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Abstract 
 
Using a dynamic framework with strategic interactions, we study the management of a non-
renewable natural resource when property rights are generally weak. Under generally weak 
property rights both the resource stock and the revenues from exploiting it are imperfectly 
protected, due to trespassing and theft respectively. Trespassing and theft affect the legitimate 
owner’s extraction decision: extracting the resource today protects the stock against trespassing 
but exposes the revenues to theft. Moreover, in an evolving institutional setting, the anticipation 
of a change in the strength of property rights further distorts the extraction decision: e.g., if the 
owner anticipates stronger property rights in the future, extraction is delayed. Our results 
indicate that the depletion of the resource is decreasing in the intensity of theft. In addition, 
when the owner and the trespassers are affected by theft, the depletion of the resource is below 
(above) the social optimal level if the intensity of theft is high (low). 
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1 Introduction

Property rights ought to be adequately defined and secured for economic interactions to lead to ef-
ficient outcomes. However, in the imperfect world we live in, the problem of weak property rights
is not an uncommon one. Such is the case of the management of non-renewable resources, where
property rights have been for long central in the discussion of how to secure the optimal use of these
resources. In this context, a weak protection of property rights is often associated with a problem of
common access to the stock of the resource. That is, it is generally assumed that when property rights
are weak, agents cannot be effectively excluded from accessing the pool of the resource, leading to it
being over-exploited (tragedy of the commons).

Besides the problem of common access to the pool of the resource, the weakness of the property
rights system can also have other manifestations. Hotte, McFerrin, and Wills (2013) rightly point out
that the failure to fully appropriate the benefits from exploiting a resource is another form of weak
property rights. When property rights are weak, the management of a non-renewable resource may
not only be affected by insecure property rights over the stock of the resource, but also by imperfect
property rights over the output generated from exploiting the resource.

Yergin’s (2008) account of the first major oil discovery in the U.S. provides a good illustration of
an environment with generally weak property rights. January 10, 1901 marked the beginning of the
Texas oil boom at Spindletop hill in the south of the town of Beaumont. That day, the first successful
drilling in the area caused a dramatically high oil gusher, and it did not take long for the news to
spread across the country. In a short period of time a mass of workers flocked into Beaumont hoping
to seize a share of its underground riches. As highlighted by Yergin (2008) “[w]ithin months, there
were 214 wells jammed in on the hill, owned by at least a hundred different companies” (p. 70).
This seemingly indiscriminate access to oil in the ground, would soon have its consequences, “by the
middle of 1902 . . . the underground pressure gave out at Spindletop because of overproduction,
and specially because of all those derricks on postage-stamp sized plots, and production on the Big
Hill plummeted”. While the oil was being rapaciously depleted, the “fortunes” made from the oil
extraction were far from protected. Beaumont was not exactly a safe haven “there were two or three
murders a night . . . and there were endless frauds to make sure that money changed hands quickly”
(p. 69).

A similar situation occurred half a century before the Texas oil boom, when news of the gold dis-
coveries in California were fast to spread across America. At the outset of the California gold rush
in 1848, California was yet to be admitted to the Union, meaning that rush effectively took place in
a “stateless” environment. In fact, a large fraction of first mineral discoveries in America occurred in
a situation of statelessness. According to Couttenier, Grosjean, and Sangnier (2014) 35% of the coun-
ties where minerals were discovered between 1825 and WWII did not officially belong to a state or a
colony at the time of the first discovery. The statelessness made it difficult to solve the coordination
issue inherent to the public protection of property rights (Anderson & Libecap, 2014). The absence of
a state, and its coordinating role, hindered the emergence of formal institutions of property rights pro-
tection. So, “not only were there no institutions to enforce the laws, there were no laws” (McDowell,
2002, p. 2). It has been argued that, during the rush, informal rules emerged to take the place of
formal institutions regulating the access to private property, and that private efforts (partially) com-
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pensated for the absence of publicly provided enforcement of property rights (e.g., Umbeck, 1977;
McDowell, 2002). However, it is unclear whether the informal rules and the private efforts actually
served to deter trespassing and other property and violent crimes. Clay and Wright (2005) contend
that this set of informal rules and enforcement bodies rather “gave equal attention to the rights of
claim-jumpers [i.e., trespassers] as to claim-holders [i.e., owners], a balance that in practice generated
chronic insecurity” (p. 155). Clay and Wright (2005) go further and propose that despite the existence
of these informal institutions and enforcement bodies, gold mining during the rush remained closer
to an open access regime. Besides claim-jumping (trespassing), “robberies and assaults also seemed
to be on the rise” (Rohrbough, 1997, p. 218), posing a direct threat on the miner’s output. Moreover,
the absence of a governing body coordinating law enforcement, implied that individual efforts had
to be diverted into the administration of protection and justice (Owens, 2002).

A present-day counterpart of the American gold rush of the mid 1800s is the case of illegal/informal
mining in the developing world (Banchirigah, 2008; Hilson, 2002; Hilson & Potter, 2003). This activ-
ity, which is by no means marginal, is a modern example of the problem of generally weak property
rights. Illegal miners are trespassers of the legitimate owner’s (the government’s) property rights over
the stock of the resource. Next to this, activities related to the transformation of the illegal mineral
output into cash typically occur outside the law. In practice, this means that illegal miners are espe-
cially unprotected against property and violent crime. Illegal miners cannot turn to the government
for protection, for instance, to enforce contracts without threatening their own economic activity.

These pieces of anecdotal evidence share as common theme: the exploitation of a non-renewable
natural resource in an environment of weak property rights, where both the stock in the ground and
the output after extraction are at risk. With this as a background, this paper analyzes the dynamic
management of a non-renewable resource when property rights are generally weak. In particular, we
study whether under generally weak property rights (i.e., in the presence of theft and trespassing), the
pace of depletion of the resource is too high or too low relative to the social optimum. Furthermore,
we analyze how a dynamically institutional framework, that is an evolving protection of property
rights, has an effect on the resource’s extraction path.

This paper fits into a long tradition of resource economics literature dealing with resource man-
agement under insecure property rights. This literature has largely focused on the “common access
to the stock” side of the weak property rights story (e.g., Copeland & Taylor, 2009; Hardin, 1968;
Van Long, 2011; Ostrom, 2008). The typical result is that the failure to internalize the effect own use of
the resource on the rest of the users, leads to excessive use of the resource from the social perspective.
In this sense, analyzing the effects of the interaction between two embodiments of a weak property
rights system (i.e., weakly protected stock and flow) in a resource management problem is relevant
in itself. From a general perspective, this type of analysis, combining a set of imperfections is an ap-
plication of the second best theory (Lipsey & Lancaster, 1956). Essentially by assuming that, on top
of the common access to the stock problem, the revenues from extraction are imperfectly protected, a
new source of inefficiency is added to an already imperfect world. Our results indicate that a world
with more imperfections may be preferred from the social perspective: agents may react in opposite
ways to different imperfections and thus the aggregate effect is less damaging than that of the sep-
arate imperfections. Following the idea that the problem of weak property rights Ascan go beyond
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the “common pool” problem, Hotte et al. (2013) study a static production problem in which both the
input used to produce (“the common” in the resource literature) and the output are imperfectly pro-
tected. As an application of the second best theory, their results indicate that in the presence of both
sources of imperfection, production can be too high or too low from the social perspective.

Our paper adds to the study of the inter-play between two manifestations of a generally weak
property rights, by exploring its effects on the dynamic management of a resource. Specifically, we
assume that access to the resource stock is not fully secured, and that the benefits from extracting
it are imperfectly protected. Our aim is to understand the effect that the interaction between these
two types of property rights imperfections, has on the rate of depletion of a non-renewable resource.
More specifically, we study how the presence of these two imperfections and the dynamic evolution
of the institutional quality, i.e., changes in the intensity of the imperfections, have an impact on the
inter-temporal trade-offs governing the strategic interactions between the legitimate and illegitimate
users of a non-renewable resource.

To the best of our knowledge, this is the first contribution studying the interaction between these
two types of imperfections in a dynamic setup. Therefore, our main contribution is to explore the
effects of an environment of generally weak property rights on the dynamic extraction path of a non-
renewable resource. Furthermore, our analysis is based on a rich, yet tractable, dynamic framework
in which institutional quality is allowed to evolve over time. Following Hotte et al. (2013), we refer to
the illegitimate extraction of the resource as trespassing, and to the appropriation of someone else’s
output as theft. The dynamic nature of the resource management problem creates a clear distinction
between these two. Trespassing affects the stock that remains in the ground, while theft reduces
the value of the extracted flow. Therefore, from the legitimate owner’s perspective faster depletion
serves to protect the resource against trespassing, but increases its exposure to theft. On top of the
clear distinction between the two imperfections, adopting a dynamic perspective allows us to explore
the effect an evolving protection of property rights. In particular, when agents anticipate changes in
the strength of property rights, the inter-temporal trade-offs governing their extraction decisions are
further distorted.

