-students perform at their initial ability γl, while h-students meet the standard. This

yields the objective function Ṽh(s) = γl(1−d)+
[

s− 1
2ah

(s− γh)
2
]

d.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.45

0.50

0.55

0.60

0.65

0.70

Ṽ ,Ṽl,Ṽh

ṼṼl
Ṽh

s
s∗l = 0.5

(a) Parameter: d = 0.5, γh = 0.7,

γl = 0.1, ah = 0.3, al = 0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.45

0.50

0.55

0.60

0.65

0.70

Ṽ ,Ṽl,Ṽh

ṼṼl
Ṽh

s
s∗h = 1

(b) Parameter: d = 0.5, γh = 0.7,

γl = 0.3, ah = 0.3, al = 0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.45

0.50

0.55

0.60

0.65

0.70

Ṽ ,Ṽl,Ṽh

Ṽ

Ṽl

Ṽh

s
s∗ = 0.87

(c) Parameter: d = 0.5, γh = 0.7,

γl = 0.3, ah = 0.3, al = 0.4

Figure 2: The objective function of the comprehensive school V (s). Ṽh (Ṽl) describes the value

of the schools objective, if one assumes that h(l)-students exert effort to pass the exam and

l(h)-students choose the effort level γl (γh). V is the upper envelope of Ṽ , Ṽl and Ṽh.

Which one of these four cases applies depends on the parameter constellation. This leads to

7



the following definition of V (s) with seven branches defined by parameter restrictions. Some

of the restrictions are redundant, but are left for better understanding:

V (s) =























































Ṽ0 [1] if s ≤ γl,h

Ṽ0 [2] if s ≤ γh; s > γl; s− γl > 2al

Ṽl(s) [3] if s ≤ γh; s > γl; s− γl ≤ 2al

Ṽ (s) [4] if s > γl,h; s− γl ≤ 2al; s− γh ≤ 2ah

Ṽh(s) [5] if s > γl,h; s− γl > 2al; s− γh ≤ 2ah

Ṽl(s) [6] if s > γl,h; s− γl ≤ 2al; s− γh > 2ah

Ṽ0 [7] if s > γl,h; s− γl > 2al; s− γh > 2ah

(8)

In the first branch [1] the standard is too low to bind anybody, so all students just perform at

the initial endowment. In the next branch [2] outcome is the same, but the standard is above the

maximal standard the l-students are willing to satisfy and u1l < u0l . h-students still graduate

without effort cost. Branch [3] represents the situation where the l-students graduate by just

meeting the standard whereas h-students still graduate with level γh. On branch [4], the standard

is high enough to be binding also for h-students. Branches [5] and [6] differ depending on which

group first refuses to satisfy the high standard and falls back to initial ability. In branch [5] this is

true for the l-students and in branch [6] for the h-students. The last branch [7] shows a standard

higher than anybody will accept to meet.

Notice that the branches [3]-[6] of the expression V (s) are strictly concave. Moreover,

observe that Ṽl and Ṽh are affine transformations of the objective functions Vl and Vh of the

separated classes: Ṽl(s) = (1−d)Vl(s)+dγh and Ṽh(s) = dVh(s)+ (1−d)γl. Consequently in

the branches [3], [5], and [6], where one of these functions applies, the optimal standard is s∗l
or s∗h. In branch [4], the optimal standard s∗ solves:

∂Ṽ

∂s
=

[

1− 1

al

(s− γl)

]

(1−d)+

[

1− 1

ah

(s− γh)

]

d
!
= 0 .

From this first order condition of Ṽ , we obtain:

s∗ =
alah +dalah + γhγl −dahγl

ah(1−d)+ald

=
dal

ah(1−d)+ald
s∗h +

(1−d)ah

ah(1−d)+ald
s∗l . (9)

The standard of a mixed class is a weighted average of the standards chosen in separated classes.

The weights combine the population shares d and (1−d) with the ability parameters ah and al .

