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Impact of Non-truthful Bidding on Transport
Coalition Profits

Jonathan Jacob and Tobias Buer

Abstract A coalition of freight carriers is considered which has to decide how to
allocate a pool of transport requests among its members. The literature is aware of a
number of solution approaches which usually assume truthful behavior of the freight
carriers. However, the used negotiation protocols are mostly not proven to enforce
truthful behavior. This paper gives some insights into the impact of non-truthful
behavior via computational experiments. We solve the collaborative problem via
a genetic algorithm (GA) which is operated by an auctioneer. The GA’s individu-
als are allocations of requests to carriers. To calculate the fitness of an individual,
the carriers bid on the allocations. Bidding below a carrier’s true valuation could
ceteris paribus increase its profits. However, understated valuations can influence
the search process negatively, in particular when a favoured allocation is dismissed
wrongly. It is shown via computational experiments that for six tested instances,
bidding non-truthfully is individually, but not collectively, rational and results in a
kind of prisoner’s dilemma.

1 Introduction

A way multiple freight carriers can establish a coalition is through collaborative
transportation planning. Members of horizontal coalitions (i.e. carriers) try to in-
crease their profits by exchanging some of their transport requests [5]. Through
the exchange, they expect to find better tour plans that increase service quality and
provide a higher utilization of resources. Empirical results show that horizontal col-
laborations are seen as beneficial, however, opportunistic behavior is perceived as a
threat [5]. One of the main questions members of transport coalitions face is how to
allocate requests in a way that is profitable to the coalition.
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2 Jonathan Jacob and Tobias Buer

Verdonck et al. [10] categorize request sharing techniques into either joint route
planning or auction-based approaches. For joint route planning, a centralized de-
cision maker is assumed who optimizes the decisions from the coalition’s point
of view. Auction-based approaches on the other hand consider that in most coali-
tions the carriers are autonomous, have therefore private information, and are self-
interested. In an auction the requests are tendered, the carriers submit bids on the
requests, and the auctioneer decides which bids win the auction. Individual carri-
ers are responsible for their routing and valuation decisions [3, 4, 6, 11, 12] which
appears to be a welcomed feature by many coalitions.

However, all of these recent studies assume truthful bidding. One reason may be
that manipulations are non-trivial. The involved subproblems like the bid generation
problem [4] or the winner determination problem [3] are hard to solve even without
considering cheating. The Generalized Vickrey Auction, as an incentive compatible
mechanism, is impracticable to apply for transport coalitions because of its high
computational effort [3], its vulnerability to collusion by subsets of bidders, and its
vulnerability to false-name bids [1].

In what follows, the transportation request assignment problem is introduced in
Section 2 and a collaborative planning approach based on a genetic algorithm is
presented in Section 3. In Section 4, the computational results on the impact of
non-truthful bidding in a coalition of carriers are presented.

2 The Transportation Request Assignment Problem

Freight carriers collaborate by forming a coalition. A coalition is a set A of n self-
interested and independent agents, here denoted as carriers. The coalition considers
a set R of freight requests for servicing. The following pairwise disjoint subsets
of R are relevant: Each carrier a ∈ A holds an initial set of requests Ia ⊂ R. These
are private and not for exchange. For any request in Ia, carrier a ∈ A is obliged to
personally fulfill it or pay a penalty when it is not fulfilled. Furthermore, a broker
(or one or more shippers) offers the coalition a set P ⊂ R of requests. The coalition
can either accept all requests in the pool P or reject all of them. If P is accepted,
the requests have to be serviced or penalty costs incur. Altogether, R is defined as
R :=

∪
a∈A Ia ∪P.

The coalition’s goal is to maximize the profit by jointly servicing R, taking into
account that Ia are private information (a ∈ A) and must not be revealed to other
members of the coalition. The profit πa of carrier a ∈ A is defined in (1). It depends
on a’s allocated requests Ra (with Ia ⊆ Ra ⊆ R) and the winning bid price ba ∈ Z:

πa(Ra,ba) = p(Ra)+
∑i∈A bi

n
− c(Ra)−ba. (1)

Profit πa is after sharing the coalition’s profit. The income of carrier a consists of
p(Ra), the sum of the paid prices for servicing requests in Ra (the price per request
is given) and a’s share in the coalition’s profit. The coalition’s profit is calculated
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from the sum of the winning bid prices. It is assumed to be distributed among the
carriers in equal shares, i.e. ∑i∈A bi

n . The expenses of carrier a consist of its winning
bid price ba (negative prices are possible) and the costs c(Ra) of its tour plan for
servicing Ra. Basically, these are made up of the fixed costs per tour, the tour length
costs and in particular of the penalty costs when some requests in Ra are failed to
be serviced. We assume all requests r ∈ R are pickup-and-delivery requests with
time windows [9]. In addition, for each request r ∈ R, a price pr and a penalty cost
for non-fulfillment qr are given. Therefore, in order to calculate c(Ra), a carrier
has to solve the well-known and NP-hard pickup-and-delivery problem with time
windows (PDPTW) to service the requests in Ra for minimum cost. The extension
to the traditional PDPTW is that requests bear penalty costs if they are not fulfilled.

