
Brueckner, Jan K.; Abreu, Chrystyane

Working Paper

Airline Fuel Usage and Carbon Emissions: Determining
Factors

CESifo Working Paper, No. 6033

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Brueckner, Jan K.; Abreu, Chrystyane (2016) : Airline Fuel Usage and Carbon
Emissions: Determining Factors, CESifo Working Paper, No. 6033, Center for Economic Studies and
ifo Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/145068

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/145068
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Airline Fuel Usage and Carbon Emissions: 
Determining Factors 

 
 
 

Jan K. Brueckner 
Chrystyane Abreu 

 
 

CESIFO WORKING PAPER NO. 6033 
CATEGORY 10: ENERGY AND CLIMATE ECONOMICS 

AUGUST 2016 
 

 
 
 
 

An electronic version of the paper may be downloaded  
• from the SSRN website:              www.SSRN.com 
• from the RePEc website:              www.RePEc.org 

• from the CESifo website:           Twww.CESifo-group.org/wp T 

 
 
 

ISSN 2364-1428 

http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.de/


CESifo Working Paper No. 6033 
 
 
 

Airline Fuel Usage and Carbon Emissions: 
Determining Factors 

 
 

Abstract 
 
Using annual data on individual US airlines over the 1995-2015 period, this paper presents 
regression results relating an airline’s total fuel usage to seven variables: the available ton miles 
of capacity (passengers plus freight and mail) provided by the airline; the average seat capacity 
of its aircraft, average stage length (flight distance); average load factor (measured by weight); 
the average vintage (construction year) of its aircraft; the percentage of the airline’s flights that 
are delayed; and the average annual fuel price. The results show how fuel usage and carbon 
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Airline Fuel Usage and Carbon Emissions: Determining
Factors

by

Jan K. Brueckner and Chrystyane Abreu*

1. Introduction

Amid growing concerns about climate change, the airline industry’s carbon emissions have

gained increasing attention. The industry’s CO2 contribution is not very large, accounting

for around 2.5% of total CO2 emissions as of 2006 (Kwan and Rutherford (2015)), but the

impact per kilogram of its high-altitude emissions on climate change is about double that

of ground-level emissions, as explained by Lee, Lukachko and Waitz (2004). Recognizing

the importance of airline emissions, the European Union in 2012 formulated a controversial

plan to require all airlines serving EU airports to pay emissions charges under its emissions

trading system (ETS). But in the face of substantial opposition, this plan was never fully

implemented, with the charges currently limited to Europe’s own airlines (see Albers, Buhne

and Peters (2009), and Scheelhasse and Grimme (2007)). While the UN’s International Civil

Aviation Organization was expected to design its own global system of emissions charges, the

ICAO instead recently proposed an explicit fuel efficiency standard for new aircraft, intended

to take effect in 2028 (Mouawad and Davenport (2016)). Since such a standard would affect

airline emissions only gradually, to the disappointment of environmental groups, pressure for

some form of international emission charges may persist (Mooney (2016)).

Given the new focus on airline emissions, it is important to gain a better understand-

ing of the link between the emissions volumes of individual airlines and the characteristics

of their fleets and flight operations. Since emissions are approximately proportional to fuel

consumption, this link can be studied by exploring the connection between an airline’s total

fuel usage and its characteristics. The present paper carries out such an exploration. Using

annual data on individual US airlines over the 1995-2015 period, the paper presents regression

results relating an airline’s total fuel usage to seven variables: the available ton miles of ca-

pacity (passengers plus freight and mail) provided by the airline; the average seat capacity of
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its aircraft, average stage length (flight distance); average load factor (measured by weight);

the average vintage (construction year) of its aircraft; the percentage of the airline’s flights

that are delayed; and the average annual fuel price. The regression model containing these

variables is generated from a theoretical framework, which has elements in common with the

earlier model of Brueckner and Zhang (2010).1

The results give answers to the following questions: How would an airline’s fuel usage (and

thus emissions) respond to modernization of its fleet? To the use of larger aircraft? To a shift

to longer flights? To a reduction in flight delays? To fuller planes? In addition, the estimated

effect of the fuel price on fuel usage captures the impact of greater fuel-conservation effort,

holding fixed the characteristics of the airline’s fleet and route structure. While the fuel price

effect thus only captures short-run usage adjustments, its magnitude can be used to predict

the short-run impact of airline emission charges, an exercise that is carried out in the paper.

The linkages between fuel usage (or, more generally, operating costs) and an airline’s fleet

and operating characteristics have been the focus of a variety of papers, including Kwan and

Rutherford (2015), Lee, Lukachko, Waitz and Schafer (2001), Lee, Lukachko, Waitz (2004),

Miyoshi and Mason (2009), Morrell (2009), Ryerson and Hansen (2013), Swan and Adler

(2006), and Zou, Elke, Hansen and Kafle (2014). The present paper differs from much of this

work by focusing on fuel usage (or costs) at the overall airline level rather than the level of

individual aircraft. Compared to papers such as Zou et al. (2014) that have an airline-level

focus, the present work includes a more comprehensive set of explanatory variables.2 The

goal is to produce a full picture of the determinants of airline fuel usage, which will help in

understanding the industry’s carbon emissions and contribution to climate change.

The plan of the paper is as follows. Section 2 presents the conceptual framework, which

motivates the empirical model. Sections 3 and 4 present the empirical model and discuss the

data and empirical results, and Section 5 offers conclusions.

