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Abstract 
 
In many markets, sellers advertise their good with an asking price. This is a price at which the 
seller will take his good off the market and trade immediately, though it is understood that a 
buyer can submit an offer below the asking price and that this offer may be accepted if the seller 
receives no better offers. We construct an environment with a few simple, realistic ingredients 
and demonstrate that, by using an asking price, sellers both maximize their revenue and 
implement the efficient outcome in equilibrium. We provide a complete characterization of this 
equilibrium and use it to explore the implications of this pricing mechanism for transaction 
prices and allocations. 
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1 Introduction

In this paper, we consider an environment in which a trading mechanism that we call an asking
price emerges as an optimal way of coping with certain frictions. In words, an asking price is
a price at which a seller commits to taking his good off the market and trading immediately.
However, it is understood that a buyer can submit an offer below the asking price and this offer
could potentially be accepted if the seller receives no better offer.1 Though asking prices are
prevalent in a variety of markets, they have received relatively little attention in the academic
literature. We construct an environment with a few simple, realistic ingredients and demonstrate
that using an asking price is both revenue-maximizing and efficient, i.e., sellers optimally choose
to use the asking price mechanism and, in equilibrium, the asking prices they select implement the
solution to the planner’s problem. We provide a complete characterization of this equilibrium and
explore the implications of this pricing mechanism for transaction prices and allocations.

At first glance, one might think that committing to an asking price would be sub-optimal from
a seller’s point of view. After all, the seller is not only placing an upper bound on the price that
a buyer might propose, he is also committing not to meet with any additional prospective buyers
once the asking price has been offered. Hence, when a buyer purchases the good at the asking
price, the seller has forfeited any additional rents that either this buyer or other prospective buyers
were willing to pay. And yet, an asking price seems to play a prominent role in the sale of many
goods (and services). Hence, a natural question is: how and why can this mechanism be optimal?

Loosely speaking, our answer requires two ingredients. First, the sellers in our environment
compete to attract buyers. In particular, in contrast to the large literature that studies the perfor-
mance of various trading mechanisms (e.g., auctions) when the number of buyers is fixed, we
assume that there are many sellers, each one posts (and commits to) the process by which their
good will be sold, and buyers strategically choose to visit only those sellers who promise the max-
imum expected payoff. Thus, in our framework, the number of buyers at each seller is endogenous
and responds to the mechanism that the seller posts. The second ingredient is that the goods for
sale are inspection goods and inspection is costly: though all sellers’ goods appear ex ante iden-
tical, in fact each buyer has an idiosyncratic (private) valuation for each good which can only be
learned through a process of costly inspection.

Intuitively, when buyers have to incur a cost to learn their valuation and trade, a natural tension
arises. Ceteris paribus, a seller wants to maximize the number of buyers who inspect his good and

1What we call an asking price goes by several other names as well, including an “offering price” (as in the sale
of a company), a “list price” (as in the sale of houses and cars), or a “buy-it-now” or “take-it” price (as in certain
online marketplaces). In many classified advertisements, what we call an asking price often comes in the form of a
price followed by the comment “or best offer.” Though the terminology may differ across these various markets, along
with the fine details of how trade occurs, we think our analysis identifies an important, fundamental reason that sellers
might find this basic type of pricing mechanism optimal.
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the offers that these buyers make. However, without any device to limit the number of buyers or the
offers they make, buyers might be hesitant to approach such a seller, as the cost of inspecting the
good could outweigh the potential benefits of discovering their valuation and trying to outbid the
other buyers. Instead, buyers would only incur the up-front costs of inspection if they are assured
a reasonable chance of actually acquiring the good at a reasonable price.

We show that, by setting an asking price, sellers can provide buyers with this assurance. For
one, an asking price implements a stopping rule, allocating the good to the first buyer who has a
sufficiently high valuation, and sparing the remaining potential buyers from inspecting the good
“in vain.” In this sense, the asking price mechanism in our model serves as a promise by sellers
not to waste the buyers’ time and energy when they have only a small chance of actually getting
the good. Moreover, by committing to sell at a particular price, a seller who uses an asking price
is also assuring potential buyers that they will receive some gains from trade in the event that they
discover a high valuation. For these reasons, sellers have a strong incentive to use an asking price
when they are selling inspection goods.

However, in the absence of competition, sellers also have a strong incentive to charge buyers
a fee to inspect their good, extracting all of the additional surplus they created by eliminating
inefficient inspections. This is where our second ingredient is important: we show that, in an
environment in which sellers compete to attract buyers, the optimal fee is, in fact, zero. Thus, in an
environment with these two ingredients, sellers maximize profits by posting a simple mechanism,
composed of one asking price for all buyers, and no fees, side payments, or other rarely observed
devices. Moreover, the asking price that sellers choose ultimately maximizes the expected surplus
that they create, so that equilibrium asking prices implement the planner’s solution.

Having provided the rough intuition, we now discuss our environment and main results in
greater detail. As we describe explicitly in Section 2, we consider a market with a measure of
sellers, each endowed with one indivisible good, and a measure of buyers who each have unit
demand. Though goods appear ex ante identical, each buyer has an idiosyncratic valuation for
each good and this valuation can only be learned through a costly inspection process. We assume
that sellers have the ability to communicate ex ante (or “post”) how their good is going to be sold,
and buyers can observe what each seller posts and visit the seller that offers the highest expected
payoff. The search process, however, is frictional: each buyer can only visit a single seller and he
cannot coordinate this decision with other buyers. As a result, the number of buyers to arrive at
each seller is a random variable with a distribution that depends on what the seller posted.

As a first step, in Section 3 we characterize the solution to the problem of a social planner
who maximizes total surplus, subject to the frictions described above—in particular, the search
frictions and the requirement that a buyer’s valuation is costly to learn. The solution has three
properties. First, the planner instructs buyers to randomize evenly across sellers. Second, once a
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random number of buyers arrive at each seller, the planner instructs buyers to undergo the costly
inspection process sequentially, preserving the option to stop after each inspection and allocate the
good to one of the buyers who have learned their valuation. Finally, we characterize the optimal
stopping rule for this strategy and establish that it is stationary; that is, it depends on neither the
number of buyers who have inspected the good nor the realization of their valuations.

Next, we move on to our main contribution: we consider the decentralized economy where
sellers use an asking price mechanism, characterize the equilibrium, and study its efficiency prop-
erties. Given the nature of the planner’s optimal trading protocol, the asking price mechanism is a
natural candidate to implement the efficient outcome. First, since buyers’ valuations are privately
observed, the asking price provides sellers a channel to elicit information about these valuations.
Second, since the asking price triggers immediate trade, it implements a stopping rule, thus pre-
venting additional buyers from incurring the inspection cost when the current buyer draws a suffi-
ciently high valuation. Finally, since the seller also allows bids below the asking price, he retains
the option to recall previous offers in which there was a positive match surplus.

These features are captured by the following game, which we study in Section 4. First, sellers
post an asking price, which all buyers observe. Given these asking prices, each buyer then chooses
to visit the seller (or mix between sellers) offering the maximal expected payoff. Once buyers arrive
at their chosen seller, they are placed in a random order. Buyers are told neither the number of other
buyers who have arrived, nor their place in the queue.2 The first buyer incurs the inspection cost,
learns his valuation, and can either purchase the good immediately at the asking price or submit
a counteroffer. If he chooses the former, trade occurs and all remaining buyers at that particular
seller neither inspect the good nor consume. If he chooses the latter, the seller moves on to the
second buyer (if there is one) and the process repeats until either the asking price is offered or the
queue of buyers is exhausted, in which case the seller can accept the highest offer he has received.

We derive the optimal bidding behavior of buyers and the optimal asking prices set by sellers,
characterize the equilibrium, and show that it coincides with the solution to the planner’s problem.
The fact that our asking price mechanism can implement the efficient allocation is surprising for
a number of reasons, as we discuss at the end of Section 4. Chief among them, implementing the
planner’s allocation requires achieving efficiency along two margins: the allocation of the good
after buyers arrive, along with the number of buyers that arrive to begin with. However our asking
price mechanism affords sellers only a single instrument that controls both margins; the asking
price determines both the ex-post allocation of the good (by implementing a stopping rule) and the
ex-ante expected number of buyers (by specifying the division of the expected surplus).

After establishing that the asking price mechanism implements the solution to the planner’s
problem, we ask whether sellers would indeed choose to use the asking price mechanism, or if

2As we discuss below, we consider the information made available to buyers to be an endogenous feature of the
pricing mechanism.
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there exists an alternative mechanism that could potentially increase sellers’ profits. To address
this question, in Section 5 we consider a similar environment to the one described above, but we
allow sellers to select from a more general set of mechanisms. In doing so, we are essentially pro-
viding sellers with the option to choose a trading protocol from a large set of extensive form games,
in which they are free to make different specifications about the sequence of events, the strategies
available to buyers under various contingencies, and even the information that buyers have when
they select from these strategies.3 In this more general environment, we establish that the asking
price mechanism we study in Section 4 maximizes a seller’s payoff, regardless of the mechanisms
posted by other sellers. As a consequence, there always exists an equilibrium in which all sellers
use the asking price mechanism described above. Moreover, while other equilibria can exist, they
are all payoff-equivalent; in particular, sellers can do no better than they do in the equilibrium with
asking prices. Finally, we show that any mechanism that emerges as an equilibrium in this envi-
ronment will resemble the asking price mechanism along most important dimensions. Therefore,
though we cannot rule out potentially complicated mechanisms that also satisfy the equilibrium
conditions, the fact that asking prices are both simple and commonly observed suggests that they
offer a compelling way to deal with the frictions in our environment.

In Section 6, we flesh out just a few of the model’s implications for a variety of observable
outcomes. In particular, we study how the asking prices set by sellers, and the corresponding
distribution of transaction prices that occur in equilibrium, depend on features of the environment,
such as the ratio of buyers to sellers, the degree of ex ante uncertainty in buyers’ valuations, and
the costs of inspecting the good.

In Section 7, we discuss a few key assumptions and potential extensions of our framework. One
particularly noteworthy exercise is showing that a simple variation of our asking price mechanism
would produce a distribution of transaction prices that occur below the asking price, a mass point
of transactions that occur at the asking price, and additional transactions that occur above the
asking price. This variation, which preserves all of the normative properties reported above, could
be an important step towards understanding, e.g., real estate transactions, which sometimes occur
above the asking price. Section 8 concludes, and the Appendix contains all proofs.

Related Literature. We contribute to the literature along two dimensions. The first is norma-
tive: we show that our asking price mechanism is both revenue-maximizing and efficient in an

3Indeed, the mechanisms that are available to sellers range from “plain vanilla” pricing schemes—such as auctions,
price-posting with rationing, multilateral bargaining games, etc.—to much more complicated games, in which the
rules and sequence of play, as well as the information made available to the players, could depend on the number of
buyers who arrive at a seller, an individual buyer’s place in the queue, the behavior of other buyers, and so on. In
short, perhaps the only relevant type of trading mechanism that we do not allow are those that depend on the trading
mechanisms posted by other sellers, which is standard in this literature; such collusive behavior would seem to violate
the competitive spirit that motivates our analysis.
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environment with two simple ingredients. The second is positive: we provide a rationale for the
use of asking prices and explore the implications for equilibrium prices and allocations. Below, we
compare our normative and positive results, respectively, with the existing literature.

As mentioned above, implementing the planner’s allocation requires achieving efficiency along
two margins. First, a seller’s mechanism has to induce socially efficient search behavior by buyers;
this requires that each buyer’s ex ante expected payoff is equal to his marginal contribution to
the expected surplus at that seller. Second, a seller’s mechanism must maximize the surplus after
buyers arrive; that is, the mechanism must ensure that the ex post allocation of the good is efficient.
These two margins have been studied extensively in separate literatures.