In order to agree on an allocation of the pooled requests to the carriers, the coali-
tion has to solve the transportation request assignment problem (TRAP), given by
formulas (2) to (6). The TRAP is basically a bi-level optimization problem based on
the set partitioning problem. The task is to find a partition of the set of pooled re-
quests P that consists of n subsets. Each subset Pa is assigned to exactly one carrier.

max ∑
a∈A

πa(Pa ∪ Ia,ba) (2)

s.t.
∪
a∈A

Pa = P (3)

Pi ∩Pj = /0 ∀i, j ∈ A, i ̸= j (4)

∑
a∈A

ba ≥ 0 (5)

ba ∈ Z ∀a ∈ A (6)

The total profit (2) of the coalition should be maximized. All requests in the
pool P have to be assigned to exactly one carrier, see (3) and (4). Furthermore, the
sum of the carriers’ bids has to be positive (5), otherwise it would be better for the
coalition to reject P. In order to decide about the bid price ba (6) on an allocation a
carrier a∈A has to calculate its marginal profits which requires solving the PDPTW.

3 A Genetic Algorithm with Bidding on Encoded Allocations

To solve the TRAP, Jacob and Buer [7] introduced a genetic algorithm (GA). Fol-
lowing [10], it is classified as an auction-based approach. It can be used by the medi-
ator of the negotiation and enables collaboration of carriers while protecting private
information to a large extent. The GA searches an allocation α , i.e., an assignment
of all requests in P to carriers in A. To calculate the fitness of the individuals (i.e.,
the allocations) the carriers only revealed their ranking of the allocations; cost infor-
mation remained private which is an important feature. However, the surplus profit
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generated by the coalition was also unknown and could not be distributed between
the members of the coalition.

In order to overcome this deficit, we now propose the carriers should evaluate
an allocation via a – possibly negative – monetary value, i.e., they should bid on
an allocation. One distinctive feature is that only bids on complete allocations are
allowed; in contrast to bidding on subsets of the auctioned request which includes
as special cases bids on single requests or bids on request bundles that are tours.
Although a carrier has to reveal its price for an allocation, the revealed cost structure
is much less detailed than, e.g., prices of sets of requests. In addition, the sum of the
bid prices for an allocation is a nice indicator for the coalition’s surplus profit. The
main features of the GA are as follows.

Encoding of an individual. An individual of the GA represents an allocation α of
requests to carriers. It is a sequence of carriers a ∈ A of length |P|. Each position of
the sequence represents a request in P. For example, the individual α = (3,1,3,2)
represents an allocation of four requests where carrier a1 gets request 2, a2 gets
request 4, and carrier a3 receives 1 and 3.

Fitness value. Different from [7], the fitness of an individual is calculated as the
sum of the bid prices. A bid ba(α) of carrier a ∈ A may be positive or negative (see
below).

Crossover and mutation. A standard 2-point-crossover is applied with a proba-
bility of 90 percent. Next, mutation is applied with a 30 percent probability. If an
individual is mutated, the carrier at each position is replaced by a random one with
a probability of 10 percent.

Truthful bidding on an allocation. In order to calculate the fitness of an individ-
ual, each carrier bids on an allocation. To start with and in line with the vast majority
of the literature [3, 4, 6, 11, 12], we assume truthful bidding. Given an allocation α ,
each carrier a ∈ A calculates its bid price ba(α). To this end, each a ∈ A solves a
PDPTW taking into account its initial requests Ia and its additional requests Pa for
each individual in each generation. Therefore, our mechanism is computationally
challenging. We use an adaptive large neighborhood search [9] to generate a set of
feasible tours; then we select a proper subset of tours via solving a set covering prob-
lem. From this solution we calculate the bid price ba that equals the marginal profit
resulting from servicing Pa in addition to Ia (taking penalty costs into account). An-
other benefit is that in this way the marginal profit of the coalition is revealed. Note,
a bid on the same allocation in a later iteration may only be increased.