2. Conceptual Framework

2.1. The setup

This section of the paper develops the conceptual framework underlying the subsequent
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empirical model. The goal is to identify the determinants of an airline’s fuel usage and carbon

emissions from a theoretical point of view. To begin, let A denote available seat miles for the

airline, more commonly written as ASM. In addition, let F denote fuel usage per available

seat mile. Then, total fuel usage by the airline equals AF , the product of ASM and fuel usage

per ASM, and carbon emissions are proportional to AF . Recognizing that airlines carry both

passengers and freight, the empirical model measures airline capacity in ton miles rather than

seat miles, but for simplicity, the theory is developed using seat miles.3

F , fuel usage per ASM, is assumed to depend on five factors:

e = a measure of aircraft fuel efficiency

s = seats per aircraft

d = stage length (1)

` = load factor

v = fuel-conservation effort

Therefore, fuel usage per ASM can be written as F (e, s, d, `, v). While, in reality, all these

variables are flight-specific, the analysis will instead assume that their values are uniform

across the airline’s flights. In other words, the airline is assumed to use aircraft of a common

size and fuel efficiency operated over a common stage length at a uniform load factor. The

empirical framework dispenses with this assumption, replacing the theoretically uniform values

of these variables with the average values pertaining to each airline.

The direction of the impacts on fuel usage of the variables are indicated as follows:

− − − + −

F (e, s, d, `, v) (2)

Since greater fuel efficiency and more conservation effort reduce fuel consumption, F is ob-

viously decreasing in e and v. In addition, a higher load factor ` raises fuel use per ASM

since the weight of loaded aircraft rises when more seats are filled. Therefore, Fe, Fv < 0

and F` > 0 hold, where subscripts denote partial derivatives. As established in a variety of

different studies, larger aircraft use less fuel per seat mile than smaller planes, so that Fs < 0
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holds (see Morell (2009) and Zou et al. (2014)). Two offsetting factors govern the effect of

stage length on fuel usage per seat mile. On the one hand, the greater share of cruise miles

for a long flight (relative to the flight’s fuel-intensive takeoff and climbing portions) tends to

reduce fuel usage. On the other hand, the need to carry more fuel on a long flight tends, by

raising weight, to increase fuel use per ASM on such flights. Diagrammatic evidence in Lee,

Lukachko and Waitz (2004) shows that the first beneficial effect strongly dominates up to stage

lengths of around 2000-3000 km, with fuel use per ASM rising modestly thereafter. Miyoshi

and Mason (2009) present a similar diagram, which shows carbon emissions (rather than fuel

use) per RPM falling up to stage lengths as long as 6000 km. The stage-length effect thus

appears to be negative on average, so that Fd < 0.4

Note that fuel-conserving effort, as captured by v, can consist of a variety of possible

steps. Such efforts could include reducing the amount of reserve fuel carried per flight to limit

weight (Ryerson, Hansen, Hao and Seelhorts (2015); Hao, Hansen and Ryerson (2016)), taxiing

on a single engine to reduce ground fuel usage (Hao, Myerson, Kang and Hansen (2016)),

and installation of fuel-saving winglets on older aircraft. Observe that, from an empirical

perspective, these choices are largely unobservable, not being captured in the available data.

The contribution of airport congestion and flight delays to fuel usage has been ignored so

far, and additional steps are needed to include it. A flight delay can raise fuel consumption

by increasing taxi time or adding air time at the end of a flight, effects that are independent

of stage length.5 To capture these congestion effects, let y denote minutes of delay per flight.

Suppose that delay-related fuel use depends on y along with aircraft size s and fuel efficiency

e. Delay-related fuel usage per flight can then be written as G(y, s, e), with Gy, Gs > 0 and

Ge < 0.

Total delay-related fuel usage is equal to G times the number of flights. To derive this

number, observe that ASM satisties A = nfsd, where n is the number of aircraft operated

and f equals flights per aircraft. Total flights are thus nf , and multiplying by seats per flight

and stage length then yields ASM. Delay-related fuel usage is nfG(y, e, s), which can then

be written as AG(y, e, s)/sd. Combining this expression with in-flight fuel usage, given by
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AF (e, s, d, `, v), total fuel usage can be written as

− − − + − +

Total fuel usage = A

[
F (e, s, d, `, v) +

G(y, e, s)

sd

]
≡ AH(e, s, d, `, v, y), (3)

where the H(·) function represents the bracketed term in the middle expression in (3), being

equal to total fuel usage per ASM, inclusive of delay effects (the effects of H’s arguments are

shown).

Since F and G are both decreasing in fuel efficiency e, H is decreasing as well (He < 0).

The effects of load factor ` and fuel conservation v in F are also passed through to H, with

H` > 0 and Hv < 0. Since both F and the ratio term G/sd are decreasing in stage length d,

H is decreasing as well (Hd < 0). Finally, while the effect of seats s on the ratio term in (3) is

ambiguous given Gs > 0, this effect of s on delay-related fuel usage may not be strong enough

to offset the s appearing in the ratio’s denominator. As a result, the ratio is likely to decrease

with s, and combined with the negative effect of s via F , the overall fuel-usage effect of seats

per aircraft is still likely to be negative (Hs < 0). Finally, since Gy > 0, H is increasing in

delay per flight.

