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The Influence of Additive Outliers on the Performance
of Information Criteria to Detect Nonlinearity

Saskia Rinke1

Leibniz University Hannover

Abstract

In this paper the performance of information criteria and a test against SETAR non-

linearity for outlier contaminated time series are investigated. Additive outliers can

seriously influence the properties of the underlying time series and hence of linearity

tests, resulting in spurious test decisions of nonlinearity. Using simulation studies, the

performance of the information criteria SIC and WIC as an alternative to linearity tests

are assessed in time series with different degrees of persistence and different outlier mag-

nitudes. For uncontaminated series and a small sample size the performance of SIC and

WIC is similar to the performance of the linearity test at the 5% and 10% significance

level, respectively. For an increasing number of observations the size of SIC and WIC

tends to zero. In contaminated series the size of the test and of the information crite-

ria increases with the outlier magnitude and the degree of persistence. SIC and WIC

can clearly outperform the test in larger samples and larger outlier magnitudes. The

power of the test and of the information criteria depends on the sample size and on

the difference between the regimes. The more distinct the regimes and the larger the

sample, the higher is the power. Additive outliers decrease the power in distinct regimes

in small samples and in intermediate regimes in large samples, but increase the power

in similar regimes. Due to their higher robustness in terms of size, information criteria

are a valuable alternative to linearity tests in outlier contaminated time series.
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1 Introduction

Model identification is one of the major challenges in time series analysis due to the

trade-off between goodness of fit and model complexity. In general, linear models per-

form as benchmark models because they yield a good model fit while being simple and

easy to estimate. Although nonlinear models are more complex, they may be able to

better capture certain characteristics of the true data generating process (DGP), which

improve the forecasting performance enormously. However, there are factors like outly-

ing observations that further complicate the model selection procedure.

In order to select between linear and nonlinear models, generally, linearity tests are

conducted. Outliers can lead to serious size distortions of linearity tests and hence to

a spurious selection of nonlinear models. This is due to the fact that multiple regime

models can generate data resembling an outlier contaminated linear process (cf. van

Dijk et al., 2002). So, van Dijk et al. (1999) find that the test against smooth transition

nonlinearity of Luukkonen et al. (1988) becomes oversized in the presence of additive

outliers (AOs), i.e. the null hypothesis of linearity is rejected too often. For a high outlier

probability or large outlier magnitudes the size decreases again, but the power of the

test is deteriorated. Recently, Ahmad and Donayre (2016) also detect size distortions

but power improvements due to outliers for the test against threshold autoregressive

nonlinearity of Hansen (1996, 1997).

As an alternative to linearity tests, information criteria can be used to detect nonlin-

earity. So, the application of information criteria to identify the number of regimes

of autoregressive (AR) and self-exciting threshold autoregressive (SETAR) models is

treated in Gonzalo and Pitarakis (2002), Hamaker (2009), and Rinke and Sibbertsen

(2015). The selection of the model class in general with information criteria is also

considered in Kapetanios (2001) and Psaradakis et al. (2009). Since the application of

information criteria is less popular to detect nonlinearity, the performance of information

criteria for outlier contaminated time series has not been assessed yet.

Therefore, in this paper the effect of AOs on model selection between AR and SETAR

models using information criteria is investigated by means of simulations. The influence

of the outlier magnitude, the degree of persistence, and the sample size on the perfor-

mance of information criteria is assessed. Their performance is then compared to the

performance of the linearity test against a SETAR alternative of Hansen (1999) in order

to evaluate whether information criteria can be a useful alternative for model selection

in outlier contaminated time series.

The rest of the paper is organized as follows. In Section 2 the definition of AR and

SETAR models as well as the model framework of AOs are presented. In Section 3 the

linearity test of Hansen (1999) and the information criteria are introduced. In Section
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4 the simulation set-up and the simulation results are presented. Finally, Section 5

concludes.