Incentives for non-truthful bidding on an allocation. Our GA-based auction pro-
tocol is not proven to enforce truthful bidding. On the winning allocation, a carrier
a ∈ A increases its profit by decreasing its bid price ba(α). However, the lower the
sum of the bids on an allocation are, the lower are its chances to get chosen.

The question is: how strong can a non-truthful carrier understate its preferences?
Non-truthful bidding is implemented via calculating the bid price according to (7).
The bid price is based on the concept of marginal profits. The income of all serviced
requests is p(Pa ∪ Ia). The expenses of the serviced requests c(Pa ∪ Ia) are modified
by the strategy δa, where δa = 0 indicates truthful bidding and δa > 0 indicates non-
truthful bidding. Without collaboration, the profit for servicing the initial requests
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Ia is denoted by πa. A negative bid price indicates the amount of money required to
compensate the carrier for its losses due to collaborating.

ba(α) = p(Pa ∪ Ia)− (1+δa) · c(Pa ∪ Ia)−πa (7)

This non-truthful bidding scheme is implemented by a carrier consistently for all
bids on all allocations throughout the complete negotiation process. The share of the
coalition’s profit is not considered. As the computational results in the next section
show, this leads essentially to a prisoner’s dilemma.

4 Results on Non-truthful Bidding and Discussion

For our tests, we created six Euclidian TRAP instances T2-1 to T2-6, each with two
carriers (n = 2), twenty initial requests per carrier (|Ia| = 20,a ∈ A), and a pool of
forty requests (|P| = 40). For each request r ∈ R a price pr was randomly chosen
between 50 and 150, and a penalty cost qr was randomly chosen between 200 and
300. Every time the GA presents an allocation α to a carrier, the carrier bids ba(α)
according to equation (7).

The parameter δa determines the bidding strategy of carrier a ∈ A. Truthful bid-
ding is implied by δa = 0. The greater δa, is the stronger a exaggerates its true costs
and the lower are its bid prices. Table 1 shows the payoff matrix for a = 1,2 and
δa = 0.0,0.35,0.7. The average marginal payoffs (∆1,∆2) for carrier 1 and carrier 2
over the instances T2-1 to T2-6 are given. Marginal payoff ∆a is the profit of carrier
a ∈ A in the case of collaboration minus the profit without collaboration.

Table 1 Payoff matrix of averaged marginal profits (∆1,∆2)

Carrier 2

δ2 = 0.00 δ2 = 0.35 δ2 = 0.70

Carrier 1
δ1 = 0.00 (1222,1222) (677,1701) (292,1545)

δ1 = 0.35 (1730,765) (917,1016) (435,757)

δ1 = 0.70 (1606,329) (396,219) (357,292)

Assume now that each carrier knows those payoff matrices from observation and
sees them as a means of predicting future payoffs. Then, the different values of δa
can be interpreted as each carrier a’s strategy in a game. Assuming rational behavior,
carrier 1 will choose δ1 = 0.35 and carrier 2 will choose δ2 = 0.35 since this is the
only Nash equilibrium [2]. But, if the carriers chose δ1 = 0 and δ2 = 0, they would
both be better off. So apparently, collective rationality is not given. This holds also
for the three carrier case, as is shown in the appendix.

A possible instrument to induce truthful bidding is to introduce a deposit that
each carrier has to pay in order to become a part of the coalition. If P gets success-
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fully allocated, each carrier gets its deposit back. If, however, no feasible solution
of the TRAP can be found, the deposits get returned unevenly: The higher a car-
rier’s average bids are, the higher will be the amount it receives. How to choose the
amount of the deposit and the exact mechanism to return the deposits in case no
feasible solution is found may be the object of future research.
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Appendix

Apart from the tests on the two carrier case, we also ran tests on six instances
T3-1 to T3-6 with three carriers. As for the two player case, we assumed δa ∈
{0.0,0.35,0.7} for all carriers a ∈ A and that the carriers are able to observe av-
erage payoff matrices and use them to predict future payoffs. For finding equilibria
on our results for the three carrier case, we used the software Gambit [8]. We ran
two different types of tests.

Firstly, we assumed that one of the three carriers will choose a certain value
of δa in advance, which the other carriers correctly anticipate. We tested this case
for all a ∈ A being the one choosing a fixed value of δa. The payoff matrices and
equilibrium strategies for this case are shown in Tables 2 to 13.

Secondly, we assumed that no carrier chooses its strategy in advance. The equi-
librium strategies for this case are shown in Table 14.

As Table 15 shows, there are some equilibrium strategies where single carriers
are better off than in the collaborative case. However, in terms of social welfare, i.e.,
the sum of all carriers’ profits, collaboration is optimal. It should be noted that some
of the found equilibria ({1,9,15,19},{4,12,14,18},{11,22}) consist of essentially
the same strategies; however, since they were reached under different assumptions,
we list them separately.