2.2. Airline choices

The goal of the empirical work is to estimate (3). However, some of variables in the model

(in particular, v) are unobservable and others (in particular, e) pose measurement problems.

To remedy these obstacles, it is useful to analyze the profit-maximizing choices of the airline,

which allows e and v to be connected to more-easily measured factors.

To do so, let p be the airline’s “yield,” or revenue per passenger mile. Then total revenue

equals A`zp, recognizing that ASM times the load factor (A`) equals revenue passenger miles

(z is a factor that captures the cost of a high load factor; see the appendix). Profit is then

equal to A`zp minus fuel cost based on (1), with capital cost, labor cost, and the costs imposed

by fuel-conservation effort v also subtracted off.

Labor costs can be written as Aw, where w is labor cost per ASM. The cost of fuel-

conservation effort per ASM is given by K(v), with K ′ > 0, so that overall costs are AK(v).
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Ignoring ground capital, capital cost consists of the annualized costs of aircraft, which are

proportional to the purchase price per plane. The purchase price of a new aircraft will in

turn depend on the size s of the aircraft and its fuel efficiency e. In addition, because of the

increasing technology content and overall complexity of aircraft, the cost of a new aircraft

with particular characteristics will also rise over time (although generalized price inflation is

ignored). Therefore, the annualized cost of an aircraft can be written as C(e, s, t), where t is

the build year. Since larger and more fuel-efficient aircraft are more costly, as are aircraft built

later in time, Cs, Ce, and Ct are all positive. In addition, because of technological progress in

engine design and the use of lighter composite materials, the cost of raising fuel efficiency has

declined over time, making the cross-partial derivative Cet negative.

The capital cost component of airline costs equals nC(e, s, t), where n is again the number

of aircraft. Using A = nfsd, this cost can be written as AC(e, s, t)/sfd. The expression fd in

the denominator equals annual miles flown per aircraft (flights per aircraft times stage length).

This distance must be increasing in stage length since, with longer flights, an aircraft spends

less time on the ground per day and thus flies more miles.6 Letting miles per aircraft be

denoted m(d) ≡ fd, where m′ > 0, capital cost can then be rewritten as AC/sm(d).

Bringing together the above elements along with fuel usage from (3), and letting r denote

the price of fuel, the annual profit of an airline making its initial aircraft choice at time t is

given by

A

[
`zp − rH(e, s, d, `, v, y) −

C(e, s, t)

sm(d)
− K(v) − w

]
. (4)

The airline is portrayed as choosing the size s of aircraft, their fuel efficiency e, the load factor

`, and conservation effort v to maximize profit in (4), taking A and stage length d as given.7

It is important to recognize that the choice of fuel efficiency is being made by the airline, not

by the aircraft manufacturer, taking into account the effect of fuel efficiency on the purchase

price. This view makes sense given that improvements in fuel efficiency are the result of both

airline demands and technological progress.

The first-order conditions for choice of e, s, ` and v are shown in the appendix. In general,

these conditions yield solutions for the choice variables that each depends on all the parameters
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of the problem, which are p, r, d, y, and t. But as a simplifying approximation for purposes

of motivating the empirical work, suppose that the function H can be written as additively

separable in its arguments, so that all of its cross partial derivatives equal zero. In addition,

suppose that the C function can be written as C1(e, t) + C2(s), with C1
e , C1

t , C2
s > 0 and

C1
et < 0.8 Then, the parameter dependence of e, s, ` and v is simplified, as follows:

+ + + + + + + +

e = e(r, t, d); s = s(r, t, d); ` = `(p); v = v(r) (5)

Thus, the optimal fuel-conservation effort v depends only on the fuel price, increasing with r.

The optimal load factor ` depends only on the yield, increasing with p. The optimal e and

s are both increasing in r and t, indicating that a higher fuel price leads to larger and more

fuel-efficient aircraft, and that aircraft whose characteristics are chosen later in time are also

larger and more fuel efficient.9 A longer stage length also raises s and e.10

As mentioned above, measurement problems involving fuel efficiency and fuel-conservation

effort motivate this airline-choice analysis, which allows e and v to be replaced by other vari-

ables (t and r) that are more easily measured. Thus, substituting for e and v using (5), total

fuel usage can be written

− − − + − + − − − − + +

AH(e(r, t, d), s, d, `, v(r), y) ≡ AH̃(r, t, s, d, `, y), (6)

+ + + +

so that the effects of e and v are now captured by r and t in a new function H̃ . Note that

since s and ` are observable, there is no need to substitute the solutions s(r, t, d) and `(p) in

reaching (6).

The expression in (6) gives fuel usage for an airline that has just deployed the brand-new

aircraft it has purchased. Since the effects of s, `, and y are passed through from H to H̃,

total fuel usage in (6) is decreasing in the size s of these aircraft and increasing in ` and flight

delay y. Moreover, since a higher fuel price r raises both e and v, and since H is decreasing
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in e and v, a higher fuel price naturally reduces fuel usage. Similarly, since a higher t raises e,

thus reducing H, fuel usage for an airline deploying new aircraft later in time is lower. Since

the direct effect of stage length d on fuel usage (via H) is negative, while d’s indirect effect

raises e and thus also decreases H, the combined effect of a higher stage length is negative.