2 Additive Outliers in Linear and Nonlinear Time Series

According to Davies and Gather (1993) and van Dijk et al. (1999) outliers can only

be defined in the context of a certain model. In this paper linear autoregressions of

order 1 (AR(1)) and two-regime self-exciting threshold autoregressive models consisting

of AR(1) specifications in both regimes (SETAR(1,1)) are considered. The AR(1) model

is defined as

xt = φxt−1+εt,

for t = 1, . . . ,n, where n denotes the sample size, φ is the persistence parameter, and

εt ∼ iid (0,σ2
ε). For t = 1, . . . ,n the SETAR(1,1) model is given by

xt = φ1xt−11{xt−d > c}+φ2xt−11{xt−d ≤ c}+εt,

where φ1 and φ2 are the persistence parameters of the first and second regime, re-

spectively, 1{·} is the indicator function, d is the delay parameter, and c denotes the

threshold. In this set-up an observation can be an outlier in the AR(1) process but a

regular observation in the SETAR(1,1) model. This is the reason why linearity tests

tend to spurious test decisions in the presence of outlying observations (cf. van Dijk

et al., 1999).

To model outlier contaminated processes, the general replacement model of Martin and

Yohai (1986) can be used. It divides the observable contaminated process yt into an

unobservable core process xt and a contaminating process ζt,

yt = xt (1−δt)+ ζt δt. (2.1)

The AR(1) and SETAR(1,1) model form the unobservable core process xt. The conta-

minating process ζt models AOs according to

ζt = xt + ζ, (2.2)

where ζ is the constant outlier magnitude. In order to model symmetric contaminations,

the random variable δt takes the values −1 and 1 with a probability of π/2 respectively,

and 0 with the probability 1−π. The probability π is referred to as the outlier probability.

Combining the definitions of Eq. (2.1) and (2.2), the contaminated process can be
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written as

yt = xt + ζδt.

Other specifications of the contaminating process ζt can be used to model other types

of outliers, like innovative outliers, level shifts or temporary changes (cf. Galeano and

Peña, 2013). However, the main focus in time series analysis is on AOs and innovative

outliers as introduced by Fox (1972). Due to the fact that innovative outliers do not

seriously deteriorate the performance of linearity tests, this paper only considers AOs

(cf. van Dijk et al., 1999; Ahmad and Donayre, 2016).

The effect of an AO is illustrated in Figure 2.1. The core process follows an AR(1)

process with φ = 0.5 and εt ∼ N (0,1). An AO of magnitude ζ = 5 occurs at observation

t = 50. The contaminated process (black) and the core process (grey) only differ at t = 50

since the AO has no influence on the core process xt. Thus, AOs only affect one single

observation. If there were more outliers introduced in a linear process, they could be

modeled as an additional regime, favoring the alternative hypothesis of a linearity test.

Time

0 20 40 60 80 100

−
2

0
2

4
6 observable process

core process
additive outlier

Figure 2.1: Effect of an Additive Outlier

3 Discriminating Linear and Nonlinear Models

There are two strands of procedures in order to discriminate between linear and nonlinear

models, i.e. linearity tests and information criteria. There exists a variety of linearity

tests designed to detect different types of nonlinearity. In this paper the focus is on the

detection of SETAR nonlinearity. Therefore, the test against SETAR nonlinearity of

Hansen (1999) is considered.
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3.1 A Test against SETAR Nonlinearity

The test of Hansen (1999) is a F-type test to determine the number of regimes of

a SETAR model. Since a SETAR model with one regime equals an autoregressive

process, the test can be used to detect SETAR nonlinearity. The focus of this paper is

on the discrimination between linear and nonlinear models, not on lag order selection.

Therefore, for simplicity the lag order is fixed at 1 and only autoregressive and two-

regime SETAR models are considered. These assumptions are not restrictive since a

model order has to be determined before the application of the test, e.g. by using

an information criterion. Therefore, only the first step of lag order determination is

simplified in this set-up. The corresponding hypotheses of the test are given by

H0 : yt ∼ AR(1) H1 : yt ∼ SETAR(1,1).

