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Abstract

This paper analyzes the formation of self-enforcing climate agreements, or stable

climate coalitions, when all countries have the option to fight climate change by

purchasing (the right to extract) fossil-energy deposits. First, we consider the

stand-alone deposit purchase policy and then combine that policy with the option

to tax or subsidize the supply of deposits. In either case, coalitions of any size turn

out to buy deposits while the non-cooperative countries do not. In case of the stand-

alone deposit purchase policy either no coalition is stable or the grand coalition is

the only stable coalition. If the two-instrument policy is implemented, all countries

inside and outside the coalition are better off than in case of the stand-alone deposit

policy, but the conditions for stable grand coalitions are more favorable under the

stand-alone deposit policy than under the two-instrument policy due to weaker

free-rider incentives.
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1 The problem

Scientific evidence suggests that stabilizing the world climate at safe levels requires a massive

reduction of greenhouse gas emissions, notably carbon emissions from burning fossil fuels.

That calls for an effective and encompassing international environmental agreement (IEA).

The first legally binding IEA on climate change, the Kyoto Protocol, achieved little more

than business as usual, and it is unclear whether the ongoing negotiations towards a broad

and deep follow-up agreement will be successful. Therefore, improving our understanding of

the conditions for effective IEAs is important. One of the key issues not yet well understood

is how the choice of climate policy instruments influences the conditions for the formation

of stable and effective climate conditions.

There is a large literature studying self-enforcing environmental agreements. The early

workhorse model of Barrett (1994), Hoel (1992), Carraro and Siniscalco (1993) and further

analyzed by Diamantoudi and Sartzetakis (2006) and Rubio and Ulph (2006) has been ex-

tended into various directions. E.g. Hoel and Schneider (1997) introduce transfer schemes

in the coalition formation process, Finus and Pintassilgo (2013) study uncertainty and learn-

ing, and Eichner and Pethig (2013, 2015) extend that model by competitive markets and

international trade. This literature is quite pessimistic about large and deep stable climate

coalitions and finds that whenever the gains from cooperation would be large stable coalitions

achieve only little. An exception is Eichner and Pethig (2015) who show that international

trade may render the grand coalition stable when countries use emission taxes.

The prevailing approach to climate policy both in practice and in the environmental-

economics literature is the reduction of carbon emissions via emission caps, emission taxes

or cap-and-trade systems. Supply-side policies are much less studied and implemented. The

present paper focuses on a special supply-side climate policy, the international trade in (the

right to extract) fossil energy deposits. The idea is to mitigate climate change through

buying and preserving some of those deposits that would otherwise have been exploited.

While Bohm (1992) questions the usefulness of that policy, if it stands alone,1 Harstad

(2012) points out that a market for fossil-energy deposits and other minerals already exists

between countries and international companies as well as between countries First, we assume

that the fuel market and deposit market equilibrate simultaneously. In contrast, Harstad

(2012) considers a sequential game at which the deposit market clears prior to the fuel

market.. Here we follow Harstad in investigating the utilization of such a market as an

1Bohm (1992) considers the stand-alone deposit purchase policy as "rather farfetched", because it is

very costly and increases the fuel price. The practicability and political viability of trading fossil energy

deposits is a serious issue which the present paper disregards, however. Our analysis aims to improve our

understanding of the economics of deposit trading.

2



instrument of international climate policy. Specifically, we aim to explore the formation

and effectiveness of self-enforcing IEAs, when there is a world market for deposits and the

governments’ climate policy takes the form of purchasing deposits with the intention to

prevent their exploitation.

We envisage a world of symmetric countries all of which extract, trade, and consume

fossil energy, called fuel for short. All countries suffer from climate damage caused by global

carbon emissions that are proportional to global fuel consumption. In that analytical frame-

work we investigate the conditions under which IEAs are self-enforcing when all countries

inside and outside the climate coalition have the option to sell and/or buy deposits.

To our knowledge, the only analytical studies of the deposit purchase policy are Bohm

(1993) and Harstad (2012, 2010). Bohm (1993) considers a given sub-global coalition that

unilaterally aims to implement a predetermined global emission-reduction goal either by

reducing its fuel demand or by a special mix of capping its fuel demand and purchasing

deposits. The present paper neither sets an emission-reduction goal nor aims to compare

the cost-effectiveness of demand-side policies and (mixed) supply-side policies. Harstad

(2012, 2010) analyzes coalition formation in a world economy of heterogeneous countries

where global carbon emissions generate climate damage. A sub-global coalition mitigates

climate damage by means of the purchase of deposits combined with caps on the demand

and supply of fuel. Harstad’s remarkable result is that when deposits are traded between

the coalition and producers any coalition size may be stable (see Harstad 2010, Proof of

Proposition 5).2 Conceptually, we adopt Harstad’s analytical framework, but deviate from

it in various ways.

First, we take a different approach to modeling the deposit market. While Harstad

conceives of that market as a set of bilateral deposit trades that exhaust all mutual advan-

tages, we model the deposit market in a standard way with a uniform price. Second, we

do not adopt Harstad’s three-instrument policy design of deposit purchases and caps on the

demand and supply of fuel. In addition, in Harstad (2012, 2010) non-coalition members

are inactive, i.e. they do not have any climate policy. Instead, we investigate two differ-

ent supply-side policies. One is the stand-alone deposit purchase policy and the other is a

combination of that policy with a tax or subsidy on domestic deposit supply. All countries

set these policy instruments regardless of whether they are in the coalition or not. Third,

while Harstad (2012, 2010) assumes that the damage function is linear, we follow Barrett

(1994), Diamantoudi and Sartzetakis (2006) and Rubio and Ulph (2006) and study coalition

formation for quadratic damage. Fourth, we assume that the fuel market and deposit market

2Harstad (2010) is the discussion paper version of Harstad (2012). In some parts, especially in the section

that describes coalition formation, Harstad (2010) is more detailed than Harstad (2012).
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equilibrate simultaneously. In contrast, Harstad (2012, 2010) considers a sequential game

at which the deposit market clears prior to the fuel market. In sharp contrast to Harstad

(2012, 2010) we find that either no coalition is stable or the grand coalition is the only stable

coalition.

After having set up the analytical framework in Section 2, we study in Section 3.1 the

game between the coalition and the non-cooperative fringe countries. The coalition plays

Nash against the fringe countries and each fringe country plays Nash against the coalition

and all fellow fringe countries. We characterize the equilibrium allocations for alternative

coalition sizes (Proposition 1) and show among other things that coalition countries sell

and buy, whereas fringe countries sell but do not buy deposits. The information how the

countries’ equilibrium payoffs (welfares) depend on the coalition size is needed for examining

the coalition stability in Section 3.2. There we derive necessary and sufficient conditions for

the stability of the grand coalition (Proposition 2) and also show that either no stable

coalitions exists or the grand coalition is the only stable coalition (Proposition 3).

The analysis of Section 3 is based on the assumption that profit-maximizing extraction

firms determine the supply of deposits. In practice, governments may want to consider the

option of taxing or subsidizing the supply of domestic deposits in addition to purchasing

deposits. We deal with that policy-mix in Section 4. In the corresponding Nash equilibrium

with a coalition of given size both fringe countries and coalition countries improve their

welfare. Turning to the stability issue we show that the fringe countries’ free-riding incentives

increases which renders the grand coalition unstable more unlikely compared to the regime

without subsidy.

2 The analytical framework

2.1 Competitive equilibrium with given demand for deposits

We consider3 n identical countries each of which produces a standard consumption good

(quantity xs
i ) and fossil energy (quantity esi ), called fuel for short, from domestic deposits.