Now change the focus from an airline deploying brand-new planes to a carrier that is

observed years after its initial aircraft purchases. Suppose these purchases were made in year

t0 when the fuel price was r0. Letting r continue to denote the current fuel price, and assuming

that d, ` and y are unchanged since t0, current fuel usage is given by

− − − − − + +

AH(e(r0, t0, d), s, d, `, v(r), y) ≡ AĤ(r0, r, t0, s, d, `, y) (7)

Note in (7) that fuel conservation effort, which can be adjusted over time (unlike aircraft

characteristics), depends on the current fuel price r, while fuel efficiency e depends on the fuel

price r0 in the initial year and on the index t0 of that year (the effects of both fuel prices are

negative).

3. Empirical implementation

The empirical model estimated in the next section of the paper is built upon (7). In the

model, an airline’s total fuel usage depends on overall capacity A, aircraft size s, stage length

d, load factor `, flight delays y, the current fuel price r, and the “vintage” (construction date

t0) of its aircraft. While (7) includes the initial fuel price r0, that price depends on t0 and is

thus captured by the vintage variable.

While the model has been developed assuming that s, d, `, and t0 are uniform within an

airline, these variables are heterogeneous in reality. Therefore, the empirical model uses aver-

age values of the variables, which are denoted AVG SEATS, AVG STAGELN, AVG LOADFC,

AVG VINTG. The delay variable y is represented by PCT DELAY, which equals the percent-

age of flights with delays of more than 15 minutes, and the current fuel price is denoted

FUELPR. As mentioned above, the airline’s capacity A is actually measured by available ton

miles (ATM, which captures passenger, freight and mail capacity) rather that ASM, even

though the model was developed using ASM for concreteness. Accordingly, the average load
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factor is measured in terms of weight rather than passengers, with AVG LOADF equal to rev-

enue ton miles (RTM) divided by available ton miles (ATM). However, since seats remains a

good indicator of combined passenger and freight capacity, AVG SEATS is used as the aircraft

size measure. AVG STAGELN is computed by dividing the airline’s annual flight miles by

the number of departures, and AVG VINTG is a weighted average of aircraft vintages, with

weights equal to aircraft seats.

To derive the estimating equation, let Ĥ in (7) be written as

exp (α + β AVG SEATS + γ AVG STAGELN + δ AVG LOADFC + θ AVG VINTG +

+ η PCT DELAY + φFUELPR + u), (8)

where u is an error term. Multiplying (8) by A = ATM, fuel usage equals AĤ = ATM eB,

where B is the expression following exp in (8). Taking logs then yields

ln(FUEL USE) = α + ν ln(ATM) + β AVG SEATS + γ AVG STAGELN +

δ AVG LOADFC + θ AVG VINTG + η PCT DELAY + φFUELPR + u. (9)

Note that, while the ν coefficient on ln(ATM) should equal one, the estimation allows the data

to determine its value.

4. Data and Empirical Results

4.1. Data sources and summary statistics

The FUEL USE variable is drawn from the Air Carrier Financial Statistics (Schedule P-

12(a)) provided by the DOT’s Bureau of Transportation Statistics (BTS).11 AVG SEATS,

AVG STAGELN, AVG LOADFC, and AVG VINTG are computed using the BTS T2 and B-

43 datasets.12 PCT DELAY comes from the BTS On-Time Performance data, and FUELPR

uses average annual spot price data from the US Energy Information Administration.13

The means of the variables in the empirical model, computed at the airline level, are shown

in Table 1, along with the number of years of data available for each airline. The data cover
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16 airlines, although 8 of these carriers are not represented for all 21 years of the 1995-2015

sample period due to mergers (AirTran, America West, Continental, Northwest, US Airways)

or nonexistence early in the sample period (Allegiant, JetBlue, Virgin). Data for the delay

variable is even more restricted due to unevenness of reporting, as seen in the column showing

the number of years of available delay data.

ATM is naturally largest for the three big carriers, American, United and Delta, and

FUEL USE naturally matches this pattern, although its values are not shown. Table 1 instead

presents fuel use per ATM, a variable that is not used in the regressions but shows interesting

variation. AirTran, Spirit and Allegiant have the largest values, while the big three network

carriers have lower values, as do Hawaiian and Virgin. AVG SEATS varies across carriers in

expected fashion, with Southwest and Frontier (both LCCs) showing the smallest values and

Hawaiian along with the large network carriers operating the biggest planes. AVG STAGELN

shows similar variation, although the big airlines are joined by JetBlue and Virgin among

carriers with the longest stage lengths. AVG LOADFC, which is weight-based and not equal

to the usual percentage of seats filled, shows substantial variation, with Allegiant and Spirit

showing the highest values. AVG VINTG, which is expressed in fractional years, does not vary

much across most of the carriers, although the relatively young fleets of JetBlue and Virgin

are exceptions. Recall that this vintage variable is year-specific, with the average vintage of an

airline’s planes changing across years as aircraft are added and retired. PCT DELAY is above

20% for most carriers, although Hawaiian, Southwest and Virgin show lower values.

4.2. Basic Results

The basic regression results are shown in the first two columns of Table 2, with t-statistics

based on robust standard errors.14 Since the missing years of delay data seen in Table 1

reduce the sample size, two regressions are reported. PCT DELAY is omitted from the first

regression, which is based on 284 observations, while the delay variable is included in the

second regression, which uses a smaller set of 217 observations.