One of the major drawbacks of this test is the fact that both models have to be fully

specified which increases the computational effort. Estimation is done by least-squares.

In the case of the SETAR model, the autoregressive parameters are estimated condition-

ally on the threshold and on the delay. For both parameters a grid search is applied, for

the threshold in the interval [y0.15,y0.85] to ensure that at least 15% of the observations

lie in each regime (cf. Hansen, 1997), and for the delay in the interval [1, p] by conven-

tion (cf. Pitarakis, 2006). Since here p is fixed at 1, the delay is given by 1 as well. The

combination (ĉ, d̂) that minimizes the residual sum of squares (RSS) is selected. The

test statistic is then given by

F = n

(

RS S AR−RS S S ET AR

RS S S ET AR

)

.

It depends on the estimated threshold ĉ and on the estimated delay d̂ through the RSS

of the SETAR model. Since these parameters are only specified under the alternative,

the test statistic does not converge asymptotically to a standard distribution. Therefore,

critical values or p-values should be simulated using bootstrap procedures. In this paper

the bootstrap is designed as in Hansen (1999). The bootstrap is always conducted under

the null hypothesis. So, bootstrap residuals {e∗t }
n
t=1 are sampled with replacement from

the residuals of the AR(1) model. Under the initial condition y∗0 = 0 combined with the

least squares estimate φ̂ from the original data, the bootstrap dependent variable y∗t can

be calculated recursively for t = 1, . . . ,n according to

y∗t = φ̂y
∗
t−1+ e∗t .

For this bootstrap data the test is conducted and the test statistic is saved. The pro-
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cedure is repeated 2000 times and the empirical distribution function of the bootstrap

test statistics is calculated. If the test statistic of the original sample exceeds the (1−α)-

quantile of the bootstrap test statistics, the null hypothesis will be rejected.

3.2 Information Criteria

Information criteria consist of a goodness of fit term and a penalty term to prevent

overfitting. Different choices of the penalty term generate different information criteria

with different characteristics. Generally, AIC (cf. Akaike, 1974), SIC (cf. Schwarz,

1978), and AICc (cf. Hurvich and Tsai, 1989) are applied. In this paper the focus will

be on SIC and WIC (cf. Wu and Sepulveda, 1998) since AIC and AICc have a tendency

to select the nonlinear model and hence are oversized (cf. Rinke and Sibbertsen, 2015),

S IC = n log(σ̂2)+ p log(n),

WIC = n log(σ̂2)+

(

2n (p+1)/(n− p−2)
)2
+

(

p log(n)
)2

2n (p+1)/(n− p−2)+ p log(n)
.

The SIC tends to underfit in small samples. The WIC is a weighted version of AICc and

SIC and is supposed to combine their advantages and thus perform well independent of

the sample size.

For the SETAR model the overall versions of the information criteria are calculated,

i.e. the two regimes are not considered separately, but the goodness of fit and the

number of parameters are assessed for the whole model (cf. Rinke and Sibbertsen,

2015). The threshold is included in the number of parameters of the SETAR model as

an additional parameter (cf. Kapetanios, 2001; Rinke and Sibbertsen, 2015). The delay

is not considered to be an additional parameter since it is fixed at 1 and does not have

to be estimated. The estimator of the error term variance is given by

σ̂2
=

RS S
n− p−1

.

This estimator is unbiased and prevents overfitting (cf. McQuarrie et al., 1997; Rinke

and Sibbertsen, 2015).

The information criteria are calculated for both models, AR(1) and SETAR(1,1), and

the model which minimizes the respective information criterion is selected. So, again the

computational effort is relatively high, because both models have to be fully specified.

The estimation procedure is the same as for the linearity test.
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4 Simulation Study

In the simulation study AR(1) and SETAR(1,1) models with different degrees of persis-

tence φ,φ1,φ2 = {±0.75,±0.50,±0.25,0.00}, different outlier magnitudes ζ = {0,1,2,3,5},

and different sample sizes n = {100,250,500,1000} are considered. Throughout, the error

terms εt are Gaussian white noise, the delay is fixed at 1, the threshold equals 0, and

the outlier probability is π = 0.05. Every series has a burn-in period of 200 observations

to avoid a starting value bias. The initial values are set to zero. The simulation results

are based on 1000 replications.