Each country uses its endowment r̄ of a composite input to produce both goods according

to the simple production functions xs
i = rx and esi =

(
2
α
re
) 1

2 . α is a positive constant and

rx and re are the respective inputs. Imposing full employment, re + rx = r̄, we conveniently

3We keep the description and discussion of the analytical framework short, because, essentially, our basic

model is that of Harstad (2012).
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represent the supply side of each country’s economy by the transformation function4

xs
i = T (esi ) = r̄ −K (esi ) with K (esi ) :=

α

2
(esi )

2 . (1)

K (esi ) is the cost of extracting the amount esi of fuel expressed in units of the productive

factor. Following Harstad (2012, p. 85), we interpret the extraction cost function K as

a function that implicitly orders country i’s (small) deposits according to their extraction

costs such that Kesi
(esi ) ". . . is a mapping from country i’s deposits, ordered according to

costs, to the marginal extraction cost of these deposits."5 The greenhouse gas carbon dioxide

is generated proportional to fuel consumption. With a suitable choice of units, edi represents

both fuel consumption and carbon emissions. Global emissions cause the climate damage

D

(
∑

j

edj

)

:=
δ

2

(
∑

j

edj

)2

(δ > 0 and constant) (2)

in each country. The representative consumer of country i, consumer i for short, derives the

utility

B
(
edi
)
:= aedi −

b

2

(
edi
)2

(a, b > 0 and constant) (3)

from consuming fuel, the utility xd
i from consuming good X, and suffers from climate damage

(2). Her overall utility is

ui = B
(
edi
)
+ xd

i −D

(
∑

j

edj

)

. (4)

The demand for the consumption good is xd
i = yi − pee

d
i , pe is the fuel price, px ≡ 1 is the

price of the consumption good6 and yi = T (esi )+pee
s
i is income in terms of the consumption

good in the no-policy regime. Consumer i takes yi, pe, px and the prevailing climate damage

as given and maximizes (4) with respect to edi . The maximization yields Bedi
(edi ) = pe and

the fuel demand function

edi = Edi(pe) := B−1
edi
(pe) =

a− pe
b

, (5)

where B−1
edi

is the inverse of the marginal benefit function Bedi
. Each country i hosts a firm,

firm i for short, that extracts the amount esi of fuel and sells it on the fuel market at price

pe. In addition, it offers the amount zsi of ’fuel in situ’ on the deposit market7 at price pz.

4Upper case letters denote functions and subscripts attached to them denote derivatives.
5We characterize a deposit by the amount of fossil fuel in the ground that can be extracted and by the

cost of extracting that fuel.
6Due to the simple production function of the consumption good, xs

i = rx, the factor price is also unity.
7In the present section we assume that firm i is entitled to sell (the right to exploit) deposits. An

alternative assumption is that governments own the deposits and are entitled to sell (the right to exploit)

the country’s deposits. We will take up the issue of government control on supplying deposits in Section 4

below. Note also that the deposit supply of price-taking welfare maximizing governments is equivalent to

the deposit supply of profit-maximizing price-taking firms.

5



More precisely, the item the firm offers on the deposit market is the right to exploit specific

deposits that store the amount zsi of fuel. To avoid clumsy wording we refer to zsi and zdi as

deposits supplied and demanded, respectively.

Next, we specify the deposits firm i either exploits, or sells unexploited, or leaves in the

ground unsold. To that end, suppose for the time being there is no deposit market. Then

the firm’s maximization of profit T (esi ) + pee
s
i yields the first-order condition Kesi

(esi ) = pe

and the fuel supply function

esi = Φsi(pe) := K−1
esi

(pe) =
pe
α
, (6)

where K−1
esi

(pe) is the inverse of the marginal extraction cost function Kesi
. In terms of deposit

language, (6) means that firm i exploits all deposits with extraction costs Kesi
(pe) ≤ pe. The

firm obviously has an incentive to offer deposits with extraction costs Kesi
(pe) > pe, which

it would not exploit in the absence of deposit trading. However, countries that consider

buying deposits do so for one and only one reason: to reduce total fuel extraction and

consumption. That is, they seek to prevent the extraction of fuel that is stored in those

deposits which the extraction firms would have exploited in the absence of deposit trading.

They therefore only buy deposits with extraction costs Kesi
(pe) ≤ pe, no matter in which

country the deposit-selling firm is located. Since all firms observe that constraint, the fuel

supply is

esi = Φsi(pe)− zsi =
pe
α

− zsi , (7)

when firm i offers the deposits zsi for sale.

Each firm generates a profit from producing and selling fuel and receives the revenues

pzz
s
i from selling the deposits zsi . Firm i’s total income therefore is

pe
[
Φsi − zsi

]
−K

[
Φsi(pe)− zsi

]
+ pzz

s
i . (8)

Taking pe and pz as given, it maximizes (8) with respect to zsi , and thus determines its fuel

supply as

Kesi
(pe) = pe − pz or esi = Esi(pe − pz) := K−1

esi
(pe − pz) =

pe − pz
α

. (9)

Combining (7) and (9) leads to

zsi = Φsi(pe)− Esi(pe − pz) =
pz
α
. (10)

The simultaneous determination of the supply functions (9) for fuel and (10) for deposits

demonstrates the strong interdependence of the markets for deposits and fuel. In view of

the fuel demand (5) and the fuel supply (9) the fuel-market clearing condition is
∑

j

Edj(pe) =
∑

j

Esj(pe − pz) or
a− pe

b
=

pe − pz
α

. (11)

6



Equation (10) specifies each firm’s deposit supply. The demand for deposits, zdi , is a policy

parameter of country i’s government. In game theoretic language, zdi is country i’s strategy.

Under the preliminary assumption that some (feasible) profile
(
zd1 , . . . , z

d
n

)
of strategies is

given, the condition for deposit market equilibrium is,

∑

j

zdj =
∑

j

[
Φsj(pe)− Esj(pe − pz)

]
or

∑

j

zdj =
npz
α

. (12)

Summing up, the equations (11) and (12) determine the prices of fuel and deposits that clear

the markets for any given profile of strategies
(
zd1 , . . . , z

d
n

)
. Formally, (11) and (12) imply

price functions P e and P z such that the equilibrium prices are

pe = P e

(
∑

j

zdj

)

:=
αa

α + b
+

αa

(α+ b)n

∑

j

zdj and pz = P z

(
∑

j

zdj

)

:=
α

n

∑

j

zdj . (13)

2.2 Two benchmarks: Business as usual and social optimum

Suppose now all countries seek to enhance their residents’ welfare by purchasing deposits in

order to curb climate damage. All countries act independently and simultaneously, and they

take into account both the other countries’ strategies (= deposit demands) and their own

deposit demand’s impact on market equilibria. Specifically, each country realizes that its

deposit purchase influences the equilibrium prices (13) of fuel and deposits. By assumption,

firm i chooses the supply of deposits, but the (government of) country i takes into account

how its firm’s deposit supply zsi = Φsi(pe) − Esi(pe − pz) from (10) changes when the

equilibrium prices (13) change with variations of zdi . Country i = 1, . . . , n takes zdj , j 6= i,

as given and maximizes with respect to zdi

wi = B
[
Edi(pe)

]
+ T

[
Esi(pe − pz)

]
− pe

[
Edi(pe)− Esi(pe − pz)

]

−D

[
∑

j

Φsj(pe)−
∑

j

zdj

]

− pz
[
zdi − Φsi(pe) + Esi(pe − pz)

]
(14)

subject to (13). In the Appendix A we determine the corresponding first-order condition,

which is the same across countries, when we impose symmetry, i.e. when we set zdi = zdj for

all i, j = 1, . . . , n. In the resultant Nash equilibrium, which we refer to as business-as-usual

(BAU), each country’s purchase of deposits turns out to be

zBAU =
aδn2

(α + b)2(n− 1) + α(α+ b) + αδn2
. (15)

To assess the allocative distortion in business-as-usual, observe that efficiency is char-
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acterized by the three rules8

Bedi
(edi )

︸ ︷︷ ︸

=pe

= Bedj
(edj ) i, j = 1, . . . , n, (consumption efficiency) (16)

Kesi
(esi )

︸ ︷︷ ︸

=pe−pz

= Kesj
(esj) i, j = 1, . . . , n, (production efficiency) (17)

nDe

(
∑

j

edj

)

= Bedi
(edi )

︸ ︷︷ ︸

=pe

−Kesi
(esi )

︸ ︷︷ ︸

=pe−pz

i, j = 1, . . . , n. (damage internalization) (18)

Equation (16) requires equal marginal willingness-to-pay for fuel across countries, which

is satisfied according to (2). Equation (17) requires equal marginal extraction costs across

countries, which is satisfied according to (9). Equation (18) requires that the marginal benefit

of purchasing deposits, nDe :=
d(nD)

d
∑

j e
d
j

, equals the marginal cost of purchasing deposits, pz,

in all countries. Interestingly, since (16) and (17) are fulfilled, the right-hand side of (18) is

the same for all i, but the question is whether the equality sign in (18) holds. We show in

the Appendix A that each country’s socially optimal deposit purchase is

zOPT =
aδn2

α(α+ b) + αδn2
. (19)

and hence zOPT > zBAU . Moreover, from (5) and (13) follows
∑

j e
d
j = an

α+b
− α

α+b

∑

j z
d
j .