The depletion of a non-renewable resource is in essence a consumption-saving problem, in which
the benefits and costs from extracting today are weighed against the benefits of leaving the resource in
the ground for future use. Adopting a dynamic perspective generates new insights on the interaction
between the two types of inefficiencies. For instance, theft not only reduces the value of what is
being currently extracted, but it also reduces the value of what remains in the ground, because it
is eventually going to be extracted and will potentially be exposed to theft as well. So, from the
inter-temporal point of view the effect of theft on the extraction path actually depends on whether
the intensity of theft changes over time. If theft is expected to remain constantly intense over time,
the legitimate owner has no motive to distort her extraction path. However, if theft is expected to
decrease in intensity, say because thieves are expected to be captured, the owner would adopt a more
conservative position towards the extraction of the resource. Therefore, not only the current property
rights strength but also its expected evolution determine the current level of depletion. Although
completely absent in a static analysis, this type of inter-temporal considerations remain central to
understand the dynamic channels affecting the management of a non-renewable resource, specially
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when the institutional framework is expected to change over time.
This document is organized in four sections including this introduction. In section 2 the theoretical

model is set up and solved. In section 3 the main results are analyzed. Section 4 discusses some of
the assumptions of the framework developed here. Finally, section 5 is devoted to the concluding
remarks.

2 Model

2.1 Setup

The model presented here examines how the use of a non-renewable resource is affected by insecure
property rights, where the imperfect protection is embodied by two types of distortions. First, the
stock of the resource is imperfectly protected. That is, the rightful owner/user of the resource does
not have exclusive access to the stock of the resource and other agents can trespass his property
and exploit the remaining stock. Second, the proceeds from extraction are unprotected, and so other
agents can appropriate a fraction of the owner’s revenues from extraction.

To illustrate these two types of imperfections we build a continuous time infinite horizon model
with three agents: owner (i), trespasser (j), and thief (h). The owner is endowed with a stock S0 >

0 of a non-renewable resource; the trespasser (while active) also has access to this stock and can
extract from it; and, the thief can put effort into appropriating a fraction of the owner’s revenues from
extraction. In the following we describe the exact interactions entailed by each type of distortion.

Trespassing Initially both the owner and the trespasser have access to the stock of the resource, and
they simultaneously decide how much of the resource to extract at each point in time. Instantaneous

extraction is denoted by Ri and Rj respectively; by extracting Ri units the owner gets θ (θ − 1)−1 R
1− 1

θ
i

while by extracting Rj the trespasser gets (1−Ω) θ (θ − 1)−1 R
1− 1

θ
j , with θ ∈ (1, 2).1 Ω ∈ {ω, 1} re-

flects the level of institutional strength against trespassing. If Ω = 1, the trespasser has no incentives
to deplete the resource and the resource is fully protected against trespassing. If Ω = ω < 1, the
trespasser actively participates in the depletion of the resource. Extraction depletes the resource over
time: Ṡ (t) = −Ri (t)− Rj (t); and cumulative extraction is constrained by the remaining stock of the
resource

∫ ∞
t
(

Ri (v) + Rj (v)
)

dv ≤ S (t). The assumption here is that the owner and the trespasser
individually face an extraction technology constraint. That is, the interaction between the owner and
the trespasser is purely of inter-temporal nature (it goes through the depletion of the stock) but, tres-
passing does not pose an intra-temporal externality on the owner (i.e., trespassing does not drive
down the owner’s marginal benefit from extraction). Instead of thinking of trespassing as a problem
of a “common stock”, one could in principle approach it as problem of access to a “common market”.
In that case, trespassing is equivalent to higher competition, which reduces the owner’s marginal
return to extraction. Then, the externality imposed by trespassing is fundamentally intra-temporal.
Given that our main interest is to focus on the inter-temporal trade-offs, we abstract from the “com-
mon market” interpretation in order to preserve the transparency of the dynamic mechanisms.

1The upper bound for θ guarantees the existence of an equilibrium in linear strategies in the trespassing game.
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Theft Upon extraction, the owner gets a gross revenue flow of θ (θ − 1)−1 R
1− 1

θ
i .2 However, a frac-

tion τ of this flow can be appropriated by the thief. This fraction is endogenously determined by a
ratio contest success function:

τ (ei, eh) =
(1−Λ) eh

Λei + (1−Λ) eh

where eh is the effort that the thief puts into appropriation and ei is the protecting effort by owner,
eh and ei have the same exogenous unit cost of w, and τ (0, 0) = 0. The relative efficiency of the
protective effort depends on the theft-specific dimension of institutional quality Λ ∈ {λ, 1}. This is a
measure of the de facto protection against theft, with λ = 1 being perfect protection.

Institutional quality The institutional space in this economy is two-dimensional: Ω determines
how strong is the institutional environment against trespassing, while Λ determines the institutional
strength against theft. Along these two dimensions we can define four distinct regimes of general
institutional quality: i. generally weak institutions, Ω = ω; Λ = λ (i.e., a regime with theft and
trespassing); ii. weak protection of income, Ω = 1; Λ = λ (i.e., a regime with only theft); iii. weak
protection of wealth, Ω = 1; Λ = λ (i.e., a regime with only trespassing); iv. strong institutions
Ω = 1; Λ = 1 (i.e., a regime without theft and trespassing).

We assume that the initial state is one of generally weak property rights, and from there institu-
tions improve at uncertain times. An institutional improvement in this context means Ω or Λ becom-
ing equal to one. Moreover Ω = 1 and Λ = 1 are absorptive states, i.e., once institutions become
strong in one dimension they remain strong.3 The speed and direction of the institutional improve-
ment is determined by two types of parameters: i) π > 0 determines the overall speed of change
that is, how likely are institutions to improve; ii) the probabilities p ∈ [0, 1] and q ∈ [0, 1], determine
whether this improvement occurs along the trespassing dimension or the theft dimension respec-
tively. More specifically, the hazard of Ω shifting from ω to 1 is πp, while the hazard of Λ shifting
from λ to 1 is πq. π is an economy-wide measure of how fast institutions are likely to improve, while
p and q are crime-specific and can be related to the specific development path of institutions. For
instance, the legal system may evolve in such a way that it initially has a bias towards the protection
of wealth (property), and eventually shifts its attention to the protection of income.

We assume that all the co-movement in the institutional improvement runs through π (i.e., p and
q are not related to each other). This way of connecting the likelihood of a regime shift when multiple
shifts are possible follows from Sakamoto (2014). Note that regime shifts in this setup are always
beneficial for the legitimate owner, as a regime shift translates into the once and for all elimination of
a type of crime.

Objective and Equilibrium The three agents seek to maximize the Net Present Value of revenues,
using the exogenous rate r as a discount. We look at Markovian strategies, and rely on the Feedback

2The implicit assumption here is that extracted output cannot be stored. In case output can be stored, nothing changes if
stored output is as imperfectly protected as the stock in the ground. Otherwise, the possibility to store would lead the owner
to speed-up extraction with the purpose of transforming the insecure stock in the ground into a secure stock above the ground.

3The assumption that institutions can only improve, is chosen to facilitate the exposition, and it is in line with the motiva-
tional anecdotes in section 1. However, one could think of empirical settings in which institutions were actually deteriorating
over time, for instance after the collapse of the Soviet Union, or in which institutions follow more chaotic paths. As it is
discussed in section 4, the modeling tools developed here serve to analyze these alternative institutional dynamics.
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Nash Equilibrium as equilibrium concept. Moreover, in the trespassing game we focus on linear
strategies. That is, the extraction strategy of each agent is set to be a linear function of the remaining
stock.

2.2 Solution

As mentioned above, there are four distinct regimes that can be analyzed depending on the strength
of each of the institutional dimensions. Initially institutions are generally weak and both types of
criminals are active, and eventually institutions will become strong and both types of crime will
vanish (provided that p and q are strictly positive). We do not assume any specific sequence for the
path of institutional improvement, meaning that institutions may first improve in any of the two
dimensions. As a benchmark we first present the case with strong institutions, then we analyze the
“weak protection of income” regime (i.e., when only the thief is active), then the “weak protection
of wealth” regime (i.e., when only the trespasser is active), and finally the regime with generally
weak institutions (i.e., when there is trespassing and theft). With institutions improving over time the
continuation value in the more insecure regimes is the expected net present value of the more secure
regimes; therefore, we solve the problem in a backward-induction-style moving from most to least
secure.

2.2.1 Strong institutions — No trespassing and no theft

The problem in the perfect protection regime is a standard one. Once both types of crime have been
eliminated, no further regime shifts can occur. We use the solution of this institutional environment
as the social benchmark. This benchmark entails assuming a social planner that is not constrained by
the institutional quality and is free to distribute the rents between agents. Alternatively, one could
think of an intermediate social benchmark in which the planner is constrained by the institutional
environment (i.e., the different regimes and the hazards of a shift) and the weights of the individuals
in the social welfare function, and that is only able to decide the level of extraction by the owner and
the trespasser. Section 4.1.2 presents this alternative benchmark.

When institutions are strong, the Hamilton-Jacobi-Bellman (HJB) equation of the owner’s problem
is:

rVi (S (t)) = max
Ri

{
Ri (t)

1− 1
θ

1− 1
θ

− ∂Vi (S (t))
∂S (t)

Ri (t)

}
.

Using standard techniques to solve, depletion (defined as R/S) is

Ri (t)
S (t)

= θr,

and the value of the remaining stock is

Vi (S (t)) =
S (t)1− 1

θ(
1− 1

θ

)
(θr)

1
θ

. (2.1)
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2.2.2 Weak protection of income — Only theft (th)

Under this regime, the owner’s problem exhibits two main differences with respect to the perfect
protection benchmark: first, the net flow of revenues needs to be adjusted by the total cost of theft,
i.e., theft itself and protecting effort; second, it needs to account for the possibility of a regime shift.
As mentioned above, the thief faces the risk of her activity becoming unprofitable; this means that the
owner faces the “risk” of a regime shift from a theft only environment to one with strong institutions.