The first margin is a critical object of interest in the literature on competitive (or directed)
search, such as Moen (1997), Burdett et al. (2001), Acemoglu and Shimer (1999), and Julien
et al. (2000), to name a few. While these papers find that the market equilibrium decentralizes
the planner’s solution, their results do not extend to our environment. The reason is that, in these
papers, the size of the surplus after buyers arrive at a seller is independent of the pricing mecha-
nism. Hence, a simple mechanism (e.g., a single price) can control the division of the expected
surplus in an arbitrarily flexible way without any ramifications for ex post efficiency. Therefore,
within this literature, the papers that are most related to our work are McAfee (1993), Peters and
Severinov (1997), Burguet and Sákovics (1999), Eeckhout and Kircher (2010), Virág (2010), Kim
and Kircher (2015), Albrecht et al. (2012), and Lester et al. (2015), who consider environments
where the pricing mechanism that is posted does effect the size of the surplus after buyers arrive.
However, in these papers the ex post efficient allocation of the good is typically fairly trivial, and
hence can be implemented with a simple, simultaneous mechanism (like an auction with no reserve
price). In contrast, our model—where buyers incur a cost to learn their valuation—requires that
we consider a competitive search model where sellers post sequential mechanisms; to the best of
our knowledge, this is the first paper to do so.

Sequential mechanisms have received much more attention in the literature that focuses on
the second margin highlighted above but abstracts from the first margin, i.e., the literature that
studies the allocation of a good when a monopolist seller faces a fixed number of buyers who can
learn their valuation at a cost. Within this literature, the paper that is closest to ours is Crémer
et al. (2009). Indeed, in our environment, the problem that each seller faces after buyers arrive is
analyzed as a special case in their paper (Section 3.3). They show that, in this setting, the seller
optimally selects a sequential mechanism that requires a series of different take-it-or-leave-it offers
and participation fees, both of which may vary according to the number and realizations of previous
bids (also see Burguet, 1996).4 In a similar environment, Bulow and Klemperer (2009) ignore the

4Crémer et al. (2009) also consider richer environments, with various types of heterogeneity. As we discuss below,
our asking price mechanism remains optimal after introducing some, but not all types of heterogeneity. For example,
if buyers had different inspection costs, as in the general case studied by Crémer et al. (2009), then sellers would want
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optimal mechanism and instead focus on two “plain vanilla” mechanisms: a simultaneous auction
and a simple sequential mechanism. Choosing between these two mechanisms, they show, involves
a trade-off between revenue-maximization and efficiency.5

In contrast to these papers, the mechanism we consider is relatively simple, and yet the trade-
off in Bulow and Klemperer (2009) does not arise; the asking price is both revenue-maximizing
and efficient.6 The reason for this difference is twofold. First, it turns out that the information
made available to buyers has important effects on the structure of the optimal mechanism. Crémer
et al. (2009) and Bulow and Klemperer (2009) assume that prospective buyers observe the behavior
of previous bidders who have entered the mechanism, which implies that the optimal mechanism
offers different asking prices (and charges different fees) to each buyer who inspects the good. We
allow the sellers in our model to control what information is available to buyers, and they choose
not to reveal information about previous bidders. This change alone implies that sellers would set
the same asking price for all buyers, albeit with an admission fee attached. The second reason
our results are different is that the number of buyers who can potentially inspect a seller’s good is
exogenous in the papers cited above, whereas in our model it is the endogenous outcome of a game
in which sellers compete for buyers. In this competitive setting, as we noted earlier, admission fees
are driven to zero in equilibrium.7

Turning to the positive results, our explanation is obviously not the only reason why asking
prices might be useful.8 For one, if buyers are risk averse, an asking price can reduce the uncer-
tainty an individual buyer faces in certain types of auctions, and hence introducing this mechanism
can increase a seller’s revenues; see Budish and Takeyama (2001), Mathews (2004), or Reynolds
and Wooders (2009). A second explanation for asking prices, which also assumes that buyers incur
a cost to learn their valuation, is proposed by Chen and Rosenthal (1996) and Arnold (1999). In
these papers, a holdup problem emerges when a buyer and seller bargain over the price after the
buyer incurs the inspection cost. An asking price is treated as a ceiling on the bargaining outcome
and thus partially solves the holdup problem, providing an ex ante guarantee that the buyer will
receive some rents. Our paper is similar in that we also study how a seller’s commitment to a

to use additional devices in order to influence the order in which different types of buyers inspected the good.
5See also Schmitz (2003).
6Interestingly, the asking price mechanism in our model convexifies, in a way, the binary choice between these two

pricing schemes; as we discuss below, one can interpret our mechanism in such a way that the asking price determines
the probability of having an auction (after all buyers have inspected the good) as opposed to a sequential sale.

7In a different environment, Peters (2001) also finds that sellers who would charge positive admission fees in
a monopolistic setting choose not to charge fees in a competitive setting. A similar insight emerges from models
that study the problem of a single seller who selects a mechanism, and a large number of buyers who can choose to
participate in the mechanism at a cost; see, e.g., Engelbrecht-Wiggans (1987), McAfee and McMillan (1987), and
Levin and Smith (1994). The only difference is that the “cost” to a buyer from visiting a seller in a competitive search
model is the opportunity cost of not visiting other sellers, which is an equilibrium object, while the cost of participating
in these models with one seller is an explicit entry cost, which is exogenous.

8Lester (2015) provides a more detailed discussion of existing explanations for asking prices.
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pricing mechanism can induce buyers to inspect when they otherwise would not. However, there
are a number of important differences, too: in our model, a seller’s pricing decision also affects the
number of buyers who arrive to inspect the good and the allocation of the good after inspections
occur. Moreover, we show that an asking price is optimal for sellers given almost any mechanism
one could imagine, while it’s not clear in Chen and Rosenthal (1996) whether the mechanism they
consider is the best way to solve the holdup problem they describe.9

A trading mechanism that bears some resemblance to an asking price can also emerge if it is
costly for sellers to meet with each buyer, as in McAfee and McMillan (1988). In this case, a
seller’s asking price serves as a commitment device to keep meeting with buyers until a sufficiently
high bid has been received, despite an incentive ex post to stop earlier. This price is playing the
opposite role as the asking price in our model; according to our explanation, asking prices serve as
a promise to stop sampling after a sufficiently high bid, despite an incentive ex post to continue.10

Finally, asking prices may serve as a device to signal sellers’ private information. For exam-
ple, in Albrecht et al. (2016), sellers with heterogeneous reservation values use asking prices to
signal their type, which allows for endogenous market segmentation. We view this line of research
as complementary to our own; certainly the ability of asking prices to signal a seller’s private
information, which we ignore, is important.11

2 The Environment

Players. There is a measure θb of buyers and a measure θs of sellers, and Λ = θb/θs denotes the
ratio of buyers to sellers. Buyers each have unit demand for a consumption good, and sellers each
possess one, indivisible unit of this good. All agents are risk-neutral and ex ante homogeneous.

Search. Buyers can visit a single seller in attempt to trade. As is standard in the literature,
frictions arise because buyers must use symmetric strategies. As a result, the number of buyers to

9More generally, the various theories described above all consider the problem of a seller in isolation. Therefore,
though each one certainly captures a significant component of what asking prices do, they also abstract from something
important: the fact that buyers can observe and compare multiple asking prices at once is not only realistic in many
markets, but also seems to be a principal consideration when sellers are determining their optimal pricing strategy.

10To be more precise, McAfee and McMillan (1988) consider a procurement auction in which a buyer meets with
a sequence of sellers and each meeting is costly to the buyer; this is equivalent to our environment with the seller
incurring the cost of each meeting. Switching which party bears the inspection cost not only changes the entire
rationale for an asking price, as described above, but it also changes the nature of the revenue-maximizing mechanism;
the solution to our model with this alternative cost structure is available upon request.

11Menzio (2007), Delacroix and Shi (2013), and Kim and Kircher (2015) also study the signalling role of prices in
directed search equilibria. However, in papers like Albrecht et al. (2016) and Menzio (2007), asking prices are not
uniquely determined, and hence these models are somewhat limited in their ability to draw positive implications about
the relationship between asking prices, transaction prices, and market conditions.
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arrive at each seller, n, will be distributed according to a Poisson distribution.12 As is customary in
the literature on directed (or competitive) search, we will refer to the expected number of buyers
to arrive at a particular seller as the “queue length,” which we denote by λ. As we describe in
detail below, the queue length at each seller will be an endogenous variable, determined by the
equilibrium behavior of buyers and sellers.

Preferences. All sellers derive utility y from consuming their own good, and this valuation is
common knowledge. A buyer’s valuation for any particular good, on the other hand, is not known
ex ante. Rather, once buyers arrive at a particular seller, they must inspect the seller’s good in
order to learn their valuation, which we denote by x. We assume that each buyer’s valuation is
an iid draw from a distribution F (x) with support in the interval [x, x], and that the realization of
x is the buyer’s private information. We assume, for simplicity, that y ∈ [x, x] . This is a fairly
weak assumption; the probability that a buyer’s valuation x is smaller than y can be driven to zero
without any loss of generality. Moreover, much of the analysis remains similar when y < x, though
the algebra is slightly more involved.

Inspection Costs. After a buyer arrives at a seller, we assume that he must pay a cost k in order to
learn his valuation x. Such costs come in many forms, both explicit (i.e., paying for an inspection)
and implicit (i.e., the time it takes to learn one’s valuation); we use k to capture all of these costs.13

We restrict our attention to the region of the parameter space in which the cost of inspecting
the good does not exhaust the expected gains from trade. In particular, we assume that

k <

∫ x

y

(x− y) f(x)dx. (1)

Note that the inequality in (1) does not necessarily imply that a buyer would always choose to
inspect the good. In what follows, we will assume that a buyer indeed does have incentive to
inspect the good before attempting to purchase it, and in Section 7 we derive a sufficient condition
to ensure that this is true in equilibrium.

12The restriction to symmetric strategies is often motivated by the observation that coordination among agents in a
large market seems fairly implausible. Under these restrictions, the number of buyers to arrive at a particular seller
follows a binomial distribution when the number of agents is finite, and converges to the Poisson distribution as the
number of buyers and sellers tends to infinity. See, e.g., Burdett et al. (2001).

13For example, suppose the goods are houses that are roughly equivalent along easily describable dimensions (size,
neighborhood, and so on). However, each home has idiosyncratic features that make them more or less attractive to
prospective buyers, and these features are only revealed upon inspection; e.g., a family with young children may want
to see if the owners of nearby homes also have young children. Quite often, learning one’s true valuation requires more
than a quick tour; e.g., an individual who needs to build a home office may hire an architect to estimate how much it
will cost. All of these activities are costly, either because they take time or because they require explicit expenditures.
Similar costs—of various magnitudes—exist for purchasing a car, renting an apartment, or even hiring an accountant.
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Gains from Trade. When n buyers arrive at a seller, the trading protocol in place will determine
how many buyers i ≤ nwill have the opportunity to inspect the good before exchange (potentially)
occurs. We normalize the payoff for a buyer who does not inspect, and thus does not trade, to zero.
Therefore, if a buyer with valuation x acquires the good after the seller has met with i buyers, the
net social surplus from trade is x− y − ik. Alternatively, if the seller retains the good for himself
after i inspections, the net social surplus is simply −ik.

3 The Planner’s Problem

In this section, we will characterize the decision rule of a (constrained) benevolent planner whose
objective is to maximize net social surplus, subject to the constraints of the physical environment.
These constraints include the frictions inherent in the search process, as well as the requirement
that buyers’ valuations are costly to learn.

The planner’s problem can be broken down into two components. First, the planner has to
assign queue lengths of buyers to each seller, subject to the constraint that the sum of these queue
lengths across all sellers cannot exceed the total measure of available buyers, θb. Second, the
planner has to specify the trading rules for agents to follow after the number of buyers that arrive
at each seller is realized. We discuss these specifications in reverse order.