Combined with (15) and (19) we get edBAU > edOPT and De(nzBAU ) > De(nzOPT ). Hence the

efficiency rule (18) is violated in business-as-usual because both the marginal and the total

climate damage are excessive.

3 Coalition formation with deposit trading

3.1 Coalition-fringe equilibria with coalitions of given size

Suppose now the first m countries, 1 ≤ m < n, are members of a climate coalition C :=

{1, 2, . . . , m} (with C for coalition) and all countries in the remaining group F := {m +

1, . . . , n} (with F for fringe) are non-cooperative. Each fringe country i ∈ F plays Nash

against the coalition and against all fellow fringe countries. The coalition acts as a single

player whose payoff is the aggregate welfare
∑

j∈C wj and who plays Nash against all fringe

countries. Taking advantage of symmetry, we treat all countries equally within their group

and therefore set zdi = zc for all i ∈ C and zdi = zf for all i ∈ F from the outset.

8See also Harstad (2012), equation (1).
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The (executive body of the) coalition takes zf as given and maximizes the aggregate

welfare of the coalition countries,

mwc = m
{
B
[
Edc(pe)

]
+ T [Esc(pe − pz)]− pe

[
Edc(pe)−Esc(pe − pz)

]

−D

[
∑

j

Φsj(pe)− (mzc + (n−m)zf )

]

− pz [zc − Φsc(pe) + Esc(pe − pz)]

}

,(20)

subject to (13).9 As shown in the Appendix A, some rearrangement of the first-order con-

dition produces a link between zc and zf , denoted zc = R̃c(zf , m), such that each coalition

country’s best reply to predetermined zf is

zc = Rc(zf , m) := max
[

0, R̃c(zf , m)
]

. (21)

Likewise, we reconsider the first-order condition of maximizing (14) with respect to zdi sub-

ject to (13), adapt the notation of deposit purchases appropriately, and turn the modified

equation into another link between zc and zf , denoted zf = R̃f(zc, m). With this informa-

tion, we write each fringe country’s best reply to zc as

zf = Rf (zc, m) := max
[

0, R̃f(zc, m)
]

. (22)

The Nash equilibrium, referred to as coalition-fringe equilibrium, is a strategy tuple (z∗c , z
∗
f )

satisfying z∗c = Rc(z∗f , m) and z∗f = Rf (z∗c , m). Solving (21) and (22) for zc and zf yields

z∗c = R̃c(0, m) =
aδn3

2(α+ b)2(n−m) + [α(α + b) + αδn2]m
(23)

and z∗f = 0. That is the fringe countries find it in their self-interest not to purchase any

deposits. Thus they entirely leave the burden of mitigation to the coalition. The equilibrium

prices

p∗e =
αa

α+ b
−

αbm

(α+ b)n
z∗c , p∗z =

αm

n
z∗c and p∗e − p∗z =

αa

α + b
−

α(α+ 2b)m

(α + b)n
z∗c (24)

follow from combining (13) and (23). Since the equilibrium deposit supply is uniform across

countries, (23) combined with the deposit market equilibrium specifies the equilibrium sup-

ply as mz∗c/n. The main results are summarized in10

Proposition 1 . For any given coalition size m ∈ {2, . . . , n − 1}, the coalition-fringe

equilibrium is characterized as follows:

(i) The coalition buys deposits but the fringe countries do not.

9(13) is applied after replacing
∑

j z
d
j by mzc + (n−m)zf .

10The proof of Proposition 1(ii) can be found in the Appendix A.
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(ii) The total amount of deposits bought is smaller and total emissions are larger than in

the social optimum. The total amount of deposits bought is increasing and aggregate

emissions are declining in the coalition size.

(iii) There is no trade in fuel. The coalition pays for the deposits by exporting the consump-

tion good.

(iv) Fuel consumption and production are efficient, but global climate damage is excessive.11

(v) The fringe countries are better off than the coalition countries because their consumption

of the consumption good exceeds the coalition countries’ consumption of that good by

the amount p∗zz
∗
c .

That the fringe countries refrain from buying deposits in the coalition-fringe equilibrium is

a striking and unexpected result.12 If the fringe countries could, they would even respond to

the coalition’s equilibrium purchase mz∗c with negative deposit demand - which is economi-

cally infeasible, however. The fringe countries’ reluctance to buy deposits is a strong form of

free riding. The coalition presents them with an extent of climate damage reduction so large

that they prefer spending their income on more consumption rather than on the purchase

of deposits. It is interesting to note that in the business-as-usual scenario of Section 2 all

countries do purchase deposits, although they do not cooperate. Therefore, it is not the

lack of cooperation, which explains the zero deposit demand. The explanation rather is the

difference in country size, recalling that the coalition is treated as a single country that is

m times as large as each fringe country.

According to Proposition 1(v) the fringe countries are better off than coalition countries

for any given coalition size. All countries’ welfare position is the same except that coalition

countries buy deposits, p∗zz
∗
c , at the expense of the consumption good while fringe countries

buy an extra amount of the consumption good for the money not spent on deposits. As

we will show below the fringe countries’ strong free-rider advantage does not prevent them

from joining the coalition under certain conditions.

We have characterized above coalition-fringe equilibria in the parametric model as well

as the allocative changes resulting from exogenous variations of the coalition size. To obtain

additional results and to prepare for the analysis of coalition stability in the next section

we now present a numerical illustration, called Example 1, that consists of the parameters13

11That is, (16) and (17) hold, but (18) fails to hold.
12It is unexpected because we are not aware of analyses of climate coalition formation with policy instru-

ments other than deposit trading in which the fringe countries refrain from climate policy altogether.
13The parameter r̄, the endowment of the productive factor, needs not be specified here, because it enters

the outcomes in an additive way and thus leaves the results undistorted.
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α = 110, a = 100, b = 1002, δ = 1 and n = 100. The focus of Example 1 is on (exogenous)

variations of the coalition size. Although coalition sizes are integers, it is convenient to

consider equilibrium values as functions whose domain is the interval [0, n]. Formally, we

introduce the notation

es∗c = ed∗c = es∗f = ed∗f = E(m), p∗e = Pe(m), p∗z = Pz(m), w∗

c = Wc(m),

w∗

f = Wf (m), z∗c = Zc(m) and zs∗c = zs∗f = Zs(m).
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Zs(m)
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0.003

0.004

0.005

m

Zc(m)−Zs(m)

Figure 1: Deposit purchase and the coalition’s deposit imports (Example 1)

According to the left panel of Figure 1 each country’s deposit sales Zs(m) and each

coalition country’s deposit purchases Zc(m) are progressively increasing in the coalition

size, and for any given m the coalition country’s purchase Zc(m) exceeds its sale. That

is necessary for equilibrium on the deposit market because the fringe countries do not buy

deposits. In fact, the vertical distance between Zc(m) and Zs(m), that is Zc(m)−Zs(m) =
n−m
m

Zs(m), constitutes the coalition countries’ imports of deposits paid for by exports of

the consumption good. As the right panel of Figure 1 shows, these imports decrease in m.

They decrease only slightly when m is small and medium, but they rapidly approach zero

when m is large and approaches n.
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Figure 2: Fuel consumption and the prices for fuel and deposits (Example 1)
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According to the left panel of Figure 2 the deposit price is progressively increasing in m

while the producer price of fuel, p∗e−p∗z, decreases when m gets larger. Since (9) holds for all

countries, each country’s fuel production and consumption must be decreasing in m, which

is shown in the right panel of Figure 2. As an implication, the climate damage D [nE(m)] is

also strictly declining in m.
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Wc(m)
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Figure 3: Welfare of coalition and fringe countries (Example 1)

In the left panel of Figure 3 the graph of each country’s welfare Wv(m), v = c, f , is

progressively increasing in the coalition size m and for any given m fringe countries are better

off than coalition countries. The welfare difference is Wf (m) − Wc(m) = Pz(m)Zc(m) =

αZc(m)2. The right panel of Figure 3 is an enlarged segment of the graphs of the welfare

functions Wf and Wc for high values of m.14 We will come back to that panel when we

discuss the issue of coalition stability below.

