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Abstract 
 
There is growing interest in multi-sector models that combine aggregate balanced growth, 
consistent with the well-known Kaldor facts, with systematic changes in the sectoral allocation 
of resources, consistent with the Kuznets facts. Although variations in the income elasticity of 
demand across goods played an important role in initial approaches, recent models stress the 
role of supply-side factors in this process of structural change, in particular sector-specific 
technical change and sectoral differences in factor proportions. We explore a general framework 
that features an additional supply-side mechanism and also encompasses these two known 
mechanisms. Our model shows that sectoral differences in the degree of capital-labor 
substitutability - a new mechanism - are a driving force for structural change. When the exibility 
to combine capital and labor differs across sectors, a factor rebalancing effect is operative. It 
tends to make production in the more exible sector more intensive in the input that becomes 
more abundant. As a result, growth rates of sectoral capital-labor ratios can differ and, if this 
effect dominates, shares of each factor used in a given sector can move in different directions. 
We identify conditions under which this occurs and analyze the dynamics of such a case. We 
also provide some suggestive evidence consistent with this new mechanism. A quantitative 
analysis suggests that this channel was an important contributor to structural change out of 
agriculture in the United States. 
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1 Introduction

The theoretical literature on economic growth has traditionally been interested in models

that exhibit a balanced growth path, a trajectory where the growth rate of output, the

capital-output ratio, the return to capital, and factor income shares are constant. It has

become standard to impose restrictions on preferences and technology to be consistent with

these “Kaldor facts” (Kaldor, 1963). Nonetheless, underlying this balanced process at the

aggregate level, there are systematic changes in the composition of output at a more disag-

gregated level – a secular process of structural change. The seminal work of Clark (1940) and

Kuznets (1966) already documented a facet of this structural transformation, particularly

the continuous decrease in the share of agriculture in output and employment that accompa-

nies long-run increases in income per capita. More recently, several authors (see for instance

Kongsamut et al. 2001; Buera and Kaboski, 2012) have drawn attention to the increasing

importance of the service sector. Kongsamut et al. (2001) have dubbed this second set of

empirical regularities associated with the process of structural change the “Kuznets facts”.

In recent years, several multi-sector growth models that address both the Kaldor and the

Kuznets facts have been proposed. Inspired by the early contributions of Baumol (1967) and

Matsuyama (1992), this literature has identified several channels that can drive structural

change and are still consistent with a balanced growth path. One can classify these channels

into two categories: preference-driven and technology-driven structural change.1 In the

first category (see for instance Kongsamut et al. (2001), Foellmi and Zweimüller (2008)

or Boppart (2014)), structural change is driven by differences in the income elasticity of

demand across goods.2 As capital accumulates and income rises, these differences shift

demand, and therefore resources and production, from goods with low demand elasticity,

such as food or necessities, to high demand elasticity goods, such as services or luxuries. In

the second category, where technological differences across sectors play the dominant role,

two alternative mechanisms have been proposed. The first mechanism, recently formalized

by Ngai and Pissarides (2007), hereafter NP, works through differences in the sectoral rates of

TFP growth. The second mechanism, explored by Acemoglu and Guerrieri (2008), hereafter

1Most papers in this literature use a closed economy framework. In this context, the interaction between
preferences and technology determines sectoral allocations. In an open economy, given world prices, sectoral
allocations are only determined by the supply side of the model. See Matsuyama (1992) and Ventura (1997)
for models of structural change in an open economy and Alvarez-Cuadrado and Poschke (2011) for the
relevance of the closed-economy assumption in the context of structural change out of agriculture.

2There is a large body of work that assumes non-homotheticity as a source for structural change. See also
Echeverria (1997), Laitner (2000), Caselli and Coleman (2001), Gollin, Parente and Rogerson (2007), and
Restuccia and Duarte (2010). Boppart (2014) considers non-homothetic preferences and differential TFP
growth jointly.

2



AG, places its emphasis on sectoral differences in factor proportions, i.e. differences in the

elasticity of output with respect to capital across sectors. As sectoral levels of TFP diverge

or capital accumulates, these two channels generate a process of structural change.3

The main objective of this paper is to explore an additional source for technology-driven

structural change consistent with quasi-balanced growth at the aggregate level: sectoral

differences in the elasticity of substitution between capital and labor. Intuitively, if the

degree of flexibility with which capital and labor can be combined to produce output varies

across sectors, changes in the wage to rental rate ratio that accompany aggregate growth lead

to systematic reallocations of factors of production and to changes in the sectoral composition

of output. In this paper, we formalize this simple intuition. In our model, as the aggregate

capital-labor ratio and the wage to rental rate ratio increase, the sector with higher elasticity

of factor substitution – the more flexible sector – is in a better position to substitute away

from the progressively relatively more expensive input, labor, and into the progressively

cheaper one, capital, compared to the less flexible sector. As a result, differences in the

sectoral elasticity of substitution between capital and labor induce a process of structural

change.

Our exercise is motivated by three observations. Firstly, there is direct econometric

evidence that the elasticity of substitution differs across sectors. Most recently, Herrendorf,

Herrington and Valentinyi (2015) have estimated sectoral CES production functions using

postwar U.S. data. Their results indicate not only substantial deviations from the Cobb-

Douglas benchmark, but also pronounced differences across sectors, with an elasticity of

substitution between capital and labor below one for both services and manufacturing, and

an elasticity well above one for agriculture. Secondly, there is evidence that capital-labor

ratios grow at different rates in different sectors. Most notably, the yearly average growth

rate of the capital-labor ratio in U.S. agriculture has been 1.9% since 1960, compared to 1.4%

for the economy as a whole.4 As we will see, under free factor mobility, this cannot arise if

sectoral production functions are Cobb-Douglas, and thus also points towards differences in

substitution elasticities across sectors. Thirdly, factor income shares have evolved differently

across sectors. For instance, Zuleta and Young (2013) construct sectoral labor income shares

using data from the U.S. 35 sector KLEM database from 1960 to 2005 (Jorgenson, 2007).

Over this period, the labor income share in agriculture fell by 15 percentage points, roughly

3Baumol (1967) suggests several mechanisms behind structural change, specifically “innovations, capital
accumulation, and economies of large scale” (p. 415). Recently, Buera and Kaboski (2012) developed a
model where structural change results from differences in the scale of productive units across sectors. This
is yet another source of technology-driven structural change.

4Data from Herrendorf, Herrington and Valentinyi (2015).
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three times its change in the rest of the economy.5 While factor income shares have a

whole set of determinants, it is clear that this observation is inconsistent with Cobb-Douglas

production functions at the sectoral level, and also points towards sectoral differences in

factor substitutability.

These changes in sectoral capital-labor ratios and factor income shares coincided with

substantial structural change. For instance, the contribution of agricultural value added to

U.S. GDP declined by 90% from the end of World War II to 2010, from 9% to just 1% of

GDP. Over the same period, hours worked of persons engaged in agriculture declined by a

similar proportion, from 18% to barely 2% of total hours worked. In contrast to this, the

fraction of capital used in agriculture only declined by half, from 11% to 5%, illustrating

again the much faster growth in the capital-labor ratio in agriculture. The crucial role played

by the elasticity of substitution in the evolution of the capital-labor ratios and the factor

income shares suggests that this elasticity may also play an important role in the process of

structural change.6

We thus analyze theoretically how differences in factor substitutability affect structural

change. The framework we use for our analysis is a two-sector version of the Solow model.

Final output is produced using a CES aggregator that combines two intermediate inputs.

These are in turn sectoral outputs produced under two different CES production functions,

using capital and labor. By varying parameter restrictions, this simple framework allows

us not only to analyze the new mechanism that we are proposing, but also to capture the

essence of the two supply-side mechanisms stressed in the previous literature.

To begin, we identify conditions on parameters that determine how factor allocations

react to capital accumulation and technical change. These conditions arise from the bal-

ance of three effects: a relative price effect, a relative marginal product effect, and a factor

rebalancing effect. While the former two are already present in the previous literature on

technology-driven structural change, the latter is new and arises only in the presence of dif-

5Aside from the high frequency variations in factor income shares, documented for instance by Blan-
chard (1997), Caballero and Hammour (1998) and Bentolila and Saint-Paul (2003), there has been a recent
reappraisal of the long-run constancy of the aggregate labor income share. Two recent contributions, Elsby,
Hobijn, and Sahin (2013) and Karabarbounis and Neiman (2014), have documented a secular decline in the
labor income share in the United States and at a global level. In a companion paper, Alvarez-Cuadrado,
Long, and Poschke (2015), we explore the implications of sectoral differences in the elasticity of substitution
between capital and labor for this decline in the aggregate labor income share.

6Recall that this elasticity was first introduced by Hicks in his seminal work, The Theory of Wages (1932),
to explore the distribution of income between factors in a growing economy. First, Pitchford (1960) and,
recently, Klump and de La Granville (2000) and Jensen (2003) analyze the relationship between the CES
production function and the possibility of permanent growth in a neoclassical model of capital accumulation.
The latter explores multi-sector models, but differs in focus from our work.
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ferences in the elasticity of substitution across sectors. It reflects that, as a factor becomes

more abundant and therefore relatively cheaper, e.g. due to capital accumulation, the more

flexible sector increases its use of that factor more. We show that if this effect is strong

enough, it is possible for sectoral capital and labor allocations to move in opposite directions

with capital accumulation or technical change. More generally, its presence leads to differ-

ences in the evolution of capital-labor ratios. The evolution of value added shares of the

two sectors depends on whether an increase in the capital-labor ratio makes the economy’s

endowments of capital and labor more or less “balanced.” To build intuition, we also present

results for some special parametric cases and show some quantitative illustrations.

In addition to static allocations, we can characterize the dynamics of the model in a

tractable special case that illustrates the effects of differences in the substitution elasticity.

Concretely, we assume that final output is produced under a Cobb-Douglas technology and

that the sectoral technologies are identical except for the sectoral elasticity of substitution

between capital and labor. In this case, the factor rebalancing effect dominates. Then, as

the aggregate capital-labor ratio increases, the fractions of capital and labor allocated to

the flexible sector move in opposite directions: the flexible sector absorbs more capital and

releases labor. Intuitively, as capital accumulates and the wage to rental rate ratio increases,

the flexible sector will tend to substitute from the now more expensive input, labor, towards

the relatively cheaper one, capital, at a higher rate than the less flexible sector is able to

do. Sectoral capital-labor ratios and factor income shares thus can evolve differently in the

two sectors. In the context of this simple framework, we show that the economy converges

to a balanced growth path consistent with the Kaldor facts, with structural change taking

place along the transition only. These results, derived under a constant saving rate, readily

extend to an endogenous saving environment.

It is worth stressing that the differences in the degree of factor substitution are a distinct

driver of structural change compared to the differences in factor proportions stressed by AG.

This is true both in terms of implications, as just discussed, and conceptually. Conceptually,

for given factor prices, factor proportions are determined by the interaction between the

elasticity of substitution and the distributive parameter (the α in the Cobb-Douglas tech-

nology). AG focus on sectoral differences in this latter parameter, while our model stresses

the effects of differences in the former.

Finally, the mechanism proposed here also differs from those in AG and NP in that

structural change is driven by changes in the relative price of factors, not the relative price

of sectoral outputs. As is well known, the factor allocation changes with growth in response to
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changes in the relative price of the two intermediate goods in both the AG and NP models.

Instead, with differences in the elasticity of substitution, the factor allocation changes in

response to changes in the ratio of the wage rate to the rental rate of capital.

We round off the paper with a brief quantitative analysis of structural change out of

agriculture. To begin, we show some suggestive evidence from cross-country data, which

clearly reveal that richer economies not only allocate fewer resources to agriculture, but

also have much more capital intensive agricultural sectors. This is consistent with a higher

elasticity of substitution between capital and labor in agriculture. We then show that a

version of our model calibrated using estimates of sectoral substitution elasticities from

Herrendorf, Herrington and Valentinyi (2015) fits structural change out of agriculture in

the U.S. very well. Notably, it renders the different paths of capital and labor allocated to

agriculture very closely. A decomposition analysis also confirms the importance of differences

in substitution elasticities for this episode of structural change.

The mechanism illustrated in this paper is also related to that in Ventura (1997) and

to the literature on capital-skill complementarity initiated by Krusell, Ohanian, Rios-Rull

and Violante (2000). Ventura (1997) presents a multi-country growth model where final

output is produced combining two intermediate goods, one of which is produced using only

capital, while the other uses only labor. There is free trade in both intermediate goods,

although international factor movements are not permitted. In this context, as a country

accumulates capital, resources are moved from labor-intensive to capital-intensive uses – a

process of structural change – while international trade converts this excess production of

capital-intensive goods into labor-intensive ones. Krusell et al. (2000) present a neoclassical

growth model where the elasticity of substitution between capital equipment and unskilled

labor is higher than that between capital equipment and skilled labor. As a result, as capital

accumulates, the wage for skilled workers increases relative to that of unskilled workers,

in line with the increase in the skill premium observed over the last 20 years of the past

century. Finally, the results we obtain can also be useful for the analysis of structural

change in terms of other factors of production for which substitutability may differ across

sectors. For instance, Reshef (2013), Buera, Kaboski and Rogerson (2015) and Wingender

(2015) suggest that this could be the case for skilled and unskilled labor.

The paper is organized as follows. Section 2 sets out the basic model. Section 3 analyzes

optimal static allocations, and Section 4 analyzes growth paths for a special case with un-

equal sectoral capital-labor substitution. Section 5 provides some suggestive cross-country

evidence and a quantitative analysis of structural change out of agriculture in the U.S..
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The conclusions are summarized in Section 6, while the Appendix includes proofs and some

technical details.

2 A general model of structural change

We model a closed economy where a single final good is produced under perfect competition

by combining the output of two intermediate-good sectors, Ys, where s = 1, 2, according to

a CES technology with elasticity of substitution ε ∈ [0,∞):

Y (t) = F (Y1 (t) , Y2 (t)) =
[
γY1 (t)

ε−1
ε + (1− γ)Y2 (t)

ε−1
ε

] ε
ε−1

(1)

where γ ∈ (0, 1) is the distributive share.7 Both intermediate-good sectors use two inputs,

labor, L, and capital, K. The labor force grows at a rate n and capital depreciates at a

rate δ. The aggregate resource constraint requires the sum of consumption, C, and gross

investment, I, to be equal to output of the final good

K̇ (t) + δK (t) + C (t) ≡ I(t) + C(t) = Y (t) (2)

where the dot denotes the change in a variable. Under the assumption that a fixed fraction

of output, v, is saved and invested every period, equation (2) yields the following law of

motion for the capital stock,

K̇ (t) = vY (t)− δK (t) . (3)

The two intermediate goods are produced competitively according to

Ys (t) =
[
(1− αs) (As (t)Ls (t))

σs−1
σs + αsKs (t)

σs−1
σs

] σs
σs−1

(4)

where αs ∈ (0, 1), σs ∈ [0,∞), As, Ls, and Ks are respectively the distributive share, the

elasticity of substitution, and the levels of technology, employment, and capital for sector

s.8 Both inputs are fully utilized:

L1 (t) + L2 (t) = L (t) ,

K1 (t) +K2 (t) = K (t) .

Moreover, given the assumption of finite ε, σ1 and σ2, both sectors use strictly positive

quantities of both inputs.

7When ε = 1, this equation becomes Y = Y γ1 Y
1−γ
2 .