Figure 2 shows the different branches of V . The sub-figures 2(a), 2(b) and 2(c) are based on

different parameter combinations, where the optimal standard is s∗l , s∗h and s∗ respectively. We
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will now analyze in which branch of V the optimal standard is located, that is, which of these

three standards gives the highest welfare. Pairwise comparison of the local maxima obtained

by the three standards shows that

Ṽ (s∗) T Ṽl(s
∗
l ) ⇔ Fl(al,ah,γl,γh,d) T 0

Ṽ (s∗) T Ṽh(s
∗
h) ⇔ Fh(al,ah,γl,γh,d) S 0

Ṽh(s
∗
h) T Ṽl(s

∗
l ) ⇔ Flh(al,ah,d) S 0 ,

(10)

where

Fl(al,ah,γl,γh,d) = ah [al(2−d)−2(1−d)(γh− γl)]− (1−d)(al − γh + γl)
2

Fh(al,ah,γl,γh,d) = a2
hd+d(γh − γl)(γh− γl −2al)−ah(al +ald −2dγh +2dγl)

Flh(al,ah,d) = al(1−d)−ahd .

These functions define boundaries between subsets of the parameter space. Depending on the

signs of the three functions Fl , Fh and Flh, there could be up to eight such subsets. Two of these

do not exist, however, since the three functions cannot be all positive or all negative at the same

time. For example, if Fh > 0 and Fl > 0, then equations (10) imply Ṽh(s
∗
h) > Ṽ (s∗) > Ṽl(s

∗
l ),

hence Flh < 0.

Proposition 1 In the comprehensive school the chosen standard is:

s∗ = dal

ah(1−d)+ald
s∗h +

(1−d)ah

ah(1−d)+al d
s∗l if Fl > 0 and Fh < 0

s∗l = al + γl if Fl < 0 and Flh > 0

s∗h = ah + γh if Fh > 0 and Flh < 0 .

(11)

Proof.

We need to consider all three possible optimalities and check if the needed constrains from

(8) are satisfied.

At first we consider s∗ is optimal.

We need to show that if Fl > 0 and Fh < 0 hold, s∗ satisfies the conditions given in branch

[4] of (8).

s∗ > γl is equivalent to al [ah(1−d)+ald] [ah +d(γh − γl)] > 0, which is satisfied in any

case.

s∗ > γh is equivalent to ah [ah(1−d)+ald] [(γh − γl)(1−d)−al]< 0, which reduces to al >

(γh− γl)(1−d). The inequality Fl > 0 is equivalent to ah [al(2−d)−2(1−d)(γh− γl)]> (1−

9



d)(al − γh+ γl)
2. This implies al(2−d)−2(1−d)(γh− γl)> 0, which can be transformed into

al − (1−d)(γh − γl)>
ald
2

. From this al > (1−d)(γh− γl) and hence s∗ > γh follows.

s∗−γl ≤ 2al is, for al 6= 0, equivalent to al ≥ d(γh−γl)+ah(2d−1)
2d

≡ Al(ah). Fh < 0 is equivalent

to al >
d(ah+γh−γl)

2

ah(1+d)+2d(γh−γl)
≡ Bl(ah). We show that Bl(ah) ≥ Al(ah) so that al > Bl(ah) implies

al > Al(ah). To see this, observe that Bl(ah)≥ Al(ah) is equivalent to −ah(1−d)d[ah+d(γh −
γl)] [ah +ahd +2d(γh − γl)]≤ 0, which is true in any case.

s∗−γh ≤ 2ah is, for ah 6= 0, equivalent to ah ≥ al(1−2d)−(1−d)(γh−γl)
2(1−d) ≡ Ah(al). Fl > 0 implies

that al(2−d)−2(1−d)(γh−γl)> 0. Hence Fl > 0 is equivalent to ah >
(1−d)(al−γh+γl)

2

al(2−d)−2(1−d)(γh−γl)
≡

Bh(al). We show that Bh(al)≥ Ah(al) so that ah > Bh(al) implies ah > Ah(al). The inequality

Bh(al)≥Ah(al) is equivalent to al(1−d)d [al(2−d)−2(1−d)(γh− γl)] [al − (1−d)(γh − γl)]>

0. As shown in the proof of s∗ > γh, we have al(2− d)− 2(1− d)(γh − γl) > 0 and al − (1−
d)(γh − γl)> 0. Hence Bh(al)> Ah(al) for all al > 0.

s∗l is optimal.