3.2 Stability of climate coalitions

In the preceding Section 3.1 we have presupposed the existence of climate coalitions of

alternative sizes, and our focus has been on characterizing the coalition-fringe equilibrium

and its change following exogenous variations of the coalition size. Now we turn to the issue

of coalition stability. Since supranational authorities for the effective enforcement of IEAs

are not available, such agreements will not be concluded unless they are self-enforcing in

the sense that no coalition country has an incentive to defect and no fringe country has an

incentive to join the climate agreement. In formal language, an IEA with m ∈ {2, . . . , n}

signatories is said to be self-enforcing - or equivalently, a coalition of size m is said to be

14The only reason why the shapes of the graphs in the left and the right panel of Figure 3 differ significantly,

are the different scales on the vertical and horizontal axes of both panels.
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stable - if it satisfies the conditions15

Wc(m)−Wf (m− 1) ≥ 0 and Wf (m)−Wc(m+ 1) ≥ 0, (25)

known as the condition of internal and external stability, respectively. Our subsequent

stability analysis focuses on the (in)stability of the grand coalition. First, we show that

the grand coalition is unstable in the Example 1 introduced above. Then we show that a

sufficiently large increase of the parameter b in the otherwise unchanged Example 1 renders

the grand coalition stable. Next we characterize the parameter subspace in which the grand

coalition is stable (Proposition 2) and finally provide insight in the (non-)existence of sub-

global stable coalitions (Proposition 3).

Necessary and sufficient for the stability of the grand coalition is the condition for the

internal stability, Wc(n) − Wf(n − 1) ≥ 0. Whether that condition holds in Example 1

can be conveniently examined in the right panel of Figure 3. In that figure, the point A

represents Wf (99) and the point B represents Wc(100). From Wc(100) < Wf (99) follows

that the grand coalition is not stable in Example 1. Next we change the parameter b in

Example 1 from b = 1002 to b = 575, 000 and denote the resultant parameters as Example 2.

Figure 4 contains the graphs of the welfare functions Wc and Wf of Example 2. When we

check the stability of the grand coalition in Figure 4 (proceeding as in Figure 3) we readily

get Wc(100)−Wf (99) = 1.1759·10−7. The comparison of the Figures 3 and 4 shows that the

shapes of the welfare curves are very similar. In both cases the coalition countries’ welfare

rises when moving from m = n− 1 to m = n. However, the increase Wc(100)−Wf (99) is

rather small in Example 1, but larger in Example 2.
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Figure 4: Welfare of coalition and fringe countries (Example 2)

Since the only difference in the specification of the Examples 1 and 2 is the size of the

parameter b, it clearly is that difference which causes the difference in their stability pattern.

15This concept of self-enforcement or coalition stability was originally introduced by D’Aspremont et al.

(1983) in the context of cartel formation and was first applied to the formation of IEAs by Hoel (1992),

Carraro and Siniscalco (1993) and Barrett (1994).
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Economically, an increase of the parameter b amounts to an inward shift of all fuel demand

curves.16 That shift reduces fuel consumption and hence climate damage. In other words,

the Examples 1 and 2 suggest that the grand coalition is the more likely stable, the lower

the demand - i.e. the preference and willingness-to-pay - for fuel.

The striking finding that the grand coalition may be stable calls for analyzing the

determinants of stability in more detail. In fact, it is possible to specify completely the

parameter subset in which the grand coalition is stable.

Proposition 2 .

(i) In the space of feasible parameters17 the grand coalition is stable, if and only if

F (α, b, δ, n) := 2b2 − αb(n2 − 2n− 3)− α2(n2 − 2n− 1)− αδ(n− 1)2n2 > 0. (26)

(ii) Ceteris paribus, the grand coalition is the more likely stable,

- the lower the fuel extraction costs (Fα < 0);

- the lower the demand for fuel (Fb > 0, if b > α(n2 − 2n− 3)/4);

- the less severe the climate damage (Fδ < 0);

- the smaller the total number of countries (Fn < 0).

Proposition 2 is a strong result because the inequality (26) is a necessary and sufficient con-

dition for the stability of the grand coalition. (26) allows exploring the role of parameters

for the (in)stability of the grand coalition. To develop an intuition for the impact of param-

eter variations on stability, observe that increasing fuel demand (b ↓) and increasing climate

damage per unit of emissions (δ ↑ or n ↑) tend to destabilize a stable (grand) coalition,

ceteris paribus, because these parametric shifts directly or indirectly increase total climate

damage. The impact of the fuel-demand parameter b has already been clarified above in

the transition from Example 1 to Example 2: Lower values of b increase the demand for

fuel, increase emissions and climate damage and thus tend to destabilize the grand coalition

according to (26). Total climate damage, i.e. the climate damage summed over all countries,

is increasing in the parameters n and δ. Since F (α, b, δ, n) decreases in n and δ, successively

increasing values of n and δ eventually render the grand coalition unstable. Thus, with

regard to the parameters b, δ and n the thrust of Proposition 2 is that the grand coalition

is stable if total climate damage produced by these parameters is not too severe.

16More precisely, the shift takes the form of a rotation of all countries’ demand curves towards the origin

around the invariant choke price pe = a.
17The crucial feasibility constraint is the non-negativity of fuel demands. We have carefully observed that

constraint in our numerical simulations.
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To improve further our understanding of the role of the parameter b for the stability

of the grand coalition, suppose the coalition of size m = n − 1 prevails and consider the

only fringe country’s cost and benefit of joining the coalition. Its benefit of joining consists

of the climate damage reduction, formally captured by18 D(n − 1) − D(n). Its cost of

joining the grand coalition consists of consumption welfare foregone, formally reflected by

Kf (n−1)−Kc(n), where Kf (n−1) is the only fringe country’s consumption welfare defined

as the welfare derived from its consumption of fuel and the consumption good. These costs

and benefits are plotted in Figure 5 for variations of b. For small values of b the fringe country

suffers from massive losses of consumption welfare, while the benefit from climate damage

reduction is small. Increasing b slightly reduces the climate damage and thus diminishes the

benefit of joining the coalition. However, increasing b also reduces the loss of consumption

welfare but much more than the benefit. As a consequence, there exists a positive value of

b, say b̃ in the right panel of Figure 5, at which cost and benefit curves intersect such that

the grand coalition is stable if and only if b ≥ b̃.
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Figure 5: The last fringe country’s benefit and cost of joining the given coalition of size

m = n− 1 = 99 depending on the size of the parameter b
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Figure 6: Deposit price, deposit supply and the fringe country’s deposit export for a given

coalition of size m = n− 1 = 99 depending on the size of the parameter b

18Observe that D(m) = D(med∗c + (n−m)ed∗f ), Kc(m) = B(ed∗c ) + xd∗
c and Kf (m) = B(ed∗f ) + xd∗

f .
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The reason for the massive losses of consumption welfare for small values of b lies

in the coalition’s purchase of deposits shown in the right panel of Figure 6. Recall that

among the countries in the grand coalition there is no trade of deposits. In contrast, in

case of a coalition of size n− 1 the fringe country’s (consumption) welfare is larger than the

coalition country’s (consumption) welfare due to the revenues from selling deposits. If the

fuel demand is high (low b), the coalition seeks to avoid high climate damage by purchasing

many deposits at a high price as shown in the left panel of Figure 6. Hence for small values

of b large damages are tantamount to a large deposit income of fringe countries’ that renders

the grand coalition unstable.