8Again, the possibility that σs = 1 is admitted, for one or for both sectors. Also note that the capital
income share in sector s is not simply equal to αs unless σs = 1.
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Technological progress in each sector is exogenous and exhibits a constant growth rate:

Ȧs (t)

As (t)
= gAs > 0, s = 1, 2. (5)

This general setup allows for a novel mechanism, where differences in the degree of capital-

labor substitutability across sectors drive the evolution of sectoral factor allocations. At the

same time, the setup includes as special cases several of the mechanisms described in the

theoretical literature on structural change. That is, setting ε 6= 1, σ1 = σ2 = 1, gA1 = gA2 and

α1 6= α2 yields a model of structural change (and non-balanced growth) driven by differences

in factor proportions and capital deepening, as in AG. Instead, setting ε 6= 1, σ1 = σ2 = 1,

α1 = α2 and gA1 6= gA2 leads to a model where structural change is driven by differences in

the growth rates of sectoral TFP, as in NP.

We break the solution of our problem into two steps. First, given the vector of state

variables at any point in time, (K,L,A1, A2), the allocation of factors across sectors is

chosen to maximize final output, (1). This is the static problem, solved in the next section.

Second, given factor allocations at each date, the time path of the capital stock follows the

law of motion (3). The dynamic problem consists of examining the stability of this process.

This is analyzed in Section 4.

3 The static problem

Let us denote the rental rate, the wage rate, the prices of the intermediate goods and the

price of the final good by R ≡ r + δ, w, p1, p2 and P respectively.9 It will prove useful to

define capital per worker, k = K/L, and the shares of capital and labor allocated to sector

1 as

κ ≡ K1

K
and λ ≡ L1

L
. (6)

Throughout, we will also assume without loss of generality that σ2 > σ1, i.e. sector 2 is the

more flexible sector.

The optimal allocation involves two trade-offs: the optimal allocation of resources across

sectors, and the optimal balance of resources, or the optimal capital-labor ratio, in each

sector. The former is summarized by the labor mobility condition (LM) and the latter by

the contract curve (CC), which we derive and characterize next.

9We drop the time indicators when there is no risk of ambiguity.
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3.1 The contract curve (CC)

At any point in time and for any prices, free mobility of capital and labor across sectors

implies the equalization of the marginal value products of these factors across sectors:

p1α1

(
Y1
K1

) 1
σ1

= p2α2

(
Y2
K2

) 1
σ2

= R (7)

p1 (1− α1)

(
Y1
L1

) 1
σ1

A
σ1−1
σ1

1 = p2 (1− α2)

(
Y2
L2

) 1
σ2

A
σ2−1
σ2

2 = w (8)

Combining these equations yields the contract curve:

CC(κ, λ, k, A1, A2) ≡
1− α1

1− α2

α2

α1

A
σ1−1
σ1

1

A
σ2−1
σ2

2

k
1
σ1
− 1
σ2

κ
1
σ1

(1− κ)
1
σ2

λ
− 1
σ1

(1− λ)
− 1
σ2

= 1. (CC)

This curve describes the set of points where the marginal rates of technical substitution are

equalized across sectors. In a slight abuse of notation, we will refer to its left hand side as

(CC).

For the analysis of the optimal allocation of capital and labor across sectors and its shifts

with development, it is useful to depict the contract curve and the labor mobility condition

in κ, λ-space (see Figure 1). Since (CC) is increasing in the share of capital allocated to

sector 1, κ, and decreasing in its share of labor, λ, the CC curve is upward-sloping in this

space. It is also clear from equation (CC) that it connects the origin with the point (1,1).

(To see this, bring the fraction involving λ to the right hand side.)

The positive slope of the curve reflects the complementarity of capital and labor in

production: Increasing the amount of capital allocated to sector 1 increases the marginal

product of labor in sector 1 relative to sector 2, and therefore also calls for allocating more

labor to sector 1. Note that, of course, the curve can also be transformed to show the optimal

relationship between capital-labor ratios in the two sectors.

A few special cases are worth of interest. In the case where both sectors have Cobb-

Douglas production functions (as in AG and NP), σ1 = σ2 = 1, (CC) implies that λ/(1 −
λ) is a linear function of κ/(1 − κ), and that sectoral capital-labor ratios, k1 and k2, are

proportional. In this case, (CC) reacts neither to changes in k nor to changes in A1 or A2.

Relative capital intensity in this scenario is governed by α1 and α2. When α1 > α2, sector

1 is more capital-intensive, and therefore κ > λ for all levels of k and technology. When

α1 = α2, κ = λ, and capital-labor ratios are always equated across sectors.

When sectoral substitution elasticities, σs, are common but not equal to one, κ/(1− κ)

and λ/(1−λ) are also proportional and unaffected by changes in k or by proportional changes

9



Figure 1: The contract curve (CC) and the labor mobility condition (LM)

0 0.2 0.4    κ 0.6 0.8 1

κ

0

0.2

0.4

λ

0.6

0.8

1

λ

CC

LM

Notes: Parameter values: γ = 0.5, ε = 0.5, σ1 = 1, σ2 = 1.2, α1 = 0.3, α2 = 0.4, A1 = A2 = 1, k = 1. The

dotted line is the 45-degree line.

in As in both sectors. They do however respond to changes in relative As. Capital intensity

is higher in the sector with larger αs or with larger (smaller) As, if σ < (>)1.

It is clear from this discussion that in the Cobb-Douglas case, and to some extent even

more generally when sectoral substitution elasticities are identical, the contract curve is not

very interesting. In these cases, the location of the CC curve only influences relative factor

intensity. All “action” in terms of structural change, however, is driven by movements in

the labor mobility curve. This is not true anymore when σ differs across sectors. In this

case, differences in σ determine how the curve shifts, and movements in both (CC) and (LM)

will jointly determine structural change. Movements in (CC) are governed by the following

result:

Lemma 1 The factor rebalancing effect. Assume σ2 > σ1, so that sector 2 is the flexible

one. Then, an increase in the capital-labor ratio, k, shifts the contract curve up in κ, λ-space.

A proportional increase in both A1 and A2 shifts it down.

Proof: The result follows immediately from the elasticities of (CC) with respect to κ, λ, k,

A1 and A2. �

This result is very intuitive: an increase in k or in A1 and A2 corresponds to a shift in

the relative abundance of the two inputs, capital and effective labor. This affects relative

10



marginal products and the optimal factor mix in each sector. For instance, for any share of

capital allocated to sector 1, κ, an increase in k increases the marginal product of labor more

in the less flexible sector 1. Hence, as k increases, (CC) requires a larger share of labor to

be allocated to the less flexible sector, an increase in λ, at any κ. Another way of thinking

about this is to note that in equilibrium, a larger aggregate capital-labor ratio implies a

larger wage to rental rate ratio. This leads sectors to substitute away from labor. The more

flexible sector can do so more easily, implying larger λ for any given κ. The Lemma thus

states that the more flexible sector tends to increase its use of the input that becomes more

abundant, and reduce its use of the one that becomes relatively more scarce. We call this the

factor rebalancing effect. This effect crucially relies on differences in substitutability across

sectors.

3.2 The labor mobility condition (LM)

This condition is obtained by combining the optimal allocation of output across sectors

from a consumption (final sector) and production (factor allocation) point of view. We first

solve for the demand functions for the intermediate goods under perfect competition by

maximizing output (1) subject to the zero profit condition p1Y1 + p2Y2 = PY . We normalize

P = 1. This maximization problem yields the inverse demand functions for the intermediate

inputs:

p1 = γ

(
Y1
Y

)− 1
ε

, p2 = (1− γ)

(
Y2
Y

)− 1
ε

.

These two equations yield the relative demand, Y1/Y2, as a function of the relative price,

p1/p2.

p1
p2

=
γ

1− γ

(
Y1
Y2

)− 1
ε

(9)

Combining this with the condition for the optimal allocation of labor across sectors (8),

which requires that p1MPL1 = p2MPL2, yields the labor mobility condition

LM (κ, λ, k, A1, A2) ≡
p1
p2

MPL1

MPL2

=
γ

(1− γ)

(
Y1
Y2

)− 1
ε

︸ ︷︷ ︸
Relative Price

1− α1

1− α2

(Y1/λ)
1
σ1

(Y2/ (1− λ))
1
σ2

L
1
σ2
− 1
σ1
A

σ1−1
σ1

1

A
σ2−1
σ2

2︸ ︷︷ ︸
Relative Marginal Product

= 1.

(Note that Y1 and Y2 implicitly depend on both κ and λ.) Taking the share of capital

allocated to sector 1, κ, as given, this condition describes the optimal allocation of labor

across sectors in order to balance two considerations: changing the allocation of labor to a
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sector affects its relative marginal product, but also its relative price. As above, we will refer

to the left hand side of this equation as (LM).

It is clear from (LM) that for any interior κ, allocating the entire labor endowment to

one of the two sectors is not a solution. Hence, the optimal share of labor allocated to sector

1, λ, is strictly between 0 and 1. This implies that depicted in κ, λ-space, the LM curve

crosses the CC curve strictly once from above.10

The slope of (LM) in κ, λ-space depends on parameters. It is driven by the balance of

the relative price and relative marginal product effects. Consider an increase in κ. This

increases both the output and the marginal product of labor in sector 1. Increased output

results in a lower relative price in this sector. For value marginal products to be equated

across sectors, it is then necessary to reallocate labor to sector 2. We refer to this as the

relative price effect. Its strength is driven by the demand elasticity ε. This is the key effect

driving results in both AG and NP. At the same time, higher κ implies an increase in the

marginal product of labor in sector 1, which calls for more labor to be allocated to that

sector. We call this the relative marginal product effect. We discuss it in more detail below.

If both substitution elasticities, σ1 and σ2, are larger than ε, the relative price effect

dominates, and allocating more capital to a sector calls for allocating more labor to the other

sector. Put differently, when ε < σ1, σ2, it is easier to substitute in the intermediate goods

sectors than in the final sector, and therefore the equalization of value marginal products

implies a negative relationship abetwen capital and labor allocations: a downward-sloping

LM curve. In the opposite case, ε > σ1, σ2, it is easier to substitute in the final goods sector.

In this case, the relative marginal product effect dominates and an increase in the share of

capital allocated to one sector requires an increase in its share of labor as well, so that the

LM curve is upward-sloping.

The LM curve shifts with changes in k or in productivity:

Lemma 2 Shifts in the LM curve. For given share of capital allocated to sector 1, κ, an

increase in the capital-labor ratio, k, shifts (LM) up if
(

1
σ1
− 1

ε

)
ε1 >

(
1
σ2
− 1

ε

)
ε2, where εs

is the elasticity of output to capital in sector s = {1, 2}.11 A proportional increase in sectoral

productivities, A1 and A2, has the opposite effect.

10Note that there is only one intersection between the two curves since the objective function
F (Y1(κK, λL), Y2((1 − κ)K, (1 − λ)L)) is strictly quasi-concave in (λ, κ) and the FOCs of maximization
of a strictly quasi-concave function over a convex set yield a unique global maximum; see Takayama (1985,
Theorem 1.E.3, p. 115). The strict quasiconcavity of F with respect to λ, κ results from the strict quasi-
concavity of F with respect to Y1 and Y2 and the strict quasiconcavity of Y1 and Y2 with respect to their
inputs.

11With a CES production function, εs is not a structural parameter. Each εs depends on σs, αs, and also
on the input allocation in the sector. In spite of this, it is still very useful to define conditions in terms
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Proof: The result follows immediately from the elasticities of (LM) with respect to λ, k, A1

and A2. �

The same two effects are at work here: When increasing capital in both sectors propor-

tionally raises the relative output of sector 2 (this occurs when this sector is capital intensive,

ε2 > ε1), the relative price of sector 1 increases. At the same time, the relative marginal

product of labor in sector 1 increases if ε1/σ1 > ε2/σ2. This is because an increased capital

input affects each sector’s marginal product of labor, which is proportional to (Ys/Ls)
1/σs ,

in two ways. First, for any increase in Ys, the marginal product of labor increases more

the lower the substitution elasticity, σs, as this implies stronger complementarity between

capital and labor. Hence, the relative marginal product effect favors the less flexible sector.

Second, the importance of capital as an input in the sector matters. This is captured via the

elasticities of sectoral output with respect to capital, ε1 and ε2. This reflects that given any

σ, the optimal labor input increases more the more output responds to the increase in capi-

tal. Hence, the relative marginal product effect favors the sector with the lower substitution

elasticity, and the sector with the higher elasticity of output with respect to capital.

Combining the two effects implies that the relative value marginal product in sector 1

increases under the condition in the Lemma, calling for more labor to be allocated to sector

1.

3.3 Development and structural change

Development, i.e. changes in k and As, shifts the contract curve and the labor mobility

condition, leading to changes in the optimal allocation of capital and labor across sectors.

Lemmas 1 and 2 give the direction of the shifts in the CC and LM curves. However, they

are not sufficient to characterize changes in sectoral input allocations. For example, in a

case where both curves shift up, it is clear that the share of labor allocated to sector 1, λ,

increases, but the response of its share of capital, κ, is ambiguous.

We thus start by analyzing a few analytically tractable special cases in which changes in

κ and λ are unambiguous. The first special case, our baseline model, illustrates the potential

power of the factor rebalancing effect: here, an increase in the capital-labor ratio, k, causes

movements in κ and λ in opposite directions. This possibility, which is new to the literature,

is driven by differences in substitutability across sectors. Subsequently, we briefly illustrate

of these elasticities. This is because the firm’s optimality condition (7) implies that εs equals the capital
income share in sector s. Given the limited variation and easy observability of factor income shares, their
order of magnitude and plausible variation across sectors is in fact easier to assess than that of the structural
parameters in this and many other models.
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how, once the factor rebalancing effect is shut down, the usual prominent mechanism from

the structural change literature drives factor allocations. After that, we discuss more general

results and present some numerical illustrations.

3.3.1 Baseline model: A dominant factor rebalancing effect

Assume α1 = α2 = α, sector 2 is the flexible one, σ2 > σ1 = 1, and final output is Cobb-

Douglas, ε = 1. The (CC) and (LM) conditions simplify to

CC(κ, λ, k, A2) ≡ A
1−σ2
σ2

2 k
σ2−1
σ2

κ

(1− κ)
1
σ2

(1− λ)
1
σ2

λ
= 1 (CC’)

LM(κ, λ, k, A2) ≡
γ

(1− γ)

(
Y2
L

)σ2−1
σ2 (1− λ)

1
σ2

λ
A

1−σ2
σ2

2 (LM’)

=
γ

(1− γ)

(
(1− α) (1− λ)

σ2−1
σ2 + α

(
(1− κ) k

A2

)σ2−1
σ2

)
(1− λ)

1
σ2

λ
= 1.

Of course, σ2 > σ1 implies that a higher capital-labor ratio, k, shifts up the CC curve

because of the factor rebalancing effect. The parameter restrictions also pin down the slope

and direction of shift of the LM curve. From Lemma 2 and the discussion preceding it, the

LM curve is downward-sloping, and shifts up as k increases. Intuitively, the reduction in the

price of sector 2 output calls for labor to move to sector 1. Since σ2 > ε, the increase in the

relative marginal product of labor in sector 2 is not sufficient to compensate for this.