4.1 Size Properties

Table 4.1 tabulates the size properties of the Hansen (1999) test for the typical signifi-

cance levels α = {1%,5%,10%} and of the SIC and the WIC. The linearity test has good

size properties independent of the sample size due to the application of the bootstrap.

Only for a sample size of n = 250 and larger significance levels, the test appears to be

slightly undersized. However, this is probably due to some data peculiarity. In contrast,

the size properties of the information criteria depend on the number of observations.

So, in small samples the SIC and the WIC perform like the test at the 5% and the 10%

level, respectively. For an increasing sample size the type I error of the information

criteria decreases and converges towards zero (cf. also Fig. 4.1).

Hansen (1999) Test SIC WIC

n\α 1% 5% 10%

100 0.012 0.056 0.111 0.054 0.114

250 0.008 0.037 0.078 0.015 0.037

500 0.014 0.057 0.094 0.015 0.039

1000 0.010 0.044 0.089 0.004 0.014

Table 4.1: Size Properties of the Hansen (1999) Test and the Information Criteria. The DGP
is an uncontaminated AR(1) process with φ = 0.25.

Figure 4.1 illustrates the effect of AOs with different outlier magnitudes ζ = {0,1,2,3,5}

on the size of the linearity test and of the information criteria. In small samples n = 100

AOs only have a minor effect on the size of the linearity test and the information criteria.

This is probably due to the fact that there are only a few outliers. The expected number

of outliers equals n ·π. The effect becomes more pronounced in larger samples. For small

outlier magnitudes ζ = {1,2} the size is not seriously deteriorated. However, for a larger
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outlier magnitude ζ = {3,5} the Hansen (1999) test becomes seriously oversized. In

contrast, the size of the information criteria decreases with the number of observations.

Although the introduction of AOs increases the size again, the overall effect is less severe

than for the linearity test. In large samples the SIC and the WIC outperform the test

at the 1% and the 5% level, respectively.
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(a) α = 10%
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(c) α = 1%

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

Number of observations

S
iz

e

ζ = 0
ζ = 1
ζ = 2
ζ = 3
ζ = 5

(d) SIC

- 8 -



200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

Number of observations

S
iz

e

ζ = 0
ζ = 1
ζ = 2
ζ = 3
ζ = 5

(e) WIC

Figure 4.1: Size of the Hansen (1999) Test and the Information Criteria for Different Sample
Sizes and Outlier Magnitudes ζ. The DGP is an AR(1) process with φ = 0.25.

The effect of AOs on the size depends besides the outlier magnitude ζ and the sample

size also on the degree of persistence. For φ = 0.75 and ζ = 3 the size of the test in the

largest sample n = 1000takes the values 0.554, 0.781, and 0.867 for the significance levels

α = {1%,5%,10%}. SIC and WIC have a size of 0.454 and 0.621, respectively. Thus, the

higher the degree of persistence, the higher are the size distortions. This coincides with

the findings of Ahmad and Donayre (2016). The influence of the persistence on the size

of contaminated processes can also be found in Figures 4.2 - 4.6.

4.2 Power Properties

The power properties of the linearity test and the information criteria depend on the

sample size and on the difference between the regimes of the SETAR(1,1) model, i.e. the

difference between the persistence parameters φ1 and φ2. This is illustrated in Figures

4.2 - 4.6. The more distinct the regimes, the higher is the power of the test and of the

information criteria. For φ1 = φ2 the SETAR(1,1) model reduces to an AR(1) process.