The effect of variations in the parameter α is puzzling. Smaller values of α imply lower

fuel extraction costs. The dependence of the only fringe country’s cost and benefit of joining

the grand coalition on α is illustrated in Figure 7. While the fringe country’s benefit is

slightly decreasing in α, the cost is first strongly increasing and then decreasing in α. Figure

7 reveals that the cost and benefit curves intersect at some point α̃ implying that the grand

coalition is [un]stable for all α < [>]α̃. Observe that the less expensive fuel extraction the

more fuel is consumed, the higher are emissions and the higher is the climate damage. As a

consequence for small values of α the coalition purchases many deposits (see the right panel

of Figure 8). One might expect that the coalition’s expenditures on deposits are high, but

due to very low deposit prices the expenditures are low as shown in the left panel of Figure

8. The fringe country’s low income from selling deposits reduces its consumption welfare

only slightly for small values of α, as shown in the left panel of Figure 8, which in turn

ensures the stability of the grand coalition.
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Figure 7: The only fringe country’s benefit and cost of joining the coalition of size m =

n− 1 = 99 depending on the size of the parameter α
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Figure 8: Deposit price and the fringe country’s deposit export for a given coalition of size

m = n− 1 = 99 depending on the size of the parameter α

We have extensively focused on the conditions under which the grand coalition is

stable, because an all encompassing international climate agreement is of utmost interest. As

indicated above, we now briefly turn to the question whether there are also stable coalitions

that do not encompass all countries. The answer is given in19

Proposition 3 . Suppose that n ≥ 4.

(i) Either no coalition is stable

(ii) or the grand coalition (of size m = n) is the only stable coalition.

Finally, we turn to the potential gains of cooperation. There is a folk theorem of the

international environmental agreement literature stating that ". . . the equilibrium size of a

stable IEA is small except when the potential gains from cooperation are also small" (Karp

and Simon, 2012).20 An indicator for the potential gains from cooperation is the relative

welfare gap wOPT−wBAU

wOPT
· 100 that measures the relative welfare gain of moving from BAU to

the social optimum. The left panel of Figure 9 shows the relative welfare gap for variations

of the parameter b. The welfare gap is decreasing in b and the grand coalition is stable for

b > b̃. Hence the smaller the gains from cooperation the more likely it is that the grand

coalition is stable. We conclude that the relation between the size of the parameter b and

the stability of the grand coalition is in line with the folk theorem mentioned above. Turning

to extraction costs, we observe that the relative welfare gap is decreasing in α as illustrated

in the right panel of Figure 9, but that the coalition is stable for α < α̃. Hence the relation

between the size of the parameter α and the stability of the grand coalition is at variance

with the folk theorem according to which large (and effective) coalitions are unstable, unless

the potential gains from cooperation are small.

19The proof of Proposition 3 is given in the Appendix A.
20See also Barrett (2003).
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Figure 9: The welfare gap in Example 1 depending on the size of the parameters b (b̃ =

548, 766) and α (α̃ = 1.02)

4 Coalition formation with deposit trading and deposit

supply regulation

In the previous Section 3, the only climate policy instrument at the governments’ disposal

was the purchase of deposits. Our assumption was that the extraction firms own all domestic

deposits and are free to sell (the right to extract) them. In practice, many governments

probably would not leave deposit sales at the domestic extraction firms’ discretion because

reserves of natural resources and fossil energy are of eminent national interest. We therefore

extend the analysis of the last section by providing the governments with the option to

tax or subsidize the supply of domestic deposits. Suppose, the price at which country i’s

extraction firm can sell deposits is pz + σi, which means that if σi > 0 [σi < 0], deposit

sales are subsidized [taxed].21 We will refer to σi as a (deposit supply) subsidy if its sign

is unspecified keeping in mind that we deal with a (deposit supply) tax, if σi < 0. The

important feature of the extended model is that all governments now act strategically with

respect to two policy parameters, the deposit purchase zdi , as before, and the subsidy rate

σi.

The modifications of the formal model required by the introduction of the subsidy are

straightforward and therefore delegated to the Appendix B. Instead of discussing here the

details of introducing the subsidy on equilibrium prices and values in Example 1 as in Section

3, we turn directly to the welfare changes and the stability conditions of the grand coalition.22

21Government i may induce its extraction firm to supply more (σi > 0) or less (σi < 0) deposits than in

the absence of subsidization. If it should not want to sell domestic deposits at all, it simply sets σi = −pz.
22The interested reader is referred to the Appendix B for a detailed discussion of Example 1 with subsidies.
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In Figure 10, solid [dashed] curves relate to the model with [without] subsidies and the

superscript σ indicates the welfare in the model with subsidies for Example 2. According to

the left panel of Figure 10, for any given coalition size m ∈ [2, n− 1] both fringe countries

and coalition countries improve their welfare in the coalition-fringe equilibrium when using

the subsidy. Since the welfare of the grand coalition is independent of the regimes with

and without subsidies, the welfare loss Wf (n − 1) − Wc(n) increases in the scenario with

subsidy. That is shown for Example 2 in the right panel of Figure 10. The consequence for

the stability of the grand coalition is surprising. While in Example 2 the grand coalition

is stable in the regime without subsidies, the subsidy increases the fringe country’s welfare

from point A to point C and thus raises it above the welfare of a coalition country in the

grand coalition that is given by the point B (Wcσ(100)−Wfσ(99) = −1.428 ·10−7) in Figure

10. We conclude that introducing the subsidy makes free-riding more attractive and makes

the instability of the grand coalition more likely.
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Figure 10: Welfare of the fringe country and the coalition (Example 2)

As in Section 3.2, it is desirable to gain more general information on the determinants

of the stability of grand coalitions in the regime with subsidies. A systematic analysis

delegated to the Appendix C yields

Proposition 4 .

(i) In the space of feasible parameters the grand coalition with deposit trading and deposit

subsidies is stable, if and only if

F σ(α, b, δ, n) := b2(3n− 2)2 − αb(5n4 − 18n3 + 6n2 + 10n− 5)

− α2(5n4 − 18n3 + 15n2 − 2n− 1)− αδ(n− 1)3n2(5n− 3) > 0. (27)

(ii) Ceteris paribus, the grand coalition is the more likely stable,

- the lower the fuel extraction costs (F σ
α < 0);
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- the lower the demand for fuel (F σ
b > 0, if b > α(5n4−18n3+6n2+10n−5)/[2(3n−

2)2]);

- the less severe the climate damage (F σ
δ < 0);

- the smaller the total number of countries (F σ
n < 0).

The comparison of the Propositions 2 and 4 suggests that the role of parameters for securing

stable grand coalitions is similar with and without subsidies. The note-worthy differences

between both regimes that generalize our findings in Example 2 are presented in

Proposition 5 . For n ≥ 4 the set of parameters with stable grand coalitions is smaller

in case of deposit policies with deposit-supply subsidies than without. If there is a stable

grand coalition in case of subsidies, it is also stable in the absence of subsidies. The reverse

statement does not hold.

5 Concluding remarks

We analyzed the formation of self-enforcing climate agreements, or stable climate coalitions,

when all countries have the option to fight climate change by purchasing (the right to extract)

fossil-energy deposits, and we also allowed for combining that policy with taxes or subsidies

on the supply of deposits. We found that all coalition countries buy deposits but the non-

cooperative countries do not. In the policy regime without taxes/subsidies, we provided

necessary and sufficient conditions for the stability of the grand coalition. The additional

availability of the tax/subsidy instrument improves the countries’ welfare, but renders less

favorable the conditions for stable grand and sub-global coalitions. The deposit purchase

policy turns out to be appealing with regard to its favorable conditions for stable (grand)

coalitions.

Two caveats need to be reemphasized, however. First, it is not clear how robust

our results - and those of earlier pertaining literature - are because tractability requires

imposing restrictive assumption. Second, it is unclear how severe the difficulties are to fight

climate change with such supply-side policies in practice, especially when one accounts for

the important role of time which we disregarded in the present paper. In our view, further

thorough theoretical and applied analyses of such policies are warranted, since the search

for effective means to fight climate change is urgent and since the present paper suggests

that the incentives to form self-enforcing IEAs of supply-side climate policies are promising.
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Appendix

Appendix A

Derivation of (15):

The first-order condition of maximizing (14) is given by

dwi

dzdi
= De − pz − (zdi − zsi )P

z
zdi
−

[

De
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j

Φsj
pe
+ edi − esi − pzΦ
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]

P e
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− P z −
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
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αb

n(α + b)
= 0. (A1)

In a symmetric Nash equilibrium the equalities zsi = zdi and esi = edi hold and (A1) simplifies

to

dwi

dzdi
= δ ·

(

nP e

α
−
∑

j

zdj

)

− P z −

[

δ ·

(

nP e

α
−
∑

j

zdj

)

n

α
−

P z

α

]

αb

n(α + b)
= 0. (A2)

Inserting the price functions P e and P z from (13) and setting
∑

j z
d
j = nzBAU , we solve

(A2) for zBAU and obtain (15). We insert (15) in P e and P z and plug the outcome into the

welfare function (14) to get

wBAU =
a2[b(n− 1) + αn][b2(n− 1) + αn(α− (n− 2)nδ) + b(α(2n− 1)− (n− 1)n2δ)]

2[b2(n− 1) + αb(2n− 1) + αn(α + nδ)]2
.(A3)

Derivation of (19):

Maximizing aggregate welfare

nwi = nB
[
Edi(pe)

]
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[
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]
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(A4)
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subject to (13) yields
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Accounting for P e and P z from (13), for
∑

j z
d
j = nzOPT in (A5), and solving (A5) for zOPT

establishes (19).