While in the general case, the relative size of resulting shifts in CC and LM depends on

parameters and allocations, the factor rebalancing effect dominates the other effects under

the simplifying assumptions made here, implying that CC shifts up more than LM. 12 As a

consequence, an increase in k leads to an increase in the share of labor allocated to the less

flexible sector, λ, but a decline in its share of capital, κ. This result, and additional results

on quantitative responses, are summarized in the following proposition:

Proposition 1 Assume ε = 1, α2 = α1 = α and σ2 > σ1 = 1. Then the fraction of

capital allocated to the less flexible sector falls as the economy’s aggregate capital-labor ratio

increases, while the fraction of labor in the same sector increases. Similarly, the fraction

of capital (labor) allocated to the less flexible sector does not change when its level of TFP

12Some intuition for the result can be obtained by consulting the conditions in Proposition 6 in the
Appendix. This suggests that the key simplifying assumption σ1 = ε has two important implications: First,
it implies that the effect of k on (LM) is always ε2 times its effect on (CC), and thus smaller. Second, it
implies that the required increase in λ to make each of the two conditions hold again is smaller for (LM).
The reason is that with σ2 > ε, moving labor out of sector 2 affects its relative price more than its relative
marginal product.
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increases but it increases (decreases) with the level of TFP in the more flexible sector. More

specifically, we obtain

∂ lnκ

∂ ln k
= − ∂ lnκ

∂ lnA2

=
(1− σ2)
σ2G(κ)κ

< 0 (10)

∂ lnλ

∂ ln k
= − ∂ lnλ

∂ lnA2

=

(
α

1− α

)
λ(κ)

κ2
(σ2 − 1)

σ2G(κ)
> 0 (11)

∂ lnκ

∂ lnA1

=
∂ lnλ

∂ lnA1

= 0, (12)

where

G(κ) ≡
[

1

σ2 (1− λ(κ))
+

1

λ(κ)

](
λ(κ)

κ

)2(
α

1− α

)
+

[
1

κ
+

1

σ2(1− κ)

]
and λ(κ) is implicitly defined by (CC’). The inequality signs in (10)-(12) are reversed when

sector 1 is the more flexible one, i.e. σ2 < σ1 = 1.

Proof: See Appendix. �

As the economy-wide capital-labor ratio, k, increases, so does the wage to rental rate

ratio. As a result, the more flexible sector substitutes away from the now more expensive

input, labor, towards the relatively cheaper one, capital, at a higher rate than the less flexible

sector 1 is able to do.

Changes in TFP in the Cobb-Douglas sector, A1, leave the ratio of the wage per unit of

effective labor to the rental rate, and therefore sectoral allocations, unchanged. In contrast,

although increases in TFP in the more flexible sector, A2, raise the wage to rental rate ratio,

they still lower the effective cost of using labor, i.e. they reduce the wage per unit of effective

labor. As a result, the more flexible sector 2, taking advantage of this change in relative factor

prices, increases labor intensity of production. In both instances, cross-sectoral differences

in the elasticity of substitution allow the more flexible sector to absorb a larger fraction of

the relatively cheap input and to release some of the relatively expensive one.

Remark 1 For a fixed level of productivity, an increase in the aggregate capital-labor ratio

induces an increase in the wage to rental rate ratio. As a result, the capital-labor ratio

increases in both sectors. This is true even when the shares of capital and labor allocated to

a sector move in different directions

Hence, following an increase in the aggregate capital-labor ratio, we should not expect

to see declines in the level of the capital-labor ratio in any sector, but different, positive,

growth rates.
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Remark 2 There is a level of the aggregate capital labor ratio, k, (let it be k̄) such that the

shares of capital and labor within sector coincide.13 At this point, a factor intensity reversal

occurs: The less flexible sector is capital-intensive, κ > λ, when capital is relatively scarce,

k < k̄, becoming labor-intensive, κ < λ, when capital becomes relatively abundant, k > k̄.

An allocation with κ = λ implies that the aggregate capital labor ratio and those in the

two sectors are all equated. This is only possible if the contract curve coincides with the

45-degree line. (CC) defines the capital labor ratio for which this occurs, k̄. Given that

sector 1 is the less flexible one, σ2 > σ1, the factor rebalancing effect implies that an increase

in k above this level shifts the contract curve up in κ, λ-space. As a result, it must be that

the share of labor allocated to the less flexible sector exceeds that of capital, λ > κ, at the

optimal allocation if k > k̄. The reverse argument applies for k < k̄.14

Intuitively, above k̄, capital is relatively abundant, and its rental price relatively low.

The more flexible sector is freer to respond to this, implying that it uses it more intensively,

so that κ < λ in this range. Below k̄, capital is relatively scarce, so its rental price is

relatively high. The more flexible sector can more easily substitute to labor, implying κ > λ

in this range. One could thus say that at the capital intensity reversal, k̄, the economy’s

endowments of capital and labor are “balanced” given the sectoral production technologies.

Finally, we can characterize the behavior of the relative price, relative output, and relative

value added of the two sectors.

Lemma 3 Relative price, relative output, relative value added. The relative price

p1/p2 declines in the aggregate capital labor ratio below the capital intensity reversal, achieves

a minimun at this point, k = k̄, and increases thereafter. Relative output Y1/Y2 increases in

the aggregate capital labor ratio below the capital intensity reversal, achieving a maximum at

the point of the reversal, and increasing thereafter. Since the final sector is Cobb-Douglas by

assumption, ε = 1, relative value added p1Y1/(p2Y2) remains constant at γ/(1− γ).

Proof. See Appendix. �

At the capital intensity reversal, k = k̄, the relative price of sector 1 output is minimized,

because its relative marginal cost is minimized at this point. From the discussion of Remark

2, when the aggregate capital labor ratio, k, is larger or smaller than k̄, k is relatively

abundant or scarce. This imbalance affects the marginal cost of the less flexible sector

more, implying that p1/p2 increases as k moves away from k̄. In the special case under

13It is clear from (CC) that this level is such that k̄
1
σ1

− 1
σ2 = α1

α2

1−α2

1−α1
A

1−σ1
σ1

1 A
σ2−1
σ2

2 .
14Remark 2 holds not only under the assumptions of Proposition 1, but in the general model.
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consideration, since the final sector is Cobb-Douglas, the change in the relative price is

accompanied by a counteracting change in relative output that leaves relative value added

unchanged. If instead the products of the two intermediate sectors are gross complements

(substitutes), i.e. if ε < (>)1, the value added share of the less flexible sector increases

(decreases) as moves away from k̄. Hence, a general version of the model predicts that

changes in k generate structural change in terms of both inputs and value added.

Before showing results for a more general setting, we briefly show next that when the

factor rebalancing effect is shut down, as commonly is the case in previous work on structural

change, we recover standard results from that literature.

3.3.2 Special case 1: Differences in factor intensity (AG)

Let σ1 = σ2 = 1 so that sectoral technologies are Cobb-Douglas and α2 > α1 so that sector

1 is labor-intensive, as in AG. As shown in Section 3.1, the assumption of sectoral Cobb-

Douglas technologies shuts down the factor rebalancing effect. Therefore, changes in the

aggregate capital-labor ratio or in sectoral productivities shift only the LM curve, tracing

out points along the unchanged CC curve. As a result, the fractions of capital and labor

allocated to any of the two sectors always move in the same direction. When intermediate

goods are complements, ε < 1 = σs, the relative price effect dominates the marginal product

effect as the aggregate capital-labor ratio increases. Since sector 1 is labor-intensive, the

LM curve shifts up increasing the shares of capital and labor in this sector. The following

proposition summarizes the quantitative responses of sectoral factor allocations to changes

in the aggregate capital-labor ratio and sectoral productivities:

Proposition 2 Assume σ1 = σ2 = 1, α2 > α1 and ε < 1. The fractions of capital and labor

allocated to the labor-intensive sector increase as the aggregate capital-labor ratio increases:

d lnκ

d ln k
=

(1− ε) (α2 − α1) (1− κ)

1 + (1− ε) (α2 − α1) (κ− λ)
>0

d lnλ

d ln k
=

d lnκ

d ln k

α1

α2

(1− α2)

(1− α1)

λ

κ
>0.

d lnκ

d lnA2

= − d lnκ

d lnA1

(1− α2)

(1− α1)
=

(1− ε) (1− κ) (1− α2)

1 + (1− ε) (α2 − α1) (κ− λ)
>0

d lnλ

d lnA2

= − d lnλ

d lnA1

(1− α2)

(1− α1)
=

d lnκ

d lnA2

α1

α2

(1− α2)

(1− α1)

λ

κ
>0

The reverse is true when ε > 1.

The intuition for this proposition is best understood by considering the effects of capital

deepening in the absence of sectoral reallocations. With unchanged shares of capital and
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labor allocated to the labor-intensive sector 1, κ and λ, a higher aggregate capital-labor

ratio implies that output of the capital-intensive sector 2 grows more than that of sector

1.15 When sectoral outputs are gross complements (substitutes) in the production of the

final good, i.e. when ε < 1 (ε > 1) , the relative price then shifts against (in favor of) the

fast-growing capital-intensive sector. This change in relative prices implies that equating

marginal revenue products of factors across sectors requires allocating a larger (smaller)

fraction of resources to the labor-intensive sector 1.

3.3.3 Special case 2: Differences in relative productivity (NP)

Let the sectoral technologies be Cobb-Douglas with equal input shares, σ1 = σ2 = 1 and

α1 = α2 = α, as in NP. In this case the factor rebalancing effect is shut down, as in AG. The

CC curve always coincides with the 45-degree line, and sectoral and aggregate capital-labor

ratios are identical. In addition, equal sectoral factor intensities imply that the relative price

and relative marginal product effects are absent for changes in the aggregate capital labor

ratio, k, and for proportional changes in sectoral productivities, A1 and A2. Only changes

in relative productivity shift the LM curve. For instance, when sectoral outputs are gross

complements, ε < 1, increases in A2/A1 are associated with a positive relative price effect

that shifts the LM curve up. As a result the fractions of capital and labor allocated to

the (technologically) laggard sector 1 increase. The following proposition summarizes these

results.

Proposition 3 Assume σ1 = σ2 = 1, α2 = α1 = α, and ε < 1. Then the fractions of capital

and labor allocated to the laggard sector, sector 1, increase as its relative level of total factor

productivity decreases, i.e. as sector 1’s TFP falls relative to sector 2’s TFP.

d lnκ

d ln k
=

d lnλ

d ln k
= 0

d lnλ

d lnA2

=
d lnκ

d lnA2

= − d lnλ

d lnA1

A2

A1

= − d lnκ

d lnA1

A2

A1

=

(
1− γ
γ

)ε
(1− α) (1− ε)

(
A2

A1

)(1−α)(ε−1)

λ>0

The reverse is true when ε > 1.

The intuition for these results is analogous to that for Proposition 2.

15This is reminiscent of the Rybczinski Theorem in international trade theory.
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3.3.4 The general case: Factor rebalancing versus the relative price effect

Similar results to Propositions 1, 2 and 3 can be derived for more general parameter con-

figurations. These results are collected in Propositions 6 and 7 in the Appendix of Alvarez-

Cuadrado et al (2016). In this section, we discuss results for some particular parameter

configurations with the objective to illustrate possible outcomes and their drivers. We first

do so using the CC and LM curves, and then show paths of key outcomes as a capital

accumulates.

Figure 2 illustrates the effect of an increase in the aggregate capital-labor ratio in three

situations.16 Each situation features all three effects discussed above, but with outcomes

that differ due to varying strength of the effects. First, we assume as before that sector 2

is more flexible, σ2 > σ1, in all panels, so that the CC curve shifts up because of the factor

rebalancing effect. Second, the stronger complementarity between capital and labor in sector

1 also implies that the relative marginal product effect moves the LM curve up. Third, recall

that in general, the relative price effect moves the LM curve up if ε1 < (>)ε2 and ε < (>)1,

and has no effect if final output is Cobb-Douglas, ε = 1, (as in Proposition 1) or if sectoral

elasticities of output to capital coincide, ε1 = ε2. Contrary to Proposition 1, sectoral outputs

are gross complements, ε < 1 in all panels of Figure 2, giving more strength to the relative

price effect.

Still, the overall parameter configuration is chosen such that in the left panel, ε2 only

slightly exceeds ε1, implying that a fairly weak relative price effect shifts LM up by only a

little. As a result, the shift in CC is dominant, leading to the same outcome as in the case in

Proposition 1: the share of labor allocated to sector 1, λ, increases while its share of capital,

κ, declines. In the middle panel, α2 is raised to a point where ε2 exceeds ε1 substantially.

As a consequence, the relative price effect becomes so strong that the shift in LM exceeds

that in CC, and λ and κ both increase. Finally, the right panel illustrates how the same

outcome can occur if the difference between sectoral elasticities of substitution is smaller.

By weakening the factor rebalancing effect more than the relative marginal product effect,

this change leads to a smaller shift in CC relative to LM.

Figure 3 shows the same relationships in a different way. Each line shows, for a given

combination of ε, σ1 and ε1, for which combinations of σ2 and ε2 the LM and CC curves

shift by the same amount in reaction to higher aggregate capital-labor ratio, k. Hence, for

combinations of σ2 and ε2 on the line, λ increases but κ is unchanged. The LM curve shifts

16All panels show the equilibrium reaction to raising the aggregate capital labor ratio from 1 to 2. Pa-
rameter values are given in the note to the figure.
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Figure 2: The effect of higher k on the allocations of capital and labor – three examples
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Parameter values: Left (baseline): γ = 0.5, ε = 0.5, σ1 = 1, σ2 = 1.2, α1 = 0.3, α2 = 0.4, A1 = A2 = 1.

Middle: a2 = 0.55. Right: σ2 = 1.05. Solid lines: k = 1. Dashed lines: k = 2.

up more (less) than the CC curve for ε2 above (below) the line or for σ2 left (right) of the line,

implying that κ increases (decreases). (λ increases in all cases shown.) The different lines

show how these relationships vary with parameters. First, higher elasticity of substitution

in the less flexible sector, σ1, implies a smaller difference in substitutability for any level of

σ2, and thus a weaker factor rebalancing effect, as also seen in the right panel of Figure 2.

As a result, the shift in LM dominates that in CC already for smaller values of the elasticity

of output to capital in the more flexible sector, ε2. Second, higher substitution possibilities

in the final sector, increases in ε, make the relative price effect less powerful, implying that

larger ε2 is required for it to push LM more than CC. Finally, higher ε1 implies that larger

ε2 is required for the relative price effect to attain a given strength.

Finally, note that when increases in the aggregate capital-labor ratio do not cause a

relative price effect because sectoral elasticities of output to capital coincide, the factor

rebalancing effect generally dominates the relative marginal product effect. This implies that

the shift in LM can dominate that in CC only when the relative price effect is present. One

can thus think of equilibrium outcomes in the model as being determined by a competition

between the factor rebalancing effect and the relative price effect. Previous work on structural

change has focussed on the relative price effect only. Notably, in AG and NP, where sectoral

technologies are Cobb-Douglas and therefore the factor rebalancing effect is absent, only the

relative price effect matters, and only LM shifts. Here, in contrast, we can address cases

where there is no relative price effect, and also cases in which all effects are present.
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Figure 3: Size of shift in LM versus CC curves
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3.3.5 The general case: Numerical Illustrations

Next, we present some numerical examples that show how key variables evolve with the

aggregate capital-labor ratio, k. We do so for the same parameter values as in the first two

panels of Figure 2 above. These values are in the broad range of reasonable values. Finally,

we also briefly report results for a case where sectoral outputs are gross complements, ε = 1.1.