To address the first difference we assume that at every point in time the owner and the thief, after
observing the flow of revenues that the former gets from extraction, engage in a contest over these
revenues. Specifically, the owner keeps a fraction 1− τ of the flow of revenues, while τ goes to the
thief. Remember that τ is endogenously determined by a ratio contest success function τ (ei, eh) =

(1−Λ) eh (Λei + (1−Λ) eh)
−1. That is the fraction of revenues going to the owner and the thief

depend on the contesting efforts (ei and eh) which are chosen simultaneously, after observing the flow
of revenues. As for the second difference, one can introduce the effect of a regime shift taking into
account that the effective hazard of a shift is constant and equal to πq, and that the continuation value
for the owner is the stock’s value under prefect protection and for the thief is 0. The HJB equations
for the owner and the thief respectively are:4

rVth
i = max

{Ri , ei}

(1− τ (ei eh))
R

1− 1
θ

i

1− 1
θ

− wei −
∂Vth

i
∂S

Ri + πq(Vi −Vth
i )

 ,

rVth
h = max

{eh}

{
τ (ei, eh)

Ri
1− 1

θ

1− 1
θ

− weh −
∂Vth

h
∂S

Ri − πqVth
h

}
.

Note that the superindex “th” in the value function stands for theft only, and the absence of it indicates
perfect protection. The FOCs with respect to the contesting efforts (ei and eh) reveal that this is in
essence a static problem (with dynamic consequences). If Λ = 1, there is no contest and the owner
retains all the revenues from extraction. If Λ = λ, the optimal appropriation and protection efforts
are determined by the following first-order conditions for the owner and the thief respectively:

(1− λ) λeh

(λei + (1− λ) eh)
2

R
1− 1

θ
i

1− 1
θ

− w = 0,

(1− λ) λei

(λei + (1− λ) eh)
2

R
1− 1

θ
i

1− 1
θ

− w = 0.

In equilibrium

eth
i (t) = eth

h (t) = (1− λ) λ
Ri (t)

1− 1
θ(

1− 1
θ

)
w

.

Therefore 1− τth = λ. With Λ = λ the owner and the thief effectively engage in a contest over the
revenues, and in equilibrium the owner retains a fraction λ of the revenues. The owner’s revenues

4The time-dependence is omitted to simplify the notation.
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net of theft and the cost of protection are given by

(
1− τth

) Ri (t)
1− 1

θ

1− 1
θ

− w eth
i (t) = λ

Ri (t)
1− 1

θ

1− 1
θ

− weth
i (t) = λ2 Ri (t)

1− 1
θ

1− 1
θ

.

The owner’s extraction problem then leads to the following HJB equation:

rVth
i = max

Ri

λ2 R
1− 1

θ
i

1− 1
θ

−
∂Vth

i
∂S

Ri + πq
(

Vi −Vth
i

) .

The associated first-order condition (FOC) is

λ2R
− 1

θ
i =

∂Vth
i

∂S
,

which back into the HJB equation leads to

(r + πq)Vth
i =

λ2θ

θ − 1

(
∂Vth

i
∂S

)1−θ

+ πqVi.

Motivated by (2.1), we use

Vth
i (S (t)) =

λ2S (t)1− 1
θ

1− 1
θ

(
kth

i

)− 1
θ (2.2)

as a guess for the value function Vth
i (S (t)), while Vi (S (t)) directly comes from (2.1). Using this

guess and the FOC in the HJB equation, it is obtained that the solution for the kth
i constant, which is

depletion rate in equilibrium (i.e., R/S), is implicitly given by

zth
i

(
kth

i

)
≡ kth

i +
θπq

λ2 (θr)
1
θ

(
kth

i

) 1
θ
= θ (r + πq) , (2.3)

with zth (.) being increasing and concave in kth. From this expression it becomes evident that (as
expected) depletion is less rapacious in a more theft-prone environment: i.e., kth

i is increasing in λ.
This follows directly from zth

i being strictly increasing in kth
i and decreasing in λ. Intuitively, the

lower λ the more harmful theft is, and thus the more is there to win from preserving the resource
until after theft is eliminated (λ = 1). Note that with λ = 1, the depletion rate corresponds to the
social optimum level θr.

Proposition 1. Depletion in the theft only regime (Λ = λ < 1) is below the social optimum: kth
i ≤ θr.

Proof: See Appendix A.1.

Proposition 2. The more likely is protection against theft to improve, the higher the owner’s incentives to
preserve the resource: kth

i is decreasing in πq.

Proof: See Appendix A.1.
To interpret these two propositions one should bear in mind that a regime shift is favorable from

the owner’s viewpoint (i.e., shifting to a world without theft is good news for the owner); and that, the
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problem of the owner is a typical consumption-savings trade-off. Saving the resource (not extracting
today) comes at the cost of not consuming today but, has the potential advantage of leaving the
resource to be extracted in a safer environment (theft will no longer be a threat at some point in the
future). The intuition behind proposition 1 is that the owner slows down extraction while theft is a
threat because it reduces marginal benefit of extraction but, this reduction is expected to have a finite
end date (the thief is expected to be captured in finite time), thus the owner preserves the resource
today with the objective of extracting a larger fraction of it in a potentially safer environment. As
to proposition 2, the higher πq the less the owner expects to wait for the protection against theft to
improve, and therefore the more willing the owner is to preserve the resource.

2.2.3 Weak protection of wealth — Only trespassing (TR)

In the presence of the trespasser two elements need to be accounted for: first, total extraction depends
on how much both the owner and the trespasser extract; and second, as with the thief, the trespasser
faces the risk her activity becoming unprofitable (i.e., Ω becoming 1).

The HJB equation of the owner’s problem is:

rVTR
i = max

Ri

R
1− 1

θ
i

1− 1
θ

−
∂VTR

i
∂S

(
Ri + Rj

)
+ πp

(
Vi −VTR

i

) ,

where πp is the effective hazard that Ω becomes 1, and Vi (t) is the continuation value for the owner
in case this occurs (see 2.1). The superscript “TR” stands for TRespassing only.

The trespasser’s HJB equation, while Ω = ω is:

rVTR
j = max

Rj

(1−ω)
R

1− 1
θ

j

1− 1
θ

−
∂VTR

j

∂S
(

Ri + Rj
)
− πpVTR

j

 .

Note that the continuation value for the trespasser is 0 (i.e., the NPV of a shift to Ω = 1 is 0). Both the
owner and the trespasser choose their extraction simultaneously in a non-cooperative way, and base
their extraction decisions on the remaining stock in the ground. The FOCs with respect to extraction
for the owner and the trespasser respectively are

R
− 1

θ
i =

∂VTR
i

∂S
; (1−ω) R

− 1
θ

j =
∂VTR

j

∂S
.

Plugging this back in the owner’s HJB equation,

(r + πp)VTR
i =

1
θ − 1

(
∂VTR

i
∂S

)1−θ

− (1−ω)θ ∂VTR
i

∂S

(
∂VTR

j

∂S

)−θ

+ πpVi,

and doing the same for the trespasser’s HJB equation one gets

(r + πp)VTR
j =

(1−ω)θ

θ − 1

(
∂VTR

j

∂S

)1−θ

−
∂VTR

j

∂S

(
∂VTR

i
∂S

)−θ

.
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Now, as in the previous case, we guess value functions for both agents of the form

VTR
i (S (t)) =

S (t)1−1/θ

1− 1/θ

(
kTR

i

)−1/θ
, (2.4)

VTR
j (S (t)) = (1−ω)

S (t)1−1/θ

1− 1/θ

(
kTR

i

)−1/θ
, (2.5)

where kTR
n is an agent-specific constant. This specification of the value function and the FOCs again

imply that individual depletion (Rn/S) is given by kTR
n . Using the guesses of the value functions and

(2.1) we find:

θ (r + πp)
(

kTR
i

)− 1
θ
=
(

kTR
i

)1− 1
θ − (θ − 1)

(
kTR

i

)− 1
θ kTR

j +
θπp

(θr)
1
θ

and

θ (r + πp)
(

kTR
j

)− 1
θ
=
(

kTR
j

)1− 1
θ − (θ − 1)

(
kTR

j

)− 1
θ kTR

i .

Rearranging, the equilibrium values of kTR
i and kTR

j are implicitly given by a system of best response
functions that can be rewritten as

zTR
i

(
kTR

i

)
≡ (2− θ) kTR

i +
πp

(θr)
1
θ

(
kTR

i

) 1
θ
= θ (r + πp) , (2.6)

and

kTR
j − (θ − 1) kTR

i = θ (r + πp) . (2.7)

Note that because the continuation value for the trespasser is 0, ω does not play a role in determining
the speed of extraction by any of the two agents, and it only affects the trespasser’s valuation of the
resource.5 Moreover, θ > 1 implies strategic complementarity in the extraction game. This follows
from the fact that θ is a measure of the curvature of the revenue function. The higher θ the less concave
the function, and thus the higher the substitution between extraction today and in the future (i.e., the
lower the need to smooth individual extraction out). The presence of another agent with access to the
stock of the resource lowers the “return” to preserve it, because part of what is left in the ground is
going to be extracted by the other agent; in that sense extracting today protects the resource against
future trespassing. When θ is relatively high the lower need for smooth extraction implies that the
“return” motive dominates, therefore more rapacious depletion from one agent results also in more
rapacious depletion by the other.

Lemma 1. Given θ < 2, there exists a unique pair of positive constants kTR
i , kTR

j that fulfills the FOCs of the
TR problem.