Derivation of the coalition-fringe equilibrium:

The coalition maximizes (20) subject to

P e(zc, zf) =
αa

α + b
+

αb[mzc + (n−m)zf ]

(α + b)n
, P z(zc, zf) =

α[mzc + (n−m)zf ]

n
. (A6)

The first-order condition is given by

d(mwc)

dzc
= m

{

De − pz − (zc − zsc )P
z
zc
−

[

De

∑

j

Φsj
pe
+ edi − esi − pzΦ

sc
pe

]

P e
zc

}

m

{

mδ ·

[
nP e

α
− (mzc + (n−m)zf )

]

− P z −

(

zc −
P z

α

)
αm

n

−

[

δ ·

(
nP e

α
− (mzc + (n−m)zf )

)
n

α
+

a− P e

b
−

P e

α

]
mαb

n(α + b)

}

= 0.(A7)

Inserting the price functions (A6) and rearranging (A7) yields

aδmn3 − (α + b)2mnzc − θc[mzc + (n−m)zf ] = 0, (A8)

where θc := (α+b)2(n−m)− (α+b)bm+αδmn2 . Solving (A8) for zc results in the coalition

country’s reaction function

zc = R̃c(zf , m) :=
aδn3

θc + (α + b)2n
−

θc
θc + (α + b)2n

·
n−m

m
zf . (A9)

Making use of
∑

j z
d
j = mzc + (n − m)zf and of P e and P z from (A6) in the fringe

country’s first-order condition (A2), we obtain, after rearrangement of terms,

aδn3 − (α + b)2nzf − θf [mzc + (n−m)zf ] = 0, (A10)

where θf := (α + b)2(n − 1) − (α + b)b + αδn2. Solving (A10) for zf results in the fringe

country’s reaction function

zf = R̃f(zc, m) :=
aδn3

θf (n−m) + (α + b)2n
−

θfm

θf (n−m) + (α + b)2n
zc. (A11)
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The solution of (A9) and (A11) is

z̃f =
(2−m)n3αδ

θc + θf (n−m) + (α + b)2n
,

z̃c =
[(n−m)(m− 1) +m]n3αδ

θc + θf (n−m) + (α + b)2n
> 0.

We find that z̃f ≦ 0 ⇐⇒ m ≧ 2. Owing to the constraint zc, zf ≥ 0 the tuple (z̃c, z̃f )

is a Nash equilibrium if and only if m = 2 (which is an unimportant case).

Under the constraint zc, zf ≥ 0 the fringe countries’ reaction function is

zf =
[

0, R̃f(zc, m)
]

. (A12)

Since zf = 0 in the relevant domain of zc, we safely assume that the fringe countries set

zf = 0 as a response to any given zc ≥ 0. Thus we readily infer from (A9) that the Nash

equilibrium (z∗c , z
∗
f) is given by z∗f = 0 and

z∗c = R̃c(0, m) =
aδn3

θc + (α+ b)2n
(A13)

which yields (23) after some further rearrangement of terms.

Proof of Proposition 1(ii):

Straightforward calculations yield:

mz∗c − nzopt = −
2a(α + b)2(n−m)n3δ

α(α + b+ n2δ)N
< 0,

∂(mz∗c )

∂m
=

2a(b+ c)2n4δ

N2
> 0,

med∗c + (n−m)ed∗f − neOPT =
2a(α + b)(n−m)n3δ

(α + b+ n2δ)N
> 0,

∂[med∗c + (n−m)ed∗f ]

∂m
=

2ac(α + b)n4δ

N2
> 0.

where N := 2(α+ b)2(n−m) + [α(α + b) + αδn2]m > 0.
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Proof of Proposition 2:

Inserting the equilibrium deposit demand, deposit supply, fuel demand and fuel supply into

the welfare function yields

Wc(m) =
a2[α(2n −m) + 2b(n−m)− 2(n −m)n2δ]

2N
+ r̄ for 2 ≤ m ≤ n, (A14)

Wf (m) =
a2
{
4b3(n−m)2 + αb[α(12n2 − 16mn + 5m2)− 8(n −m)2n2δ]

4N2

+
4b2(n −m)[α(3n − 2m)− (n−m)n2δ] + α3(2n −m)2

4N2

+
α2(8mn − 4n2 − 3m2)n2δ + 2m2n4αδ2

}

4N2
+ r̄ for 2 ≤ m ≤ n− 1. (A15)

The grand coalition is stable, iff Wc(n) − Wf (n − 1) > 0 which is equivalent to (26).

Differentiation of F (α, b, δ, n) with respect to α, b, δ and n, respectively, yields

Fα = −2α(n2 − 2n− 1)− b(n2 − 2n− 3)− (n− 1)2n2δ < 0,

Fb = 4b− α(n2 − 2n− 3),

Fδ = −α(n− 1)2n2 < 0,

Fn = −2α(n− 1)[α + b+ (2n− 1)nδ] < 0.

Proof of Proposition 3:

Suppose that 3 ≤ m ≤ n− 1. Then Wc(m)−Wf (m− 1) R 0 iff

G(m) = 2b2[−m(n + 2) + 2n +m2 + 1]− αb[m(4n + 6)− 8n− 3m2 − 3]

−α2[2m(n + 1)− 4n−m2 − 1]− αδ(m− 1)2n2 R 0. (A16)

Observe that

G(3) = −2[b2(n− 4) + 2bα(n− 3) + α2(n− 2) + 2αn2δ] < 0, (A17)

G(n− 1) = −2b2(n− 4)− αb(n2 − 12)− α2(n2 − 2n− 4)− αδ(n− 2)2n2 < 0.(A18)

From (A17) and (A18) we get

G(3)−G(n− 1) = (n− 4)αn(α+ b+ n2δ) > 0. (A19)

Differentiation of G leads to

Gm = 2[b2(2m− 2− n) + αb(3m− 3− 2n) + α2(m− 1− n)− α(m− 1)n2δ]

= 2[[2b2 + 3αb+ α(α− n2δ)](m− 1)− b2n− 2αbn− α2n]

= 2[2b2 + 3αb+ α(α− n2δ)](m− 1)− 2(α + b)2n, (A20)

Gmm = 2[2b2 + 3αb+ α(α− n2δ)]. (A21)
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Suppose first that [2b2+3αb+α(α−n2δ)] > 0 and hence Gmm > 0. Combined with G(3) < 0

and G(n − 1) < 0 from (A17) and (A18), respectively, Gmm > 0 establishes G(m) < 0 for

all m ∈ [3, n − 1]. Next, consider [2b2 + 3αb + α(α − n2δ)] < 0. In that case Gm < 0 and

Gmm < 0 holds. Due to G(3) > G(n− 1) from (A19) we get G(m) < 0 for all m ∈ [3, n− 1].

Finally, we consider the external stability condition for a coalition of size m = 2.

Straightforward calculations lead to

Wc(2)−Wf (1) = Wc(2)− wBAU

= − a2αn4δ2[b2(n2−4n−3)+αb(2n2−7n+4)+α2(n2−3n+1)+αδ(n−2)n2 ]
2[b2(n−1)+αb(2n−1)+αn(α+nδ)]2 [b2(n−2)+αb(2n−3)+α2(n−1)+αδn2]

< 0. (A22)

To sum up, we have proven that all coalitionS of size m ∈ [2, n− 1] are unstable.

