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Abstract. The advances in computer and communication technologies have
created new opportunities for improving, extending the application of or
even developing new trading strategies. Transformations have been observed
both at the level of investment decisions, as well as at the order execution
layer. This review paper describes how traditional market participants, such
as market-makers and order anticipators, have been reshaped and how new
trading techniques relying on ultra-low-latency competitive advantage, such
as electronic “front running”, function. Also, the natural conflict between
liquidity-consumers and liquidity-suppliers has been taken to another level,
due to the proliferation of algorithmic trading and electronic liquidity provi-
sion strategies.
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1 Introduction

Market participants expose their buying and selling interests and finally trade
with each other within an organised market system composed of several trad-
ing venues, e.g., regulated markets and multilateral trading facilities (MTF)
– previously known as alternative trading systems (ATS). The most common
mechanism of price discovery implemented by equity markets is the continu-
ous double auction, where participants place their trading offer and trading
demand as market or limit orders and where incoming orders are continu-
ously matched against an order book formed of two queues of passive limit
orders – one for buy (bid) and one for sell orders (ask) – sorted by price
and time priority. In other words, the outstanding limit orders provide the
liquidity necessary for the execution of aggressive, liquidity-taking market
orders. From this point of view, the trading process, and the collateral price
evolution, can be seen as an outcome of the interplay between order flow and
persistent order book liquidity.

According to Harris (2002), market participants such as dealers and
value traders are always passive liquidity suppliers, while other precommit-
ted traders oscillate between liquidity-supplying and liquidity-consuming, de-
pending on their current level of impatience. A passive execution has the
advantage of a lower cost of trading as opposed to sending market orders.
The latter is associated with an immediacy cost given by the bid-ask spread
and, most important for large orders, a potential market impact if the order
execution has to “walk up the book” in order to fill its entire size. Most in-
formed traders, which have expectations about the future market direction,
are strategically more aggressive since they need to open their positions as
quickly as possible, before the market starts to move and their expected “al-
pha” is diminished.1 They are also interested in minimizing transaction costs
(implicit market impact) which directly reduces their overall profitability.

On the other side, while supplying liquidity, the uninformed dealers ac-
cumulate inventories which might lead to large losses in case the price should
move against them, i.e. inventory or portfolio risk. If the price changes are
independent of their positions – sometimes positive and sometimes negative,
then the inventory risk is diversifiable (null on average). However, when be-
ing counterpart to informed traders, the order flow becomes unbalanced and
the future price returns are usually inversely correlated with their current
open positions, leading to trading losses, i.e. adverse selection or asymmetric
information risk. Dealers can protect themselves from inventory and ad-
verse selection risk only by quoting prices where the order flow is two-sided
and the informed toxic flow is thus offset. Most of the time, this is con-
sistent with updating the quotes in the market direction, which also takes
away alpha from informed strategies (“hidden alpha”). This leads to a nat-
ural conflict between uninformed liquidity providers, which try to quickly

1In finance, the alpha coefficient stands for the relative return on an investment as
compared to a market index benchmark.
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detect market and liquidity shifts and update their quotes correspondingly,
and informed traders which try to hide their intentions during large order
executions (“stealth trading”).

With the help of technology, both sides have upgraded their strategy im-
plementations by replacing slow human operators with computer-based auto-
mated algorithms endowed with high computational power and fast reaction
speeds. On one side, the uninformed liquidity providers have implemented
automated market making programs with the goal of reducing their liquid-
ity provision associated risk and of providing higher quality quotes – also
known as Electronic Liquidity Providers (ELPs). On the other side, the in-
formed traders rely on what is known as Algorithmic Trading (AT) strategies
when executing their trades in order to minimize transaction costs. Addi-
tionally, order anticipators have incorporated high-frequency technology in
order to decrease the time-frame of their microstructure trading strategies
and improve their overall profitability, or even develop new strategies facil-
itated by their low-latency competitive advantage – commonly labeled as
High-Frequency Trading (HFT).

Analyzing the recent and the future development of computer-based trad-
ing (CBT) strategies, as well as their impact on the overall market qual-
ity – captured along three distinct dimensions, i.e. liquidity, price efficiency
and systemic risk – has been the subject of a large foresight study commis-
sioned by the UK Government Office for Science (Government Office For
Science, 2012). The empirical and theoretical scientific results show that the
effect of CBT is controversial. On one side, market liquidity, transaction
costs and price efficiency have been improved, but on the other side there
is a greater risk of periodic illiquidity due to the new nature of liquidity
providers, illustrated by the occurrence of several recent flash crashes. CBT
may have altered the latent features of the market socio-technological sys-
tem, such as self-reinforcing feedback loops, which under certain conditions
exhibit chaotic properties, leading to significant financial instability.