In this case, the quantitative exercise complements the analytical results because here, ε lies

between the sectoral substitution elasticities, σ1 and σ2, a case that is not covered by our

analytical results in the Appendix.

It turns out to be useful to track the evolution of key variables in terms of the relative

input price. For common As, this is given by ω̃ ≡ w/(AR). From equations (7) and (8),

sectoral ratios of capital to effective labor, k̃s, depend on ω̃ via k̃s(ω̃) = (ω̃αs/(1− αs))σs . It

is clear from this expression that sectoral capital-labor ratios grow at different rates as the

relative input price changes, with the difference being determined by the ratio of sectoral

substitution elasticities.

Figure 4 presents the results of this quantitative exercise. Since there is a monotonically

increasing relationship between the relative input price and aggregate capital per unit of

effective labor, as shown in the top two panels, one can think of the x-axis in the last six
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panels of this figure in terms of the latter variable.17 The left panels illustrate the baseline

case in Figure 2 where the factor rebalancing effect is dominant. As the relative input price

increases, the flexible sector is in a better position to take advantage of this decrease in the

relative price of capital and, therefore, the fraction of capital (labor) that it employs increases

(falls). When effective labor is relatively abundant, for instance ω̃ = 0.1, the flexible sector

employs roughly 53% of the labor force and only 50% of the capital stock. This situation is

reversed as effective labor becomes relatively scarce, and thus more expensive. For instance,

as ω̃ increases to 1, the flexible-sector fraction of labor falls by more than 5 percentage points,

while its fraction of the capital stock increases by almost 7 percentage points. As a result, the

flexible sector is more labor-intensive when the aggregate ratio of capital to units of effective

labor is low, i.e. effective labor is abundant, and more capital-intensive when the aggregate

ratio of capital to effective labor is high. Given our parameter choices, this capital-intensity

reversal takes place when aggregate capital per unit of effective labor is 1/12.

The third panel of Figure 4 reports the evolution of the capital income shares, or elastic-

ities of (sectoral) output with respect to capital. The relevant benchmark for understanding

this evolution is given by the Cobb-Douglas case. With unitary sectoral elasticities of sub-

stitution, σs = 1, factor income shares are independent of relative factor prices. This is the

case for sector 1 in our calibration. If the elasticity of the flexible sector exceeds one, as is

the case for sector 2 here, k̃s(ω̃) = (ω̃αs/(1− αs))σs implies that an increase in the relative

input price leads to a more than proportional increase in capital per unit of effective labor.

As a result the capital income share in the flexible sector, ε2, increases as capital accumu-

lates. The aggregate capital income share is an average of the sectoral capital income shares,

weighted by sectoral value added shares.

The last panel in the left column of Figure 4 presents the evolution of the relative price

of the two sectors’ output and of the share of value added produced in sector one. Recall

that the two are related by the condition for optimal demand from the final goods sector.

The path of the relative sectoral price is non-monotonic, with a minimum at the capital-

intensity reversal, as indicated by Lemma 3. At this point, the cost advantage enjoyed by

the more flexible sector due to its higher elasticity of substitution vanishes, and sectoral

levels of capital per unit of effective labor coincide. As capital per unit of effective labor

17An additional issue concerns the range of ω̃ we consider in our numerical exercise. We report values in the
range ω̃ ∈ [0.1, 20]. To get a sense of the meaning of this range, consider a Solow model with s = 0.2, δ = 0.05
and gA = n = 0. Here, if we move from 10% to 200% of the steady state capital stock, the relative input
price increases from 2 to 17.5. If the same exercise is conducted assuming gA = 0.02 and n = 0.01, the
relative input price for the same range of the steady state capital per unit of effective labor goes from 2.5 to
16.
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Figure 4: Model simulations

Notes: Parameter settings for the simulations as in Figure 2, first two panels. First variable (dotted line),

second variable (dashed line), third variable (solid line). Relative input price ω̃ = ω/(AR) on the horizontal

axis of each graph. Both axes are on a log scale in each graph.
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increases above (falls below) this point, the flexible sector takes advantage of the change in

the relative input price, reducing its unit costs relative to those of sector 1. As a result, the

relative sectoral price increases as aggregate capital per unit of effective labor moves away

from 1/12, in either direction. Since sectoral outputs are gross complements in the production

of final output, changes in the relative sectoral price induce less than proportional changes

in relative quantities. As a result, the path of relative value added – a common measure of

structural change – is similar to that of the relative sectoral price.

The right panels of Figure 4 illustrate the case where the relative price effect dominates,

corresponding to the middle panel in Figure 2. The evolutions of the ratios of capital to

effective labor, capital income shares, relative price, relative value added are qualitatively

similar to those in the left column. Nonetheless, in this case, the dominant relative price

effect induces the less flexible sector to absorb increasing fractions of both inputs as capital

accumulates and the terms of trade turn in its favor. The different sectoral elasticities of

substitution express themselves through a different rate of absorption of the two inputs, with

the fraction of labor in the less flexible sector growing faster than the fraction of capital.

Finally, we explored a case where the sectoral substitution elasticities lie on both sides

of the final output one, σ1 < ε < σ2. The qualitative patterns coincide with those described

above. Nonetheless, since sectoral outputs are gross substitutes in the production of final

output in this example, the relative sectoral price moves in the opposite direction of rela-

tive value added. The results of this numerical exercise are reproduced in Figure 8 in the

Appendix.

Overall, the patterns emerging from these numerical exercises are exactly in line with our

analytical results. They also show that in addition to factor reallocations, there is structural

change in terms of value added.

3.4 The aggregate elasticity of substitution

Evaluating the response of the economy-wide capital-labor ratio to changes in the factor-

price ratio requires a measure of the degree of substitutability between capital and labor at

the aggregate level. In recent years, several studies have estimated this aggregate elasticity

using U.S. time series data (see e.g. Antras (2004), Herrendorf et al. (2015), Leon-Ledesma

et al. (2015)), cross-sectional U.S. data (Oberfield and Raval, 2014) or cross-country data

(Karabarbounis and Neiman, 2014). In our two-sector framework, this elasticity is not a

“deep” parameter, but depends on other parameters and on allocations. In what follows,

we borrow from the dual approach developed in Jones (1965) to characterize this aggregate
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elasticity.

Lemma 4 The aggregate elasticity of substitution. The aggregate elasticity of substi-

tution, σ, is a weighted average of the three primary elasticities: the elasticity of substitution

between the two intermediate inputs in the production of the final good, ε, and the two sectoral

elasticities, σ1 and σ2:

σ = γ0ε+ γ1σ1 + γ2σ2 (13)

where the weights,

γ0 ≡ (ε2 − ε1) (λ− κ)

γ1 ≡ λε1 + κ (1− ε1)

γ2 ≡ (1− λ) ε2 + (1− κ) (1− ε2)

add up to one and, as before, εs is the capital income share in sector s.

Proof: See Appendix. �

Although the primary elasticities are constant, in general the aggregate elasticity of

substitution varies with the sectoral composition of output. As an exception, it is constant

if σ1 = σ2 = 1 and ε1 = ε2 = α. Intuitively, if factor income shares in both sectors are equal,

then γ0 = 0, so that the aggregate elasticity of substitution is independent of the elasticity

of substitution of the final sector. As a result, the aggregate elasticity reduces to a weighted

average of the sectoral elasticities. It is constant when both sectoral elasticities coincide.

When σ1 = σ2 = 1 but the capital-intensity of the two sectors differs (as e.g. in AG), the

aggregate elasticity is given by

σ = 1 + (α2 − α1) (λ− κ) (ε− 1) < 1⇐⇒ ε < 1. (14)

In this case the aggregate elasticity, which changes with the process of structural change,

is below one if the elasticity of substitution between inputs in the final sector is below one.

This arises since (13) reduces to a weighted average of the elasticity in the final sector, ε,

and 1.

Finally, under the assumptions in Proposition 1, i.e. σ1 = ε = 1 and σ2 6= 1, the aggregate

elasticity of substitution is given by

σ = γ0 + γ1 + γ2σ2 > 1⇐⇒ σ2 > 1. (15)

Here, σ is a weighted average of 1 and one of the sectoral elasticities, σ2, so that σ2 determines

whether the aggregate elasticity lies above or below one. Since γ2 varies with development,

here, too, the aggregate elasticity of substitution is not constant.

25



4 The dynamic problem

The previous section has analyzed structural change for arbitrary, one-time changes in k

or A. In this section, we turn to the characterization of the solution for the full dynamic

problem. For tractability, we are forced to focus on the particular case for which we have

shown results in Proposition 1.18 Recall that this case arises when ε = σ1 = 1, while σ2 is

strictly larger or smaller than one. In addition, sectors are symmetric in all other respects,

i.e. α2 = α1 = α and A1(t) = A2(t) = A(t), which implies gA1 = gA2 = gA. Results thus are

driven purely by the difference in substitutability.

We define aggregate capital per unit of effective labor,

χ (t) ≡ K (t)

L (t)A (t)
(16)

Then, using (3) we reach,

χ̂ ≡ χ̇ (t)

χ (t)
=
K̇(t)

K(t)
− n− gA =

I(t)

K(t)
− n− gA − δ = s

Y (t)

K(t)
− n− gA − δ (17)

Combining the CC curve, (7), (9) and (16), we reach the following one-to-one relationship

between χ and κ,

χ (κ) = (γ(1− α))
σ2
σ2−1

(1− κ)
1

σ2−1

(κ− αγ) (κ (1− γ(1− α))− αγ)
1

σ2−1

(18)

where χ′ (κ) < 0 (resp. χ′ (κ) > 0) for all κ ∈ (κ, 1) if σ2 > 1 (resp. σ2 < 1), where

κ = αγ/[1 − γ + αγ]. Furthermore, it is worth noticing that when σ2 > 1, χ (1) = 0 and

limκ→κ χ(κ) =∞, and when σ2 < 1, χ (κ) = 0 and limκ→1 χ (κ) =∞.
The following proposition summarizes the dynamic behavior of this model.

Proposition 4 Under the stated assumptions, given the initial condition χ (0) = χ0, the

competitive equilibrium path satisfies the following differential equation:

κ̇ =
vBπ(κ)− (δ + gA + n)

H(κ)
(19)

where

B ≡
[

1− γ
γ

] (1−γ)σ2
σ2−1

(γ (1− α))
−

(1−α)γ
σ2−1 , (20)

π(κ) ≡ κ(σ2−γ)/(σ2−1) (κ (1− γ(1− α))− αγ)
γ(1−α)
σ2−1

(1− κ)
1−αγ
σ2−1

, (21)

18See the Appendix for results on the dynamics of the AG and NP models.
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and

H(κ) ≡ −
(

1

σ2 − 1

)[
(1− γ + αγ)(κ− αγ) + σ2 (κ(1− γ(1− α))− αγ)

(κ− αγ) (κ(1− γ(1− α))− αγ)

]
(22)

where H(κ) < 0 (resp. H(κ) > 0) for all κ ∈ (κ, 1) if σ2 > 1 (resp. σ2 < 1).

Proof. See Appendix. �

Let us define the following growth rates for the variables of interest (using the superscript

ss for their asymptotic, steady state, counterparts),

L̇s (t)

Ls (t)
≡ ns (t) ,

K̇s (t)

Ks (t)
≡ zs (t) ,

Ẏs (t)

Ys (t)
≡ gs (t) , for s = 1, 2,

K̇ (t)

K (t)
≡ z (t) ,

Ẏ (t)

Y (t)
≡ g (t)

Let’s turn now to the characterization of the constant growth path (CGP) defined as a

solution along which the aggregate capital-output ratio is constant.

Proposition 5 Under the stated assumptions, there exists a unique (non-trivial) CGP that

satisfies

π(κss) =
δ + gA + n

vB
, λss =

γ (1− α)κss

κss − αγ
,

χss = (γ(1− α))
σ2
σ2−1

(1− κss)
1

σ2−1

(κss − αγ) (κss (1− γ(1− α))− αγ)
1

σ2−1

gss = zss = gss1 = gss2 = zss1 = zss2 = n+ gA n = nss1 = nss2 .

The steady state associated with this CGP is locally stable.

Proof. Notice that (19) is an autonomous differential equation with a unique (non-trivial)

steady state, κss. The CGP associated with this steady state is locally stable since, evaluated

at that point,
∂κ̇

∂κ
=
vBπ′(κss)

H(κss)
< 0. �

This result has several interesting implications. First, since the sectoral TFP growth rates

are identical, both sectors grow at the same rate along the CGP which, of course, is the same

as the growth rate of the aggregate economy. Second, the capital-output ratio and the rental

rate are constant along the CGP, and so is the share of capital in national income, while the

wage rate grows at the exogenous rate of TFP growth, gA. Finally, once the economy reaches

the CGP the process of sectoral reallocation comes to an end. This is the case since along

such a path capital per unit of effective labor, χ, is constant and therefore the incentives for

sectoral reallocations induced by capital deepening and technological change perfectly cancel
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out, since they are exactly equal but work in opposite directions. This becomes clear once

one notices that (10)-(12) imply that
∂λ

∂k

k

λ
= − ∂λ

∂A

A

λ
and

∂κ

∂k

k

κ
= − ∂κ

∂A

A

κ
.19

During the transition to a balanced growth path, differences in capital-labor substitutabil-

ity across sectors can thus lead to sectoral reallocations. For instance, during a transition

“from below”, along which capital, K, grows faster than effective labor, AL, the more flexible

sector will substitute towards capital, the input that becomes relatively abundant. Hence,

the more flexible sector will become more capital intensive, and the less flexible sector more

labor intensive. As a consequence, the capital-labor ratio in the more flexible sector will

grow faster than its counterpart in the less flexible sector.

It is straightforward to extend these results to a Ramsey-Cass-Koopmans framework of

optimal saving. In this case, an Euler equation replaces the exogenous saving rate, and the

intertemporal elasticity of substitution plays no role since only final output is used for both

consumption and capital accumulation. We refer the interested reader to the Appendix for

additional details.

5 Quantitative application: structural change out of

agriculture

In the introduction, we mentioned that in the U.S., structural change out of agriculture was

accompanied by significantly faster growth of the capital-labor ratio in agriculture compared

to the rest of the economy. At the same time, the share of value added produced in agriculture

declined from 10% to around 1% of GDP.

Clearly, structural change has not only taken place in the U.S.. In this section, we first

show some suggestive evidence on the relationship between sectoral allocations and capital

intensity across countries. We then proceed to a quantitative analysis of the U.S. experience,

illustrating the importance of differences in capital-labor substitutability relative to other

drivers of structural change.