Proof of Proposition 5:

From the definition of F, F σ in (26) and (27), respectively, we infer

F R 0 ⇐⇒ δ R
2b2 − αb(n2 − 2n− 3)− α2(n2 − 2n− 1)

α(n − 1)2n2
=: δ̂ (A23)

F σ R 0 ⇐⇒

δ R
b2(3n− 2)2 − αb(5n4 − 18n3 + 6n2 + 10n − 5)− α2(5n4 − 18n3 + 15n2 − 2n− 1)

α(n− 1)3n2(5n− 3)
=: δ̂σ .(A24)

Observe that δ̂ − δ̂σ = (α+b)2(n2−4n+2)
α(n−1)3n2(5n−3)

> 0. Next, we insert δ̂ from (A23) into F σ from (27)

to get

F σ(α, k, δ̂, n) = −(α + b)2(n2 − 4n + 2) < 0. (A25)

Recall that Fδ < 0, F σ
δ < 0.

(i) Suppose that δ > δ̂. Then the grand coalition is unstable with and without subsidies.

(ii) Suppose that δ < δ̂σ. Then the grand coalition is stable with and without subsidies.

(iii) Suppose that δ̂σ < δ < δ̂. Then the grand coalition is stable in case without subsidies,

but unstable in case with subsidies.

Appendix B: Extension: Deposit supply regulation (only for the

referees)

The modifications of the formal model required by the introduction of the subsidy are

straightforward and therefore delegated to the Appendix C. In the business-as-usual scenario,

all countries turn out to refrain from subsidizing the supply of deposits (σi = 0 for all i) due
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to symmetry such that the business-as-usual allocation is the same as in the case of deposit

purchases without subsidies. Following the procedure in Section 3, we will now characterize

the coalition-fringe equilibria for alternatively given coalition sizes and then turn to the

welfare functions which are needed for the stability analysis. In order to clarify the impact

of deposit-supply subsidies on results we will compare the outcome with and without the

subsidy.

Coalition-fringe equilibria with given coalition size

We denote by zc and zf the demand for deposits of coalition and fringe countries, as before,

and by σc and σf the corresponding subsidy rates. The Appendix C proves23

Proposition 6 . For any given coalition size m ∈ {2, . . . , n − 1}, the coalition-fringe

equilibrium with deposit trading and deposit-supply subsidies is characterized as follows:

(i) As in Proposition 1, the coalition buys deposits but fringe countries do not.

(ii) The coalition subsidizes deposit sales (σc > 0) and fringe countries tax them (σf < 0).

In absolute terms, the subsidy rate σc is (n− 1) times as high as the tax rate σf .

(iii) The total amount of deposits bought is smaller than in the social optimum but larger

than in the absence of subsidies. Total emissions are larger than in the social optimum

but smaller than in the absence of subsidies.

(iv) The coalition imports deposits, as in Proposition 1, but in contrast to Proposition 1 it

also imports fuel and pays for all imports by exporting the consumption good.

(v) Fuel consumption is efficient and global climate damage is excessive, as in Proposition

1, but production is not efficient anymore.

The next step is to illustrate the key results of Proposition 6 by means of Example 1

from Section 3. That illustration provides additional information about the dependence of

equilibrium prices and quantities on coalition sizes. The subsequent numerical analysis also

aims to improve the understanding of how the subsidy changes the allocation in coalition-

fringe equilibria, i.e. of how the allocations differ if governments subsidize or do not subsidize

the supply of deposits. In all figures below, solid [dashed] curves relate to the model with

[without] subsidies and variables and functional signs with [without] superscript σ indicate

equilibrium values in the model with [without] subsidies.

23To avoid clutter we omit the asterix for equilibrium values when there is no risk of confusion.
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Figure 11: Deposit-supply subsidy and deposit purchases (Example 1)

(σc = Sc(m); σf = Sf (m); zc = Zc(m); zσc = Zcσ(m))

Figure 11 illustrates the inequalities zσc > zc and σc > −(n − 1)σf and shows that

the coalition countries’ deposit purchases and the subsidy rates (in absolute terms) are

progressively rising in the coalition size. Larger coalitions subsidize more heavily and buy

larger quantities of deposits; fringe countries respond to the coalition’s climate policy and

its stringency almost as in the case without deposit-supply regulation.
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Figure 12: Deposit supply and producer prices of deposits (Example 1)

(pc = Pc(m); pσz = Pzσ(m); zsv = Zvs(m); zsσv = Zvsσ(m); v = c, f)

Figure 12 describes the supply side of the deposit market. In the left panel, the ranking

of quantities is zsσc > zs > zsσf for all m, and all quantities increase in m progressively. It

is immediately clear from the right panel of Figure 12 that the changes of deposit supplies

in the left panel are induced by the patterns and changes of producer prices of deposits,

pσz + σc > pz > pσz + σf (where |σf | is so small that pσz + σf ≈ pσz ).

The Figures 13 and 14 illustrate equilibrium quantities and prices on the fuel market.

According to Figure 14 the fuel demand curves Ed(m) and Edσ(m) are declining in m. They
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Figure 13: Demand for and supply of fuel (Example 1)

(edc = edf = ed = Ed(m); edσc = edσf = edσ = Edσ(m); esσv = Evsσ(m); v = c, f)
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Figure 14: Consumer and producer prices of fuel (Example 1)

(pe = Pe(m); pσe = Peσ(m))

differ only slightly because the price difference pσe − pe in Figure 14 is small. In contrast,

in Figure 13 the subsidies/taxes drive a large wedge between the fuel supply of fringe and

coalition countries, esσf > es = ed > esσc . Analogous to the case of the deposit market, the

reason for that wedge are changes in the producer price of fuel, which are closely linked to

changes in deposit prices. The right panel of Figure 14 shows that with increasing m, fringe

[coalition] countries face increasing [decreasing] producer prices of fuel and hence increase

[reduce] their fuel supply, pσe − pσz − σf ↑ ⇒ esσf ↑ [pσe − pσz − σc ↓ ⇒ esσc ↓].

According to Figure 15, the coalition’s quantitative imports of deposits and fuel are

increasing in m, when m is small and medium-sized. The imports attain a maximum, when

coalitions are rather large, and they sharply decline when m approaches n.24 The imports

eventually decline, because a growing number of coalition countries buy deposits from a

shrinking number of fringe countries. Figure 15 also shows that the coalition’s strategic use

of the subsidy results in a significant reduction of its quantitative deposit imports. Since

24Recall that fuel is not traded in the absence of subsidies.
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Figure 15: The coalition’s imports of deposits and fuel (Example 1)

pσz < pz, the value of deposit imports shrinks even more than the quantity. The money saved

on deposit imports is spent on consumption.
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Figure 16: Climate damage and consumption welfare (Example 1)

(D(m) := δ
2

[
Ed(m)

]2
, Dσ(m) := δ

2

[
Edσ(m)

]2

Kv(m) := B
[
Ed(m)

]
+ X dv(m), Kvσ(m) := B

[
Edσ(m)

]
+ X dvσ(m); v = c, f)
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Figure 17: Welfare (Example 1)

The Figures 16 and 17 describe the dependence of the countries’ welfare on coalition

size and compare the regimes with and without subsidy. As the left panel of Figure 16 shows,
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the use of subsidies reduces the climate damage. The damage declines in m slightly only,

when the coalition is small and medium-sized and declines steeply, when m approaches n.

The right panel of Figure 16 shows how the consumption welfare, i.e. the welfare consumers

derive from consuming fuel and the consumption good, depends on m. For large m, the use of

subsidies slightly reduces both the coalition countries’ and the fringe countries’ consumption

welfare. The ’partial welfares’ of Figure 16 add up to the total welfare of coalition and fringe

countries in Figure 17. According to that figure, the loss of consumption welfare countries

incur upon use of the subsidy is overcompensated by the reduced climate damage such that

with the subsidy both the coalition and fringe countries enhance their own overall welfare.