Thus, on the main diagonal the size is depicted and the influence of the degree of

persistence in outlier contaminated series is pointed out again. For contaminated series

the size increases, especially in highly persistent series. So, the plots of the contaminated

series with ζ = 5 turn upward at both ends of the diagonal. Therefore, the higher the

absolute degree of persistence, the higher is the size distortion.
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(f) n = 1000and ζ = 5

Figure 4.2: Power of the Hansen (1999) Test for α = 10%. The DGP is a SETAR(1,1) process.
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Figure 4.3: Power of the Hansen (1999) Test for α = 5%. The DGP is a SETAR(1,1) process.
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Close to the diagonal the regimes are quite similar. In small samples the power of the

test and of the information criteria in this scenario is relatively low. With an increasing

number of observations the differentiation between linear and nonlinear models becomes

easier and the power of the test and of the information criteria increases in general, but

also if the regimes are similar.

The introduction of AOs increases the size but slightly decreases the power in small sam-

ples for a nonlinear model with distinct regimes. For the larger number of observations

the power converges to 1, but the size also increases enormously. The differentiation

between AR(1) and SETAR(1,1), if the regimes are quite similar, is more reliable than

for a small sample of a contaminated process. However, the increase in power is at least

partly due to the overall increase of the selection frequency of the nonlinear model. So,

there exists a trade-off between power gains and size distortions.
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Figure 4.4: Power of the Hansen (1999) Test for α = 1%. The DGP is a SETAR(1,1) process.
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Figure 4.5: Power of the SIC. The DGP is a SETAR(1,1) process.
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Figure 4.6: Power of the WIC. The DGP is a SETAR(1,1) process.
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The change in power due to the introduction of AOs is visualized in Figure 4.7. The

power for the outlier contaminated series with ζ = 3 is compared to the uncontaminated

series. Positive values indicate power gains, whereas negative values indicate power

losses. The darker the plot, the smaller (more negative) is the change in power. So,

for small samples AOs lead to power gains in similar regimes, which also implies size

distortions in equal regimes. In distinct regimes power losses occur. In large samples

the main change is due to the size distortions. There occur no power losses in distinct

regimes. However, there can be power losses in the intermediate case if the outlier

magnitude increases.
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(a) n = 100 and α = 10%
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(b) n = 1000and α = 10%
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(c) n = 100 and α = 5%
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(d) n = 1000and α = 5%

−0.5

0.0

0.5

−0.5

0.0

0.5

−1.0

−0.5

0.0

0.5

1.0

φ
2

φ1

(e) n = 100 and α = 1%
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(f) n = 1000and α = 1%
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(g) n = 100 and SIC
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(h) n = 1000and SIC
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(i) n = 100 and WIC
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(j) n = 1000and WIC

Figure 4.7: Change of Power for ζ = 3 compared to ζ = 0. The DGP is a SETAR(1,1) process.

In small samples the SIC and WIC perform like the linearity test at the 5% and 10%

significance level. In larger samples their performance coincides with the 1% level. Thus,

in terms of power the test cannot outperform the information criteria and vice versa.

5 Conclusion

In this paper the effects of additive outliers on the Hansen (1999) test against SETAR

nonlinearity and on the information criteria SIC and WIC are investigated. AOs with

a small outlier magnitude ζ = {1,2} do not seriously deteriorate the performance of the

test and the information criteria. For larger outlier magnitudes ζ = {3,5} and higher

degrees of persistence φ the size increases. Especially in larger samples the results of the

test become unreliable. Also the power can be negatively affected by large outliers. In

small samples power losses occur in distinct regimes, in large samples in intermediate

regimes. The effect of AOs on the power of the information criteria is similar to their

effect on the Hansen (1999) test. In terms of size the results differ. In small samples of

an uncontaminated series the size of SIC and WIC coincides with the size of the test at

the 5% and 10% significance level, respectively. In contrast to the test, the size of the

information criteria decreases with the number of observations and converges to zero.

The size distortion in contaminated processes is less severe. In small samples the effect
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of AOs is not seriously deteriorating anyway. But in larger samples SIC and WIC are

able to outperform the test at the 1% and 5% significance level, respectively. Therefore,

the two information criteria are a valuable alternative to linearity tests due to their

higher robustness against outlier contaminations in terms of size without considerable

power losses.
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