5This result is not only the outcome of the assumption that the continuation value for the trespasser is 0, but also derives
from the specific modeling choice for the revenue function. Specifically, as the revenue function is iso-elastic in R, one can
separate k j and (1−ω) in the guess for j’s value function.
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Proof: See Appendix A.2.

Proposition 3. i) The owner depletes the resource above the socially optimal depletion rate θr; ii) before tres-
passing becomes unprofitable (Ω = 1) the trespasser depletes the resource faster than the owner.

Proof: See Appendix A.1.
A more rapacious extraction by the trespasser with respect to the owner (i.e., kTR

j > kTR
i ) can be

explained by the fact that, as opposed to the owner, the trespasser faces the risk of losing access to
the resource. This on the one hand makes the trespasser effectively more impatient than the owner
(i.e., the regime shift is costly for the trespasser). On the other hand, it means that the owner attaches
a positive probability to the emergence of a regime free of trespassing in finite time; the scrap value
of the resource once the trespasser is captured is an increasing function of the remaining stock, which
creates incentives for the owner to preserve the resource.

Corollary 1. The competition for the depletable stock exacerbates the over-extraction problem pushing the
trespasser to deplete the resource even faster than the rate suggested by the “inflated” effective discount (i.e.,
Rj/S > θ (r + πp)).

Proposition 4. The more likely it is that trespassing becomes unprofitable the slower the owner extracts: i.e.,
higher πp implies lower kTR

i .

Proof: See Appendix A.1.
At first glance higher πp is good news for the owner because of the better prospect of a future

free of trespassing. This implies that the owner has stronger incentives to preserve the resource.
However, a higher πp makes the trespasser effectively more impatient, because of the higher risk of
losing access to the resource. As a result the trespasser becomes more rapacious, which reduces the
return to savings for the owner (while active the trespasser extracts a larger fraction of what is left in
the ground). Thus, there are two opposing forces determining what the owner should do. On the one
hand, the owner wants to preserve the resource for the “trespassing-free” future; on the other hand,
the owner does not want to leave the resource exposed to more rapacious trespassing. Which one
of the two dominates depends on how concave the revenue function is, and thus on how feasible is
the substitution between present and future extraction. With a moderately concave revenue function
(i.e., θ > 1), future extraction is a good substitute for extracting today, and delaying extraction is a
good strategy: more patience triumphs over lower returns (i.e., the owner prefers to wait until after
the trespasser is no longer around).

2.2.4 Generally weak institutions — Trespassing and theft (TRth)

In the initial regime both trespassing and theft are active threats. This regime has three essential
characteristics: first, the trespasser extracts from the owner’s stock, so total extraction is the sum of
the owner’s and the trespasser’s extraction (Ri + Rj); second, the thief appropriates a fraction τ of

the owner’s revenues, where revenues net of the total cost of theft are λ2θ (θ − 1)−1 R
1− 1

θ
i ; third,

the regime can shift in any of three directions namely, weak protection of revenues with hazard
πp (1− q), weak protection of wealth with hazard πq (1− p), and strong institutions with hazardπpq.
Taking these three features into account the HJB equation of the owner’s problem is:
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rVTRth
i = max

Ri

λ2 R
1− 1

θ
i

1− 1
θ

−
∂VTRth

i
∂S

(
Ri + Rj

)
+ πETRth [Vi]− πTRthVTRth

i

 ,

where ETRth [Vi] = p (1− q)Vth
i + q (1− p)VTR

i + pqVi, represents the expected continuation value
after “a” regime shift. While πTRth ≡ π (p + q− pq) is the effective hazard of a regime shift occurring;
that is, the risk of a shift in any of the three potential directions in which a shift can occur. Using
equations (2.1)-(2.6) the owner’s HJB equation reduces to

(
r + πTRth

)
VTRth

i = max
Ri

λ2 R
1− 1

θ
i

1− 1
θ

−
∂VTRth

i
∂S

(
Ri + Rj

)
+ πκi

S1− 1
θ

1− 1
θ

 . (2.8)

With κi ≡ p (1− q) λ2
(

kth
i

)− 1
θ
+ q (1− p)

(
kTR

i
)− 1

θ + pq (θr)−
1
θ and ∂κi/∂λ > 0. The sign of the deriva-

tive of κi with respect to λ follows from the equilibrium condition for kth
i (2.3).

Similarly, the trespasser’s HJB equation is

rVTRth
j = max

Rj

(1−ω)
R

1− 1
θ

j

1− 1
θ

−
∂VTRth

j

∂S
(

Ri + Rj
)
+ πETRth [Vj

]
− πTRthVTRth

j

 ,

with ETRth [Vj
]
= p (1− q)Vth

j + q (1− p)VTR
j + pqVj and πTRth as defined above. From equations

(2.4) and (2.7) and noting that the continuation value of trespassing becoming unprofitable (i.e., shift-
ing to a regime only with theft or with perfect protection) is 0, the problem of the trespasser can be
rewritten as

(
r + πTRth

)
VTRth

j = max
Rj

(1−ω)
R

1− 1
θ

j

1− 1
θ

−
∂VTRth

j

∂S
(

Ri + Rj
)
+ π (1−ω) κj

S1− 1
θ

1− 1
θ

 , (2.9)

with κj ≡ q (1− p)
(

kTR
j

)− 1
θ and πTRth ≡ π (p + q− pq) denoting the effective hazard of a regime

shift (i.e., the hazard adjusted by the probability that institutions improve in at least one of the two
dimensions). Using the system of HJB equations (2.8) and (2.9), it is obtained that the FOCs with
respect to extraction are

λ2R
− 1

θ
i =

∂VTRth
i
∂S

; (1−ω) R
− 1

θ
j =

∂VTRth
j

∂S
,

plugging this back into the value functions (2.8) and (2.9)

(
r + πTRth

)
VTRth

i =
λ2θ

θ − 1

(
∂VTRth

i
∂S

)1−θ

− (1−ω)θ ∂VTRth
i
∂S

(
∂VTRth

j

∂S

)−θ

+ πκi
S1− 1

θ

1− 1
θ

,
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(
r + πTRth

)
VTRth

j =
(1−ω)θ

θ − 1

(
∂VTRth

j

∂S

)1−θ

− λ2θ
∂VTRth

j

∂S

(
∂VTRth

i
∂S

)−θ

+ π (1−ω) κj
S1− 1

θ

1− 1
θ

.

Now, by using VTRth
i = λ2θ (θ − 1)−1 S1− 1

θ

(
kTRth

i

)− 1
θ and VTRth

j = (1−ω) θ (θ − 1)−1 S1− 1
θ

(
kTRth

j

)− 1
θ

as guesses for each of the two value functions to solve this system of Differential Equations (DE), the
following system is obtained:

zTRth
i

(
kTRth

i , kTRth
j

)
≡ kTRth

i +
θπκi
λ2

(
kTRth

i

) 1
θ − (θ − 1) kTRth

j = θ
(

r + πTRth
)

, (2.10)

and

zTRth
j

(
kTRth

i , kTRth
j

)
≡ kTRth

j + θπκj

(
kTRth

j

) 1
θ − (θ − 1) kTRth

i = θ
(

r + πTRth
)

. (2.11)

The solution to this system of non-linear equations will give the equilibrium depletion by the owner
and the trespasser in the TRth regime. Given that θ > 1 these equations clearly entail that ki and k j

are strategic complements.

Lemma 2. Given θ < 2, there exists a unique pair
(

kTRth
i , kTRth

j

)
∈ R2

+ solving the zTRth
i = zTRth

j =

θ
(

r + πTRth
)

system. This means that the equilibrium extraction strategies exist and are unique.

Proof: See Appendix A.2.

Lemma 3. When only the owner is affected by theft kTRth
i and kTRth

j are increasing in λ.

Proof: See Appendix A.2.
Equations (2.10) and (2.11) can be rewritten as

kTRth
n = θ(r− πgTRth

n ) + (θ − 1) kTRth
m , (2.12)

with

gTRth
n ≡∑

l
PTRth

l

µTRth
n
µl

n

(
kTRth

n
kl

n

) 1
θ

− 1

 ,

and where m, n ∈ {i, j} and m 6= n; πPTRth
L corresponds to the effective hazard of a shift from

regime TRth to regime L; µL
n = λ−2 if agent n is subject to theft in regime L, otherwise, µL

n = 1; and(
kL

n
) −1/θ = 0 if agent n is not active in regime L. Equation (2.12) shows the two main components

distorting the depletion by agent n in the TRth regime (i.e., pushing depletion by n away from the
socially optimal level θr). First, the anticipation of a regime shift affects the effective discount rate of n,
an effect that is captured by gTRth

n . If n considers the expected regime shift (i.e., the weighed composite
of all potential future regimes) to be “good news” that is, if the agent anticipates that on average
future institutions will be more favorable (than current institutions), the expectation of a regime shift
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makes n effectively more patient, and consequently more conservative in the use of the resource;
in this case gTRth

n > 0. If on the contrary, from n’s perspective, future institutions are perceived as
less favorable (than current institutions) so that a regime shift is “bad news”, gTRth

n < 0 and the
anticipation of a shift makes the agent effectively more impatient, pushing depletion by n above θr.
Finally, if future regimes are combination of “good” and “bad” regimes from the perspective n, it may
be the case that the “bad” regimes are exactly compensated by the “good” regimes (i.e., gTRth

n = 0),
and therefore anticipation of a regime shift does not affect n’s effective impatience. Next to the effect
on the effective discount imposed by the anticipation “good” and “bad” news, n’s depletion rate can
also be distorted by the presence of another extracting agent, as captured by (θ − 1) kTRth

m in (2.12); in
the case of strategic complementarity (i.e., θ > 1) the presence of another extracting agent increases
n’s depletion.