The coefficient estimates strongly support the predictions of the conceptual framework,

with all coefficients showing the expected signs and statistical significance. In the first regres-

sion, an airline’s fuel usage is almost exactly proportional to its available ton miles, with the
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coefficient of ln(ATM) very close to 1. Holding ln(ATM) constant, ln(FUEL USE) is decreas-

ing in AVG SEATS, showing that fuel usage per available ton mile is lower with larger aircraft.

The negative coefficient of AVG STAGELN shows that fuel usage per ATM is decreasing in

stage length, with longer flights raising fuel efficiency. An increase in AVG LOADFC raises fuel

usage per ATM, reflecting the greater weight carried as load factor rises. When AVG VINTG

increases, with the airline’s planes built in later years, fuel usage falls, reflecting the influ-

ence of continuing technological improvements in raising aircraft fuel efficiency. A higher fuel

price also reduces fuel usage, with airlines evidently expending more effort conserving fuel as

FUELPR rises. The coefficients capturing these effects are all statistically significant at the

1% level.

The second regression in Table 1 adds PCT DELAY to set of covariates, which reduces the

sample size from 284 to 217 observations. This addition leads to only modest changes in the

sizes of coefficients of the previous variables, with their 1% significance levels also unaffected.

The coefficient of PCT DELAY is positive, as expected, indicating that flight delays raise

fuel consumption. The coefficient, however, is less precisely estimated than the others in the

regression, being significant only at the 10% level.15

Beyond these qualitative results, the coefficient estimates reveal the quantitative impact

on fuel usage from changes in the explanatory variables. The unitary coefficient of ln(ATM)

(which is an elasticity) shows that a 1% increase in ATM raises fuel usage by 1%. Alterna-

tively, suppose that average aircraft size increases by 10 seats, which corresponds to South-

west (136 seats) switching to Continental-size (146 seats) planes (see Table 1). Using the

AVG SEATS coefficient from the second regression, this shift would change ln(FUEL USE)

by 10 × (−0.00201) = −0.02, which translates to a 2% reduction in FUEL USE. If South-

west instead switched to American-size planes (163 seats) while keeping ATM fixed, the fuel

reduction would be almost three times as great, somewhat less than 6%.

Next, suppose that stage length increases by 100 miles (Allegiant’s 944-mile stage length

would rise to Delta’s 1040-mile length, holding ATM fixed). From Table 3, the effect on

ln(FUEL USE) would again be −0.02 = 100 × (−0.000205), for a reduction of 2% in usage,

holding ATM fixed. If Allegiant instead had American’s 1229 mile stage length, its fuel use
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per ATM would be almost 6% lower.

A 5 percentage point increase in an airline’s load factor (a gain of 0.05 in AVG LOADFC)

would change ln(FUEL USE) by 0.082 = 0.05 × 1.637, for an 8.2% increase in usage, holding

ATM fixed. While this effect seems substantial, further results presented below show that it

is not due to omitted factors. Next, suppose that the average vintage of a carrier’s aircraft

increases by 3 years (American’s 1993 vintage would rise to Southwest’s 1996 vintage). The

change in ln(FUEL USE) would be 3 × (−0.00752) = −0.022, for a 2.2% reduction in usage.

If American’s average vintage were instead to match JetBlue’s 2004 vintage (for a change of

11 years), the gain would be almost four times larger, for a reduction in fuel usage of 8.2%.

If the percentage of delayed flights were to fall by three points (if Alaska’s 0.22 delay share

were to match Southwest’s 0.19 share), then ln(FUEL USE) would change by 0.03×(−0.296) =

.009, for almost a 1% reduction in usage. Finally, suppose that the price per gallon of jet

fuel were to rise by $0.25 from its sample-average value of $1.56. The result would be a

−0.013 = 0.25 × (−0.0562) change in ln(FUEL USE), or a 1.3% reduction in usage.

Note that the carbon emissions of the airline, which are proportional to fuel usage, show

the same percentage changes as usage itself. Table 3 list all the impacts that have just been

derived.

If an appropriate emissions charge per gallon of fuel were imposed, the increase in the

effective fuel price would be somewhat larger than the previous $0.25 value. For use in de-

riving the appropriate charge, EPA conversion factors show that burning a gallon of jet fuel

produces 9.75 kg of CO2.
16 Using a standard value of $40 per metric ton (or $0.04/kg) for

the environmental damage from CO2 emissions,17 the required charge would be 9.75 kg/gallon

× $0.04/kg = $0.39/gallon. This increase in the charge-inclusive fuel price would lead to a

0.39 × (−0.0562) = −0.22 change in ln(FUEL USE), or a 2.2% reduction in usage and thus

carbon emissions. For 2015, when total fuel usage for the airlines in the sample was 13.7 billion

gallons, this 2.2% reduction amounts to 301 million gallons. The associated CO2 reduction is

then 9.75 kg/gallon × 301 million gallons = 2.93 billion kg, for an annual environmental gain

of $0.04/kg × 2.93 billion kg = $117 million. Recall that, since the fuel price effect holds the

airline’s fleet and main operating characteristics constant, this gain is only short run in nature.
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The long run effect of an airline emissions charge would be larger.

Using a similar calculation, the environmental gain from the previous 3-point reduction

in the average delay percentage can be computed. Since, from above, a reduction of this size

reduces fuel use by 0.9%, which equals a 0.41 share of the 2.2% reduction from the optimal

emissions charge, the environmental gain is 0.41 × $117 million, or $48 million per year. This

value can be added to the other passenger and airline cost savings from a reduction in delays.