Optimal Trading Protocol. Suppose n buyers arrive at a seller. As is well-known in the liter-
ature (see e.g. Lippman and McCall, 1976; Weitzman, 1979; Morgan and Manning, 1985), it is
optimal in this case for the planner to let buyers inspect the good sequentially, and to assign the
good immediately whenever a buyer’s valuation exceeds a cutoff, x∗, which equates the marginal
cost of an additional inspection with the marginal benefit. Importantly, note that the cutoff does
not depend on the total number of buyers n, the number of buyers who have inspected the good so
far i, or the history of valuations (x1, ..., xi). The following lemma formalizes this result.

Lemma 1. Suppose n ∈ N buyers arrive at a seller. Letting x∗ satisfy

k =

∫ x

x∗
(x− x∗)f(x)dx, (2)

the planner maximizes social surplus by implementing the following trading rule:

(i) If n > 1 and i ∈ {1, 2, ..., n−1}, the seller should stop meeting with buyers and allocate the
good to the agent with valuation x̂i ≡ max{y, x1, ..., xi} if, and only if, x̂i ≥ x∗. Otherwise,
the seller should meet with the next buyer.

(ii) If n=1 or i = n, the seller should allocate the good to the agent with valuation x̂n.
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Optimal Queue Lengths. We now turn to the optimal assignment of queue lengths across sellers,
given the optimal trading protocol once buyers arrive. Notice immediately that the planner’s cutoff
x∗ is not only independent of the number of buyers, n, but also independent of λ, which governs the
distribution over n. The reason is that the optimal stopping rule, on the margin, balances the costs
and expected gains of additional meetings, conditional on the event that there are more buyers
in the queue. The probability of this event, per se, is irrelevant: since the seller neither incurs
additional costs nor forfeits the right to accept any previous offers if there are no more buyers in
the queue, the probability distribution over the number of buyers remaining in the queue—and thus
λ—does not affect the planner’s choice of x∗.

Let S (xp, λ) denote the expected surplus generated at an individual seller whom the planner
assigns a cutoff xp and a queue length λ. To derive this function, it will be convenient to define

qi(x;λ) =
λi (1− F (x))i

i!
e−λ(1−F (x)). (3)

In words, qi(x;λ) is the probability that a seller is visited by exactly i buyers, all of whom happen
to draw a valuation greater than x (when all buyers’ valuations are learned). In what follows, we
will suppress the argument λ for notational convenience.

The net surplus generated at a particular seller is equal to the gains from trade, less the inspec-
tion costs. To derive the expected gains from trade at a seller with cutoff xp and queue length λ,
first suppose that n buyers arrive at this seller. There are three relevant cases. First, with probability
F (y)n all n buyers draw valuation x < y, in which case there are no gains from trade. Second, with
probability F (xp)n−F (y)n, the maximum valuation among the n buyers is a value x ∈ (y, xp), in
which case the gains from trade are x − y. Note that the conditional distribution of this maximal
valuation x has density [nF (x)n−1f(x)] / [F (xp)n − F (y)n]. Finally, with probability 1−F (xp)n,
at least one buyer has valuation x ≥ xp. In this case, the seller trades with the first buyer he en-
counters with a valuation that exceeds xp; this valuation is a random drawn from the conditional
distribution f(x)/ [1− F (xp)]. Taking expectations across values of n, the gains from trade at a
seller with cutoff xp and queue length λ, in the absence of inspection costs, are

∞∑
n=1

e−λλn

n!

{∫ xp

y

(x− y)nF (x)n−1f(x)dx+ [1− F (xp)n]

∫ x

xp
(x− y)

f(x)

1− F (xp)
dx

}
=

∫ xp

y

(x− y)λq0 (x) f(x)dx+ [1− q0 (xp)]

∫ x

xp
(x− y)

f(x)

1− F (xp)
dx. (4)

Now consider the expected inspection costs incurred by buyers at a seller with cutoff xp and
queue length λ. If a buyer arrives at a seller along with n other buyers, he will occupy the (i+ 1)th

spot in line, for i ∈ {0, ..., n}, with probability 1/(n + 1). In this case, he will get to meet with
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the seller only when all buyers in spots 1, ..., i draw x < xp, which occurs with probability F (xp)i.
Taking expectations over n implies that the ex ante probability that each buyer gets to meet with a
seller with queue length λ, given a planner’s cutoff of xp, is

∞∑
n=0

e−λλn

n!

{
n∑
i=0

F (xp)i
1

n+ 1

}
=

1− q0(xp)

λ [1− F (xp)]
. (5)

Note that this probability approaches one as xp goes to x̄ from below. Moreover, since the expected
number of buyers to arrive at this seller is λ, the total expected inspection cost incurred by all buyers
is simply

(
[1− q0(xp)] / [1− F (xp)]

)
k.

Using the results above, the expected surplus generated by a seller with queue length λ and
stopping rule xp can be written as

S (xp, λ) =

∫ xp

y

(x− y)λq0 (x) f(x)dx+
1− q0(xp)

1− F (xp)

[∫ x

xp
(x− y)f(x)dx− k

]
. (6)

Given the optimality of xp = x∗ for any λ, the objective of the planner is then to choose queue
lengths at each seller, λj for j ∈ [0, θs], to maximize total surplus

∫ θs
0
S(x∗, λj)dj subject to the

constraint that
∫ θs

0
λjdj = θb. In the following lemma, we establish an important property of the

surplus at a particular seller when the optimal trading rule is in place.

Lemma 2. S(x∗, λ) is strictly concave with respect to λ.

Two factors contribute to the concavity of S(x∗, λ) in λ. First, as is standard in models of
directed search, the probability that a seller trades is concave in the queue length. This force
alone typically implies that the planner assigns equal queue lengths across (homogeneous) sellers.
However, in our environment there is an additional force, since the ex post gains from trade are
also concave in the number of buyers that arrive: each additional buyer is less likely to meet the
seller and, conditional on meeting, is less likely to have a higher valuation than all previous buyers.

The Solution to the Planner’s Problem. Taken together, lemmas 1 and 2 are sufficient to estab-
lish that the planner maximizes total surplus by assigning equal queue lengths across all sellers, so
that λj = Λ for all j. The following proposition summarizes the planner’s solution.

Proposition 1. The unique solution to the planner’s problem is to assign equal queue lengths Λ to
each seller. After buyers arrive, the planner lets buyers inspect the good sequentially and assigns
the good immediately whenever a buyer’s valuation exceeds x∗. When all valuations are below x∗

and the queue is exhausted, the planner assigns the good to the agent with the highest valuation.
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4 The Decentralized Equilibrium

In this section, we introduce a method of price determination that we call an “asking price mecha-
nism.” We characterize the equilibrium when sellers use this mechanism, establish that this decen-
tralized equilibrium coincides with the solution to the planner’s problem, and discuss our results.

Asking Price Mechanism. An asking price mechanism, or APM, has two components: an ask-
ing price and a specific protocol that occurs after an arbitrary number of buyers arrive. Suppose a
seller has posted an asking price a and n buyers arrive. The APM dictates that the seller will meet
buyers one at a time, with each successive buyer being chosen randomly from the set of remaining
buyers, until one buyer bids the asking price or all buyers are met. During a meeting, a buyer incurs
the inspection cost k, learns his valuation x, and submits a bid b. Importantly, when a buyer bids,
he knows neither the number of other buyers at the seller, n− 1, nor his place in the queue.14

If the buyer bids b ≥ a, his bid is accepted immediately and trade ensues; the asking price a
is the price at which the seller commits to selling his good immediately (and subsequently stops
meeting with other buyers). If b < y, then the bid is rejected and the seller moves to the next buyer.
Finally, if b ∈ [y, a), then the bid is neither rejected nor immediately accepted. Instead, the seller
registers the bid and proceeds to meet the next buyer in line (if there is one). Again, the next buyer
incurs the cost k, learns her valuation x, and submits a bid b.

The process described above repeats itself until either the seller receives a bid b ≥ a, or until he
has met with all n buyers. In the latter case, he sells the good to the highest bidder at a price equal
to the highest bid, as long as that bid exceeds his own valuation y. A seller who trades at price b
receives a payoff equal to b, while a seller who does not trade receives payoff y. The payoff to a
buyer who trades at price b is x− b−k. A buyer who meets with a seller but does not trade obtains
a payoff −k. Finally, the payoff of a buyer who does not meet with a seller is equal to zero.

A Buyer’s Strategy and Payoffs. Given an arbitrary distribution of asking prices posted by
sellers, we now describe buyers’ optimal search and bidding strategies. We work backwards,
first deriving buyers’ optimal behavior and payoffs conditional on meeting a seller who posted an
asking price a and attracted a queue λ. Then, given these payoffs, we derive buyers’ optimal search
behavior, which determines the queue length λ that corresponds to each asking price a.

To derive buyers’ behavior and payoffs after arriving at a seller, it’s helpful to note that the
APM described above is equivalent to a mechanism in which buyers are randomly placed in line;
each buyer is sequentially offered the opportunity to purchase the good at the asking price a, in

14Note that the information available to the buyers should be viewed as a feature of the mechanism. Since we
establish below that this mechanism is optimal, it follows that sellers have no incentive ex ante to design a mechanism
in which buyers can observe either n or their place in the queue.
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which case trade occurs immediately; and, if no buyer chooses to pay the asking price, the good is
allocated according to a first-price sealed-bid auction, where buyers are not told how many other
buyers are also participating in the auction. As we will see, this alternative interpretation is helpful
because it allows us to draw upon well-known results in the auction theory literature.15

We conjecture, and later confirm, that there exists a cutoff, which we denote xa, such that
buyers with valuation xa are exactly indifferent between paying the asking price and waiting to
(perhaps) participate in an auction. Therefore, if a buyer draws valuation x ≥ xa, he will pay a and
trade immediately. Otherwise, if x < xa, he will decline and take his chances with the auction.

To derive this cutoff, consider a buyer who has incurred the (sunk) cost k and discovered that
his private valuation is x at a seller who has posted an asking price a and has an expected queue
length λ, when all other buyers are using a cutoff x̃a. To decide whether to accept the asking
price or not, the buyer needs to form beliefs about both the probability that the auction will take
place and the number of other buyers that will be bidding. Note that when the buyer is asked to
inspect, he updates his beliefs regarding both probabilities.16 In particular, conditional on the buyer
meeting the seller (and not paying a), the probability that an auction will take place is

λ (1− F (x̃a))

1− q0(x̃a)
q0(x̃a). (7)

To understand this expression, recall that the probability that a buyer gets to meet a seller is given
by (5) and that an auction takes place if, and only if, none of the buyers in the queue draw a
valuation above x̃a, which happens with (ex ante) probability q0 (x̃a). Applying Bayes’ rule then
yields the expression in (7).

Similar logic can be used to calculate the distribution over the number of competitors that the
buyer will face should an auction occur. The total number of buyers at the seller follows a Poisson
distribution with mean λ. The auction will take place if all of them have a valuation below x̃a,
which happens with probability F (x̃a)n. Hence, conditional on reaching an auction, the number
of competitors equals n with probability

e−λ
λn

n!

F (x̃a)n

q0 (x̃a)
= e−λF (x̃a) (λF (x̃a))n

n!
. (8)

15This observation is also helpful because it implies that we can replace the first-price auction with any revenue-
equivalent auction without changing any of the substantive results below. In most markets, we think the first-price
auction most closely resembles the actual method of price determination. However, in Section 7, we explore the
implications of using a second-price (ascending bid) auction instead, and argue that this alternative can help rationalize
transaction prices above the asking price.