3 Analysis

The depletion rates under different regimes kth
i , kTR

i , kTR
j , kTRth

i and kTRth
j can be obtained by solving

the non-linear system (2.3), (2.6), (2.7), (2.10), and (2.11). Figure 3.1, depicts a numerical example of
the depletion rate under all the possible regimes for both the owner and the trespasser, as the theft
intensity λ goes from 0 to 1 (i.e., as the distortion imposed by the imperfect protection of revenue
flows decreases).6

As expected λ has no effect on the “TR” regime depletion rates (it does not enter the problem), the
“TRth” depletion rates (kTRth

i and kTRth
j ) are increasing in λ and converge to their “TR” counterparts

(kTR
i and kTR

j ) because theft becomes less distortive as λ → 1. With respect to the social optimum
level of depletion: kTR

i , kTR
j , and kTRth

j are always above the social optimum θr; kth
i is always below;

and kTRth
i is below θr for low values of λ (i.e., when theft is very distortive) and it is above θr when λ

is high (i.e., when theft is less distortive).

3.1 Owner and trespasser subject to theft

If both the owner and the trespasser face the threat of theft, and assuming that trespasser and thief
engage in exactly the same type of contest over revenues as the owner and the thief, the system of DE
for the trespasser in the TRth is simply going to be symmetric to that of the owner, where the one for
the owner is still given by (2.10) and the trespasser’s becomes:

zTRth
j

(
kTRth

i , kTRth
j

)
≡ kTRth

j +
θπκj

λ2

(
kTRth

j

) 1
θ − (θ − 1) kTRth

i = θ
(

r + πTRth
)

.

The fundamental difference between this case, and the one in which only the owner is affected by
theft is that the de facto protection against theft (λ) has a direct effect on the trespassers depletion rate
(instead of running solely through the effect on the owner’s depletion).

Figure 3.2 depicts kTRth
i , kTRth

j and the sum of the two, when theft affects both the owner and the
trespasser. Evidently, when the distortion induced by theft is large (i.e., λ is low), the depletion by
both the owner and the trespasser is low, in fact total depletion of the resource is below the social

6The rest of the parameters are set to: θ = 3/2, p = q = 1/2, r = 1/5, and π = 1/10.

15



20 40 60 80 100
Λ H%L

0.1

0.2

0.3

0.4

0.5

0.6

Depletion

ki
TR ki

TRth ki
th

k j
TR k j

TRth Θr

Figure 3.1: Depletion for different λs. Both owner and trespasser affected by theft
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Figure 3.2: Depletion for different λs. Both owner and trespasser affected by theft
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optimum (θr). On the contrary, if the theft distortion is mild, then the total depletion is too high from
the social perspective (> θr). This means that if theft affects both the owner and the trespasser, in the
presence of theft and trespassing the socially optimum level of depletion is attainable if theft occurs
in the right measure (i.e., the effects of the two distortions exactly cancel out).

3.2 The illegal mining model: only the trespasser is subject to theft

The case of illegal mining seems to be better portrayed by a case in which only the trespasser is
directly affected by theft. In this case λ affects only the net revenues from extraction for the trespasser.
Again we end up with a system of equations from which one can solve the equilibrium levels of
depletion. From the owner’s HJB equation one gets

zTRth
i

(
kTRth

i , kTRth
j

)
≡ kTRth

i + θπκi

(
kTRth

i

) 1
θ − (θ − 1) kTRth

j = θ
(

r + πTRth
)

,

where κi ≡ q (1− p) k
TR− 1

θ
i + p (θr)−

1
θ . From this expression it is clear that once the trespasser is cap-

tured (which conditional on a regime shift occurs with probability p) the fate of the thief is irrelevant
for the owner’s problem. While from the trespasser’s HJB it is obtained that

zTRth
j

(
kTRth

i , kTRth
j

)
≡ kTRth

j +
θπκj

λ2

(
kTRth

j

) 1
θ − (θ − 1) kTRth

i = θ
(

r + πTRth
)

,

where κj ≡ q (1− p) k
TR− 1

θ
j remains the unchanged. Evidently, once the thief is captured, the tres-

passer has the same valuation for the future as in the case when theft only affects the owner.

Lemma 4. When only the trespasser is affected by theft, kTRth
i and kTRth

j are increasing in λ irrespective of θ.

Proof: See Appendix A.2.
Interestingly, even if theft is strong enough to completely discourage trespassing (i.e., λ = 0) the

owner’s extraction path in the TRth regime would still be distorted. More precisely, if λ = 0 and thus
kTRth

j = 0, kTRth
i is aboveθr because kTR

i is above θr. From the owner’s perspective, the scenario with
λ = 0 can be described solely in terms of trespassing: initially during the TRth regime there is no
trespassing; then if there is no theft trespassing becomes again an active threat; finally the economy
would move back to a regime with inactive trespassing. Even if in the TRth regime theft is such that
trespassing plays no immediate role on the owner’s problem, the potential for a future regime in
which trespassing is active affects current extraction. The mechanism for the distortion in the TRth
regime is therefore purely dynamic, and it is actually driven by the same forces that delineate the
extraction path in the TR regime. That is, as the owner responds to trespassing by engaging in over-
extraction, the owner also over-extracts if there is no current trespassing but there is a potential shift
towards a regime with active trespassing.

3.3 Total extraction and institutional quality

Irrespective of whether the owner, the trespasser, or both are affected by theft, total extraction is in-
creasing in the de facto protection against theft λ. The agent(s) directly affected by theft has incentives
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to deplete the resource faster if theft is weaker; that is the case because the net marginal return to ex-
traction is higher the weaker theft is; this tilts the inter-temporal trade-off towards current depletion.
Due to the strategic interaction between the owner and the trespasser, the agent that is not directly
affected by theft also reacts to changes in λ. Specifically, if λ increases the agent that is not directly
affected by theft also accelerates depletion, therefore total depletion increases with λ.

Proposition 5. Whenever the trespasser and the thief are active: i) total depletion is increasing in λ irrespective
of which agent (the owner, the trespasser, or both) is subject to theft; ii) if only the owner is directly affected by
theft total depletion is always above the social optimum level θr; iii) if both the owner and the trespasser are
subject to theft there exists a λ∗ ∈ (0, 1) such that if λ R λ∗ total depletion is R θr; iv) if only the trespasser
is subject to theft total depletion exceeds θr for every λ > 0.

Proof: See Appendix A.1.
Thus, an improvement in terms of how prone to theft the environment is always leads to more

rapacious depletion. This means that in case that only the owner is affected by theft, an improvement
in the institutional environment (in terms of a higher λ) exacerbates the over-extraction problem.
Actually, a necessary condition for there to be an imperfect level of λ such that depletion is optimal
from the social perspective is that the trespassers is directly affected by theft. However, this does not
mean that the outcome is a first best because resources are inefficiently diverted into protection and
theft.

4 Discussion

4.1 Social Benchmark

4.1.1 Inter-temporal and intra-temporal distortions

As mentioned above the existence of λ∗ does not imply that the first best is achievable, only that the
total depletion is at its first best level if λ = λ∗. Because of the second best nature of the problem
under the TRth regime even if total extraction is optimal, costly effort is diverted in the theft game.
Taking into account the total net gain from the protection-theft contest (i.e., sum of revenues net of
total effort), the contest is the least efficient when λ = 1/2 and the most efficient when λ is either 0 or
1.7 This is the case because the more symmetric the contest the more effort each agent puts into it (i.e.,
the higher the stakes), but when the de facto protection is clearly favorable to one agent, both agents
face little incentives to engage in the contest.

The total distortion imposed by trespassing and theft comes both in the form of a potentially
distorted depletion path and of diverted effort theft game, the former being inter-temporal in nature
and the latter intra-temporal. We know that the closer we are to λ∗ the less intense the inter-temporal
distortion becomes (i.e., the closer is total depletion to the optimal level θr), and the further away we
are from λ = 1/2 the less intense the intra-temporal distortion is. This means that if λ∗ < 1/2 (> 1/2),
and λ ∈ (λ∗, 1/2) a reduction (an increase) in λ is efficiency improving.

7If one does not take the revenues of the thief into account the contest is the least distortive when λ = 1 and the most
distortive when λ = 0.
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4.1.2 Restricted social benchmark

Up to this point θr has been used as the benchmark depletion rate. As mentioned above, this is the
socially optimal rate of depletion in the absence of any imperfection (i.e., the rate that maximizes
the NPV of total revenues under perfectly protected property rights). Alternatively, one could define
an intermediate (second-best) benchmark. Suppose that the planner can only determine the level
of extraction by the owner and the trespasser, taking the weights of the three agents in the social
welfare function, the institutional path, and the distributional rule of the theft game as given. That
is, this “constrained planner” cannot change the institutional environment, and, for instance, cannot
distribute rents to the trespasser if there is a strong protection of the wealth in the ground. Similarly,
this planner cannot choose the effort levels of the theft game, and therefore cannot eliminate the
waste of rents generated by theft. The objective of the planner is to maximize the NPV of the expected
(weighed) sum of revenues of the the three agents. In the TRth regime, the problem of the constrained
planner is given by

rVTRth
s = max

Ri , Rj

φih
R

1− 1
θ

i

1− 1
θ

+ φjh
R

1− 1
θ

j

1− 1
θ

− ∂VTRth
s
∂S

(
Ri + Rj

)
+ πETRth [Vs]− πTRthVTRth

s

 ,

where φm is the social weight of agent m ∈ {i, j, h}, and φnh ≡ λ2φn + (1− λ)2 φh is the effective
social weight attached to the extraction by agent n ∈ {i, j}. Moreover, ETRth [Vs] = p (1− q)Vth

s +

q (1− p)VTR
s + pqVs is the expected continuation (social) value after a regime shift. By solving this

problem, it is obtained that the total (social) rate of depletion kTRth
s ≡

(
RTRth

i +RTRth
j

)
/S is implicitly

given by

zTRth
s

(
kTRth

s

)
≡ kTRth

s + θπκs

(
kTRth

s

) 1
θ
= θ

(
r + πTRth

)
, (4.1)

with κs representing the expected value of the depletion rate after a regime shift (to the power of
−1/θ) weighed by the effective social weight of each potential future regime φs as a proportion of the
current regime’s effective social weight:

κs ≡
p (1− q) φih

(
kth

s

)− 1
θ
+ q (1− p) φij

(
kTR

s
)− 1

θ + pqφi (θr)−
1
θ

φijh
.