Since without predetermined strategies for any carrier there exists an equilibrium
(see Table 15, eq. 19) where one carrier improves its payoff in comparison to the
collaborative case, the three carrier case tested is not a pure prisoner’s dilemma.
Still, in four out of five equilibria all carriers are worse off than in the collaborative
case. Also, assuming that each equilibrium gets reached with the same probability,
on average, all carriers are worse off in the non-collaborative case. So the general
conclusion holds and developing an auction protocol for solving the TRAP which
enforces truthful bidding should be beneficial to all carriers.
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Table 2 Payoff matrix of averaged marginal profits (∆1,∆2,∆3) with δ3 = 0.00

Carrier 2

δ2 = 0.00 δ2 = 0.35 δ2 = 0.70

Carrier 1
δ1 = 0.00 (1288,1288,1288) (1047,1980,1047) (668,2555,668)

δ1 = 0.35 (1924,987,987) (1464,1545,1047) (1236,2043,406)

δ1 = 0.70 (2208,679,679) (2027,1263,428) (1062,1083,142)

Table 3 Payoff matrix of averaged marginal profits (∆1,∆2,∆3) with δ3 = 0.35

Carrier 2

δ2 = 0.00 δ2 = 0.35 δ2 = 0.70

Carrier 1
δ1 = 0.00 (871,871,1848) (532,1547,1585) (293,1835,1139)

δ1 = 0.35 (1345,531,1424) (1178,1010,1078) (540,1061,575)

δ1 = 0.70 (1835,309,1159) (367,229,219) (329,317,195)

Table 4 Payoff matrix of averaged marginal profits (∆1,∆2,∆3) with δ3 = 0.70

Carrier 2

δ2 = 0.00 δ2 = 0.35 δ2 = 0.70

Carrier 1
δ1 = 0.00 (494,494,2547) (273,928,1491) (107,679,714)

δ1 = 0.35 (939,344,1574) (571,586,992) (156,289,361)

δ1 = 0.70 (666,61,691) (325,177,326) (0,0,0)

Table 5 Equilibrium strategies for carriers 1 and 2 with fixed δ3

p(δ1) p(δ2)

0.00 0.35 0.70 0.00 0.35 0.70

eq. 1 0.0% 0.0% 100.0% 0.0% 100.0% 0.0%

δ3 = 0.00 eq. 2 0.0% 100.0% 0.0% 0.0% 0.0% 100.0%

eq. 3 0.0% 26.5% 73.5% 0.0% 23.6% 76.4%

δ3 = 0.35 eq. 4 0.0% 100.0% 0.0% 0.0% 0.0% 100.0%

δ3 = 0.70 eq. 5 0.0% 100.0% 0.0% 0.0% 100.0% 0.0%
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Table 6 Payoff matrix of averaged marginal profits (∆1,∆2,∆3) with δ2 = 0.00

Carrier 3

δ3 = 0.00 δ3 = 0.35 δ3 = 0.70

Carrier 1
δ1 = 0.00 (1288,1288,1288) (871,871,1848) (494,494,2547)

δ1 = 0.35 (1924,987,987) (1345,531,1424) (939,344,1574)

δ1 = 0.70 (2208,679,679) (1835,309,1159) (666,61,691)

Table 7 Payoff matrix of averaged marginal profits (∆1,∆2,∆3) with δ2 = 0.35

Carrier 3

δ3 = 0.00 δ3 = 0.35 δ3 = 0.70

Carrier 1
δ1 = 0.00 (1047,1980,1047) (532,1547,1585) (173,928,1491)

δ1 = 0.35 (1464,1545,663) (1178,1010,1078) (571,586,992)

δ1 = 0.70 (2027,1263,428) (367,229,219) (325,177,326)

Table 8 Payoff matrix of averaged marginal profits (∆1,∆2,∆3) with δ2 = 0.70

Carrier 3

δ3 = 0.00 δ3 = 0.35 δ3 = 0.70

Carrier 1
δ1 = 0.00 (668,2555,668) (293,1835,1139) (107,679,714)

δ1 = 0.35 (1236,2043,406) (540,1061,575) (156,289,361)

δ1 = 0.70 (1062,1083,142) (329,317,195) (0,0,0)

Table 9 Equilibrium strategies for carriers 1 and 3 with fixed δ2

p(δ1) p(δ3)