16In other words, the very act of meeting the seller and inspecting the good is informative, since inspecting the good
requires that no previous buyer drew a valuation above x̃a. In particular, after inspecting the good, a buyer’s posterior
belief that many buyers arrived at the seller falls, and he believes it is more likely that he will be competing against
relatively few other buyers.
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In Lemma 3, below, we use these probabilities to characterize the buyer’s optimal bidding strategy
and expected payoff should he choose not to pay the asking price, conditional on the asking price
a, the queue length λ, and the cutoff x̃a being chosen by other buyers. To do so, it will be helpful
to define the bidding strategy

b̂(x) = x−
∫ x
y
q0 (x′) dx′

q0 (x)
. (9)

Lemma 3. Consider a buyer who arrives at a seller with asking price a and queue length λ, and
suppose all other buyers bid b̂(x) if x ≤ x̃a and pay the asking price a if x > x̃a, for some
x̃a ∈ [y, x]. If the buyer discovers a valuation x ∈ [y, x] and chooses not to pay the asking price,
the optimal bidding strategy is b̂(x) for all x ≤ x̃a and b̂ (x̃a) for all x > x̃a. The ex ante expected
payoff from following this strategy is

u(x; x̃a) =


λ(1−F (x̃a))

1−q0(x̃a)

∫ x
y
q0 (x′) dx′ if x ≤ x̃a,

λ(1−F (x̃a))
1−q0(x̃a)

[∫ x̃a
y
q0 (x′) dx′ + q0(x̃a)(x− x̃a)

]
if x > x̃a.

(10)

Note that, since q0(x) is a function of λ, so too are b̂(x) and u(x; x̃a); we have only suppressed
λ for notational convenience. Also note that u(x; x̃a) is continuous and strictly increasing in x,
which confirms our conjecture that buyers follow a threshold strategy.

An equilibrium where buyers play symmetric strategies is thus a threshold xa such that u(xa;xa)

= xa − a. From equation (10), then, xa can be defined by the implicit function

a = xa − λ (1− F (xa))

1− q0(xa)

∫ xa

y

q0 (x) dx. (11)

In the Appendix, we confirm that—so long as the asking price is neither too low nor too high—
there exists a unique xa ∈ (y, x) that satisfies (11), with ∂xa/∂a > 0.

Hence, given any a and λ, the buyer’s optimal bidding function is completely characterized by

b(x) =


0 if x < y

b̂(x) if y ≤ x < xa

a if xa ≤ x,

(12)

where b̂(x) is given by (9) and xa is determined by (11).
Given a buyer’s optimal behavior conditional on meeting the seller, we can calculate the ex

ante expected utility that a buyer receives from visiting a seller who has posted an asking price a
and attracted a queue length λ,

U(a, λ) =
1− q0(xa)

λ (1− F (xa))

[∫ xa

y

u(x;xa)dF (x) +

∫ x

xa
(x− a)dF (x)− k

]
, (13)
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where, in a slight abuse of notation, xa ≡ xa(a, λ) is the implicit function defined in (11).
Given U(a, λ), the optimal search behavior of buyers is straightforward: given the set of ask-

ing prices that have been posted, along with the search decisions of other buyers, an individual
buyer should visit a seller (or mix between sellers) that maximizes U(a, λ). More formally, for an
arbitrary distribution of posted asking prices, let U denote the highest level of utility that buyers
can obtain; as is common in this literature, we will refer to U as the “market utility.” Then, for
any asking price a that has been posted, given the buyers’ optimal threshold and bidding strategy
described above, the queue length λ(a) ≥ 0 must satisfy

U(a, λ(a)) ≤ U, with equality if λ(a) > 0. (14)

According to equation (14), buyers will adjust their search behavior in such a way to make them-
selves indifferent between any seller that they visit with positive probability.17

A Seller’s Strategy and Payoffs. Given the optimal behavior of buyers, we can now characterize
the profit-maximizing asking price set by sellers. As a first step, we use the results above to derive
the expected revenue of a seller who has set an asking price a and attracted queue length λ:

R (a, λ) = q0 (y) y +

∫ xa

y

b̂ (x) dq0(x) + (1− q0 (xa)) a. (15)

Again, note that xa ≡ xa(a, λ) denotes the optimal cutoff for buyers characterized in (11) and b̂(x)

denotes the optimal bidding function characterized in (9). This expression captures the three possi-
ble outcomes for a seller: no buyers arrive with valuation x > y, in which case the seller consumes
his own good; no buyers arrive with valuation x > xa, but at least one buyer has valuation x > y,
in which case the seller accepts the bid placed by the buyer with the highest valuation; or at least
one buyer has a valuation x ≥ xa, in which case the seller receives a payoff a.

Sellers want to maximize expected revenue, taking into account that their choice of the asking
price a will affect the expected number of buyers that will visit them, λ, through the relationship
defined in (14), i.e., U(a, λ) = U . This relationship is akin to a typical demand function: for a
given level of market utility, it defines a downward sloping relationship between the asking price a
seller sets and the number of customers he receives (in expectation). The seller’s problem can thus
be interpreted as a choice over both the asking price and the queue length in order to maximize

17Following the convention in the literature, if, for some a, there exist multiple values of λ such that U(a, λ) = U ,
we assume that a seller can post an equilibrium selection device that yields him the greatest profit; see, e.g., McAfee
(1993) and Eeckhout and Kircher (2010). Note that the equilibrium we characterize below in Proposition 2 survives
even if we relax this assumption; see the proof for additional discussion.
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revenue, subject to (14). The corresponding Lagrangian can be written18

L (a, λ, µ) = R (a, λ) + µ
[
U (a, λ)− U

]
. (16)

Equilibrium. In general, an equilibrium is a distributionG (a, λ) and a market utility U such that
(i) every pair in the support of G is a solution to (16), given U ; and (ii) aggregating queue lengths
across all sellers, given the distribution G and the mass of sellers θs, yields the total measure of
buyers, θb. However, as we establish in the proposition below, in fact there is a unique solution to
(16), and hence G is degenerate. Furthermore, this solution coincides with the planner’s solution,
i.e., the equilibrium is efficient.

Proposition 2. Given assumption (1), the decentralized equilibrium is characterized by

a = a∗ ≡ x∗ − λ (1− F (x∗))

1− q0(x∗)

∫ x∗

y

q0 (x) dx, (17)

xa = x∗, and λ = Λ at all sellers, with buyers receiving market utility U
∗ ≡ U(a∗,Λ). Hence, the

decentralized equilibrium coincides with the solution to the planner’s problem.

Asking Prices and Constrained Efficiency. Before proceeding, we offer a brief discussion of
the result in Proposition 2. Notice immediately that the asking price mechanism we describe has
all the right ingredients to implement the efficient allocation at each seller: it elicits buyers’ private
valuations sequentially, it implements a stationary cutoff rule, and it allows for the seller to trade
with any buyer that has inspected the good (i.e., it allows for perfect recall).

What is less clear is whether the asking price that sellers choose in equilibrium will implement
the efficient cutoff, x∗. The reason is that the choice of a is affecting two margins: the expected
number of buyers who arrive at the seller, λ, and the stopping rule after buyers arrive, xa. One way
to understand these two margins more clearly is to use the relationship

R(a, λ) = S (xa(a, λ), λ)− λU(a, λ)

to rewrite the Lagrangian (16), where xa(a, λ) is defined in (11). Taking first order conditions and
substituting the constraint, (14), we get that profit maximization requires

∂λ

∂a

[
∂S

∂λ
− Ū

]
+
∂S

∂xa
dxa

da
= 0. (18)

18So long as U is sufficiently small, the solution will be interior and hence the first-order conditions of the La-
grangian are necessary. Sufficiency follows from the fact that the unique solution coincides with the planner’s alloca-
tion, as we prove below.
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The first term in (18) represents the seller’s marginal revenue from increasing a, holding the
threshold xa constant. In particular, note that the marginal revenue from an additional buyer, in
expectation, is equal to the additional surplus this buyer creates, ∂S/∂λ, less the “cost” of acquiring
this buyer, U . The second term represents the seller’s marginal revenue from increasing a, holding
the queue length λ constant. Profit maximization, of course, just requires that the sum of the two
terms in (18) is equal to zero. Constrained efficiency, on the other hand, requires that each of the
two terms in (18) is equal to zero: implementing the solution to the planner’s problem requires
both maximizing the surplus after buyers arrive and inducing the right number of buyers to arrive
in the first place. The former requirement demands that ∂S/∂xa = 0, so that the asking price
implements the stopping rule xa = x∗. The latter demands that, in equilibrium, ∂S/∂λ = Ū ,
which is a standard condition for the ex ante efficient allocation of buyers across sellers: it implies
that each buyer receive (in expectation) his marginal contribution to the match.19

A priori, there is no reason to think that one value of a will ensure that both of these conditions
are satisfied. Indeed, since one instrument is affecting two margins, one could easily imagine a
seller being forced to trade off ex post efficiency—so that ∂S/∂xa 6= 0—in order to influence ex
ante demand.20 And yet, this doesn’t happen. Instead, the asking price that implements the efficient
stopping rule also delivers to each buyer his expected marginal contribution to the match surplus.

Before explaining why, it’s helpful to note that a similar result emerges in an environment with
no inspection costs, i.e., with k = 0. In this case, the efficient allocation can be implemented with
a standard (first- or second-price) auction with a reserve price equal to y, which also happens to
yield each buyer his expected marginal contribution to the match surplus.21

In our environment, with k > 0, the connection between the asking price mechanism, the
efficiency of the stopping rule, and the buyers’ ex ante expected payoffs is much more compli-
cated. To understand why the asking price that implements x∗ also yields each buyer his expected
marginal contribution to the match surplus, it’s helpful to consider the possible valuations realized
by a marginal buyer.

First, suppose the buyer has a valuation x < x∗. In this case, the buyer only contributes to
the match surplus if his valuation is the maximum among all buyers, in which case the marginal
contribution is the difference between his valuation and the next highest valuation. Since the good
is allocated through an auction when the maximum valuation is less than x∗, the logic above (when
k = 0) implies that this buyer’s payoffs coincide with his marginal contribution to the surplus.

19See, e.g., Mortensen (1982), Hosios (1990), and Moen (1997).
20If the seller had two instruments at his disposal—say, an asking price to implement a stopping rule and a fee (or

subsidy) to transfer rents at will—clearly the seller would choose an asking price to implement x∗ and a fee or subsidy
to independently influence the queue length λ. What’s interesting here is that such fees or subsidies are not necessary.

21This is a well known result in auction theory. To convey the intuition most clearly, it’s easiest to consider a second
price auction, where a buyer is rewarded the good when he has the maximal valuation and his payoff is exactly the
difference between his own valuation and the maximum valuation that would be realized in his absence. By standard
revenue equivalence results, the same is true in expectation in a first-price auction.
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Second, suppose the buyer has a valuation x = x∗. By accepting the asking price a∗, this buyer
affects the social surplus in two different ways. First, in the event that no other buyer has a valuation
greater than x∗, this buyer increases the maximum valuation from E [x̂|λ, x̂ < x∗] to x∗, where x̂
denotes the maximum valuation among n buyers and n is drawn from a Poisson distribution with
mean λ. Second, by accepting the asking price, this buyer prevents other buyers from inspecting
the good, which has both costs and benefits: it saves some buyers from incurring the cost k and
discovering a low valuation x < x∗, but prevents other buyers from discovering a high valuation
x > x∗ and potentially acquiring the good. However, recall that x∗ is exactly the threshold that
offsets these costs and benefits, leaving only the first effect on the social surplus. This effect is
easily identifiable in the payoff of a buyer with valuation x∗, which can be written

x∗ − a∗ =
λ[1− F (x∗)]q0(x∗)

1− q0(x∗)

∫ x∗

y

q0(x′)

q0(x∗)
dx′. (19)

The first factor on the right-hand side is the probability that no other buyer has valuation x ≥ x∗,
and the second factor is equal to x∗−E [x̂|λ, x̂ < x∗]. Hence, this buyer’s payoffs coincide exactly
with his marginal contribution to the surplus.