5.1 Suggestive cross-country evidence on capital intensity and
structural change out of agriculture

The process of economic development is always and everywhere characterized by substantial

reallocations of resources out of agriculture. As a result of this process, the differences in

19The same conclusion could be reached in terms of the ratio of the wage per unit of effective labor to the
rental rate that drives sectoral reallocations. Once χ is constant, this ratio is also constant, so structural
change stops.
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Table 1: Sectoral capital intensity across countries

Y/L Kna/Lna Ka/La La/L Ka/K

Rich 5 18,000 82,273 100,318 5.0% 5.7%
Poor 5 807 6,482 191 78.2% 10.8%
Ratio 22 13 525 1/17 1/2

Mean 8,239 36,954 26,790 28.3% 7.4%
Std. Dev. 6,068 29,346 33,992 23.6% 3.7%
Coeff. Var. 0.74 0.19 1.27 0.84 0.5

Min 529 1,297 23 2.0% 1.8 %
Max 20,000 99,492 125,621 84.0% 16.4%

Source: Crego et al. (2000), Duarte and Restuccia (2010) and GGDC Total economy database.

sectoral structure between developed and developing countries are staggering. On the one

hand, rich countries, such as the U.S., the U.K. or Belgium employ less than 3% of their

labor force in agriculture, while on the other hand, poor countries such as Nepal, Burundi

or Niger have employment shares in agriculture in excess of 90%.

These differences in employment shares are compounded by large differences in labor pro-

ductivity and capital intensity. As Restuccia, Yang, and Zhu (2008), Chanda and Dalgaard

(2008), and Gollin, Lagakos, and Waugh (2014) report, the differences in agricultural labor

productivity between rich and poor countries are twice as large as those in aggregate labor

productivity. Mundlak (2000) finds that the cross-country distributions of various measures

of investment and capital show much larger dispersion in agriculture compared to the rest

of the economy.

This is clear in Table 1, which combines data on sectoral capital stocks for 50 countries

collected by Crego et al. (2000) with data on labor allocations from Duarte and Restuccia

(2010) to illustrate the cross-country variation in sectoral capital-labor ratios. The table

shows that in rich countries, agriculture is on average somewhat more capital-intensive than

the rest of the economy, while in the poorest economies, agriculture uses very little capital

at all.20 The size of these differences in capital per worker across sectors and countries is

stunning. In the 5 richest countries in our sample, capital per worker outside of agriculture

is 13 times larger than in the 5 poorest countries. At the same time, it is 500 times larger

20The five richest countries in our sample are the U.S., Canada, Denmark, Norway and Sweden, while the
five poorest ones are Tanzania, Malawi, Madagascar, Kenya and India. Data is for 1990.
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in the agricultural sector.21 Figure 5(a) plots capital-labor ratios in agriculture versus those

in non-agriculture. Since the correlation coefficient between non-agricultural capital-labor

ratios and income per capita is above 0.95, one can think of this variable as a measure of

development. A simple regression of agricultural capital per worker on its non-agricultural

counterpart suggests that a one percentage point increase in the non-agricultural capital-

labor ratio is associated with a two percentage point increase in agricultural capital per

worker. The relative capital intensity of agriculture thus increases with development.

Figure 5: Sectoral capital labor ratios, structural change, and development

(a) Sectoral capital-labor ratios: agriculture vs.
non-agriculture

ARG

ARG

ARGAUS

AUS

AUSAUT

AUT

AUTCAN

CAN

CANCHL

CHL

CHLCOL

COL

COLCRI

CRI

CRIDNK

DNK

DNKDOM

DOM

DOMEGY

EGY

EGYFIN

FIN

FINFRA

FRA

FRAGBR

GBR

GBRGRC

GRC

GRCGTM

GTM

GTMIDN

IDN

IDNIND

IND

INDIRL

IRL

IRLIRN

IRN

IRNIRQ

IRQ

IRQISR

ISR

ISRITA

ITA

ITAJPN

JPN

JPNKEN

KEN

KENKOR

KOR

KORLKA

LKA

LKAMAR

MAR

MARMDG

MDG

MDGMWI

MWI

MWINLD

NLD

NLDNOR

NOR

NORNZL

NZL

NZLPAK

PAK

PAKPER

PER

PERPHL

PHL

PHLPRT

PRT

PRTSWE

SWE

SWESYR

SYR

SYRTUN

TUN

TUNTUR

TUR

TURTZA

TZA

TZAURY

URY

URYUSA

USA

USAVEN

VEN

VENZAF

ZAF

ZAFZWE

ZWE

ZWE0

0

0.05

.0
5

.05.1

.1

.1.25

.2
5

.25.5

.5

.51

1

12

2

2capital/labor ratio in agriculture relative to non-agric.

ca
pi

ta
l/

la
bo

r 
ra

tio
 in

 a
gr

ic
ul

tu
re

 r
el

at
iv

e 
to

 n
on

-a
gr

ic
.

capital/labor ratio in agriculture relative to non-agric.0

0

0.2

.2

.2.4

.4

.4.6

.6

.6.8

.8

.8Employment Share in Agriculture

Employment Share in Agriculture

Employment Share in Agriculture
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ployment share

Notes: Data sources: Crego et al. (2000) and Duarte and Restuccia (2010). In both panels, the solid line is

an OLS regression line. The dashed line in panel (a) is the 45-degree line.

Figure 5(b) relates the same pattern more closely to structural change. It plots the

capital-labor ratio in agriculture relative to that in non-agriculture (on a log scale) against

the fraction of persons engaged in agriculture. The relationship is very clearly negative. A

regression of the log relative capital-labor ratio on the share of employment in agriculture

shows that a decline in the share of employment by one percentage point goes along with

an increase in the relative capital-labor ratio by 5 percent. This implies that the relative

capital-labor ratio doubles every time the employment share in agriculture declines by 14

percentage points. As agriculture loses importance as a share of employment, it becomes

21An example may help visualizing how these differences come about. For instance, the Lexion 590R, the
world’s largest combine harvester, has the capacity to harvest 1,800 bushels of wheat per hour. This capacity
is equivalent to 540 man-hours.
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more capital intensive relative to the rest of the economy.

Given the important cross-country variation in wage to rental rate ratios, one may in-

terpret the large sectoral variation in capital-labor ratios as the result of a relatively high

elasticity of substitution between inputs in agriculture. This interpretation is consistent

with the evidence provided by Herrendorf et al. (2015). These authors estimate sectoral

CES production functions using postwar U.S. data. They report an estimate of the elastic-

ity of substitution between capital and labor in agriculture of 1.58, twice as high as their

estimates for manufacturing and services. Rosenzweig (1988) implicitly acknowledges this

substitution capability of agricultural production when arguing that obstacles to migration

out of agriculture depress rural wages, inducing farmers to substitute cheap labor for capital

and intermediate inputs. Along similar lines, Manuelli and Seshadri (2014) provide evidence

on the impact of low labor costs on the slow rate of adoption of tractors in U.S. agriculture

between 1910 and 1940. They argue that as long as agricultural wages were low, produc-

ers found it more profitable to operate the labor-intensive horse technology rather than the

capital-intensive tractor.

All this evidence suggests that the degree of flexibility in agricultural production may be

important for understanding the observed cross-country variation in sectoral capital-labor

ratios and in sectoral labor productivities. In this view, agricultural production is labor-

intensive in poor countries, which have relatively low wage to rental rate ratios. As countries

develop and capital per worker increases, the flexible agricultural sector reacts strongly to

the increase in the wage to rental rate ratio, substituting away from now relatively more

expensive labor and into now relatively cheaper capital.22 As a result, agricultural capital-

labor ratios increase faster with development than non-agricultural ones.

5.2 Structural change out of agriculture in the United States

In this section, to complement the theoretical analysis, we quantitatively analyze an impor-

tant historical episode of structural change: the movement of resources out of agriculture in

the United States. We focus on a period for which estimates of sectoral substitution elastici-

ties are available, namely 1960 to 2010.23 At the beginning of this period, agriculture already

was a much smaller sector than e.g. in the 19th century, but still accounted for almost 10

percent of hours worked, making it a non-negligible employer. At the end of this period, the

22In a similar vein, Wingender (2015) traces variation in labor productivity between agriculture and non-
agriculture to sectoral differences in the elasticity of substitution between skilled and unskilled labor.

23These estimates (discussed below) as well as data used in this section are taken from Herrendorf, Her-
rington and Valentinyi (2015). Their data in turn are based on NIPA.
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fraction of employment in U.S. agriculture was less than two percent – a decline of 80%.

Figure 6 shows the fraction of U.S. employment in agriculture over the period 1960 to

2010. At the same time, it shows how the relative capital intensity of agriculture increased

over this period: the fraction of U.S. capital used in agriculture starts at a similar level as

that of labor, but then declines only by about half, to finish at about 5% of total capital.

That is, while the fractions of capital and labor employed in agriculture start at similar levels

in 1960, by 2010, the one of capital is more than twice as large as the one of labor. This also

implies that the capital-labor ratio in agriculture grew at an average of 1.9% per year, or a

third faster than that in the economy as a whole (1.4%).24

Figure 6: The fractions of labor and capital used in agriculture, United States 1960-2010
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Data source: Herrendorf, Herrington and Valentinyi (2014).

To investigate how well our simple model fits this episode, we calibrate it using, as far

as possible, available estimates of preference and technology parameters. We calibrate the

remaining parameters internally, using key information on the episode under consideration.

We then evaluate how well the model fits the pattern of structural change just described, and

conduct a decomposition that explores the contribution of the different drivers of structural

change to these outcomes.

For realism and to do justice to the importance of dynamics when evaluating structural

24While the measure of capital in Herrendorf, Herrington and Valentinyi (2015) includes land, this pattern
is even more pronounced when land is excluded from the capital stock, with a growth rate of the capital-labor
ratio in agriculture of 2.8%. In the analysis below, we use the data including land because the estimates of
the sectoral substitution elasticities in Herrendorf, Herrington and Valentinyi (2015) – a key ingredient of
our analysis – are obtained from these data.
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change over any given period of time, we slightly extend the model analyzed above. First,

we assume that households maximize the discounted present value of log consumption. They

choose saving optimally given current states and the path of technology. Secondly, we assume

that only the non-agricultural good is used for investment, as this fits more closely with the

data. Thirdly, because of its importance for the agricultural sector, we cannot abstract from

the non-homotheticity of demand in doing so. We therefore assume that production of the

final consumption good can be described by the function

Y =
[
γY

ε−1
ε

n + (1− γ)(Ya − ā)
ε−1
ε

] ε
ε−1

for ε > 0 and Y = min(γ(Ya − ā), (1− γ)Yn) for ε = 0, where ā stands for agriculture and n

for non-agriculture. A positive value of ā implies that the income elasticity for agricultural

value added is below that of non-agricultural value added. Preferences are homothetic if

ā = 0. Finally, for simplicity, we abstract from factor-biased technical change, and assume

that the level of Hicks-neutral productivity in each sector, Ds, grows at a constant rate gDs,

which may differ across sectors.

5.2.1 Calibration and benchmark results

For preference parameters, we rely on estimates by Herrendorf, Rogerson and Valentinyi

(2013, henceforth HRV). These authors estimate a CES demand system for value added

from agriculture, manufacturing and services, using US data for the period 1947 to 2007.

Translated into our context, their estimates imply ε = 0 and γ = 0.99. Furthermore, they

estimate ā to be positive. Since units for ā are not directly comparable, we calibrate it

internally and compare the size of ā relative to consumption expenditure to HRV’s estimates

below. We also set the discount rate to 0.06.

For the substitution elasticities, we rely on estimates by Herrendorf, Herrington and

Valentinyi (2015, henceforth HHV). These authors estimate CES production functions for

the sectors agriculture, manufacturing and services and for the aggregate U.S. economy, using

data for the period 1947 to 2010. They estimate σa = 1.58. For σn, we use their estimate

for the aggregate economy, which is 0.84. (For comparison, the estimates for manufacturing

and services are 0.8 and 0.75, respectively.) We take the initial aggregate capital-labor ratio

from the data, at 12.2 1960 dollars per hour worked. We also set the depreciation rate to

0.05.

The remaining parameters are ā, αa, αn, gDa, gDn, and the initial levels of sectoral produc-

tivity for 1960, Da0 and Dn0. We set Dn0 to fit non-agricultural output in 1960 exactly, given
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observed sectoral factor inputs in that year. Da0 cannot be identified separately from ā, so

we normalize it to 1. We set the non-homotheticity parameter ā to match the allocation of

labor across sectors in 1960. We then set the growth rate of non-agricultural productivity,

gDn, to match the average growth rate of consumption per capita in the U.S. economy be-

tween 1960 and 2010, and that of agricultural productivity, gDa, to match the allocation of

labor in 2010, i.e. structural change in terms of labor over the period under consideration.

Finally, we set αn to match the aggregate capital income share in 1960, and αa to match the

allocation of capital across sectors in 1960.25

Resulting parameter values as well as data moments are shown in Table 2. The model fits

targeted data moments exactly, so model moments are omitted from the table. To put it in

perspective, the calibrated value for the non-homotheticity term ā implies that “expenditure”

on it accounts for 9.8% of spending on agricultural value added in 1960, compared to 8% as

estimated by HRV. Note that the values of αs do not directly translate into sectoral factor

income shares. With a CES production function, these also depend on the factor inputs in

each sector.

Most importantly, the estimates by HHV imply that the elasticity of substitution between

capital and labor is much larger in agriculture compared to the rest of the economy. The

resulting large difference in factor substitutability across sectors implies that the transition

out of agriculture is a good testing ground for our model.

Since we target both the initial allocations of capital and labor across sectors and the final

allocation of labor, the structural change outcome that is not restricted by the calibration

is the final allocation of capital. This will be determined by the model and all parameters

jointly. The implied model value for 2010 is 5.2%, virtually identical to the data value of

5.1%. The model can thus replicate almost exactly the structural transformation out of

agriculture in the U.S. in terms of the allocations of labor and of capital.26 Figure 7 shows

the model and data time paths for the shares of capital and labor employed in agriculture.

It is clearly visible how in both model and data, the shares of capital and labor employed in

agriculture drift apart.

25More precisely, all these parameters are calibrated jointly. However, we are mentioning here the most
relevant target moment we use for each parameter.

26This is not entirely surprising given that these factor allocations enter the estimation in HHV, from
which we take the values we use for substitution elasticities. At the same time, it is not self-evident that the
model should do so well, since HHV do not use any cross-sectoral restrictions in their estimation, whereas
these are front and center in our analysis.
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Table 2: Calibration: parameters and model and data moments

Parameter Value Source/target Target value

ε 0 HRV
γ 0.99 HRV
ā 0.217 La0/L0 0.095

σa 1.58 HHV
σn 0.84 HHV
αa 0.158 Ka0/K0 0.108
αn 0.446 R0K0/Y0 0.325

Da0 1 normalization
Dn0 2.02 Yn0(Kn0, Ln0)
gDa 2.55% LaT/LT 0.019
gDn 1.69% gc 2.4%

Note: time subscripts: 0 stands for 1960 and T for 2010. Sources for data/estimates:
Herrendorf, Rogerson and Valentinyi (2013, HRV) and Herrendorf, Herrington and Valentinyi
(2014, HHV).

5.2.2 Decomposition: drivers of structural change

How important are the various potential drivers of structural change that have been proposed

in the literature for the late stages of the transition out of agriculture in the United States?

We answer this question by running a set of counterfactual experiments. In each experiment,

we leave all drivers of structural change except for one in place. By comparing a set of

economies with a missing driver of structural change, we can get a sense of their relative

importance.

In a first experiment, we eliminate the effect of non-homothetic preferences by setting

ā = 0. In a second scenario, we equate the productivity growth rate across sectors. We

choose the common growth rate to keep the growth rate of aggregate consumption per

capita the same as in the benchmark. In a third run, we equate the share parameters in

the production function, αs, across sectors. We pick the common value to maintain the

initial labor allocation as in the data. Finally, to evaluate the importance of differences in

factor substitutability, we equate σs across sectors. We set σs in each sector to the aggregate

elasticity of substitution between capital and labor in the benchmark economy in 1960.27

27Results are similar if we choose it to keep the consumption growth rate unchanged.
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Figure 7: The fractions of labor and capital used in agriculture, United States 1960-2010,
and model economy
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Results are shown in Table 3.