4.3. Adding a time trend and carrier fixed effects

Two temporal effects underlie the basic regression results: higher vintages (later construc-

tion dates) for airline fleets, and an upward trend of fuel prices over most of the sample period.

The correlations between time and each variable are both near 0.85, reflecting their strong

temporal associations. It is interesting to ask whether a separate temporal force that operates

independently of these two variables (reflecting, for example, growing concern about climate

change) could exert an independent effect on airline operational practices. When a time-trend

variable is added to the first regression of Table 2, its coefficient is significantly negative while

the coefficients of the other variables maintain their signs and levels of statistical significance,

although both the AVG VINTG and FUELPR effects become smaller. However, when a time

trend is added to the second regression, the coefficients of these two variables lose significance

while the t-statistic of PCT DELAY is also reduced (the trend’s coefficient is again negative

and significant). While this outcome only emerges in the presence of the delay variable, the

overall performance of the regressions is impaired by the inclusion of a time trend. Since exis-

tence of a separate time force that affects fuel usage independently of the explanatory variables

themselves is open to question, the basic model in the first two columns of Table 1 is preferred.

While the regression covariates capture the principal differences across carriers in fleet and

operational characteristics, unobservable carrier-specific elements could still affect fuel usage.

These factors can be captured by airline fixed effects, and the impact of including such carrier

dummy variables is shown in the third and fourth columns of Table 2, which continue onto

a second page (American is the omitted carrier). In the model without PCT DELAY, shown

in column 3, the main impact of carrier fixed effects is to cut the AVG SEATS coefficient in

half and to almost double the AVG STAGELN coefficient. The coefficient of AVG LOADFC
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changes little, showing that the seemingly large load-factor effect in the basic regression is

not somehow a result unobserved carrier characteristics. In addition, the impact of FUELPR

on fuel usage is less strong in the presence of fixed effects. However, the central qualitative

conclusions of the basic model are preserved, showing that within-carrier variation of the

covariates across time is strong enough to allow the previous connections between fuel usage

and airline fleet and operational characteristics to be manifested.

The fixed-effects coefficients themselves provide a picture of airline fuel efficiency, control-

ling for carrier characteristics. Thus, unlike the fuel usage per ATM values in Table 1, the

coefficients adjust for differences in fleet and operating characteristics. Recalling that Ameri-

can is the omitted carrier, the results in column 3 show that, among the large carriers, United

and Continental match(ed) American’s fuel efficiency, holding airline characteristics constant

(their dummy coefficients are not significantly different from zero). In other words, if United’s

values of the other covariates were to match American’s, the fuel usage of the two airlines

would be close. On the other hand, Delta’s coefficient shows that its fuel use would be 7%

below American’s, other things equal, with US Airways and Southwest showing similar 9% dif-

ferences and Northwest having an even-larger gap of 21%.18 These differences are noteworthy,

and it difficult to speculate about their sources.19

When PCT DELAY is added to the regression, the number of observations drops as before,

with the representation of four carriers (AirTran, Allegiant, Spirit, and Virgin) greatly reduced

or eliminated. As can be seen in the fourth column of Table 2, the changes in the coefficients of

AVG SEATS and AVG STAGELN relative to the basic model are amplified, and the fuel-price

effect drops further. In addition, the standard error of the PCT DELAY coefficient grows,

making the coefficient insignificant even at the 10% level. While the estimated fixed effects for

most of the larger carriers are fairly stable under this change, other fixed effects (Southwest’s for

example) grow dramatically, suggesting substantial (and perhaps implausible) fuel-efficiency

advantages over American. In addition, the divergence of the ln(ATM) coefficient from unity

grows. Given these changes, the regression in column 4 should perhaps be viewed with caution,

even though the coefficients of most of the main covariates remain quite stable.
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5. Conclusion

This paper has estimated a simple model of airline fuel usage, connecting usage to a small

set of crucial variables. The results are important because they allow an easy appraisal of how

changes in an airline’s fleet and operating characteristics, and in the fuel price it faces, affect

fuel usage and level of carbon emissions, which is proportional to this usage. One message

of the results, which reinforces the arguments of Morrell (2009), is that operation of larger

aircraft is beneficial, reducing fuel usage and carbon emissions, holding an airline’s overall

capacity fixed. While an innate network characteristic such as stage length, also shown to

be beneficial, cannot be altered easily, the paper identifies another operational change that

lowers fuel usage and emissions and can be achieved by public policy: a reduction in flight

delays. The paper thus suggests that policies for reducing airport congestion (such as peak-

hour congestion pricing) have benefits that go beyond the recognized savings in passenger time

costs. For example, the environmental benefits from a hypothetical 3-point reduction in the

average delay percentage amount to $48 million per year, a value that can be added to the other

passenger and airline gains from fewer delays. Airport congestion pricing or other policies for

improving the functioning of the air transport system can thus produce environmental benefits.

By quantifying the impact of fuel prices on airline fuel usage, the paper also allows quan-

tification of the emissions reduction from imposing an optimal emissions charge, which raises

the effective fuel price. This reduction, equal to 2.2% in the basic regression (for an annual

environmental gain of $117 million), represents only the short-run effect from fuel-conserving

operational practices, holding aircraft fuel efficiency and size fixed. The long run adjustments

to such a charge would include a faster shift toward fuel-efficient aircraft as well as a likely

increase in aircraft sizes. Thus, while the 2.2% short-run effect is itself appreciable in size, the

long-run impact of emissions charges will be higher.
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Appendix

Using (4), the first-order condition for choice of e reduces to

−sm(d)rFe = Ce. (a1)

This condition says that the fuel-cost savings per seat mile from an increase in e (−rFe) times

seat miles per aircraft (sm(d)) equals the e-induced increase in the aircraft purchase price.