Similar logic holds when the buyer’s valuation is x > x∗. Again, since the threshold is x∗,
the costs and benefits of preventing later buyers from inspecting the good exactly offset, leaving
only the effect of this buyer increasing the maximum valuation from E [x̂|λ, x̂ < x∗] to x. Since
accepting the asking price yields a payoff x − a∗ = (x∗ − a∗) + (x − x∗), this buyer receives the
share of the surplus that a buyer with valuation x∗ receives, x∗ − a∗, plus the additional surplus he
creates, x− x∗. Hence, again, this buyer’s payoffs coincide exactly with his marginal contribution
to the surplus.

5 General Mechanisms

Proposition 2 characterizes the equilibrium that arises when sellers compete by posting asking
prices, and establishes that the equilibrium coincides with the solution to the social planner’s prob-
lem. However, it remains to be shown that sellers would in fact choose to utilize the asking price
mechanism if we expanded their choice set to include more general mechanisms.

In this section, we establish several key results. First, even when sellers are free to post arbitrary
mechanisms, all sellers posting an asking price mechanism with a = a∗ (described in Proposition
2) remains an equilibrium. Moreover, while other equilibria can arise, all of these equilibria are
payoff-equivalent to the equilibrium with optimal asking prices; in particular, there is no equi-
librium in which sellers earn higher payoffs than they do in the equilibrium with optimal asking
prices. Finally, any mechanism that emerges as an equilibrium in this environment will resemble
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the asking price mechanism along several important dimensions: any equilibrium mechanism will
require that the seller meets with buyers sequentially, that meetings continue until a buyer draws
a valuation x∗, and that the (expected) payment by a buyer with valuation x ≥ x∗ is equal to a∗.
Hence, though we cannot rule out potentially complicated mechanisms that satisfy these proper-
ties, the fact that asking prices are both simple and commonly observed suggests that they offer a
compelling way to deal with the frictions in our environment.

Mechanisms. Consider a seller who receives n buyers. In general, a mechanism is going to
specify an extensive form game that determines, for each i ∈ {1, ..., n},

1. a probability φi,n : X i−1 → [0, 1] that the ith buyer inspects the good conditional on the
messages (x̃1, ..., x̃i−1) ∈ X i−1 reported by previous buyers, where X = {∅} ∪ [x, x] is the
space of messages available to buyers, x̃ = ∅ ∈ X denotes the event that buyer i did not
inspect the good, and X 0 = {∅} by convention;

2. a disclosure rule σi,n : X i−1 → Σ that specifies the signal that the ith buyer receives condi-
tional on the vector of reports from previous buyers, (x̃1, ..., x̃i−1) ∈ X i−1, where Σ is the
space of signals that can be disclosed;22

3. a decision rule δ : Σ→ [0, 1] that specifies the probability that a buyer will inspect the good
conditional on receiving the signal σ ∈ Σ;

4. a report x̃ : Σ × X → X that the buyer sends to the seller conditional on receiving a signal
σ ∈ Σ and either not inspecting or discovering a valuation x ∈ [x, x];

along with

5. an allocation rule αn : X n → {0, 1, ..., n} which specifies that the good is allocated to either
the ith buyer in the queue, for i ∈ {1, ..., n}, or the seller (i = 0), conditional on the set of
messages (x̃1, ..., x̃n);

6. transfers τn : X n → Rn which specifies the transfers to/from each of the n buyers, condi-
tional on the set of messages (x̃1, ..., x̃n);

subject to standard feasibility and aggregate consistency constraints.
We will restrict attention to the set of all mechanismsM that satisfy individual rationality and

incentive compatibility. In particular, for everym ∈M, a buyer’s expected payoff when instructed
to inspect the good is non-negative, given the information available to him, and truthfully reporting

22The set of potential signals is quite vast. For one, the seller could disclose the buyer’s exact place in line, some
information about his place in line (i.e., whether he is among the first n buyers) or no information about his place
in line. Similarly, the seller could disclose all of the valuations reported by previous buyers, no information about
previous buyers, or various statistics summarizing the reports that have been received, such as the maximum valuation
reported or whether any buyers had reported a valuation above some threshold.
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his valuation x (at least weakly) dominates reporting any x′ 6= x.23 In very similar environments,
Crémer et al. (2009) and Pancs (2013) show that these two additional restrictions—namely, that
buyers are both obedient when instructed to inspect and truthful in reporting their type—are es-
sentially without loss of generality.24 Given these implicit restrictions, a mechanism m ∈ M can
simply be summarized by the inspection probabilities and rules for disclosure, allocations, and
transfers described above.

Payoffs. Let the ex ante expected payoff of a seller who posts a mechanism m ∈M and attracts
a queue λ be denoted by R (m,λ), and let the expected payoff of each buyer in his queue be
denoted by U (m,λ). The total payoffs (net of y) cannot exceed the amount of surplus S (m,λ)

generated by the seller’s chosen mechanism, which in turn cannot exceed the surplus created by
the mechanism that implements the planner’s solution, S∗(λ) ≡ S(x∗, λ). That is, for all m and λ,

R (m,λ) + λU (m,λ)− y ≤ S (m,λ) ≤ S∗(λ). (20)

Clearly, Pareto optimality requires that the surplus be divided between the seller and the buyers, so
we restrict attention to mechanisms that satisfy the first condition in (20) with equality. We call a
mechanism that satisfies the second condition in (20) with equality surplus-maximizing.

Equilibrium. An equilibrium in this more general environment is a distribution of mechanisms
m ∈ M and queue lengths λ ∈ R+ across sellers, along with a market utility U , such that (i)
given U , each pair (m,λ) maximizes profits R (m,λ) subject to the constraint U (m,λ) = U ; and
(ii) aggregating queue lengths across all sellers yields the total measure of buyers, θb. Given this
definition, we now establish that a mechanism m ∈ M is an optimal strategy if, and only if, it
creates the same surplus and the same expected payoffs as the asking price mechanism described
in the previous section, where the asking price a is set to implement the cutoff x∗.

Proposition 3. Take any candidate equilibrium with market utility 0 < U <
∫ x
y

(x − y)f(x)dx −
k. Let m∗a denote the asking price mechanism that implements the cutoff x∗, and let λa satisfy
U(m∗a, λa) = U . A mechanism m ∈ M, which attracts a queue length λ, maximizes a seller’s
expected profits if, and only if, S(m,λ) = S∗(λ), R(m,λ) = R(m∗a, λa), and λ = λa.

The intuition behind Proposition 3 is illustrated in Figure 1. Consider a candidate equilibrium
with market utility U in which a seller posts a mechanism m1 and receives a queue λ1 satisfying
U = U(m1, λ1), yielding expected profits R(m1, λ1)− y = S(m1, λ1)− λ1U1.

23We are also implicitly assuming truthful disclosure, i.e., the seller does not report false information to the buyers.
24There are, however, two implicit restrictions on the mechanism space which are worth noting, though both are

standard in the literature on competing mechanisms (see, e.g., Eeckhout and Kircher, 2010). First, we do not allow
mechanisms to condition on buyers’ ex ante identities; identical buyers must be treated symmetrically. Second, we do
not allow mechanisms to condition on the trading mechanisms posted by other sellers.
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INSERT FIGURE 1 HERE

The first result is that m1 must be surplus-maximizing. To see why, suppose S(m1, λ1) <

S∗(λ1), corresponding to point 1 in Figure 1. This seller’s expected profits correspond to the in-
tersection of the vertical axis with the line through point 1 with slope U . Clearly this cannot be
consistent with equilibrium behavior: the seller could deviate to a surplus-maximizing mechanism
m2 that attracts the same queue length λ1 but yields a larger surplus S(m2, λ1) = S∗(λ1), corre-
sponding to point 2.25 Since this deviation increases the size of the surplus, while holding constant
the buyers’ market utility, it strictly increases the seller’s profits, i.e., R(m2, λ1) > R(m1, λ1).

In general, a seller can obtain an even higher payoff. As the figure shows, profits are maximized
at point 3. That is, not only must any equilibrium mechanism lie on the surplus-maximizing frontier
S∗(λ), it must also induce a queue length λ3 such that26

dS∗ (λ)

dλ

∣∣∣∣
λ=λ3

= U. (21)

Equation (21) is a typical requirement for profit-maximizing behavior: the left-hand side is the
marginal benefit of attracting a longer queue length, while the right-hand side is the marginal cost.

Importantly, the asking price mechanism that implements x∗ satisfies this condition, as we have
demonstrated in the previous section. Hence, for any market utility U , a seller (weakly) maximizes
his revenue if he posts a surplus-maximizing asking price mechanism. In other words, irrespective
of the behavior of other sellers, it is always optimal for an individual seller to post an asking price
mechanism that implements x∗. Note that—out of equilibrium—the asking price that achieves this
may not be equal to a∗, since that requires U = U

∗
.

Finally, any profit-maximizing mechanism must attract a queue length equal to the queue length
at a seller who posts m∗a. Intuitively, since the queue length λa equates the marginal benefit of
attracting more buyers with the more marginal cost, any other queue length would yield the seller
strictly lower profits. Therefore, in equilibrium, all sellers must attract the same queue length, so
that λ = Λ. The following corollary is an immediate consequence of the results in Proposition 3.

Corollary 1. All sellers posting the optimal asking price mechanism m∗a and attracting a queue Λ

is an equilibrium within the mechanism spaceM.

Therefore, even when sellers are free to post arbitrary mechanisms, posting an asking price
mechanism with a = a∗ is consistent with equilibrium behavior. Now, it is true that other mech-
anisms could also be utilized in equilibrium, but Proposition 3 implies that any such mechanism

25Such a deviation could be achieved by setting an asking price that implements the cutoff x∗, along with a fee (or
subsidy) that ensures the expected payoff to buyers—and hence λ1—was unchanged.

26Recall that S∗(λ) = S(x∗, λ) is strictly concave in λ.
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will be similar to the asking price mechanism along several important dimensions. To start, since
any equilibrium mechanism must be surplus-maximizing, and thus implement an allocation that
coincides with the unique solution to the planner’s problem, the mechanism must feature sequen-
tial meetings between the seller and the buyers, with a stopping rule x∗. Moreover, since the ex
ante probability that each buyer gets to meet with the seller must be equal in any equilibrium, and
any mechanism that arises in equilibrium must also be payoff-equivalent to the equilibrium with
optimal asking prices, it follows that the expected payment by buyers with valuation x ∈ [x∗, x]

must equal the optimal asking price. Therefore, even when sellers utilize an alternative mechanism
in equilibrium, the expected transfer from a buyer who “stops” the sequential inspection process
will, indeed, equal a∗. The following corollary summarizes.

Corollary 2. Any equilibrium strategy m ∈ M must specify that the seller meet with buyers
sequentially; that these meetings stop if, and only if, either the buyer draws a valuation x ≥ x∗ or
the end of the queue is reached; and that the expected payment for a buyer who draws valuation
x ≥ x∗ is equal to a∗.

6 Comparative Statics

In this section, we study the equilibrium allocation and distribution of prices, and analyze how they
change with features of the economic environment, such as the ratio of buyers to sellers, the cost
of inspecting the good, and the degree of ex ante uncertainty in buyers’ valuations.

Figure 2 below plots a typical CDF of transaction prices, where b = 0 represents sellers that
do not trade.27 Notice that a fraction q0(y) = e−Λ[1−F (y)] of sellers do not trade, either because no
buyers arrive, which occurs with probability q0(x) = e−Λ, or because n ≥ 1 buyers arrive but their
valuations do not exceed the seller’s valuation y, which occurs with probability q0(y) − q0(x). A
fraction q0(x∗)− q0(y) of sellers ultimately accept a bid b that is strictly less than the asking price.
Letting x̂(b) = b̂−1(x), where b̂(x) is defined in (9), the (cumulative) distribution of winning bids
b ∈

[
y, b̂(x∗)

)
is simply q0 (x̂(b)) . Finally, a fraction 1− q0(x∗) of sellers trade at the asking price.