First, note again that the benchmark economy replicates almost exactly the experience

of structural change out of agriculture to be found in the data: the fraction of U.S. labor

employed in agriculture declined by 80%, while that of capital declined substantially less, by

50%. Looking across the rows recording results for the different experiments, it is clear that

differences in σ are essential for the difference in structural change in terms of capital and

labor. As long as the σ’s differ across sectors, so does structural change in terms of capital

and labor. Only in the last row, where substitution elasticities are equated across sectors,

do capital and labor leave agriculture at a similar rate. This also implies that the growth

rate of the capital-labor ratio is equated across the two sectors in this scenario, in contrast

to the data.

How much each channel matters for the amount of structural change that occurred is

a question that requires a subtle answer. From the ā = 0−row, it is clear that the non-

homotheticity is essential for replicating the large observed share of employment of capital

and labor in agriculture in 1960. This is because the very small share of agricultural value

added at the end of the sample implies such a low value for 1−γ that it is near impossible to

obtain agricultural employment shares of 10% and above with homothetic preferences. Then,

given the small size of the agricultural sector in 1960 implied by homothetic preferences, it
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Table 3: Decomposition: importance of different drivers of structural change

La0/L0 LaT/LT decline Ka0/K0 KaT/KT decline

data 9.5 1.9 80.0 10.8 5.1 52.8

benchmark 9.5 1.9 80.0 10.8 5.1 53.0

ā = 0 2.1 0.9 57.7 2.4 2.4 2.4

equal gDs 10.6 3.1 70.3 12.0 8.2 32.0
equal αs 9.5 2.1 78.3 24.5 10.5 57.0
equal σs 15.4 6.5 57.6 4.6 1.8 60.5

Note: All figures are percentages. Line 4: gD = 1.7%. Line 5: α = 0.178. Line 6: σ = 0.91.

is clear that little scope for absolute decline of the sector remains. At the same time,

the relative decline in employment in agriculture is still substantial even when preferences

are homothetic. Another result to notice is that the share of capital in agriculture hardly

declines in the counterfactual scenario. The reason is that the low income elasticity of

agricultural value added under non-homothetic preferences tends to reduce the relative price

of agricultural output as the economy grows. In the benchmark calibration, this corresponds

to an additional upward shift of the LM curve. In the counterfactual, this is removed. As a

result, the factor rebalancing effect is relatively more important in the counterfactual, and

structural change is even more asymmetric than in the benchmark.

The lower part of the table shows results for counterfactual scenarios where the supply-

side channels are disabled one by one. It is clear that with equal sectoral productivity

growth rates, structural change is slower. Nonetheless, there is still a large amount of

input reallocation driven by the non-homotheticity, the increase in the aggregate capital-

labor ratio, and the higher flexibility in agriculture. This is in constrast to earlier studies

using Cobb-Douglas technologies, like e.g. Dennis and Iscan (2009), which have attributed

a large fraction of the post-war structural change out of agriculture to differential sectoral

productivity growth.28

Differences in the parameter governing sectoral factor intensity, α, hardly matter. Line

5 of the table shows results for equating α across sectors at a value chosen to keep the

28Intuitively, productivity growth differences are less important when the fast-growing sector is also the
one with high substitution elasticity. This is because in the absence of income and relative price effects,
capital accumulation at the aggregate level leads to faster growth in the sector with higher substitution
elasticity, in a similar way that faster productivity growth does. See Klump and De La Grandville (2000)
for the relationship between the elasticity of substitution and growth in a one-sector model.
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initial labor allocation as in the benchmark.29 This implies a strong reduction in αn, and

accordingly, a strong reduction in the share of capital used outside agriculture. Structural

change, however, is essentially unaffected.

Differences in the flexibility of the two sectors matter for the shape of structural change in

terms of reallocation of capital and labor, as already remarked. They also are an important

contributor to the measure of structural change that typically receives most attention, namely

the reduction in the employment share of agriculture. With common σ, this declines by only

a bit more than half, compared to 80% in the benchmark. At the same time, the fraction of

capital employed in agriculture declines slightly faster when σ is common. The mechanism

is clear: with common σ, reallocation of capital and labor is similar. When agriculture is

more flexible, the optimal reaction is for the capital-labor ratio in agriculture to increase.

Comparing the four channels, it is clear that non-homothetic preferences are essential for

matching the level of agricultural employment in 1960. The decline in the relative importance

of agricultural employment is mostly driven by differences in capital-labor substitutability

across sectors and by non-homothetic preferences. Finally, asymmetries in the movement

of different factors out of agricultural are almost exclusively due to differences in factor

substitutability across sectors.

6 Conclusions

We have developed a two-sector model where differences in the sectoral elasticity of substi-

tution between capital and labor lead to a process of structural change. The mechanism is

simple. As the wage to rental rate ratio changes, the more flexible sector – the sector with

a higher elasticity of substitution between capital and labor – is in a better position to take

advantage of these changes than the less flexible one. As a result, sectoral capital-labor ratios

grow at different rates, and the fractions of aggregate capital and labor allocated to a sector

change by different amounts. It is even possible for the fraction of aggregate capital allocated

to a sector to increase, while the fraction of labor declines. This is in contrast to the drivers

of structural change emphasized in previous work, like differences in sectoral rates of total

factor productivity growth (as in NP) or differences in capital intensity (as in AG), which

tend to affect allocations of both factors in similar ways. Similarly to AG, structural change

in our model ceases in the limit, and the economy eventually reaches a constant growth path

29We present these results for ease of interpretation; choosing the common value of α according to other
criteria, e.g. to keep the aggregate capital income share in the initial period unchanged, leads to extreme
changes in the initial allocation, but similar results in terms of structural change.
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where the fractions of employment and capital in both sectors are positive and constant.

Estimates of sectoral substitution elasticities show that these differ across sectors, and

that these differences can be large (see e.g. Herrendorf, Herrington and Valentinyi 2015). In

the last section, we have shown that these differences matter for thinking about structural

change out of agricultural in the United States. They probably also matter for explaining

differences in capital intensity and labor productivity of agriculture across countries. Our

model also holds promise for understanding changes in the factor income share, which have

recently been stressed by Elsby, Hobijn and Sahin (2013) and Karabarbounis and Neiman

(2014), among others. Both issues are promising areas for future work. In our companion pa-

per (Alvarez-Cuadrado, Long and Poschke 2015), we address the latter and analyze changes

in sectoral and aggregate labor income shares in the U.S. from 1960 to 2005, a period of

intense structural change from manufacturing to services.

Finally, although there have been several attempts to estimate the aggregate elasticity

of substitution, our analysis suggests that, in general, this aggregate elasticity is a time-

varying combination of deeper structural parameters, particularly of the sectoral elasticities

of substitution. In this sense, another natural extension of this project would be to pursue the

estimation of these elasticities at different levels of aggregation, along the lines of Herrendorf

et al. (2015). Through the link between sectoral and aggregate elasticities of substitution

given by equation (13), this exercise would also allow recovering an estimate of this aggregate

elasticity. Furthermore, these sectoral elasticities could also be used to test some of the

predictions of the model. In principle, existing datasets, such as the 35-industry KLEM

developed by Dale W. Jorgenson and the EU-KLEMS gathered by the Groningen Growth

and Development Center, provide the sectoral level data required for these estimations.
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Appendix

A Additional figures

Figure 8: Model simulations, different values of σs (b)

Notes: Parameter settings as in Figure 4, except that ε = 1.1.
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B Additional results and proofs

Proof of Proposition 1. Combining (7) with (9) we reach,

κ = (1− κ)1/σ2
(

γ

1− γ

)[
(1− α)(1− λ)

σ2−1
σ2

(
k

A2

) 1−σ2
σ2

+ α(1− κ)
σ2−1
σ2

]
(23)

Re-arranging (CC) we reach,

(k/A2)
1−σ2
σ2 =

(1− λ)
1
σ2

λ

κ

(1− κ)1/σ2
(24)

Equation (24) yields the implicit function

λ = Λ(κ, k/A2)

with
∂Λ(κ, k, A2)

∂κ
> 0

and

Sign
∂Λ(κ, k/A2)

∂(k/A2)
= Sign(σ2 − 1)

To simplify notation, let λ̃ stand for Λ(κ, k/A2). Re-arranging (23)

κ−(1−κ)1/σ2
(

γ

1− γ

)
α(1−κ)

σ2−1
σ2 = (1−κ)1/σ2

(
γ

1− γ

)
(1−α)(1−λ̃)

σ2−1
σ2 (k/A2)

1−σ2
σ2 (25)

Substitute (24) into (25)

κ

(1− κ)1/σ2
−
(

γ

1− γ

)
α(1− κ)

σ2−1
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γ

1− γ
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σ2
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σ2
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(
κ

(1− κ)1/σ2

)
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γ
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κ
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γ
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)
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α
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)
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)
α

(
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κ
− 1

)
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γ
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)
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(
1
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− 1

)
Thus

αγ

κ
=
λ̃− (1− γ)

λ̃(1− γ)
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or equivalently,

λ̃ =
γ (1− α)κ

(κ− αγ)
≡ λ(κ, γ, α) (26)

These two equations equations imply that, in equilibrium, λ > (1− γ) and κ > αγ in order

to satisfy κ > 0 and λ > 0 respectively. Also, since λ ≤ 1 and κ ≤ 1, they imply that

κ > κ ≡ αγ

(1− γ) + αγ
< 1

and

λ > λ ≡ γ(1− α)

1− αγ
< 1

Now, since

(κ− αγ) λ̃− γ (1− α)κ = 0

let us define

Ω(κ, k/A2) ≡ (κ− αγ) Λ(κ, k/A2)− γ (1− α)κ = 0

This equation yields κ as an implicit function of k and A2, which we denote as κ = κ∗(k/A2).

Then

dκ∗

d(k/A2)
= −

∂Ω

∂(k/A2)
∂Ω

∂κ

where
∂Ω

∂κ
= [Λ(κ, k/A2)− γ (1− α)] + (κ− αγ)

∂Λ(κ, k/A2)

∂κ
> 0

and
∂Ω

∂(k/A2)
= (κ− αγ)

∂Λ(κ, k/A2)

∂(k/A2)
> 0 iff σ2 > 1

Therefore
dκ∗

d(k/A2)
< 0 iff σ2 > 1. Finally,

λ∗(k/A2) = Λ(κ∗(k/A2), k/A2) =
γ (1− α)κ∗(k/A2)

κ∗(k/A2)− αγ
(27)

Thus
dλ∗

d(k/A2)
= −

(
α

1− α

)(
λ∗

κ∗

)2
dκ∗

d(k/A2)
(28)

This equation shows that λ∗(k/A2) and κ∗(k/A2) always move in opposite directions as k/A2

increases (even though ∂Λ(κ, k/A2)/∂κ, i.e., the slope of the contract curve, for a given k/A2,

is always positive).
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Combining (24) and (26) and taking logs we reach,

1− σ2
σ2

ln

(
k

A2

)
=

1

σ2
ln(1− λ(κ, α, γ))− lnλ(κ, α, γ) + lnκ− 1

σ2
ln(1− κ)

This relationship is monotone decreasing (iff σ2 > 1): an increase in
k

A2

leads to a fall in κ :

(
1− σ2
σ2

)(
dk

k
− dA2

A2

)
= G (κ) dκ (29)

where

G(κ) ≡
[

1

σ2 (1− λ(κ, α, γ))
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1

λ(κ, α, γ)

](
λ(κ, α, γ)

κ

)2(
α

1− α

)
+

[
1

κ
+

1

σ2(1− κ)

]
> 0

where λ(κ, α, γ) is given by (26). Combining equations (28) and (29) we reach the results

summarized in this proposition. �

Proof of Proposition 2. Let σ1 = σ2 = 1 and α2 > α1 so that sector 1 is labor-intensive,

as in AG. Under these assumptions the CC curve simplifies to

CC(κ, λ) ≡ (1− α1)

(1− α2)

α2

α1

κ

(1− κ)

(1− λ)

λ
= 1, (30)

which implicitly defines κ = Γ (λ). Then the LM curve reduces to

λ−

1 +
(1− γ)

γ

(1− α2)

(1− α1)

(
k(α1−α2)

A
(1−α1)
1

A
(1−α2)
2

Γ (λ)α1

(1− Γ (λ))α2

λ(1−α1)

(1− λ)(1−α2)

) 1−ε
ε

−1 = 0.

Differentiating this expression, treating κ as a function of λ, we obtain the results sum-

marized in Proposition 2. �

Proof of Proposition 3. Let σ1 = σ2 = 1 and α1 = α2 = α, as in NP. Under these

assumptions the CC curve simplifies to

CC(κ, λ) ≡ κ

(1− κ)

(1− λ)

λ
= 1, (31)

which implies that λ = κ. Then the LM curve reduces to

λ =

[
1 +

(
1− γ
γ

)ε(
A2

A1

)(1−α)(ε−1)
]−1

. (32)

The results in this Proposition follow from the log-differentiation of equation (32).
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Proof of Lemma 3.

Denote the intensive form of the production function in each sector by fs(ks). Using this

and denoting the wage-rental ratio by ω, combine (7) and (8) to obtain

ω =
w

R
=
MPLs
MPKs

=
fs(ks;As)− ksf ′s(ks;As)

f ′s(ks)
=
fs
f ′s
− ks,

i.e.,
f ′s
fs

=
1

ω + ks
. (33)

Hence
dω

dks
= − fsf

′′
s

(f ′s)
2
> 0. (34)

Then rewrite (7), the condition prescribing that the marginal value product of capital is

equated across sectors, as p1f
′
1(k1(ω), A1) = p2f

′
2(k2(ω), A2), where the function arguments

make explicit that the optimal capital-labor ratio in each sector depends on the input price

ratio ω. Rearranging and taking logarithms on both sides, we obtain

ln
p1
p2

= ln f ′2(k2(ω), A2)− ln f ′1(k1(ω), A1).

Thus

d ln(p1/p2)

dω
=

1

f ′2
f ′′2

dk2
dω
− 1

f ′1
f ′′1

dk1
dω

= −f
′
2

f2
+
f ′1
f1

= − 1

ω + k2
+

1

ω + k1

=
k2 − k1

(ω + k2) (ω + k1)
Q 0 for ω Q ω̃,

where the second equality uses (34) and the third uses (33), and ω̄ denotes the level of the

wage-rental ratio implied by k = k̄. Given the negative relationship between ω and k, this

implies that the relative price of sector 1 output declines in k for k below k̄, increases in k

for k above k̄, and reaches a minimum at k̄.

The remaining two claims follow from combining this result with (9). �

Proposition 6 Increases in k. Assume σ2 > σ1. Define the following three conditions:(
1

σ1
− 1

ε

)
ε1 >

(
1

σ2
− 1

ε

)
ε2 (P6.A)

ε1 − ε2 <
σ2 − σ1
ε− σ2

(1− ε1) (P6.B)

ε1 − ε2 >
σ2 − σ1
σ2 − ε

ε1 (P6.C)

Then an increase in the aggregate capital-labor ratio k yields the following changes in λ and

κ:
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1. If σ1, σ2 < ε, the relative marginal product effect dominates the relative price effect,

and (LM) is upward-sloping in κ, λ-space.