Following the same logic of the decentralized problem, the depletion rates kTR
s and kth

s come from
solving the planner’s problem under the TR and th regimes respectively. The effective social weights
of the future regimes are given by φi under perfect protection, φih under the th regime, andφij ≡(

φθ
i + φθ

j

) 1
θ under the TR regime. The effective social weight in the TRth regime is φijh ≡

(
φθ

ih + φθ
jh

) 1
θ .

One can compare the solution of the constrained planner to that of the unconstrained planner by
rewriting (4.1) in a similar fashion to (2.12):

kTRth
s = θ

(
r− πgTRth

s

)
, (4.2)
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with

gTRth
s ≡∑

l
PTRth

l

 φl
φijh

(
kTRth

s
kl

s

) 1
θ

− 1

 ,

where again πPTRth
L corresponds to the effective hazard of a shift from regime TRth to regime L;

and φL is the relevant social weight in regime L: φi, φij, φih in the perfect protection, the TR, and
the th regime respectively. As can be seen from (4.2) the source of distortion for the constrained
planner, with respect to the unconstrained planner’s (i.e., first best) depletion θr, is the anticipation
of a regime. This is the case because, as opposed to the decentralized solution, from the perspective
of the constrained planner there is no competition for the extraction of the resource (i.e., there is no
“common pool” distortion). The effect of anticipating a regime shift on the effective discount rate
of the constrained planner is captured by gTRth

s . If gTRth
s > 0 (< 0) [= 0], the constrained planner

considers the expected regime shift (i.e., the weighed composite of all potential future regimes) to be
good news (bad news) [no news]. Therefore the effective discount rate of the constrained planner is
lower than (higher than) [equal to] the discount rate of the unconstrained planner, and total depletion
by the constrained planner in the TRth regime is < θr (> θr) [= θr].

Comparing the decentralized solution (kTRth
i + kTRth

j ) to the constrained planner’s solution (4.1),
and assuming φi, φj, φh > 0,

Proposition 6. If both the owner and the trespasser are subject to theft, there exist a λ ∈ (0, 1) and a λ̄ ∈
[λ, 1) such that if λ < λ (λ > λ̄) total depletion in the decentralized solution, kTRth

i + kTRth
j , is below (above)

the social level of depletion chosen by the constrained planner (4.1).

Proof: See Appendix A.1.
This means that, if the constrained planner’s solution is used as reference and if both extracting

agents are affected by theft, the depletion of the resource in the decentralized solution is above (below)
the planner’s level if the intensity of theft is low (high); therefore, a low theft intensity leads to a
depletion that is too high from the social perspective irrespective of whether the social benchmark is
determined by constrained or the unconstrained planner’s solution.

Figure 4.1 presents a numerical example of the comparison between the depletion by the con-
strained planner and the total depletion under the decentralized solution as a function of the theft
intensity.8 Each of the three U-shaped curves represents the level of depletion kTRth

s for a given set of
social weights (φi, φj, φh) with φj = φh = 1/2 (1− φi). From this illustration it becomes evident that,
under the alternative social benchmark provided by the constrained planner’s solution, the decen-
tralized level of depletion is above (below) the social level when the intensity of theft is low (high).

In the figure, the shape of the curves representing kTRth
s reveals the effect of attaching a positive

social weight to the thief. In the extremes (i.e., when λ is equal to 0 or 1) the rents from extraction
are fully distributed (either to the extractors or to the thief); the planner, as opposed to the extractors,
attaches value to the rents captured by the thief, and therefore extraction in the planner’s solution is
positive in either extreme, while in the decentralized solution there is no extraction when λ = 0. If λ

moves away from these extreme values, the theft game inefficiently distributes rents from extraction;

8The rest of the parameters are set to: θ = 3/2, p = q = 1/2, r = 1/5, and π = 1/10. Therefore the level of depletion under the
unconstrained planner’s solution θr is 3/10.
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this is, the rents are partially dissipated in the form of protective and grabbing efforts. Remember that
the constrained planner takes the distribution of the theft game as given and can only choose the level
of extraction. The more inefficient the distribution generated by the theft game, the more patient the
constrained planner effectively is: the planner prefers to delay extraction for until after property is
protected against theft. Therefore, the higher the distortion generated by the theft game (which from
the social perspective is maximal at some intermediate λ), the lower the level of depletion. The lower
the social weight of the thief relative to the owner’s, the lower the value of λ at which the inefficiency
of the theft game is maximal.9

The figure also shows that, for a given level of λ, increasing the social weight of the owner (φi) at
the expense of the weights of the trespasser and the thief, leads to a lower depletion (i.e., the kTRth

s

curve shifts downwards as φi increases). This is the case because, the higher the weight attached to
the owner, the higher the degree of “good news” embedded in the anticipation of a regime shift, and
consequently the more patient the planner is. If the planner cares about the thief and the trespasser,
anticipating that these agents may not be active in the future is a mix of good and bad news. It is
good news because the owner is better off, and the planner attaches a weight to this, but it is bad
news because the planner also values the loss of revenues by the thief and trespasser. Whether an
institutional improvement is “in net” anticipated as good or bad news by the constrained planner
depends on the social weights of the three agents. In figure 4.1 one observes that for a low φi, kTRth

s

maybe above θr (in the figure θr = 0.3), meaning that gTRth
s < 0 and therefore the unconstrained

planner perceives the institutional change as bad news.

Φi = .75

Φi = .25
Φi = .5

kTRth

20 40 60 80 100
Λ H%L

0.1

0.2

0.3

0.4

0.5

0.6

Depletion

Figure 4.1: Constrained’s planner depletion for different λs

4.2 Alternative institutional paths

The model assumes that institutions improve over time, which is arguably what happened in the
context of the California Gold Rush and the Texas Oil Boom. However, a path of improving institu-
tions may not always be a good reflection of reality; think for instance of the collapse of the Soviet

9From the figure one can observe that the λ minimizing kTRth
s shifts to the left as φi/φh increases. With φi = φh, the

inefficiency is maximal (kTRth
s is minimal) at λ = 1/2.
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Union, Mobutu’s dictatorship, or the Libyan power vacuum after Gaddafi’s ouster. Nevertheless, the
modeling apparatus developed in this paper is equipped to analyze alternative institutional dynam-
ics. The effect of alternative institutional dynamics on the results depends on one of the fundamental
mechanisms unveiled by the model: the effective discount rate applied by individuals depends on
how they expect to be affected by institutional changes; that is, whether they anticipate institutional
changes as “good news” or as “bad news” (in expected value). For instance, in the current setup an
institutional improvement in the theft dimension is internalized as “good news” by both the owner
and the trespasser if they are both affected by theft; both the owner and the trespasser are better off in
the absence of theft. Therefore the prospect of this institutional improvement makes them effectively
more patient. How much more patient they become depends on how much of an improvement the
elimination of theft actually is, i.e., the intensity of theft. Now, suppose that the economy is facing
an institutional collapse. This means, for instance, that from the TR regime the economy eventually
shifts into the TRth regime. During the TR regime, the owner and the trespasser anticipate institu-
tional changes to be “bad news”. The prospect of theft in the future makes both i and j effectively
more impatient today, when theft is not yet occurring. How much more impatient depends on how
intense they anticipate theft to be in the future: the more intense the more impatient. Interestingly,
despite already playing a role in the TR regime, through the anticipation of the regime shift, the in-
tensity of theft will not play a role in the TRth regime, provided that this is an absorptive regime.
Furthermore, if institutions are expected to deteriorate over time, i’s depletion will be distorted even
in case institutions are strong. Specifically, in the absence of theft and trespassing, i will over-extract
the resource in anticipation of the institutional collapse.

4.3 Common Stock Vs. Common Market

Going back to the original model with imperfect institutions, we approach trespassing as a problem
of common access to the stock in the ground. However, one could also study it as a “common market”
(e.g., Boyce & Vojtassak, 2008; Datta & Mirman, 1999; Salo & Tahvonen, 2001; Sandal & Steinshamn,
2004) problem. However, as opposed to the inter-temporal nature of the “common stock” externality,
the “common market” one is essentially intra-temporal. Arguably, the “common market” external-
ity mechanically implies that the owner slows down extraction because of the lower instantaneous
marginal return. In such case, the resource “over-use” arises as consequence of a larger number of
suppliers; that is, there is no individual “over-use” but, there is “over-use” in the aggregate because
of the coordination failure.