INSERT FIGURE 2 HERE

Notice that there is a mass point of transactions that occur at a∗ and a gap in the distribution
between b̂(x∗) and a∗. Intuitively, it cannot be optimal for a buyer to offer a price arbitrarily close
to the asking price; such a strategy would be dominated by offering b = a∗, which implies a
discrete increase in the probability of trade at the cost of an arbitrarily small increase in the terms
of trade.

27For the sake of illustration, all numerical examples below have been generated with the assumption that x is
uniformly distributed, though all of the results are true for arbitrary distributions.
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Figures 3–5 illustrate how equilibrium prices are affected by changes in the ratio of buyers to
sellers (Λ), changes in the inspection cost (k), and changes in the amount of ex ante uncertainty
about a buyer’s valuation (the support of the F ), respectively.

Figure 3 illustrates that an increase in Λ causes a decrease in the fraction of sellers who do
not trade and an increase in the fraction of sellers who trade at the asking price. Moreover, an
increase in Λ causes an increase in the asking price, and a first-order stochastic dominant shift
in the distribution of transaction prices. Hence, as in standard models of competitive search, an
increase in the buyer-seller ratio leads to higher prices in equilibrium. Notice, however, that the
degree of dispersion in prices will be non-monotonic in Λ: though price dispersion exists for
intermediate values of Λ, the equilibrium price distribution becomes degenerate at b = y (b = x∗)
as Λ converges to zero (infinity).

Figure 4 illustrates that a decrease in the inspection cost k causes both the asking price a∗ and
the cut-off x∗ to increase. However, the buyers’ bidding function b̂(x) is unaffected, and hence the
lower tail of the equilibrium price distribution is unaffected. As a result, a decrease in k leads to
fewer transactions at the asking price. Finally, as k converges to zero, the optimal x∗ converges to
x and the pricing mechanism converges to a standard first-price auction.

Lastly, Figure 5 illustrates the effect of decreasing ex ante uncertainty about a buyer’s valuation:
the figure plots the equilibrium distribution of prices when the distribution of valuations F (x), with
support [x, x], is replaced with the truncated distribution F ′ with support [x′, x], where x′ > x.28

Notice that an increase in the lower bound of the support of F implies that fewer sellers don’t
trade, even though equilibrium queue lengths remain λ = Λ at each seller, since it is less likely for
a seller to be visited by buyers who have a valuation strictly less than y. Also notice that prices
increase for several reasons. For one, sellers set higher asking prices; on the margin, the expected
gain from meeting with an additional buyer is larger since the truncated distribution F ′ first-order
stochastically dominates the original distribution F . Moreover, since other buyers are more likely
to draw a high valuation, there is more competition amongst buyers. This puts upward pressure on
the bidding function, further increasing transaction prices. Given these two forces, clearly sellers’
profits increase. Buyers, on the other hand, are more likely to trade, but at less favorable prices.

INSERT FIGURES 3–5 HERE.
28One interpretation of this exercise is that a new technology (e.g., the Internet) replaces an old technology (e.g., the

newspaper), allowing buyers to learn more information about each seller’s good before choosing a seller to visit. Given
such a technology, buyers could avoid visiting sellers where they were sure to draw a low valuation (e.g., x ∈ [x, x′]),
and only visit sellers for which x ∈ [x′, x].
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7 Assumptions and Extensions

In this section, we discuss several of our key assumptions, along with a few potentially interesting
extensions of our basic framework.

Transactions Above the Asking Price. In the equilibrium characterized in section 4, no trans-
action takes place at a price that exceeds the asking price. While this prediction rings true in some
markets, it is perhaps less desirable for the analysis of other markets, such as housing, where trans-
actions sometimes occur above the asking price. It is therefore important to emphasize that our
model can easily explain such transaction prices.29 Recall that one can interpret our asking price
mechanism as a two-stage process in which the seller first sequentially offers the good to each
buyer at a price a∗ and then organizes a first-price auction if no buyer accepts this offer. Given
Proposition 3 and standard revenue-equivalence results, an alternative, optimal mechanism would
be to replace the first-price auction with a second-price auction in the second stage of the game.

Note that such a mechanism has a natural interpretation in the context of a housing market. It
corresponds to a scenario in which a seller, after getting a number of offers which are all below
the asking price, contacts the buyers again, informs them of the competing bids, and asks them
whether they would like to increase their offer. In that case, a “bidding war” ensues until a single
buyer remains, implementing the outcome of a second-price auction.

INSERT FIGURE 6 HERE

While this mechanism yields the same expected payoffs as our (first-price) asking price mech-
anism, the distributions of realized transaction prices will differ. Figure 6 shows a typical CDF
of transaction prices, where again we use a price equal to 0 to represent sellers that do not trade.
As buyers bid their valuation in a second-price auction, a transaction price above the asking price
arises when at least two buyers have a valuation above a but below xa (or otherwise one of them
would end the game by paying the asking price in the first stage). As we report in Lemma 4 below,
the probability of this event is strictly positive because a < xa. Hence, this modification yields
a micro-founded model in which a positive mass of transactions occur at the posted asking price,
while other transactions occur both below and above the asking price.

Lemma 4. Suppose all sellers post a two-stage mechanism consisting of an asking price in the
first stage, followed by a second-price auction. The probability that a transaction takes place at a
price exceeding the asking price then equals

e−λ(1−F (xa)) − e−λ(1−F (a)) − λe−λ(1−F (a)) (F (xa)− F (a)) > 0.

29We would like to thank Rob Shimer for pointing out this feature of our model.
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Commitment. Throughout our analysis, we also assume that sellers can commit to carrying out
the mechanism that they post. In particular, when a seller posts an asking price, we assume that he
commits to trading with the first buyer who offers to pay this price, even though ex post he would
prefer to renege and meet with all buyers.

Though this assumption is strong, we believe there are a number of ways to enforce this type
of behavior. Some are technological. For example, online auction sites like eBay and Amazon
allow sellers to pre-commit to an asking price (what they call “Buy-It-Now” or “Take-It” prices,
respectively) in which the auction immediately stops once this price offer is received. In other
cases, there are institutions that make it costly to renege on an asking price. For example, as
Stacey (2012) points out, real estate agents can serve as commitment devices in the U.S. housing
market, since sellers are typically required to pay their agent’s commission if they receive a bona
fide offer at the asking price, whether or not the offer is accepted.30 Finally, even without such tech-
nologies or institutions, it’s well known that reputation can sustain commitment in markets with
repeated interactions. For all of these reasons, we think that the assumption of full commitment is
a reasonable approximation of the way goods are sold in certain markets.

Endogenous Inspection. Throughout the text we assumed that buyers inspect the good and learn
their valuation before submitting a bid. One interpretation of this assumption is that it is a techno-
logical constraint: a buyer simply must go and meet with the seller in order to make an offer (say,
he needs to sign certain documents), and this process is costly. However, for many applications it
may be more appropriate to treat the decision to inspect the good as endogenous. In such an envi-
ronment, if the inspection cost k is too large, there may circumstances under which the buyer (or
the planner) prefers to forgo inspection and place a bid (or trade) without knowing the valuation.
The following lemma derives a condition on k to ensure that this is never the case.

Lemma 5. The planner always instructs buyers to inspect the good upon meeting a seller and, in
the decentralized equilibrium, buyers always choose to inspect the good before submitting a bid if
and only if

k <

∫ y

x

(y − x) f (x) dx. (22)

Hence, the analysis in Sections 3 and 4 is consistent with an environment in which the decision
to inspect the good is endogenous, but k is sufficiently small to satisfy (22). In words, this in-
equality implies that inspection is always optimal if the cost of inspecting is smaller than the costs
associated with inefficient trade, which occurs when the seller values the good more than the buyer
who receives it. For many goods that are sold with asking prices—such as houses or cars—the

30Indeed, in other countries—such as France—a seller is legally required to accept a full price offer. We thank an
anonymous referee for pointing this out.
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assumption that the inspection cost k is small relative to the potential gains (or losses) from trade
seems to be appropriate. However, it’s worth noting that even when (22) is violated, buyers will
still almost always inspect the good before bidding in large regions of the parameter space.

Information Structure. In the asking price mechanism we consider, sellers choose not to reveal
a buyer’s place in line or the number of other buyers that have arrived. This turns out to be ex-
actly the right amount of information to reveal to the buyer in order to ensure that such a simple,
stationary mechanism can implement the optimal stopping rule.

To see this, suppose we replace our asking price mechanism with a standard (sealed-bid) auc-
tion. In this case, since buyers bid simultaneously, they have no information about the valuations
of other buyers, and one can show that too many buyers ultimately inspect the good. Now suppose
that we allow each buyer to observe the bids of those who have inspected the good before him, as
in Bulow and Klemperer (2009). Then, in the simple sequential mechanism they study, each buyer
has an incentive to place a bid that inefficiently preempts further participation. Therefore, if buyers
have too much information, then too few buyers will ultimately inspect the good.31

With the equilibrium asking price, a buyer who is about to inspect the good is able to infer
just enough: namely, that no other buyer has had a valuation high enough to bid the asking price,
making it worthwhile to pay the inspection cost.32 However, he is not able to infer more, which
eliminates the strategic motive to bid higher in attempt to dissuade future entrants. In this sense,
the equilibrium asking price is essentially a “jump-bid” that does pre-empt entry, but precisely
when it is efficient to do so.

Heterogeneity. Before concluding, we discuss the robustness of our results to the introduction
of various types of heterogeneity. To start, if the goods for sale are heterogeneous, and this het-
erogeneity is observable ex ante, then our results are essentially unchanged.33 To be more precise,
suppose there are I types of goods. It could be that buyers value each type of good differently: in
the context of our model, buyers could draw a valuation x from Fi(x) for each i ∈ {1, ..., I}. It
could be that sellers value each type of good differently: in the context of our model, sellers could
have a valuation yi for a good of type i ∈ {1, ..., I}. Or it could be both. As long as the differences
across goods are verifiable ex ante, then our asking price mechanism is still an equilibrium, and
the equilibrium is efficient.

If buyers are ex ante heterogeneous, however, the optimal mechanism would likely have more

31This is precisely why Crémer et al. (2009) find that the optimal mechanism must include asking prices and fees
that vary with each buyer in the queue, which can be used to correct the distortions in the simple mechanism of Bulow
and Klemperer (2009).

32In a related environment with two bidders, Pancs (2013) also finds that partial disclosure is optimal for the seller.
McAdams (2015) also studies optimal disclosure in an environment where buyers choose when to enter a mechanism.

33For a formal proof, see the working paper version Lester et al. (2013).
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moving parts. For example, if buyers had different inspection costs—say, k1 6= k2—then the opti-
mal mechanism would have two asking prices and a fee. This would ensure that buyers with lower
inspection costs could inspect first, in exchange for a fee, and then buyers with higher inspection
costs would inspect second (so long as no buyer in the first group paid the initial asking price).
Within each group of buyers, however, a single asking price would play exactly the same role that
it plays in our model.

Finally, if sellers (or their goods) are ex ante heterogeneous and this is unobservable ex ante,
then the mechanisms that are posted—including an asking price—can potentially signal informa-
tion about the type of the seller or his good. We view this signalling role as quite distinct, though
complementary, to the role that asking prices play in our model.