The first-order condition for choice of s reduces to

−sm(d)rFs = Cs − C/s. (a2)

The left-hand side of (3) is the fuel-cost savings per seat mile from an increase in s (−rFs)

times seat miles per aircraft. This gain is set equal to the cost of a higher s, which equals

increase in the cost per aircraft (Cs) minus the cost saving from needing fewer aircraft (−C/s),

a consequence of their larger size.20

The z factor in revenue A`zp captures forces that reduce revenue at a high load factor, such

as costs from overbooking (z is function of `, with z′(`) < 0 when ` is high). The first-order

conditions for ` and v are

p(z + `z′) = rF` (a3)

−rFv = K ′. (a4)

The first condition says that the revenue gain from a higher ` equals the cost in terms of

higher fuel usage (rF`). The second condition says that the reduction in fuel cost from higher

conservation effort (−rFv) equals the cost of the extra effort (K ′). The second-order conditions

for the maximization problem are assumed to hold.

Under the assumptions on H and C stated in the text, total differentiation of (a1)–(a4)

yields the functional dependencies stated in the text (e(r, t, d), s(r, t, d), `(p), v(r)) and the

signs of the corresponding derivatives.
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Table 1: Variable Means

Airline Data yrs FUEL USE/ATM∗ ATM† AVG SEATS AVG STAGELN AVG LOADFC AVG VINTG Delay yrs PCT DELAY

AirTran 15 0.0804 3174.52 131.00 643.41 0.63 1993.71 9 0.22
Alaska 21 0.0582 5906.62 141.93 930.44 0.59 1996.11 21 0.22
Allegiant 12 0.0719 1370.68 151.73 944.11 0.74 1990.26 0 –
America West 12 0.0597 6703.35 140.27 904.45 0.59 1990.50 11 0.25
American 21 0.0542 51321.24 163.42 1229.66 0.56 1993.17 21 0.23
Continental 17 0.0652 21186.16 146.44 1261.44 0.67 1993.83 17 0.22
Delta 21 0.0562 46102.08 171.96 1040.51 0.59 1992.25 21 0.21
Frontier 21 0.0461 3115.99 133.54 854.72 0.45 1996.82 10 0.22
Hawaiian 21 0.0520 3002.51 203.58 587.08 0.57 1993.65 12 0.07
JetBlue 16 0.0577 6851.78 145.04 1123.76 0.70 2004.05 13 0.24
Northwest 15 0.0607 29289.38 159.18 944.26 0.63 1983.96 15 0.23
Southwest 21 0.0615 21387.02 136.36 576.96 0.57 1996.01 21 0.19
Spirit 21 0.0767 1476.68 148.13 917.29 0.76 1992.61 1 0.31
United 21 0.0532 49436.27 179.07 1353.55 0.60 1993.92 21 0.23
US Airways 20 0.0593 18010.70 142.64 796.97 0.57 1993.67 20 0.21
Virgin 9 0.0499 2322.08 141.32 1461.83 0.60 2007.91 4 0.18

∗In gallons per ton mile
†In millions of ton miles
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Table 2: Regression Results

(1) (2) (3) (4)

VARIABLES ln(FUEL USE) ln(FUEL USE) ln(FUEL USE) ln(FUEL USE)

ln(ATM) 1.006** 1.019** 0.988** 0.927**
(185.9) (107.8) (54.76) (36.90)

AVG SEATS -0.00250** -0.00201** -0.00124** -0.000622*
(-5.640) (-3.056) (-2.690) (-2.195)

AVG STAGELN -0.000163** -0.000205** -0.000291** -0.000393**
(-6.266) (-5.195) (-5.665) (-5.848)

AVG LOADFC 1.606** 1.637** 1.563** 1.528**
(16.22) (8.389) (12.56) (10.30)

AVG VINTG -0.0103** -0.00752** -0.0113** -0.00874**
(-8.868) (-4.278) (-8.273) (-4.526)

FUELPR -0.0483** -0.0562** -0.0319** -0.0202*
(-5.644) (-5.542) (-3.767) (-2.302)

PCTDELAY 0.296† 0.119
(1.808) (1.151)

AirTran 0.0370 -0.206*
(0.538) (-2.459)

Alaska -0.0945† -0.251**
(-1.889) (-4.022)

Allegiant -0.161*
(-2.118)

America West -0.142** -0.274**
(-3.584) (-5.255)

Continental -0.0224 -0.0574†

(-0.877) (-1.744)

Delta -0.0705** -0.0968**
(-4.782) (-5.560)

Frontier -0.184* -0.397**
(-2.362) (-4.420)

Hawaiian -0.258** -0.532**
(-3.408) (-5.540)

JetBlue -0.106* -0.221**
(-2.034) (-3.813)

(continued)
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Table 2: Continued

(1) (2) (3) (4)

VARIABLES ln FUEL USE ln FUEL USE ln FUEL USE ln FUEL USE

Northwest -0.209** -0.238**
(-10.79) (-9.212)