Appendix C: Derivations relating to the deposit supply regulation

(only for the referees)

Derivation of the equilibrium prices:

Utility maximization and profit maximization yields

edi = Edi(pe) =
a− pe

b
, (C1)

Esi(pe) =
pe
α
, (C2)

esi = Esi(pe − pz) =
pe − pz − aσi

α
, (C3)

zsi =
pz + σi

α
. (C4)

The deposit market is in equilibrium, if

∑

j

zdj =
∑

j

zsj ⇐⇒ pz =
α

n

∑

j

zdj −

∑

j σj

n
=: P z(zd1 , . . . , z

d
n, σ1, . . . , σn), (C5)

and the fuel market is in equilibrium, if

∑

j

edj =
∑

j

esj ⇐⇒ pe =
αa

α + b
+

αb

(α + b)n

∑

j

zdj =: P e(zd1 , . . . , z
d
n). (C6)

BAU:

Each country maximizes with respect to zdi and σi the welfare

wi = U i
[
Edi(pe)

]
+ T i

[
Esi(pe − pz − σi)

]
− pe

[
Edi(pe)−Esi(pe − pz − σi)

]

−D

[
∑

j

Φsj(pe)−
∑

j

zdj

]

− pz
[
zdi − Φsi(pe) + Esi(pe − pz − σi)

]
. (C7)
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The first-order condition reads

dwi

dzdi
= σiE

si
(pe−pz)

(

P e
zdi
− P z

zdi

)

+De − pz − (zdi − zsi )P
z
zdi
−

[

De

∑

j

Φsj
pe
+ edi − esi − pzΦ

si
pe

]

P e
zdi

=
σi

α

[
αb

(α+ b)n
−

α

n

]

+ δ ·

(

nP e

α
−
∑

j

zdj

)

− P z −






zdi −

P z + σi

α
︸ ︷︷ ︸

=zsi







α

n

−







δ ·

(

nP e

α
−
∑

j

zdj

)

n

α
+

a− P e

b
−

P e − (P z + σi)

α
︸ ︷︷ ︸

edi−esi

−
P z

α








αb

n(α + b)
= 0, (C8)

dwi

dσi

= σiE
si
(pe−pz)

(
−P z

σi
− 1
)
− (zdi − zsi )P

z
σi
=

1

αn

[
−(n− 1)σi + (zdi − zsi )α

]
= 0. (C9)

In a symmetric Nash equilibrium zsi = zdi and esi = edi holds for all i such that σi = 0 for all

i follows from (C9). Furthermore, (C8) simplifies to

dwi

dzdi
= δ ·

(

nP e

α
−
∑

j

zdj

)

− P z −

[

δ ·

(

nP e

α
−
∑

j

zdj

)

n

α
−

P z

α

]

αb

n(α + b)
= 0. (C10)

We insert the price functions P e and P z, set
∑

j z
d
j = zBAU , and solve (C10) for zBAU to

obtain

zBAU =
an2δ

(α + b)2(n− 1) + α(α+ b) + αδn2
.

Coalition-fringe equilibrium:

The coalition maximizes with respect to zc and σc the sum of welfares

mwc = m
{
U c
[
Edc(pe)

]
+ T c [Esc(pe − pz − σc)]− pe

[
Edc(pe)− Esc(pe − pz − σc)

]

−D

[
∑

j

Φsj(pe)− (mzc + (n−m)zf )

]

− pz [zc − Φsc(pe) + Esc(pe − pz − σc)]

}

(C11)

subject to

P z(zc, zf , σc, σf ) =
α[mzc + (n−m)zf ]

n
−

mσc + (n−m)σf

n
, (C12)

P e(zc, zf ) =
αa

α+ b
+

αb[mzc + (n−m)zf ]

(α+ b)n
. (C13)

The first-order conditions are

d(mwc)

dzc
= m

{

De − pz − (zc − zsc )P
z
zc
−

[

De

∑

j

Φsj
pe
+ edi − esi − pzΦ

sc
pe

]

P e
zdc

}

+ σcE
sc
(pe−pz)

(
P e
zc
− P z

zc

)
= 0, (C14)

d(mwc)

dtc
= σcE

sc
(pe−pz)

(
−P z

σc
− 1
)
− (zc − zsc)P

z
σc

= 0. (C15)
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The fringe countries’ first-order conditions are still (C9) and (C10), but we replace zdi

in (C9) and (C10) by zf and
∑

zdj by mzc + (n − m)zf . Solving (C9), (C10), (C14) and

(C15) with respect to zc, zf , σc and σf yields:
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z̃c =
an2δ[m(n2 − 1) +m2 − n(n− 1)]

m {[n(n− 1)−m(m− 1)]b2 + [n(2n− 1)−m(m− 1)]αb − [α+ (n−m+m2)δ]n2α}
, (C16)

σ̃c =
an2δ(m− 1)(n − 1)α

[n(n− 1)−m(m− 1)]b2 + [n(2n − 1)−m(m− 1)]αb + [α+ (n−m+m2)δ]n2α
, (C17)

z̃f =
an2δ[n(m− 2) + 1−m]

[n(n− 1)−m(m− 1)]b2 + [n(2n − 1)−m(m− 1)]αb − [α+ (n−m+m2)δ]n2α
, (C18)

σ̃f =
an2δ(1−m)α

[n(n− 1)−m(m− 1)]b2 + [n(2n − 1)−m(m− 1)]αb + [α+ (n−m+m2)δ]n2α
. (C19)

Since z̃f < 0 for all m ≥ 2, we ignore (C8) and solve the remaining first-order conditions (C9), (C14) and (C15) for zf = 0 and obtain the

coalition-fringe equilibrium deposit purchases and subsidies

zc =
an3(n+m− 1)δ

[n(2n− 1)− (n− 1)m−m2]b2 + [2n(2n − 1)− (n− 1)m−m2]αb+ [α(2n − 1) + nm(n+m− 1)δ]nα
> 0, (C20)

zf = 0, (C21)

σc =
am(n− 1)n2δα

[n(2n− 1)− (n− 1)m−m2]b2 + [2n(2n − 1)− (n− 1)m−m2]αb+ [α(2n − 1) + nm(n+m− 1)δ]nα
> 0, (C22)

σf = −
amn2δα

[n(2n− 1)− (n− 1)m−m2]b2 + [2n(2n − 1)− (n − 1)m−m2]αb+ [α(2n − 1) + nm(n+m− 1)δ]nα
< 0. (C23)
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Proof of Proposition 4:

Inserting (C20) and (C23) into the welfare functions and calculating Wcσ(n)−Wfσ(n− 1)

yields after tedious rearrangement of terms

Wcσ −Wfσ R 0 ⇐⇒ F σ := b2(3n− 2)2 − αb(5n4 − 18n3 + 6n2 + 10n− 5)

−α2(5n4 − 18n3 − 2n− 1)− αδ(n− 1)3n2(5n− 3) R 0.

Proposition 4(ii) straightforwardly follows from differentiation of F σ.

Proof of Proposition 6:

(i) and (ii) follow from (C20)-(C23).

(iii) Straightforward but tedious calculations yield25

mzσc − nzopt = −
a(α + b)2n3[n(2n− 1)−m(n− 1)−m2]

α(α+ b+ n2δ)Nσ
< 0,

zσc − zc =
a(α + b)2(m− 1)(n−m)n3δ

Nσ
> 0,

∂(mzσc )

∂m
=

a(α + b)2n4(n+ 2m− 1)(2n− 1)δ

(Nσ)2
> 0,

nedσ − neOPT =
a(α + b)n3[n(2n− 1)−m(n− 1)−m2]

(α + b+ n2δ)Nσ
> 0,

nedσ − ned = −
aα(α + b)(m− 1)(n−m)n2δ

Nσ
< 0,

edσ − esσc =
am(n−m)n2δ

Nσ
> 0,

∂(nedσ)

∂m
=

ac(α + b)n4(n + 2m− 1)(2n− 1)δ

(Nσ)2
> 0,

where Nσ := αb[2n(2n− 1)−m(n− 1)−m2] + b2[n(2n− 1)−m(n− 1)−m2] + αn[α(2n−

1) +mn(n +m− 1)δ] > 0.

To prove (iv) and (v), observe that

Bedc
= Bed

f
= pσe ⇐⇒ edσc = edσf = edσ. (C24)

Next, verify that

σc > σf ⇐⇒ esσc =
pσe − pσz − σc

α
< esσf =

pσe − pσz − σf

α
. (C25)

(C24) and (C25) show that fuel consumption is efficient, that fuel production is inefficient

and that the coalition imports fuel. Since the coalition also imports deposits due to zσf = 0

it pays its import bill by exporting the consumption good. nedσ > neOPT implies that the

climate damage is excessive.

25Observe that edσc = edσf =: edσ and edc = edf =: ed.
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