8 Conclusion

In most economic models, it is assumed that either (i) non-negotiable prices are set by sellers; (ii)
prices are the outcome of a bargaining game; or (iii) prices are determined through an auction.
However, many goods (and services) are sold in a manner that is not consistent with any of these
three pricing mechanisms, but rather seems to combine elements of each. First, sellers announce
a price, as in models with price-posting, at which they’re willing to sell their good or service
immediately. However, as in bargaining theory, buyers can submit a counteroffer that will also be
considered by the seller. Finally, in the event that no buyer offers the asking price within a certain
period of time, the set of counteroffers that the seller has received are aggregated, as in an auction,
and the object is awarded to the buyer with the best counteroffer. Despite the prevalence of this
pricing scheme in many markets, it has received little attention in the academic literature. In this
paper, our objective was to construct a sensible economic model to help us understand how and why
this type of pricing mechanism can be an efficient way of selling goods and services. Combining
two simple, realistic ingredients—namely, competition and costly inspection—we showed that
asking prices emerge as the mechanism that is both revenue-maximizing and efficient. As a result,
the framework developed here provides a theory of asking prices that is both micro-founded and
tractable, offers a variety of testable predictions, and lends itself easily to various extensions.
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Appendix A: Proofs

Proof of Lemma 1

Proving Lemma 1 requires establishing optimality of both the sequential search strategy and the
stopping rule with constant cutoff x∗. Both are well-known results in the literature, so we sketch
the intuition below and refer the reader to e.g. Lippman and McCall (1976), Weitzman (1979) and
Morgan and Manning (1985) for a more rigorous treatment.

Optimality of Sequential Search. To see that it can never be optimal to learn the valuation of
more than one buyer at a time, suppose n ≥ 2 buyers arrive at a seller, and consider the planner’s
decision of whether to learn the valuations of the first two buyers sequentially or simultaneously.
Let Zi(x̂i)− y denote the net expected surplus from continuing to learn buyers’ valuations (under
the optimal policy) given that the maximum valuation of the seller and the i buyers sampled so far
is x̂i ≡ max {y, x1, . . . , xi}.

The net social surplus from learning the first two buyers’ valuations simultaneously is then

−2k − y + max {x̂2, Z2 (x̂2)} , (23)

whereas the surplus from learning these valuations sequentially is

−k − y + max {x̂1,−k + max {x̂2, Z2 (x̂2)}} = −2k − y + max {x̂1 + k, x̂2, Z2 (x̂2)} . (24)

Clearly, the expression in (24) is weakly larger than (23) for any x1 and x2, and strictly larger
for some x1 and x2. Taking the expectation over all possible realizations therefore implies that a
planner would want to learn these valuations sequentially ex ante. It is straightforward to extend
this argument to learning the valuations of j > 2 buyers simultaneously after any number i ≤ n−j
buyers have already inspected the good.

Optimality of the Stopping Rule. Suppose the seller is visited by n ∈ N buyers. Let Zi(x̂i)
denote the expected surplus from sampling the (i+1)th buyer, for i < n, and let Vi(x̂i) = max{x̂i−
y, Zi(x̂i)}. To derive the optimal stopping rule, we utilize an induction argument. We begin with
the first step. If the seller has met with all n buyers, the decision is trivial: the good is allocated
to the agent (either one of the buyers or the seller) with valuation x̂n. The expected surplus is
Vn(x̂n) = x̂n − y.

Working backward, consider the planner’s problem when the seller has met with only n − 1

of the n buyers. If the planner instructs the seller to stop meeting with buyers, again the good is
allocated to the agent with valuation x̂n−1, yielding surplus x̂n−1 − y. Alternatively, if the seller
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meets with the next buyer, the expected surplus is Zn−1(x̂n−1)− y, where

Zn−1(x̂)− y = −k +

∫ x

x

max {Vn (x̂) , Vn (x)} f (x) dx,

so that

Zn−1(x̂) = −k + x̂F (x̂) +

∫ x

x̂

xf (x) dx. (25)

Notice immediately that Zn−1(x∗) = x∗ and Z ′n−1 (x̂) = F (x̂) ∈ (0, 1), so that clearly x∗ is
the optimal cutoff after meeting with n− 1 buyers, and

Vn−1 (x̂) =

x̂− y for x̂ ≥ x∗

Zn−1 (x̂)− y for x̂ < x∗.

Now consider the planner’s problem after the seller has met with n − 2 buyers. We establish
three important properties of Zn−2(x̂): (1) Zn−2(x̂) = Zn−1(x̂) for all x̂ ≥ x∗; (2) Zn−2(x̂) > x̂

for all x̂ < x∗; and (3) limx̂→x∗ Zn−2(x̂) = Zn−1(x∗) = x∗. Given these three properties, along
with the fact that Z ′n−2 (x̂) = Z ′n−1 (x̂) = F (x̂) ∈ (0, 1) for x ≥ x∗, it follows immediately that
x̂ ≥ Zn−2(x̂) if, an only if, x̂ ≥ x∗, and hence x∗ is the optimal cutoff again.

After meeting with n− 2 buyers, the expected surplus from another meeting when x̂n−2 = x̂ is

Zn−2 (x̂)− y = −k + Vn−1 (x̂)F (x̂) +

∫ x

x̂

Vn−1 (x) f (x) dx. (26)

If x̂ ≥ x∗, then Vn−1 (x̂) = x̂ − y and thus Zn−2 (x̂) = Zn−1 (x̂). Alternatively, if x̂ < x∗, then
Vn−1 (x̂) = Zn−1 (x̂)− y > x̂− y and

Zn−2 (x̂) = −k + Zn−1 (x̂)F (x̂) +

∫ x∗

x̂

Zn−1 (x) f (x) dx+

∫ x

x∗
xf (x) dx

> −k + x̂F (x̂) +

∫ x∗

x̂

xf (x) dx+

∫ x

x∗
xf (x) dx = Zn−1 (x̂) > x̂.

Finally, note that

lim
x̂→x∗

Zn−2 (x̂) = −k + Zn−1 (x∗)F (x∗) +

∫ x

x∗
xf (x) dx

= −k + x∗F (x∗) +

∫ x

x∗
xf (x) dx = Zn−1(x∗) = x∗.

Therefore, the optimal cutoff after meeting with n− 2 buyers is x∗.
To summarize, we have established that the following is true for j′ = 2: (i) Zn−j′(x̂) =
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Zn−j′+1(x̂) for all x̂ ≥ x∗; (ii) Zn−j′(x̂) > x̂ for all x̂ < x∗; and (iii) limx̂→x∗ Zn−j′(x̂) =

Zn−j′+1(x∗) = x∗. It follows that

Vn−j′ (x̂) =

x̂− y for x̂ ≥ x∗

Zn−j′ (x̂)− y for x̂ < x∗.

Now, suppose this is true for all j′ ∈ {2, 3, ..., j}. We will establish that it is also true for j + 1.
After meeting with n− j− 1 buyers, the expected surplus from another meeting when x̂n−j−1 = x̂

is

Zn−j−1 (x̂)− y = −k + Vn−j (x̂)F (x̂) +

∫ x

x̂

Vn−j (x) f (x) dx. (27)

If x̂ ≥ x∗, then Vn−j (x̂) = x̂ − y and thus Zn−j−1 (x̂) = Zn−1 (x̂). Moreover, given the first
assumption in the induction step, Zn−j (x̂) = Zn−1 (x̂), so that Zn−j−1 (x̂) = Zn−j (x̂).

Alternatively, if x̂ < x∗, then

Zn−j−1 (x̂) = −k + Zn−j (x̂)F (x̂) +

∫ x∗

x̂

Zn−j (x) f (x) dx+

∫ x

x∗
xf (x) dx

> −k + x̂F (x̂) +

∫ x

x̂

xf (x) dx = Zn−1 (x̂) > x̂.

Finally, note that

lim
x̂→x∗

Zn−j−1 (x̂) = −k + Zn−j (x∗)F (x∗) +

∫ x

x∗
xf (x) dx

= Zn−1(x∗) = x∗.

Therefore, we have that the optimal cutoff after meeting with n− j − 1 buyers is x∗.

Proof of Lemma 2

Substituting (2) into (6) and integrating by parts yields

S (x∗, λ) = x∗ − y −
∫ x∗

y

q0 (x) dx.

Since x∗ is independent of λ, the second derivative of S (x∗, λ) with respect to λ then equals

d2S

dλ2
= −

∫ x∗

y

(1− F (x))2 q0 (x) dx < 0.
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Proof of Proposition 1

Given Lemma 1, clearly a stopping rule of x∗ is optimal at all sellers. Then, given Lemma 2, it
follows that total surplus is maximized by assigning the same queue length λ = Λ to all sellers.

Proof of Lemma 3

When the buyer declines to pay the asking price, he realizes that the auction will take place if and
only if all other buyers visiting the same seller have a valuation below x̃a. In the auction, the buyer
will face a number of competitors which follows a Poisson distribution with mean λF (x̃a). Their
valuations will be distributed according to F (x) /F (x̃a).

Consider the case in which the buyer’s valuation x is weakly below x̃a. Standard arguments
then imply that the expected payoff for the buyer from participating in the auction equals the
integral of his trading probability.34 That is,

∫ x

y

e
−λF (x̃a)

(
1− F(x′)

F (x̃a)

)
dx′ =

∫ x

y

q0 (x′)

q0 (x̃a)
dx′, (28)

where the integrand represents the probability that no other buyer has a valuation above x′, condi-
tional on all valuations being below x̃a. Multiplying this payoff by (7) yields the desired expression
for u (x; x̃a). To derive the buyer’s optimal bidding function b̂ (x) in the first-price auction, note
that (28) should be equal to the product of the probability that the buyer wins the auction and his
payoff conditional on winning. That is,

q0 (x)

q0 (x̃a)

(
x− b̂ (x)

)
=

∫ x

y

q0 (x′)

q0 (x̃a)
dx′,

where the first factor on the left-hand side represents the probability that no other buyer has a
valuation above x, conditional on all valuations being below x̃a. Solving for b̂ (x) gives the desired
result.

Next, consider the case in which the buyer’s valuation x strictly exceeds x̃a. When the buyer
declines to pay the asking price, he maximizes his payoff in the auction by submitting a bid b̂ (x̃a).
The expected payoff from this strategy is x−b̂ (x̃a) multiplied by the probability (7) that the auction
will take place. Substitution of b̂ (x̃a) yields the desired expression for u (x; x̃a).

34See Peters (2013) for a detailed discussion. Peters and Severinov (1997) explicitly analyze the case with a Poisson
number of buyers.
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Proof of a Unique Symmetric xa

Consider a buyer with valuation x at a seller with asking price a and queue λ. Accepting the
asking price gives the buyer a payoff x− a, while rejecting it yields u (x; x̃a). From equation (10),
it readily follows that 0 < ∂u(x;x̃a)

∂x
< 1 since

∂u (x; x̃a)

∂x
=


λ(1−F (x̃a))

1−q0(x̃a)
q0 (x) if x ≤ x̃a,

λ(1−F (x̃a))
1−q0(x̃a)

q0 (x̃a) if x > x̃a.
(29)

For given a, λ and x̃a, the buyer should therefore accept the asking price above a certain cutoff,
which we denote—with a slight abuse of notation—by xa ≡ xa (a, λ, x̃a). If there is an interior
cutoff, it is uniquely determined by

xa − a = u (xa; x̃a) ; (30)

otherwise, if a is too small or too large, respectively, the cutoff is xa = y or xa = x. Focusing on
interior solutions, one can show that the cutoff is increasing in a, as the implicit function theorem
and equation (29) imply

∂xa

∂a
=

[
1− ∂u (xa; x̃a)

∂xa

]−1

> 0. (31)

Given symmetric strategies, xa = x̃a needs to hold in equilibrium. To prove that a unique
solution to this fixed point problem exists, consider how the (interior) cutoff xa varies with x̃a.
Applying the implicit function theorem once more implies

∂xa

∂x̃a
=
∂u (xa; x̃a)

∂x̃a

[
1− ∂u (xa; x̃a)

∂xa

]−1

.