(a) If condition P6.A holds, an increase in k shifts (LM) up.

i. If condition P6.B holds, the upward shift of (CC) at unchanged κ exceeds that

of (LM). (g(λCC) > g(λLM).) Hence, λ increases and κ decreases.

ii. If condition P6.B does not hold, the upward shift of (LM) at unchanged κ

exceeds that of (CC). (g(λLM) > g(λCC).) Hence, λ and κ both increase.

(b) If condition P6.A does not hold, an increase in k shifts (LM) down in κ, λ-space.

Hence, λ and κ both decrease.

2. If σ1, σ2 > ε, the relative price effect dominates the relative marginal product effect,

and (LM) is downward-sloping in κ, λ-space.

(a) If condition P6.A holds, an increase in k shifts (LM) up.

i. If condition P6.B does not hold, the upward shift of (CC) at unchanged κ ex-

ceeds that of (LM). (g(λCC) > g(λLM).) Hence, λ increases and κ decreases.

ii. If condition P6.B holds, the upward shift of (LM) at unchanged κ exceeds that

of (CC). (g(λLM) > g(λCC).) Hence, λ and κ both increase.

(b) If condition P6.A does not hold, an increase in k shifts (LM) down in κ, λ-space.

i. If condition P6.C holds, the leftward shift of (CC) at unchanged λ exceeds

that of (LM). (|g(κCC)| > |g(κLM)|.) Hence, λ increases and κ decreases.

ii. If condition P6.C does not hold, the leftward shift of (LM) at unchanged λ

exceeds that of (CC). (|g(κLM)| > |g(κCC)|.) Hence, λ and κ both decrease.

Proof of Proposition 6.

Determination of the condition distinguishing a. and b. This is simply Lemma 2 (Shifts

in the LM curve).

Determination of the condition distinguishing a.i. and a.ii. Consider a situation where

k changes by a proportion g(k), and κ remains unchanged. Then (CC) requires a change in

λ of

g(λCC) =
1
σ1
− 1

σ2
1
σ1

+ 1
σ2

λ
1−λ

g(k).
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For (LM) to hold, a change in λ of

g(λLM) =

(
1
σ1
− 1

ε

)
ε1 −

(
1
σ2
− 1

ε

)
ε2

1
σ1
ε1 + 1

σ2
ε2

λ
1−λ + 1

ε

(
(1− ε1) + (1− ε2) λ

1−λ

)g(k)

is needed. Under the assumption that σ2/σ1 > ε2/[(1 − σ1
ε

)ε1 + σ
ε
ε2], this is positive. Com-

paring these two expressions implies that g(λCC) > g(λLM) if(
1

σ1
− 1

σ2

)(
1

σ1
ε1 +

1

σ2
ε2

λ

1− λ
+

1

ε

(
(1− ε1) + (1− ε2)

λ

1− λ

))
>

(
1

σ1
+

1

σ2

λ

1− λ

)((
1

σ1
− 1

ε

)
ε1 −

(
1

σ2
− 1

ε

)
ε2

)
.

After some tedious algebra, this condition becomes

ε2 − ε1
σ1σ2

− 1− ε1
εσ2

+
1− ε2
εσ1

> 0

or

ε1 − ε2 <
(1− ε2)σ2 − (1− ε1)σ1

ε
.

Defining ϑ ≡ ε1 − ε2, substituting out ε2 using ϑ and ε1, and solving for ϑ then yields

ϑ (ε− σ2) < (1− ε1) (σ2 − σ1)

This comparison reveals that

g(λCC) > g(λLM) if
σ2 − σ1
ε− σ2

(1− ε1) > ε1 − ε2 if σ2 < ε (35)

g(λCC) > g(λLM) if
σ2 − σ1
ε− σ2

(1− ε1) < ε1 − ε2 if σ2 > ε, (36)

or condition P6.B in Proposition 6.

It is clear from the graphical analysis (see Figure 1) that for both (CC) and (LM) to hold

when (CC) shifts up more than (LM), it is required that λ increases, but κ declines.

Analysis of case 1.b. Recall that in case 1., (LM) is upward-sloping and flatter than

(CC), since for any κ, allocating the entire labor endowment to one of the two sectors is

never a solution. As k increases, (LM) shifts down and (CC) shifts up. This implies that

both κ and λ decline.
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Determination of the condition distinguishing 2.b.i. and 2.b.ii. In this case, the change

in λ depends on whether (LM) or (CC) shifts left more. To check this, consider a situation

where k changes by a proportion g(k), and λ remains unchanged. Then (CC) requires a

change in κ of

g(κCC) =
1
σ2
− 1

σ1
1
σ1

+ 1
σ2

κ
1−κ

g(k) < 0.

For (LM) to hold with unchanged λ, a change in κ of

g(κLM) =

(
1
ε
− 1

σ1

)
ε1 −

(
1
ε
− 1

σ2

)
ε2(

1
σ1
− 1

ε

)
ε1 +

(
1
σ2
− 1

ε

)
ε2

κ
1−κ

g(k)

is needed. Under the assumptions that σ1, σ2 > ε and that condition P6.A does not hold,

this is negative. After some tedious algebra, comparing these two expressions reveals that

g(κLM) > g(κCC) if ε1 − ε2 >
σ2 − σ1
σ2 − ε

ε1. (P6.C’)

This is condition P6.C in Proposition 6. Since both changes in κ are negative, (CC) shifts

left more under this condition. It is clear from the graphical analysis (see Figure 1) that in

this case, for both (CC) and (LM) to hold, it is required that λ increases, but κ declines. �
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Proposition 7 Increases in A1 and A2. Assume σ2 > σ1. Then a proportional increase

in both A1 and A2 leads to the following changes in λ and κ:

1. σ1, σ2 < ε. As shown above, the relative marginal product effect dominates the relative

price effect, and (LM) is upward-sloping in κ, λ-space in this case.

(a) If condition P6.A holds, a proportional increase in A1 and A2 shifts (LM) down

in κ, λ-space.

i. If condition P6.B holds, the downward shift of (CC) at unchanged κ exceeds

that of (LM). (|g(λCC)| > |g(λLM)|.) Hence, λ declines, but κ increases.

ii. If condition P6.B does not hold, the downward shift of (LM) at unchanged κ

exceeds that of (CC). (|g(λCC)| < |g(λLM)|.) Hence, both λ and κ decrease.

(b) If condition P6.A does not hold, a proportional increase in A1 and A2 shifts (LM)

up. Given the downward shift in (CC) and the positive slope of (LM), this implies

that λ and κ both increase.

2. σ1, σ2 > ε. As shown above, the relative price effect dominates the relative marginal

product effect, and (LM) is downward-sloping in this case.

(a) If condition P6.A holds, a proportional increase in A1 and A2 shifts (LM) down

in κ, λ-space.

i. If condition P6.B holds, the downward shift of (LM) at unchanged κ exceeds

that of (CC). (|g(λCC)| < |g(λLM)|.) Hence, both λ and κ decline.

ii. If condition P6.B does not hold, the downward shift of (CC) at unchanged

κ exceeds that of (LM). (|g(λLM)| < |g(λCC)|.) Hence, λ declines, but κ

increases.

(b) If condition P6.A does not hold, a proportional increase in A1 and A2 shifts (LM)

up.

i. If condition P6.C holds, the rightward shift of (CC) at unchanged λ exceeds

that of (LM). (g(κCC) > g(κLM).) Hence, κ increases and λ declines.

ii. If condition P6.C does not hold, the rightward shift of (LM) at unchanged λ

exceeds that of (CC). (g(κLM) > dκCC .) Hence, λ and κ both increase.

52



Proof of Proposition 7.

Determination of the condition distinguishing a. and b. (LM) increases in A1 and A2 if

− ε1
σ1

+
ε2
σ2

+
ε1 − ε2
ε

> 0.

Solving this for σ2/σ1 shows that this is the case if condition P6.A from Proposition 6 does

not hold. Note that the result is the same in cases 1. and 2.

Since (LM) decreases in λ, λ needs to increase after a proportional increase in A1 and A2

if condition P6.A does not hold, and decrease if it holds. Hence, if condition P6.A holds, λ

needs to decrease following a proportional increase in A1 and A2 for (LM) to hold.

Determination of the condition distinguishing a.i. and a.ii. Consider a situation where

both A1 and A2 change by a proportion g(A), and κ remains unchanged. Then (CC) requires

a change in λ of

g(λCC) =
1
σ2
− 1

σ1
1
σ1

+ 1
σ2

λ
1−λ

g(A) < 0.

For (LM) to hold, a change in λ of

g(λLM) =

(
1
σ2
− 1

ε

)
ε2 −

(
1
σ1
− 1

ε

)
ε1

1
σ1
ε1 + 1

σ2
ε2

λ
1−λ + 1

ε

(
(1− ε1) + (1− ε2) λ

1−λ

)g(A)

is needed. Under the assumption that condition P6.A holds, this is negative. After some

tedious algebra, comparing these two expressions reveals that

g(λCC) > g(λLM) if
σ2 − σ1
ε− σ2

(1− ε1) < ε1 − ε2 if σ2 < ε (37)

g(λCC) > g(λLM) if
σ2 − σ1
ε− σ2

(1− ε1) > ε1 − ε2 if σ2 > ε (38)

Since both changes in λ are negative, this implies that (CC) shifts down less under this

condition. It is clear from the graphical analysis (see Figure 1) that in this case, for both

(CC) and (LM) to hold, it is required that λ and κ both decline. If this condition does not

hold, (CC) shifts down more, so that for both (CC) and (LM) to hold, it is required that λ

declines but κ increases.

Analysis of case 1.b. In this case, (LM) is upward-sloping and shifts up. (CC) shifts

down. This implies that both κ and λ increase.
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Determination of the condition distinguishing b.i. and b.ii. Consider a situation where

A1 and A2 change by a proportion g(A), and λ remains unchanged. Then (CC) requires a

change in κ of

g(κCC) =
1
σ1
− 1

σ2
1
σ1

+ 1
σ2

κ
1−κ

dA > 0.

For (LM) to hold, a change in κ of

g(κLM) =

(
1
ε
− 1

σ1

)
ε1 −

(
1
ε
− 1

σ2

)
ε2(

1
ε
− 1

σ1

)
ε1 +

(
1
ε
− 1

σ2

)
ε2

κ
1−κ

g(A)

is needed. Under the assumption that condition P6.A does not hold, this is positive. After

some tedious algebra, comparing these two expressions reveals that

g(κLM) > g(κCC) if
σ2 − σ1
σ2 − ε

ε1 > ε1 − ε2,

or if condition P6.C does not hold. Since both changes in κ are positive, this implies that

(LM) shifts right more under this condition. It is clear from the graphical analysis (see

Figure 1) that in this case, for both (CC) and (LM) to hold, it is required that both κ and

λ increase. �

Proof of Lemma 4. This proof follows Jones (1965) and Miyagiwa and Papageourgiou

(2007). The dual relationship between sectoral prices and input prices and factor endowments

and sectoral outputs are given by,

C1 (w,R) ≡ L1

Y1
w +

K1

Y1
R = p1 (39)

C2 (w,R) ≡ L2

Y2
w +

K2

Y2
R = p2 (40)

Y1C1w + Y2C2w = L (41)

Y1C1R + Y2C2R = K (42)

where Ci (w,R) is the unit cost function for sector s = 1, 2 and Cij are its partial derivatives

with respect to each factor price j = w,R.

Differentiating the previous expressions we reach the following relationships,

wL1

p1Y1
ŵ +

RK1

p1Y1
R̂ = (1− ε1) ŵ + ε1R̂ = p̂1 (43)

wL2

p2Y2
ŵ +

RK2

p2Y2
R̂ = (1− ε2) ŵ + ε2R̂ = p̂2 (44)
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λ
(
Ŷ1 + Ĉ1w

)
+ (1− λ)

(
Ŷ2 + Ĉ2w

)
= L̂ (45)

κ
(
Ŷ1 + Ĉ1R

)
+ (1− κ)

(
Ŷ2 + Ĉ2R

)
= K̂ (46)

where εs is the capital income share in sector s and we use the fact that sectoral production

functions are homogeneous of degree one.

Subtracting (43) and (44),

(ε2 − ε1)
(
ŵ − R̂

)
= p̂1 − p̂2 (47)

Using the definition of the sector-specific elasticity of substitution, σs ≡
CsCswR
CswCsR

, since we

can express the factor income shares as εs =
rCsR
Cs

and 1−εs =
wCsw
Cs

, we reach the following

rates of change of partial derivatives of the unit cost functions,

Ĉsw =
Cswwdw + CswrdR

Csw
=
−CswR

R

w
dw + CswRdR

Csw
=

−(CswRRŵ − CswRdR)

Csw
= −CswRR

Csw

(
ŵ − R̂

)
= −CsCswR

CswCsR

RCsR
Cs

(
ŵ − R̂

)
where the second equality uses the fact that Csw

(
w, R̂

)
is homogeneous of degree 0. As

a result

Ĉsw = −σsεs
(
ŵ − R̂

)
(48)

ĈsR = σs (1− εs)
(
ŵ − R̂

)
(49)

Replacing (48) and (49) in (45) and (46) and subtracting them we reach,

(λ− κ) (Ŷ1 − Ŷ2) =
(
L̂− K̂

)
+ Θ

(
ŵ − R̂

)
(50)

where Θ ≡ λσ1ε1 + (1− λ)σ2ε2 + κσ1 (1− ε1) + (1− κ)σ2 (1− ε2).
Finally, we use (9) to reach

Ŷ1 − Ŷ2 = −ε (p̂1 − p̂2) (51)

Since the aggregate elasticity of substitution is defined as σ ≡ −

(
L̂− K̂

)
(
ŵ − R̂

) we combine (47)

and (50) in (51) to reach (13).
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Proof of Proposition 4. Using (16) we can rewrite the CC curve as,

(1− κ)
1
σ2

κ

λ

(1− λ)
1
σ2

= χ
σ2−1
σ2

which, after using (27) to replace λ, becomes

χ = (γ(1− α))
σ2
σ2−1

(1− κ)
1

σ2−1

(κ− αγ) (κ (1− γ(1− α))− αγ)
1

σ2−1

where χ′ (κ) < 0 (resp. χ′ (κ) > 0) for all κ ∈ (κ, 1) if σ2 > 1 (resp. σ2 < 1). Furthermore,

it is worth noticing that when σ2 > 1, χ (1) = 0 and limκ→κ χ(κ) = ∞, and when σ2 < 1,

χ (κ) = 0 and limκ→1 χ (κ) =∞.
Given (16) and A1 = A2,the rate of change of the normalized capital stock is,

χ̂ = K̂ − Â− L̂ = υ
Y

K
− δ − gA − n

Since ε = 1 and sector 1 has the Cobb-Douglas technology while sector 2 has the CES

technology, the agregate output-capital ratio is given by

Y

K
=
[
(λχ−1)1−α(κ)α

]γ [
(1− α)

(
(1− λ)χ−1

)σ2−1
σ2 + α((1− κ))

σ2−1
σ2

] (1−γ)σ2
σ2−1

which can be expressed using (58), (27), and (18) as

Y

K
= Bπ(κ) (52)

where B and π(κ) are defined by (20) and (21) respectively. Notice that when σ2 > 1

( respectively, γ < σ2 < 1), π(κ) is an increasing resp. decreasing) function defined over the

interval [κ, 1], with π(κ) = 0 (resp. π(κ) =∞) and limκ→1 π(κ) =∞ ( resp. π(1) = 0).