Now we need to show that if Fl < 0 and Flh > 0 hold, s∗l satisfies the conditions given in

branch [3] or [6] of (8). We distinguish two cases, depending on whether (6) or (7) holds.

In the first case, where ah + γh > al + γl , we show that branch [3] of (8) applies. In this case

Fl < 0 is equivalent to al <
ah(2−d)+2(1−d)(γh−γl)−

√
ah

√
ah(2−d)2+4(1−d)d(γh−γl)

2(1−d) ≡Cl(ah). Observe

that Cl(ah) < γh − γl is equivalent to 4(1− d)d(γh − γl) > 0, which is true. Hence we have

al < Cl(ah) < γh − γl , which proves s∗l ≤ γh. The conditions s∗l > γl and s∗l − γl ≤ 2al follow

from s∗l = al + γl .

In the case ah+γh ≤ al +γl the branch [6] of (8) applies. The first two conditions s∗l > γl and

s∗l ≤ 2al +γl follow directly from s∗l = al +γl . We show that the condition s∗l −γh > 2ah follows

from Fl < 0. Inserting s∗l = al + γl, we can rewrite this condition as ah <
al+γl−γh

2
≡ Ch(al).

Consider the denominator of Bh(al) defined above. From ah−al < γl − γh we have al(2−d)−
2(1− d)(γh − γl) > al(2− d)+ 2(1− d)(ah − al) = ald + 2(1− d)ah > 0. Therefore Fl < 0

is equivalent to ah < Bh(al). We show that Bh(al) < Ch(al), so that ah < Bh(al) implies ah <

Ch(al). The inequality Bh(al) < Ch(al) is equivalent to [al(−2+d)+2(1−d)(γh− γl)](al +

γl −γh)< 0. Since here al +γl −γh > ah > 0, this is equivalent to al(2−d)−2(1−d)(γh−γl)>

0, which we just have shown to be true.

s∗h is optimal.

Fh > 0 is equivalent to al < Bl(ah), where Bl(ah) is defined above. s∗h−γl > 2al is equivalent

to al <
ah+γh−γl

2
≡ Dl(ah). We show that Bl(ah)< Dl(ah). Knowing ah +ahd+2d(γh− γl)> 0

and d < 1, this is true. Hence al < Bl(ah) implies al < Dl(ah). The conditions s∗h > γh and

s∗h − γh ≤ 2ah follow from s∗h = ah + γh. �
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From this proposition we can directly read the globally optimal standard. This is s∗ if the

parameters are such that Fl > 0 and Fh < 0. If one of these inequalities is not satisfied, the

optimal standard is s∗l or s∗h, depending on the sign of Flh.
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Figure 3: Parameter regions in ah−al-space with different optimal standards in the comprehen-

sive school, with d = 0.5, γl = 0.3 and γh = 0.7. The labels Ṽ , Ṽl and Ṽh show in which branch of

V the global maximum is located. Below (on, above) the dotted line starting at (ah = 0;al = 0.4)

one has al + γl < (=,>)ah + γh.

Figure 3 illustrates in which region of the parameter space each of the three local maxima is

the global maximum. This figure is drawn in ah −al-space, since the influence of these param-

eters on the optimal standard is most interesting to study. In this example the other parameters

were fixed at d = 0.5, γl = 0.3 and γh = 0.7. In the graph we inserted a dotted straight line,

starting at ah = 0;al = 0.4. Above this line inequality (7) holds. Below this line we have (6),

such that labeling the l-type as low ability students is appropriate.

In the lower right region of the figure, labeled with Ṽh, the relevant branch of V in equation

(8) is [5]. In this region the ability of h-students is relatively high in both dimensions compared

to the l-students. Therefore the teacher sets a standard tailored exactly to h-students, accepting

that l-students will drop out. In the central and upper right region, labeled Ṽ , branch [4] of V

contains the optimum. Abilities of both types do not differ much and hence the teacher sets the

compromise standard s∗. Finally in the upper left and lower left regions, labeled with Ṽl , the
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school chooses the standard s∗l for the l-students, whereas the h-students perform at γh. They

do so for two different reasons. In the upper region with al > 0.4, where branch [6] of V is

relevant and (7) holds, the standard is too high for the h-students and they drop out. In the lower

part (al < 0.4, branch [3], and (6) holds), the standard is so low that the h-students can meet it

without effort cost.