By equation (29), the sign of this expression is determined by ∂u (xa; x̃a) /∂x̃a. Evaluated at
xa = x̃a,

∂u (xa; x̃a)

∂x̃a

∣∣∣∣
xa=x̃a

= −λf (x̃a)
1− q0 (x̃a)− q1 (x̃a)

(1− q0 (x̃a))2

∫ x̃a

y

q0 (x′) dx′ < 0.

Hence, the system of equations xa = x̃a and (30) has a unique solution for every a and λ. By
equation (31), this solution is increasing in a.
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Proof of Proposition 2

Since the relation between a and xa is one-to-one, given λ, the seller’s maximization problem
can be rewritten as a choice over xa and λ, which turns out to be more convenient analytically.35

Define R̂ (xa, λ) as the revenue of a seller with asking price a, queue λ and cutoff xa ≡ xa (a, λ).
Substituting a and b̂ (x) into R (a, λ), as given in (15), yields

R̂ (xa, λ) = xa − (1 + λ)

∫ xa

y

q0 (x̂) dx̂+ λ

∫ xa

y

F (x) q0 (x) dx.

One can derive Û (xa, λ), i.e., the expected payoff of a buyer visiting this seller, in a similar fashion:

Û (xa, λ) =
1

λ

(
1− q0(xa)

(1− F (xa))

[∫ x

xa
(x− xa) dF (x)− k

]
+ λ

∫ xa

y

(1− F (x)) q0 (x) dx

)
.

(32)
The partial derivatives of R̂ (xa, λ) are equal to

∂R̂

∂xa
= 1−Q1(xa) > 0

∂R̂

∂λ
= λ

∫ xa

y

(1− F (x))2 q0 (x) dx > 0

while the partial derivatives of Û (xa, λ) are

∂Û

∂xa
= −1−Q1(xa)

λ

(
1− f (xa)

(1− F (xa))2

[∫ x

xa
(x− xa) dF (x)− k

])
< 0

∂Û

∂λ
= − 1−Q1(xa)

λ2 (1− F (xa))

[∫ x

xa
(x− xa) dF (x)− k

]
−
∫ xa

y

q0 (x) (1− F (x))2 dx,

since Q1(xa) ≡ q0(xa) + q1(xa) < 1. Therefore, the first-order conditions of the Lagrangian with

35As noted in the text, a potential complication occurs if, for some deviation, there are multiple values of (xa, λ)

such that Û(xa, λ) = U . The current formulation implicitly assumes that the seller calculates his payoffs from
deviating using the most profitable pair (xa, λ). Naturally, if the deviation is not profitable for this pair, it is not
profitable for any pair (xa, λ) such that Û(xa, λ) = U .
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respect to xa, λ, and µ, respectively, equal

0 = (1−Q1(xa))

(
1− µ

λ

(
1− f (xa)

(1− F (xa))2

[∫ x

xa
(x− xa) dF (x)− k

]))
(33)

0 = λ

∫ xa

y

q0 (x) (1− F (x))2 dx
(

1− µ

λ

)
− µ

λ2

1−Q1(xa)

(1− F (xa))

[∫ x

xa
(x− xa) dF (x)− k

]
(34)

0 =
1− q0(xa)

λ (1− F (xa))

[∫ x

xa
(x− xa) dF (x)− k

]
+

∫ xa

y

(1− F (x̂)) q0 (x̂) dx̂− U.

Solving (33) implies

µ

λ
=

(
1− f (xa)

(1− F (xa))2

[∫ x

xa
(x− xa) dF (x)− k

])−1

,

so that (34) can be written as

0 =

[∫ x

xa
(x− xa) dF (x)− k

]
×

µ

λ

{
−
λf (xa)

∫ xa
y
q0 (x) (1− F (x))2 dx

(1− F (xa))2 − 1−Q1(xa)

λ (1− F (xa))

}
.

Since the term in brackets on the second line of this equation is strictly negative, it must be that
the unique solution for xa satisfies

∫ x
xa

(x− xa) dF (x) = k. From this, it immediately follows that
xa = x∗ and µ = λ = Λ. Hence, the equilibrium is unique and it coincides with the solution to the
planner’s problem. Given xa = x∗ and λ = Λ, the optimal asking price follows from (11).

Proof of Proposition 3

Consider a candidate equilibrium with market utility 0 < U <
∫ x
y

(x − y)f(x)dx − k. Now, take
an arbitrary mechanism m1 that one or more sellers post in this equilibrium, which attracts a queue
λ1 > 0 that satisfies U (m1, λ1) = U . This mechanism yields the seller a payoff R (m1, λ1) and
generates a surplus S (m1, λ1) = R (m1, λ1) + λ1U (m1, λ1)− y.

Now consider an asking price mechanismm∗a that implements the cutoff x∗ and attracts a queue
length λa > 0 that satisfies U = U(m∗a, λa).36 From our results in Proposition 2, and the discussion

36Note that λa depends on U . However, in what follows, we suppress this implicit relationship for notational
convenience.
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that follows, we know that S(m∗a, λa) = S∗(λa) and

∂S∗(λ)

∂λ

∣∣∣
λ=λa

= U. (35)

Since m1 was chosen when m∗a was feasible, it must be that

S∗(λa)− λaU + y = R(m∗a, λa) ≤ R(m1, λ1) = S(m1, λ1)− λ1U + y.

Next, let λ∗ = arg maxλ S
∗(λ) − λU . Since S∗(λ) is strictly concave, we are assured of a

unique solution that will satisfy
∂S∗(λ)

∂λ

∣∣∣
λ=λ∗

= U.

From (35), it must be that λ∗ = λa. Moreover, since S(m1, λ1) ≤ S∗(λ1), we can write

R(m1, λ1) = S(m1, λ1)− λ1U + y ≤ S∗(λ1)− λ1U + y

≤ S∗(λ∗)− λ∗U + y

= S∗(λa)− λaU + y = R(m∗a, λa).

Hence, for any equilibrium mechanism m1, it must be that R(m1, λ1) = R(m∗a, λa). Moreover, it
must also be that λ1 = λa = λ∗. Otherwise, for any λ1 6= λ∗, R(m1, λ1) ≤ S∗(λ1) − λŪ + y <

S(λ∗)− λ∗Ū + y = R(m∗a, λ
∗). This concludes the proof of Proposition 3.

Finally, since these results hold for all sellers, it must be that λ∗ = Λ in equilibrium. There-
fore, for any m1 offered in equilibrium, we must λ1 = Λ, U(m1, λ) = U(m∗a,Λ) = U

∗
and

R(m1, λ1) = R(m∗a,Λ) = S∗(Λ)− ΛŪ + y; this is the result reported in Corollary 2.

Proof of Lemma 4

Consider a seller with n buyers. The sale price will be above asking price if i ∈ {2, . . . , n} buyers
draw a valuation between a and xa while the remaining n − i buyers draw a valuation below a.
The probability of this event equals

n∑
i=2

n!

i! (n− i)!
(F (xa)− F (a))i F (a)n−i = F (xa)n − n (F (xa)− F (a))F (a)n−1 − F (a)n .

Taking the expectation over n yields the desired expression.
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Proof of Lemma 5

For the planner’s problem, the proof proceeds by induction, much like the proof of lemma 1.
Suppose that n buyers visit a seller, the first n − 1 buyers learn their valuation, and no trade has
taken place because x̂n−1 ≡ max {y, x1, . . . , xn−1} < x∗. In this case, the planner has two options:
either let buyer n incur the inspection cost k and base the ensuing trading decision on x̂n, or avoid
the inspection cost by instructing the seller to trade with buyer n without knowing his valuation.37

In the former case, expected surplus generated by the match is Zn−1 (x̂n−1)− y, where

Zn−1(x̂) = −k + x̂F (x̂) +

∫ x

x̂

xf (x) dx,

while the latter case yields an expected surplus equal to
∫ x
x
xf (x) dx − y. Clearly, inspection is

preferred if and only if Zn−1 (x̂n−1)− y >
∫ x
x
xf (x) dx− y, or equivalently

k <

∫ x̂n−1

x

(x̂n−1 − x) f (x) dx.

This condition needs to hold for any feasible value of x̂n−1 in order to guarantee inspection by the
last buyer. Since the right-hand side is strictly increasing in x̂n−1, (22) is a necessary and sufficient
condition. The final step is then to show that this condition implies that inspection is also optimal
after meeting with n − j − 1 buyers for j ∈ {1, . . . , n− 1}. This follows immediately from
Zn−j−1 (x̂) ≥ Zn−1 (x̂) for all x̂ and j, as shown in the proof of lemma 1.

Next, we analyze the market equilibrium described in section 4. Consider a deviating buyer
who does not inspect the good and therefore does not know his valuation. This deviant has three
options: 1) submit a bid below y, which will be rejected; 2) submit a bid between y and a∗; or
3) bid the asking price and trade immediately. The optimal choice is to behave like a buyer who
has a valuation equal to the unconditional expectation of x, which we denote by xe = EF [x] ≡∫ x
x
xf (x) dx. That is, he should submit a bid below y if xe < y and should bid b̂ (xe) if xe ∈ [y, x∗).

Note that the remaining case, xe ∈ [x∗, x], cannot occur under (22), since it implies

xe = −
∫ x∗

x

(x∗ − x) f (x) dx+ k + x∗

< −
∫ y

x

(y − x) f (x) dx+ k + x∗ < x∗.

To see whether the deviant benefits from not inspecting the good, define an auxiliary distribu-

37The planner can of course also instruct the seller to immediately trade with the agent with valuation x̂n−1, but, as
shown in lemma 1, this is dominated by learning the valuation of the last buyer since x̂n−1 < x∗.
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tion F̃ (x) that resembles F (x), except that the mass below y and above x∗ is concentrated as mass
points at y and x∗, respectively. That is,

F̃ (x) =


0 if x < y

F (x) if y ≤ x ≤ x∗

1 if x∗ < x.

Let x̃e = EF̃ [x] denote the expectation of x under this modified distribution. Under (22), it then
follows that x̃e > xe, since

x̃e − xe =

∫ y

x

(y − x) dF (x)−
∫ x

x∗
(x− x∗) dF (x)

=

∫ y

x

(y − x) dF (x)− k > 0.

The fact that u (x;x∗) is an increasing function of x then implies that u (xe;x∗) < u (x̃e;x∗),
while the convexity of u (x;x∗) in x implies that u (x̃e;x∗) < EF̃ [u (x;x∗)] by Jensen’s inequality.
Note, however, that EF̃ [u (x;x∗)] exactly equals the payoff from inspection, since

EF̃ [u (x;x∗)] = u (y;x∗) F̃ (y) +

∫ x∗

y

u (x;x∗) dF̃ (x) +
(

1− F̃ (x∗)
)
u (x∗;x∗)

=

∫ x∗

y

u (x;x∗) dF (x) + (1− F (x∗))u (x∗;x∗)

=
λ (1− F (x∗))

1− q0 (x∗)

[∫ x∗

y

∫ x

y

q0 (x̃) dx̃dF (x) + (1− F (x∗))

∫ x∗

y

q0 (x̃) dx̃

]
Hence, the payoff from inspection is strictly higher than the payoff from not inspecting.

To show that equation (22) is also necessary, consider the limit Λ → 0, such that a buyer who
meets with a seller knows that, with probability 1, he does not face competition from other buyers.
The optimal bid in that case is y and it follows immediately that inspection is better only if equation
(22) holds.
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Figure 1: Optimal Mechanisms
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Figure 2: Transaction Price CDF
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Figure 3: Effect of an Increase in the Buyer/Seller Ratio
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solid blue line = original equilibrium; dashed orange line = equilibrium with higher Λ.
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Figure 4: Effect of a Decrease in the Inspection Cost
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solid blue line = original equilibrium; dashed orange line = equilibrium with lower k.

Figure 5: Effect of Technological Improvement
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solid blue line = original equilibrium; dashed orange line = equilibrium with more information.

Figure 6: Transaction Prices Above the Asking Price
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