Southwest -0.0953* -0.205**
(-2.186) (-3.856)

Spirit -0.148† -0.443**
(-1.904) (-5.028)

United -0.0173 -0.0177
(-1.004) (-0.929)

US Airways -0.0894** -0.184**
(-2.758) (-4.582)

Virgin 0.0584 -0.118
(0.871) (-1.459)

Constant 17.30** 11.37** 19.61** 15.52**
(7.450) (3.184) (7.706) (4.149)

Observations 284 217 284 217
R

2 0.995 0.993 0.997 0.997

Robust t-statistics in parentheses

**p<0.01, *p<0.05, †p< 0.10
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Table 3: Quantitative Impacts

Change in variable Impact on fuel usage and emissions

Available ton miles rises by 1% 1% increase

Seats per aircraft rises by 10 2% decrease

Stage length rises by 100 miles 2% decrease

Load factor rises by 5 percentage points 8.2% increase

Aircraft vintage becomes younger by 3 years 2.2% decrease

Delay fraction falls by 3 percentage points 0.9% decrease

Fuel price rises by $0.25/gallon 1.3% decrease

Optimal emissions charge ($0.39/gallon) imposed 2.2% decrease
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Footnotes

∗We thank Achim Czerny, Alex Luttman, Kevin Roth, Megan Ryerson, Ethan Singer, and Bo
Zou for comments, although any errors or shortcomings in the paper are our responsibility.

1See Czerny (2015) for an extension of their model.

2In addition, the goal of Zou et al. (2014) is to estimate a stochastic-frontier model with the
goal of appraising the airline technical efficiency. The present regressions, by contrast, are
purely descriptive.

3For passenger aircraft, combined passenger and freight capacity is roughly proportional to
seats, making this distinction inessential.

4For other papers with information on the connection between general operating costs and
aircraft size, stage length and other variables, see Lee et al. (2001), Kwan and Rutherford
(2015), Ryerson and Hansen (2013), and Swan and Adler (2006).

5While, in years past, congestion often kept planes in the air longer as they circled waiting to
land, the use of “ground holds” at origin airports appears to have reduced this source of fuel
usage. Delays can also result from mechanical problems and late-arriving crew members,
sources that have no fuel-usage impact.

6Let T denote operating hours per aircraft per year. Also, let the time per flight as a function
of stage length be written as ρ + τd, where ρ captures the fixed ground time. Then, f(ρ +
τd) = T must hold, so that f = T/(ρ + τd). As a result, annual miles per aircraft equals
fd = Td/(ρ + τd) ≡ m(d), and differentiation establishes m′(d) > 0.

7In Brueckner and Zhang’s (2010) related analysis of airline profit maximization, the carrier’s
total traffic (analogous to A) was determined endogenously, not taken as given.

8These conditions would be satisfied, for example, if C1(e, t) takes the form κe + νt − λet,
with λ small enough that C1

e = κ−λt > 0 and C1
t = ν − λe > 0 both hold over the relevant

range of e and t values (note that C1
et = −λ < 0).

9This year effect can be seen in diagrams presented by Lee et al. (2004).

10See Givoni and Rietveld (2009) and Pai (2009) for empirical studies of the determinants of
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aircraft size.

11The link is www.transtats.bts.gov/DL SelectFields.asp?Table ID=294&DB Short

Name=Air%20Carrier%20Financial.

12The links are www.transtats.bts.gov/DL SelectFields.asp?Table ID=254&DB Short

Name=Air%20Carrier%20Summary and www.transtats.bts.gov/DL SelectFields.asp?

Table ID=314.

13The links are www.transtats.bts.gov/DL SelectFields.asp?Table ID=236 and
www.eia.gov/dnav/pet/pet pri spt s1 d.htm.

14While clustering of the coefficient standard errors by carrier might seem appropriate given
the possibility of within-carrier error correlation over time, the fact that four of the big
carriers surviving until the end of period had changed their natures during it via mergers
calls into question a simple correlation scenario (the pre- and post-merger carriers were
presumably different entities). Even despite this consideration, the number of carrier-based
clusters would be too small for proper implemenation of the method.

15When regular, as opposed to robust, standard errors are used, the significance level rises to
1%.

16The link is www.epa.gov/sites/production/files/2015-07/documents/emission-

factors 2014.pdf.

17See Interagency Working Group on Social Cost of Carbon, United States Government (2015)
(https://www.whitehouse.gov/sites/default/files/omb/inforeg/scc-tsd-final-
july-2015.pdf).

18As is well known, dummy-variable coefficients closely approximate percentage changes in a
semilog regression when they are reasonably close to zero, while modestly overstating these
changes when they diverge from zero (as in the case of the Southwest coefficient). This point
should be borne in mind when interpreting the results.

19To see the effect of adjustment for airline characteristics, note that Allegiant’s high fuel usage
per ATM in Table 1 is replaced by a negative fixed effect when controlling for the carrier’s
characteristics. Other similar differences can be seen by comparing the two tables.

20This condition ignores a possible constraint on s related to stage length. In particular,

24



since very long stage lengths are not feasible with small aircraft, a constraint of the form
s ≥ q(d) should be imposed, where the increasing function q(·) gives the minimum aircraft
size required for a stage length d. The first-order condition (a1) assumes that this constraint
is not binding, but if the constraint were binding, s would be replaced by q(d).
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