In contrast, in the “common stock” case the inter-temporal externality creates two opposing forces
delineating the owner’s behavior. On the one hand, it reduces the incentives to preserve the resource
because the stock left in the ground would be shared with the trespasser in the future. On the other
hand, for extraction-smoothing purposes the owner may act more conservatively to counter the ex-
cessively high depletion induced by trespassing. In terms of the consumption-saving trade-off, the
former means that the return to savings is lower, reducing the incentives to save, while the latter
implies that the owner cannot fully appropriate her own “savings” in the future, hence there is an
increased need for “savings” to finance future “consumption”.
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5 Concluding remarks

Weak property rights in the management of non-renewable resources can go beyond the “common ac-
cess” (or “trespassing”) problem typically explored in the resource economics literature. The history
of resource rushes (e.g., oil and gold) provides prominent examples of cases in which the legitimate
owners of a resource not only had to deal with trespassing but also with the risk of theft. The in-
teraction of these two types of property rights imperfections, one affecting the stock (wealth) in the
ground and the other affecting the stream of revenues (income) from extracting it, has a significant
effect on the inter-temporal trade-off governing the choice of an extraction path.

In principle, the legitimate owner of the resource needs to take into account that extracting the
resource protects it from trespassing, but exposes it to theft. The model that we develop highlights
that the dynamic implications of an environment with generally weak property rights are rich and
go beyond this intuitive trade-off. These implications are rooted in the dynamic strategic interactions
between agents, as well as in the possibility of shifts towards regimes with stronger property rights
(i.e., regimes with no theft or no trespassing). Among the results we find that an improvement in
the institutional quality in terms of a higher probability of eliminating trespassing, exacerbates the
over-extraction imposed by trespassing itself. Moreover, an improvement in the institutional quality
in terms of a reduction of the theft intensity, leads to a more rapacious depletion of the resource when-
ever income above the ground is imperfectly protected. This is the case because the inter-temporal
distortion imposed by the current existence of theft and the prospect of it disappearing in the future,
leads to slow down current depletion. The lower the intensity of current theft, the lesser its effect in
slowing down extraction.

In terms of efficiency, if the trespasser is affected by theft the first-best level of extraction may be
achieved. However, the waste inherent to the protection-theft contest implies that the net present
value of extraction revenues is still below the first-best level. Efficiency unambiguously improves as
the parameter determining the theft intensity in equilibrium moves away from the level that maxi-
mizes wasteful effort and towards the level that allows for optimal depletion. Thus, in some cases a
more theft-prone environment may be more desirable in terms of efficiency.

As a potential avenue for future research using this type of dynamic framework, with a broader
source of imperfect property rights and multiple regime shifts, one could think of the interaction
between governments and private extraction companies, and how this interaction is affected by the
different alternatives that the former can use to capture a share of the latter’s revenues. In such a
framework instead of trespassing, expropriation would be the source of insecure stocks; and instead
of theft, revenues would be subject to taxation. An interesting feature of a setup along those lines is
the dual role of the government as both “trespasser” and “thief”. Such a model may shed light on
the type of tools that a government should use when trying to maximize the net present revenues
that it gets from the riches in the ground, once the strategic response of the firm is taken into account.
This framework would serve to answer when should the government be more or less aggressive in
taxing the resource sector? when (if ever) is expropriation a better choice? how strong should the
government’s commitment against expropriation be?

23



References

Anderson, T. L., & Libecap, G. D. (2014). Environmental Markets: A Property Rights Approach. Cam-
bridge University Press.

Banchirigah, S. M. (2008). Challenges with Eradicating Illegal Mining in Ghana: A Perspective From
the Grassroots. Resources Policy, 33(1), 29–38.

Boyce, J. R., & Vojtassak, L. (2008). An Oiligopoly Theory of Exploration. Resource and Energy Eco-
nomics, 30(3), 428–454.

Clay, K., & Wright, G. (2005). Order without Law? Property Rights during the California Gold Rush.
Explorations in Economic History, 42(2), 155–183.

Copeland, B. R., & Taylor, M. S. (2009). Trade, Tragedy, and the Commons. American Economic Review,
99(3), 725–749.

Couttenier, M., Grosjean, P., & Sangnier, M. (2014). The Wild West is Wild: The Homicide Resource Course
(Working Paper No. 2014 ECON 12). Australian School of Business.

Datta, M., & Mirman, L. J. (1999). Externalities, Market Power, and Resource Extraction. Journal of
Environmental Economics and Management, 37(3), 233–255.

Hardin, G. (1968). The Tragedy of the Commons. science, 162(3859), 1243–1248.
Hilson, G. (2002). Small-scale Mining and its Socio-economic Impact in Developing Countries. Natural

Resorces Forum, 26, 3–13.
Hilson, G., & Potter, C. (2003). Why is Illegal Gold Mining Activity so Ubiquitous in Rural Ghana?

African Development Review, 15(2-3), 237–270.
Hotte, L., McFerrin, R., & Wills, D. (2013). On the Dual Nature of Weak Property Rights. Resource and

Energy Economics, 35(4), 659–678.
Lipsey, R. G., & Lancaster, K. (1956). The General Theory of Second Best. The Review of Economic

Studies, 24(1), pp. 11-32.
McDowell, A. G. (2002). From Commons to Claims: Property Rights in the California Gold Rush.

Yale Journal of Law & the Humanities, 14, 1–461.
Ostrom, E. (2008). Tragedy of the Commons. The New Palgrave Dictionary of Economics, 3573–3576.
Owens, K. N. (2002). Riches for All: the California Gold Rush and the World. U of Nebraska Press.
Rohrbough, M. J. (1997). Days of Gold: The California Gold rush and the American Nation. University of

California Press.
Sakamoto, H. (2014). Dynamic Resource Management Under the Risk of Regime Shifts. Journal of

Environmental Economics and Management, 68(1), 1–19.
Salo, S., & Tahvonen, O. (2001). Oligopoly Equilibria in Nonrenewable Resource Markets. Journal of

Economic Dynamics and Control, 25(5), 671–702.
Sandal, L. K., & Steinshamn, S. (2004). Dynamic Cournot-competitive Harvesting of a Common Pool

Resource. Journal of Economic Dynamics and Control, 28(9), 1781–1799.
Umbeck, J. (1977). The California Gold Rush: A Study of Emerging Property Rights. Explorations in

Economic History, 14(3), 197–226.
Van Long, N. (2011). Dynamic Games in the Economics of Natural Resources: A Survey. Dynamic

Games and Applications, 1(1), 115–148.
Yergin, D. (2008). The Prize: The Epic Quest for Oil, Money and Power (3rd ed.). Simon and Schuster.

24



Appendix

A Proofs

A.1 Propositions

Proposition 1

Proof. Evaluating zth
i (.) at θr

zth
i (θr) = θ

(
r +

πq
λ2

)
≥ θ (r + πq) = zth

i

(
kth

i

)
.

With zth
i being strictly increasing, it follows that kth

i ≤ θr, with strict inequality whenever theft is a
relevant (λ < 1) regime with finite expected end date (q > 0).

Proposition 2

Proof. From (2.3), we find that in equilibrium1 +
πq
(

kth
i

) 1
θ−1

λ2 (θr)
1
θ

 ∂kth
i

∂πq
= θ

1−

(
kth

i

) 1
θ

λ2 (θr)
1
θ

 .

Thus, sign
(

∂kth
i /∂πq

)
= sign

(
λ2θθr− kth

i

)
. Evaluating zth

i (.) at λ2θθr it is obtained that

zth
i

(
λ2θθr

)
= θ

(
λ2θr + πq

)
< θ (r + πq) = zth

(
kth

i

)
.

Given that zth
i is strictly increasing, it follows that kth

i > λ2θθr so that ∂kth
i /∂πq < 0.

Proposition 3

Proof. i) Evaluating zTR
i at θr: zTR

i
(
kTR

i
)
≡ θ (r + πp) R (2− θ) θr + πp = zTR

i (θr) ↔ θ R 1. Given
that z′ > 0, θ > 1 then implies kTR

i > θr.
ii) kTR

j
(
kTR

i
)
> kTR

i requires kTR
i < θ (2− θ)−1 (r + πp). Evaluating zTR

i at θ (2− θ)−1 (r + πp) it

is obtained that zTR
i

(
θ (2− θ)−1 (r + πp)

)
= θ (r + πp) +

(
θ (2− θ)−1 (r + πp)

) 1
θ
> θ (r + πp) ≡

zTR
i
(
kTR

i
)
. Following the same argument as above kTR

i < θ (2− θ)−1 (r + πp) and so kTR
j > kTR

i .

Proposition 4

Proof. From zTR
i
(
kTR

i
)
= θ (r + πp) one can obtain:
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∂kTR
i

∂πp
=

θ −
(

kTR
i
θr

) 1
θ

(2− θ) +
πp
kTR

i

(
kTR

i
θr

) 1
θ

.

Therefore, sign
(

∂kTR
i /∂πp

)
= sign

(
θ −

(
kTR

i /θr
) 1

θ

)
. Using z

(
kTR

i
)
:

θ R

(
kTR

i
θr

) 1
θ

←→ kTR
i R

θr
2− θ

.

From zTR
i (.) and z′ > 0, the last expression is equivalent to

θ (r + π) R zTR
i

(
θr

2− θ

)
←→ θ R

1

(2− θ)
1
θ

,

where θ < (2− θ)
−1
θ for any θ ∈ (1, 2); therefore, kTR

i < θr (2− θ)−1 and ∂kTR
i /∂πp < 0.