0.00 0.35 0.70 0.00 0.35 0.70

eq. 6 0.0% 0.0% 100.0% 0.0% 100.0% 0.0%

δ2 = 0.00 eq. 7 0.0% 100.0% 0.0% 0.0% 0.0% 100.0%

eq. 8 0.0% 75.7% 24.3% 0.0% 35.8% 64.2%

eq. 9 0.0% 0.0% 100.0% 100.0% 0.0% 0.0%

δ2 = 0.35 eq. 10 0.0% 100.0% 0.0% 0.0% 100.0% 0.0%

eq. 11 0.0% 23.7% 76.3% 30.4% 0.0% 69.6%

δ2 = 0.70 eq. 12 0.0% 100.0% 0.0% 0.0% 100.0% 0.0%
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Table 10 Payoff matrix of averaged marginal profits (∆1,∆2,∆3) with δ1 = 0.00

Carrier 3

δ3 = 0.00 δ3 = 0.35 δ3 = 0.70

Carrier 2
δ2 = 0.00 (1288,1288,1288) (871,871,1848) (494,494,2547)

δ2 = 0.35 (1047,1980,1047) (532,1547,1585) (273,928,1491)

δ2 = 0.70 (668,2555,668) (293,1835,1139) (107,679,714)

Table 11 Payoff matrix of averaged marginal profits (∆1,∆2,∆3) with δ1 = 0.35

Carrier 3

δ3 = 0.00 δ3 = 0.35 δ3 = 0.70

Carrier 2
δ2 = 0.00 (1924,987,987) (1345,531,1424) (939,344,1574)

δ2 = 0.35 (1464,1545,663) (1178,1010,1078) (571,586,992)

δ2 = 0.70 (1236,2043,406) (540,1061,575) (156,289,361)

Table 12 Payoff matrix of averaged marginal profits (∆1,∆2,∆3) with δ1 = 0.70

Carrier 3

δ3 = 0.00 δ3 = 0.35 δ3 = 0.70

Carrier 2
δ2 = 0.00 (2208,679,679) (1835,309,1159) (666,61,691)

δ2 = 0.35 (2027,1263,428) (367,229,219) (325,177,326)

δ2 = 0.70 (1062,1083,142) (329,317,195) (0,0,0)

Table 13 Equilibrium strategies for carriers 2 and 3 with fixed δ1

p(δ2) p(δ3)

0.00 0.35 0.70 0.00 0.35 0.70

δ1 = 0.00 eq. 13 0.0% 0.0% 100.0% 0.0% 100.0% 0.0%

δ1 = 0.35 eq. 14 0.0% 0.0% 100.0% 0.0% 100.0% 0.0%

eq. 15 0.0% 100.0% 0.0% 100.0% 0.0% 0.0%

δ1 = 0.70 eq. 16 0.0% 0.0% 100.0% 0.0% 100.0% 0.0%

eq. 17 0.0% 20.2% 79.8% 0.0% 32.8% 67.2%
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Table 14 Equilibrium strategies for carriers 1, 2, and 3

p(δ1) p(δ2) p(δ3)

0.00 0.35 0.70 0.00 0.35 0.70 0.00 0.35 0.70

eq. 18 0.0% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 100.0% 0.0%

eq. 19 0.0% 0.0% 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 0.0%

eq. 20 0.0% 21.8% 78.2% 0.0% 51.9% 48.1% 71.5% 28.5% 100.0%

eq. 21 0.0% 30.1% 69.9% 0.0% 80.4% 19.6% 55.5% 28.1% 16.3%

eq. 22 0.0% 23.7% 76.3% 0.0% 100.0% 0.0% 30.4% 0.0% 69.6%

Table 15 Expected payoffs in equilibrium strategies

E(∆1) E(∆2) E(∆3) ∑a∈A(E(∆a))

eq. 1 2027 1263 428 3718

eq. 2 1236 2043 406 3685

fixed δ3 eq. 3 1290 1338 278 2906

eq. 4 540 1061 575 2176

eq. 5 571 586 992 2149

eq. 6 1835 309 1159 3303

eq. 7 939 344 1547 2830

eq. 8 1084 348 1360 2792

fixed δ2 eq. 9 2027 1263 428 3718

eq. 10 1178 1010 1078 3266

eq. 11 843 595 484 1922

eq. 12 540 1061 575 2176

eq. 13 293 1835 1139 3267

eq. 14 540 1061 575 2176

fixed δ1 eq. 15 2027 1263 428 3718

eq. 16 329 317 195 841

eq. 17 639 569 200 1408

eq. 18 540 1061 575 2176

eq. 19 2027 1263 428 3718

no fixed δa eq. 20 1216 1061 345 2622

eq. 21 1164 928 444 2536

eq. 22 843 594 484 1921

collaborative case 1288 1288 1288 3864