Therefore

χ̂ = υBπ(κ)− (δ + gA + n) (53)

Finally log-differentiating (18)

χ̂ = −H(κ)κ̇ (54)

where H(κ) is defined by

H(κ) ≡ −
(

1

σ2 − 1

)
1

1− κ
− (σ2 − 1)

(κ− αγ)(σ2 − 1)
−
(

1

σ2 − 1

)
1− γ(1− α)

κ(1− γ(1− α))− αγ
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Then

H(κ) = −
(

1

σ2 − 1

)[
1

1− κ
+

σ2 − 1

(κ− αγ)
+

1− γ(1− α)

κ(1− γ(1− α))− αγ

]
where the terms inside the square bracket is equal to

(1− γ + αγ)(1− κ)(κ− αγ) + σ2 (1− κ) (κ(1− γ(1− α))− αγ)

(1− κ) (κ− αγ) (κ(1− γ(1− α))− αγ)

i.e.
(1− γ + αγ)(κ− αγ) + σ2 (κ(1− γ(1− α))− αγ)

(κ− αγ) (κ(1− γ(1− α))− αγ)

which is positive for all κ ∈ [κ, 1].

Combining (54) with (53) yields (19). �

C Special case 1: Dynamics of the Acemoglu-Guerrieri

model

Recall that this case arises when σ1 = σ2 = 1 and α2 > α1. Again, for expositional purposes

we will focus in the case where ε < 1 and following our previous discussion we assume

g
A2
> g

A1
≥ 0.30

Given initial conditions for the state variables, χ(0) and B(0) ≡ A2(0)/A1(0), the initial

sectoral allocation of capital, κ(0) = K(χ(0), B(0)), is uniquely determined by (CC) and

(LM). The following proposition summarizes the dynamic behavior of the AG model.

Proposition 8. Under the stated assumptions and given the initial conditions, χ (0) = χ0

and B(0) = B0 and consequently κ (0) = K(χ0, B0), the solution to the dynamic problem

satisfies the following system of differential equations,

χ̂ (t) = υη (t)λ (t)1−α1 κ (t)α1 χ (t)α1−1−
(
δ + n+ g

A1

)
(55)

κ̂ (t) =
(1− κ (t)) (α2 − α1)

(
χ̂ (t) + g

A2

)
(1− ε)−1 + (α2 − α1) (λ (t)− κ (t))

(56)

where η (t) = γ
ε
ε−1

[
1 +

α1

α2

(1− κ (t))

κ (t)

] ε
ε−1

.

30Notice that if g
A2

= g
A1

= g
A

then by normalization we can write A1 = A2 = A, and using Proposition
1, we can treat κ (and hence λ) as a function of χ. We would then face a single first order differential
equation. In the derivations that follow we deal with the more general case where g

A2
> g

A1
≥ 0.With

sector-specific rates of TFP growth, we face a non-stationary system. It turns out, however, that we can
analyse convergence to a constant growth path by studying a system of two differential equations that are
stationary, see below.
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Proof.

Log-differentiating (16) and using (3) we reach,

χ̂ = K̂ − n− gA1 = υ
Y

K
− (δ + n+ gA1) (57)

We must find an expression for
Y

K
in terms of our two endogenous variables, χ and κ. Notice

that (LM) implies,

(
Y1
Y2

) 1−ε
ε

=

(
1− κ
κ

)(
γ

1− γ

)
α1

α2

(58)

and dividing both sides of (1) by Y1 we have,

Y

Y1
=

[
γ + (1− γ)

(
Y2
Y1

) ε−1
ε

] ε
ε−1

Combining these two expressions we reach,

Y

Y1
= γ

ε
ε−1

[
1 +

α1

α2

(
1− κ
κ

)] ε
ε−1

≡ η

Then,

Y = ηY1 = η (A1λL)1−α1 (κK)α1 = ηλ1−α1κα1χα1−1K (59)

which, when combined with (57), yields (55).

Now using equation (58) we reach

κ̇

κ
= −

(
1− ε
ε

)
(1− κ)

_(
Y1
Y2

)
(60)

Since
Y1
Y2

= λ1−α1 (1− λ)−(1−α2) κα1 (1− κ)−α2

(
L

K

)α2−α1
(
A1

A2

)α2−α1

, we obtain

_(
Y1
Y2

)
=

(
(1− α1)

λ
+

(1− α2)

(1− λ)

)
∂λ

∂κ
κ̇+ α1

κ̇

κ
+ α2

κ̇

(1− κ)
+ (α1 − α2) (χ̂+ gA2) (61)

Substituting (61) into equation (60), using
∂λ

∂κ
=
α1

α2

(1− α2)

(1− α1)

(
λ

κ

)2

and
κ

λ
=

(
1− κ
1− λ

)(
α1

α2

)(
1− α2

1− α1

)
,

we arrive at

κ̇ = −
(

1− ε
ε

)
[κ̇ (1 + (α1 − α2) (λ− κ)) + κ (1− κ) (α1 − α2) (χ̂+ gA2)]
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which after some manipulation yields (56).�

Then we have the following characterization of the unique (non-trivial) CGP.

Proposition 9. Under the stated assumptions, there exists a unique (non-trivial) CGP

with the following properties,

χss =

(
υγ

ε
ε−1

δ + n+ g
A1

) 1
1−α1

, κss = λss = 1,

gss = zss = gss1 = zss1 = n+ g
A1
, (62)

gss2 = gss + ε (1− α2)
(
g
A2
− g

A1

)
, zss2 = gss − (1− ε) (1− α2)

(
g
A2
− g

A1

)
,

nss1 = n, nss2 = n− (1− ε) (1− α2)
(
g
A2
− g

A1

)
.

The steady state associated with this CGP is locally stable.31

Proof. Consider the curve χ̂ = constant. Differentiating (55) (keeping χ̂ = constant)

we reach a positive relationship between χ and κ along the χ̂ = constant schedule,

∂κ

∂χ
=

(1− α1)

χ

 ∂η

∂κ
η

+ (1− α1)

∂λ

∂κ
λ

+
α1

κ


=

κ2 (1− α1)

χ

(
ε

1− ε
γη

1
ε
α1

α2

+ (1− α2)
α1

α2

λ+ α1κ

) > 0 (63)

Thus this schedule is upward sloping in the space (χ, κ), where χ is measured along the

horizontal axis. The equation for the curve χ̂ = b (where b is any constant such that

δ + n+ gA1 − b > 0) is

χ
1

1−α1 =
κα1[

1 + α1

α2

(
1−α2

1−α1

)
1−κ
κ

]1−α1

 1(
1 + α2

α1

1−κ
κ

) ε
1−ε

 υγ
ε
ε−1

δ + n+ g
A1
− b

In particular, the curve χ̂ = 0 meets the line κ = 1 at χss =

(
υγ

ε
ε−1

δ + n+ g
A1

) 1
1−α1

. Since

∂χ̂

∂χ
< 0, capital per unit of effective labor, χ, increases below (to the left) the χ̂ =

31One can talk about the “stability” of this system in the following sense: Suppose that, given (χ(0), B(0)),
and hence κ(0) = K(χ(0), B(0)), we can show that χ(t) → χss and κ(t) → 1. Perturb A(0) (e.g., consider

a sudden jump in B at time zero, from B0 to B#
0 ).Then κ(0) = K(χ(0), B(0)) jumps to a new value,

K(χ(0), B#
0 ). With this new value of κ(0), do (χ(t), κ(t)) still converge to (χss, 1)? Theorem 1 shows that

the system is stable in the sense that the answer to the preceding question is in the affirmative.
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0-line. its steady state value. Now we turn to equation (56), setting κ̂ = 0 requires

κ (1− κ) (α2 − α1)
(
χ̂+ g

A2

)
= 0 which implies either κ = 1 or χ̂ = −g

A2
. The latter

case cannot be a steady state. Therefore the only non-trivial steady state allocation of cap-

ital is κ∗ = 1, i.e. the relevant κ̂ = 0-line that determines the steady state is the horizontal

line κ = 1. Below the κ̂ = 0-line and above the locus where χ̂ = −g
A2

, it is clear that κ is

growing since α2 > α1, λ > κ and χ̂ − g
A2
> 0. Below the locus where χ̂ = −g

A2
a similar

reasoning implies that κ is decreasing. It is clear that κ and χ asymptotically reach their

steady state levels given by (62).

The growth rates of the asymptotically dominant sector (and therefore of the overall

economy) are derived by combining the steady state solutions and the growth rates of the

exogenous variables with (6), (16), and (59). The growth rates for sector 2 are given by

the solution of the system of three equations on gss2 , z
ss
2 and nss2 that results from the log-

differentiation of (4), (7) and (8).�

D Special Case 2: Dynamics of the simplified Ngai-

Pissarides model

Recall that this case arises when σ1 = σ2 = 1 and α2 = α1 = α. As before we restrict

attention to the case where ε < 1. Furthermore, let g
A2
> g

A1
≥ 0 so that sector 1 is the

asymptotically dominant sector for the same reasons as in the previous model.

Notice that in this case, given the initial levels of sectoral total factor productivity,

B(0) ≡ A2(0)/A1(0), the initial sectoral allocation of capital, κ(0) = K(B(0)), is uniquely

determined by (CC) and (LM). The following proposition summarizes the dynamic behavior

of the simplified NP model.

Proposition 10. Under the stated assumptions and given the initial conditions, χ (0) =

χ0 and B(0) = B0 and consequently κ (0) = K(B0), the competitive equilibrium satisfies the

following pair of differential equations,

χ̂ (t) = υξ (t)χ (t)α1−1 −
(
δ + n+ g

A1

)
(64)

κ̂ (t) = (1− κ (t)) (1− α) (1− ε)
(
g
A2
− g

A1

)
(65)

where ξ (t) ≡

γκ (t)
ε−1
ε + (1− γ)

((
A2 (t)

A1 (t)

)1−α

(1− κ (t))

) ε−1
ε


ε
ε−1

.

Proof. Using (57) we need an expression for
Y

K
in terms of our two endogenous variables.

60



Under the NP restrictions, equation (1) can be written as,

Y =
[
γY1

ε−1
ε + (1− γ)Y2

ε−1
ε

] ε
ε−1

=

[
γ
(
(A1λL)1−α (κK)α

) ε−1
ε + (1− γ)

(
(A2 (1− λ)L)1−α ((1− κ)K)α

) ε−1
ε

] ε
ε−1

= L1−αKα
[
γ
(
A1−α

1 κ
) ε−1

ε + (1− γ)
(
A2

1−α (1− κ)
) ε−1

ε

] ε
ε−1

where we have used the fact that the capital-labor ratios are identical across sectors, implying

κ = λ. The preceding equation gives

Y

K
=

(
K

LA1

)α−1
Aα−11

[
γ
(
A1−α

1 κ
) ε−1

ε + (1− γ)
(
A2

1−α (1− κ)
) ε−1

ε

] ε
ε−1

= χα−1

γκ ε−1
ε + (1− γ)

((
A2

A1

)1−α

(1− κ)

) ε−1
ε


ε
ε−1

≡ ξχα−1

from which we obtain (64).The derivation of (65) is straight forward.�

Let’s turn now to the characterization of the constant growth path.

Proposition 11. Under the stated assumptions, there exists a unique (non-trivial) CGP

with the following properties,

χss =

(
υγ

ε
ε−1

δ + n+ g
A1

) 1
1−α1

, κss = λss = 1,

gss = zss = gss1 = zss1 = n+ g
A1
, (66)

gss2 = gss + ε (1− α)
(
g
A2
− g

A1

)
, zss2 = gss − (1− ε) (1− α)

(
g
A2
− g

A1

)
,

nss1 = n, nss2 = n− (1− ε) (1− α)
(
g
A2
− g

A1

)
.

The steady state associated with this CGP is locally stable (in the sense explained in the

footnote at the end of Proposition 9).

Proof. Notice that equation (65) does not contain the variable χ and thus can be ana-

lyzed independently. This equation gives κ̇ = κ (1− κ) (1− α) (1− ε)
(
g
A2
− g

A1

)
which is

the familiar logistic equation with two steady states, κss1 = 1 and κss2 = 0. The first one is

asymptotically stable, and the second one is asymptotically unstable. As κ → 1, ξ → γ
ε
ε−1

and χ→ χss. The CGP associated with the steady state (1, χss) is locally stable since, eval-

uated at this point,
∂κ̂

∂κ
= (α− 1) (1− ε)

(
g
A2
− g

A1

)
< 0 and

∂χ̂

∂χ
= (α− 1)

(
δ + n+ g

A1

)
<

0.�
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E Optimal growth under unequal sectoral capital-labor

substitution

In this section we extend the analysis in the main text to the case of optimal saving. Let C

and I denote consumption and gross investment respectively. Then

Y = C + I (67)

K̇ = Y − C − δK = I − δK (68)

Let c be consumption per unit of effective labour,

c ≡ C

AL
=
C

K

(
K

AL

)
=
C

K
χ (69)

Then using (52) from we reach,

I

K
=
Y

K
− C

K
= Bπ(κ)− c

χ
(70)

and therefore the law of motion of capital per unit of effective labour becomes,

χ̇ = Bπ(κ)χ− c− (δ + gA + n)χ (71)

Let the instantaneous utility function, U (C/L) , take the familiar CRRA specification where

1/ (1− µ) > 0 is the intertemporal elasticity of substitution of consumption. Then the

discounted life-time welfare of the representative household is∫ ∞
0

e−βtLU

(
C

L

)
dt =

∫ ∞
0

e−βt
(
cµ

µ

)
LAµdt =

∫ ∞
0

e−(β−n−µgA)t
(
cµ

µ

)
dt (72)

where β is the rate of time preference and we have used the fact that population and TFP

grow at the exogenous rates n and gA respectively.

The solution to the optimal growth problem amounts to find the time path for c that

maximizes (72) subject to (71). Notice that given (18) κ is a function of χ and we can define

f (χ) ≡ Bπ(κ(χ))χ (73)

Therefore (71) becomes

χ̇ = f (χ)− c− (δ + gA + n)χ (74)

Thus, this optimization problem reduces to the standard optimal growth problem if f (χ)

is a strictly concave and increasing function of χ with f (0) = 0. This is the case given the

sectoral and final output technologies.

62



Define

ρ ≡ β − n− µgA

and assume that ρ is positive. Let ψ be the shadow price of χ. The Hamiltonian for this

problem is

H =
cµ

µ
+ η [f (χ)− c− (δ + gA + n)χ]

The necessary conditions are

cµ−1 = η (75)

η̇ = η [ρ+ δ + gA + n− f ′(χ)] (76)

together with the transversality condition, lim
t→∞

χη exp (−ρt) = 0.

Combining (75) and (76) we reach the familiar consumption Euler equation,

ċ =
c

1− µ
[f ′(χ)− ρ− δ − gA − n] (77)

that together with (74), the initial condition, χ (0) = χ0, and the transversality condition

fully describe the dynamic evolution of the economy. The steady state satisfies,

f ′(χss) = ρ+ δ + gA + n (78)

css = f (χss)− (δ + gA + n)χss (79)

and the standard analysis applies.
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