Proposition 5

Proof. i) Expressing the equilibrium conditions of the zTRth
i , zTRth

j system more generally as [and as-
suming ω = 0 to save notation]:

zTRth
i

(
kTRth

i , kTRth
j

)
≡ kTRth

i + θπµiκi

(
kTRth

i

) 1
θ − (θ − 1) kTRth

j = θ
(

r + πTRth
)

,

and

zTRth
j

(
kTRth

i , kTRth
j

)
≡ kTRth

j + θπµjκj

(
kTRth

j

) 1
θ − (θ − 1) kTRth

i = θ
(

r + πTRth
)

.

Where µn = λ−2 if agent n is subject to theft, and µn = 1 otherwise.
Taking the derivatives of zTRth

i and zTRth
j with respect to λ and rearranging terms one respectively

gets:

ai
∂kTRth

i
∂λ

− (θ − 1)
∂kTRth

j

∂λ
= −θπ

(
kTRth

i

) 1
θ ∂ (µiκi)

∂λ
,

and

aj
∂kTRth

j

∂λ
− (θ − 1)

∂kTRth
i
∂λ

= −θπ
(

kTRth
j

) 1
θ ∂
(
µjκj

)
∂λ

Where an ≡ 1 + πµnκn

(
kTRth

n

) 1
θ−1

> 1. Using the former in the latter and rearranging terms:

∂kTRth
i
∂λ

=

−θπ

((
kTRth

i

) 1
θ ∂(µiκi)

∂λ + θ−1
aj

(
kTRth

j

) 1
θ ∂(µjκj)

∂λ

)
ai − (θ−1)2

aj

,

by symmetry
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∂kTRth
j

∂λ
=

−θπ

(
k

TRth 1
θ

j
∂(µjκj)

∂λ + θ−1
ai

k
TRth 1

θ
i

∂(µiκi)
∂λ

)
aj − (θ−1)2

ai

;

adding the last two up

∂
(

kTRth
i + kTRth

j

)
∂λ

=

−θπ

(((
aj + θ − 1

) (
kTRth

i

) 1
θ ∂(µiκi)

∂λ + (ai + θ − 1)
(

kTRth
j

) 1
θ ∂(µjκj)

∂λ

))
aiaj − (θ − 1)2 > 0.

Where the sign follows from θ < 2, an > 1, and ∂(µnκn)/∂λ < 0 for n ∈ {i, j}.
ii) When only the owner is subject to theft:
If λ = 0 and therefore kTRth

i = 0, kTRth
j in equilibrium is given by

zTRth
j

(
0, kTRth

j

)
= kTRth

j + θπκj

(
kTRth

j

) 1
θ
= θ

(
r + πTRth

)
.

Evaluating zTRth
j in (0, θr) and comparing with zTRth

j

(
0, kTRth

j

)
:

zTRth
j (0, θr) = θr + θπκj (θr)

1
θ R θ

(
r + πTRth

)
= zTRth

j

(
0, kTRth

j

)
,

using the definitions of κj and πTRth

←→ q (1− p)

(
θr

kTR
j

)
R q (1− p) + p.

From proposition 3, kTR
j > θr, hence q (1− p) θr

(
kTR

j

)−1
< q (1− p) + p. Given that zj is increasing

in k j, it is immediate that kTRth
j

∣∣∣
λ=0

> θr. Given that kTRth
j

∣∣∣
λ=1

= kTR
j , it also follows from proposition

3 that kTRth
j

∣∣∣
λ=1

> θr. As kTRth
j is continuous and monotonically increasing in λ (see lemma 3) and

kTRth
j

∣∣∣
λ=0

, kTRth
j

∣∣∣
λ=1

> θr, the intermediate value theorem implies that kTRth
j > θr for any λ ∈ [0, 1].

Hence total depletion (kTRth
i + kTRth

j ) is always above the social optimum level.
iii) When the owner and the trespasser are subject to theft:
If λ = 0, kTRth

i = kTRth
j = 0 ; if λ = 1, kTRth

i = kTRth
j > θr, which follows from proposition 3. This

means that total depletion in the TRth regime is below θr when λ → 0 (it goes to 0) and it is above
θr when λ → 1. As total depletion is continuous and monotonically increasing in λ (see i), from the
intermediate value theorem there is a unique λ∗ ∈ (0, 1) such that total depletion is R θr if λ R λ∗.

iv) When only the trespasser is subject to theft:
Assuming λ = 0 (and thus kTRth

j = 0), and evaluating zi in θr when only the trespasser is affected
by theft:

zTRth
i (θr, 0) = kTRth

i + θπκi

(
kTRth

i

) 1
θ
R θ

(
r + πTRth

)
≡ zTRth

i

(
kTRth

i , 0
)
←→ kTR

i R θr.
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From proposition 3 we know that kTR
i > θr. Using the fact that zi is increasing in kTRth

i , kTRth
i > θr,

and thus kTRth
i + kTRth

j > θr, for λ = 0. Moreover, as kTRth
i is increasing in λ (see lemma 4) both kTRth

i
and kTRth

i + kTRth
j are above θr for any value of λ > 0.

Proposition 6

Proof. This proposition follows from kTRth
i + kTRth

j

∣∣∣
λ=0

= 0 < kTRth
s

∣∣∣
λ=0

and kTRth
s

∣∣∣
λ=1

< θ (r + πp) <

kTRth
i + kTRth

j

∣∣∣
λ=1

and the continuity of kTRth
s in λ.

A.2 Lemmas

Lemma 1

Proof. Note that the zTR
i (ki) is strictly increasing in ki; furthermore, zTR

i (0) = 0. Thus, there is a
unique value kTR

i > 0 such that zTR
i
(
kTR

i
)
= θ (r + πp). Moreover, for each kTR

i there is a unique kTR
j :

kTR
j = (θ − 1) kTR

i + θ (r + πp). With θ > 1, kTR
i > 0 implies kTR

j > 0.

Lemma 2

Proof. First note that, given that given θ > 1, ∂kj/∂ki|zi
> 0 and ∂kj/∂ki|zj

> 0. Moreover, zTRth
i

(
0, k j

)
implies k j < 0 and zTRth

j
(
0, k j

)
implies k j > 0. Then, to get a single crossing (equilibrium) it suffices

to show that ∂kj/∂ki|zi
> ∂kj/∂ki|zj

holds for any ki > 0. Differentiating zTRth
i with respect to ki:

1 +
πκi
λ2 k

1
θ−1
i − (θ − 1)

∂k j

∂ki
= 0,

therefore

∂k j

∂ki

∣∣∣∣
zi

=
1 + πκi

λ2 k
1
θ−1
i

θ − 1
>

1
θ − 1

; ∀ki > 0.

Differentiating zTRth
j with respect to ki:

∂k j

∂ki

∣∣∣∣
zj

=
θ − 1

1 +
πκjk

1
θ
−1

j
1−ω

< θ − 1; ∀ki > 0.

Then, given that θ < 2, ∂kj/∂ki|zi
> (θ − 1)−1 > θ − 1 > ∂kj/∂ki|zj

, which implies that zi and zj have a

single crossing (kTRth
i , kTRth

j ) inR2
+.

Lemma 3

Proof. Taking the derivatives of zTRth
i and zTRth

j with respect to λ and rearranging terms on respec-
tively gets:

∂kTRth
i
∂λ

(
1 +

πκi
λ2 k

TRth 1
θ−1

i

)
− (θ − 1)

∂kTRth
j

∂λ
= −θπ

(
k

TRth 1
θ

i

)
∂
(
κi/λ2)
∂λ

,
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and

∂kTRth
j

∂λ
=

θ − 1

1 + πκj

(
kTRth

j

) 1
θ−1

∂kTRth
i
∂λ

;

using the latter in the former and rewriting

∂kTRth
i
∂λ

=
−θπ

(
kTRth

i

) 1
θ ∂(κi/λ2)

∂λ

1 + πκi
λ2

(
kTRth

i
) 1

θ−1 − (θ−1)2

1+πκj

(
kTRth

j

) 1
θ
−1

> 0.

The sign follows from both the numerator and the denominator being positive. From the definition

of κi,
κi
λ2 is decreasing in λ, while 1 > (θ − 1)2

(
1 + πκi

(
kTRth

i

) 1
θ−1
)−1

for any θ ∈ (1, 2). Using this

and ∂kTRth
j /∂λ, θ > 1 implies ∂kTRth

j /∂λ > 0. That is, as λ increases kTRth
i and kTRth

j increase.

Lemma 4

Proof. Taking the derivatives of zTRth
i and zTRth

j with respect to λ and rearranging terms one respec-
tively gets:

∂kTRth
i
∂λ

=
θ − 1

1 + πκi
(
kTRth

i
) 1

θ−1

∂kTRth
j

∂λ
,

and

∂kTRth
j

∂λ

(
1 +

πκj

λ2 (1−ω)

(
kTRth

j

) 1
θ−1
)
− (θ − 1)

∂kTRth
i
∂λ

= 2
θπκj

λ3 (1−ω)

(
kTRth

j

) 1
θ ;

using the former in the latter and rewriting

∂kTRth
j

∂λ
=

2
θπκj

λ3(1−ω)

(
kTRth

j

) 1
θ

1 + πκi
λ2(1−ω)

(
kTRth

j

) 1
θ−1
− (θ−1)2

1+πκi(kTRth
i )

1
θ
−1

> 0.

where the sign of ∂kTRth
j /∂λ follows from θ ∈ (1, 2); ∂kTRth

j /∂λ > 0, together with θ > 1, implies
∂kTRth

i /∂λ > 0. That is, as λ increases both kTRth
i and kTRth

i increase.
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