The next proposition provides comparative statics for the case where the optimal standard

is s∗.

Proposition 2 If the optimal standard in a comprehensive school is s∗, it increases in al , ah, γl

and γh. It increases (decreases) in d if ah + γh > (<)al + γl.

Proof.

Differentiating s∗ from (9) we obtain:

∂s∗

∂d
=

ahal(ah −al + γh − γl)

(ah(1−d)+ald)2
(12)

∂s∗

∂γl

=
ah(1−d)

ah(1−d)+ald
> 0

∂s∗

∂γh

=
ald

ah(1−d)+ald
> 0

∂s∗

∂al

=
ah(1−d) [ah +d(γh − γl)]

[ah(1−d)+ald]
2

> 0

∂s∗

∂ah

=
ald [al − (γh − γl)(1−d)]

[ah(1−d)+ald]
2

(13)

(12) is positive (negative) if ah + γh > (<)al + γl . (13) is positive if al > (γh − γl)(1− d). As

shown in the proof of Proposition 1, this is true if s∗ > γh, which must be the case if s∗ is the

optimal choice. �
As expected, for all students the standard increases in both dimensions of ability. Moreover,

the standard increases in the share of the type of students i whose total ability, measured by

ai + γi, is larger.

We now turn to the question whether two separated classes are preferable to the mixed class.

It is important to distinguish between a comparison of utilities and a comparison of academic

performances. Regarding utilities, no case is possible where students are better off in the mixed

class than in separated classes, because in that case, s∗l and s∗h can be optimized separately.

Hence, comparison of utilities is a straightforward application of the decentralization theorem

by Oates (1972). Notice that the same observation would hold if we assumed that schools

maximize academic performance or wages instead of students’ utility. In such a model it would
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be immediate that in the comprehensive school performance of each type can only be worse

than in tracked schools.

In contrast, as we will now show, in our model academic performance can also increase by

mixing the classes. First, we consider for each type of students separately how their perfor-

mance changes if classes are merged. For this comparison, observe that in the case where the

optimal standard of the comprehensive school is s∗l (s∗h), the performance of the h(l)-students

is γh (γl), and that the standard s∗ is a weighted average of the standards chosen in the tracked

schools. With this, Proposition 1 immediately leads to:

Proposition 3 If the comprehensive school chooses s∗l (s∗h), the performance of h(l)-students is

lower than in the tracked h(l)-school. If the comprehensive school chooses s∗, the performance

of l-students is higher than (lower than, equal to) the performance in the tracked l-school if

al + γl < (>,=)ah + γh. If the comprehensive school chooses s∗, the performance of h-students

is higher than (lower than, equal to) the performance in the tracked h-school if al + γl > (<,=

)ah + γh.

This proposition shows that our model can generate a positive peer group effect for low

ability students, by which we mean the l-students, where (6) holds. In a comprehensive school,

teachers will need to find a compromise between the standards tailored to individual student

types. As long as low ability students are still willing to meet this standard, they will put in

more effort than in the separated class. As a consequence one will observe higher test results

on their part in the comprehensive school, even if there are no synergy effects from teaching

diverse students together. Furthermore, the reduction of the standard for the h-students might

be quite small when d and/or al are relatively large. Then, as (9) shows, the standard of the

mixed class is close to the standard of the h-class. Given confounding influences, an empirical

study might fail to find statistical significance of such a small impact.

The peer group effect obtains only for a subset of the parameter space. As is apparent from

figure 3, the learning capacities of both types must not be too different. Otherwise, if one type

finds it substantially easier to learn, the school will set optimal incentives for this type and put

up with the fact that the other type stops graduating. Furthermore one can show that the Fh = 0

curve shifts downwards if d decreases. Hence, a positive peer group effect for the low ability

students is more likely when these students are more numerous. In this case the teacher of the

comprehensive school puts more weight on their utility and therefore refrains from setting a

standard which overburdens them.

Finally it may also happen that the comprehensive school sets the standard s∗l tailored to

the low ability students. This corresponds to the lower left region of Figure 3. In this case
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mixing classes leaves the performance of l-students unchanged and reduces the performance of

h-students. However, this decline in performance might be very small, since learning capacity of

h-students is anyway not very large and since they continue to perform at their initial endowment

γh. Therefore, although mixing classes obviously does not help in this case, the damage it inflicts

is small.

The next proposition deals with the effect of merging classes on aggregate performance.

Proposition 4 If al + γl < ah + γh, the average productivity of students in a comprehensive

school exceeds (is equal to, falls short of) the average productivity of students in tracked schools

if and only if learning ability of l-students is larger than (is equal to, is smaller than) learning

ability of h-students. That is:

s∗ R ds∗h +(1−d)s∗l ⇔ al R ah .

If al + γl > (=)ah + γh, the average productivity of students in a comprehensive school falls

short of (is equal to) the average productivity of students in tracked schools.

Proof. From equation (9), we find that s∗ R ds∗h +(1−d)s∗l is equivalent to:

(al −ah)(s
∗
h− s∗l )R 0 . (14)

In the case al + γl < ah + γh we have s∗h > s∗l , and (14) is equivalent to al R ah. In the case

al + γl > ah + γh we have s∗h < s∗l , and (14) is equivalent to al ⋚ ah. Since γh > γl , in this case

al > ah must hold. Hence s∗ < ds∗h+(1−d)s∗l . For al + γl = ah + γh, we have s∗l = s∗h, and (14)

implies s∗ = ds∗h +(1−d)s∗l . �
This proposition shows that merging classes with heterogeneous students may increase over-

all academic performance, even when there are no spillover effects between types of students.

This occurs when students with low initial ability have higher learning capacity than students

with high initial ability. To understand that, consider how the standard is set in the comprehen-

sive school. The teacher will trade off the net-loss incurred by l-students when the standard is

increased above their optimal standard s∗l against the net-loss incurred by h-students when the

standard is decreased below s∗h. Since the learning ability of l-students exceeds the learning

ability of h-students, the net-loss of the latter increases faster than the net-loss of the former.

Therefore the optimal standard, where marginal net-losses are equalized, is closer to s∗h than to

s∗l . Hence the optimal standard in the mixed class is higher than the weighted average of the

standards of the separated classes.

This kind of result is likely to be relevant in education systems where students are tracked

early. It is likely that the allocation to different tracks is mostly determined by the endowment
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of skills conferred by the family background. At the same time it is well possible that students

with low endowment have not yet fully unfolded their potential and correspondingly find it

easier to extend their knowledge. In the terminology of our model these students have high

learning capacity al , but low endowment γl . If these students now attend a comprehensive

school, average performance of students will increase. Both types of students find a relatively

high standard acceptable, but they do so because of different reasons: One group starts with

high initial ability and the others are eager to advance.

4 Conclusion

In this paper we present a model comparing the choice of examination standards by tracked

and untracked schools. The model distinguishes between initial ability and the capacity or

willingness to extend ability. When setting the standard, the school or teacher takes the student’s

disutility of learning into account. Therefore, the resulting choices differ from the standards

which maximizes academic performance, which is the focus of PISA and similar studies.

Our findings show that in many cases a comprehensive school will enhance performance

of low ability students or even enhance average performance compared to tracked schools with

individual standards. In these cases performance of high ability students decreases, but this

effect may be so small that it is insignificant in an empirical study. Our model therefore provides

a foundation of peer group effects although we abstract from any synergy effect from teaching

different student types together.
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Hanushek, Eric A. and Ludger Wößmann, “Does Educational Tracking Affect Performance

and Inequality? Differences- in-Differences Evidence Across Countries,” The Economic

Journal, 2006, 116 (510), C63–C76.

Kim, Taejong, Ju-Ho Lee, and Young Lee, “Mixing versus Sorting in Schooling: Evidence

from the Equalization Policy in South Korea,” Economics of Education Review, 2008, 27 (6),

697–711.

16
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