Vuorenmaa (2012) reviews both the popularized media objections on this
topic as well as the academic literature, and discusses the pros and cons of
HFT and AT as seen from three different points of view, i.e. negative media
writing, negative and positive academic research. Media allocated most of
its publishing space to topics related to the Flash Crash of May 6, 2010 and
to HFT being presented as ”front runners” and predatory strategies taking
advantage of slower market participants. Front running as well as manipu-
lative techniques, such as quote stuffing, smoking, and spoofing, are claimed
to rely on their “unfair” speed edge to take advantage of slower executions
or to lure other traders into taking toxic positions. The negative academic
research results point to increased correlations and complex interdependen-
cies between the too homogeneous and overcrowded HFT strategies, as well
as across assets and markets, contributing to higher market systemic risks
and worse contagion effects – when various processes become coupled at very
short time frames, volume feedback loops can be ignited leading to severe
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volatility extreme events. Finally, the positive academic research under-
lines the favorable market impact of HFT strategies, which due to their fast,
predictive and accurate reactions are able to decrease bid-ask spreads and
transaction costs, decrease volatility, increase liquidity both in normal and
in times of high market distress, and contribute more to the efficient price
discovery than slower (human) traders do.

As opposed to the previous type of reviews which focus on the aggregated
market impact of automated trading, the goal of the current contribution is
to review the literature which deals with the actual design of such computer
based strategies. This is highly relevant from a developer’s point of view,
e.g., in the context of building simulations of nowadays financial markets.
In Section 2, the algorithmic trading problem is defined and the two main
subtypes of algorithmic trading strategies are presented. Similarly, Section 3
introduces a range of computer-based strategies, which can be applied by
means of high-frequency trading. The first main HFT class – consisting
in liquidity traders – is detailed in Subsection 3.1, while the second class
– capturing orders anticipators – is described in Subsection 3.2. Section 4
concludes.

2 Algorithmic trading

Order size plays an important role in trading, since executing a large order
is more difficult due to higher market impact and signaling risk (see Sub-
section 2.2 for more information on market impact). One way to overcome
these issues is to slice large orders and spread their execution over time with
the goal of minimising the associated implicit transaction costs. The auto-
mated programs implementing order executing strategies are widely known as
Algorithmic Trading. In their definitions of AT, regulators underline the au-
tomated and computer-based decision process – with no human intervention
– of determining the individual order trading parameters regarding timing,
pricing and quantity setting, as well as the managing of orders after their
submission.2 For clarity, AT does not include any system which deals only
with automated routing of orders or with confirming order execution, i.e. no
actual determination of the trading parameters.

At one extreme, an order can be executed at once entirely – using a mar-
ket order – with a high trading cost, i.e. worse execution price due to market
impact. On the other side, the order can be equally split and scheduled at a
constant execution rate over the entire trading period (see Figure 1) which
is associated with the lowest impact, but with an intrinsic price risk, i.e. the
difference between the effective execution price and the arrival price bench-

2Federal Financial Supervisory Authority (BaFin), Securities Trading Act (Wertpa-
pierhandelsgesetz - WpHG); European Comission, MiFid 2 – Directive 2014/65/EU of the
European Parliament and of the Council of 15 May 2014 on markets in financial instru-
ments and amending Directive 2002/92/EC and Directive 2011/61/EU

3



mark due to random price movements (shortfall). The optimal scheduling
lies in-between this range bounded by the minimum variance strategy, at one
side, and the minimum impact strategy, at the other side. As expressed in
Kissell and Malamut (2005), a trader faces the trade-off/dilemma of trading
too quickly (aggressively) and trading too slowly (passively).
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Figure 1: A linear execution schedule – time weighted average price (TWAP)

The line plot represents the trajectory x(t), i.e. the remaining order size to be executed at
time t. The bar chart illustrates the trading rate ν(t), the slice of the entire order executed
at time t.

A formalization of the order scheduling problem is provided in Almgren
and Chriss (2001). The objective is to compute a trajectory function x(t)
representing the number of units remaining to be traded at time t, with the
initial target x(0) = X0 and the completely executed order at the end of the
execution time x(T ) = 0. The corresponding trading rate, i.e. the number
of units to be traded in one time interval, is denoted ν(t) = x(t − 1) − x(t)
(see an example of a constant trading rate in Figure 1). The optimization
problem consists in finding the optimal balance between the expected trading
costs and the uncertainty of these costs due to the exposure to timing risk:

min
x

(E[C(x)] + λ Var[C(x)]) , (2.1)

where:
- C(x) cost of deviating from the benchmark
- Var[C(x)] variance of the execution cost as a proxy for risk
- λ ≥ 0 agent’s level of risk aversion which penalizes the variance relative to
the expected cost

Johnson (2010) provides a classification of AT based on its target objec-
tives into impact-driven, cost-centric and opportunistic algorithms. The first
category is schedule-based and seeks to minimize the overall market impact

4



costs by splitting larger orders over time. E.g., the Time Weighted Average
Price (TWAP) strategy – also illustrated in Figure 1 – slices the original
order into equal parts which are spread over fixed and equal time intervals
throughout the day. Another impact-driven strategy, Volume Weighted Av-
erage Price (VWAP), tracks statically created trajectories based on historical
volume profiles (see Subsection 2.1 for more details). Dynamic tracking algo-
rithms such as Percentage of Volume (POV) – also known as Volume Inline
– try to participate in the market at a given rate in proportion with the
market’s actual volume. Cost-centric algorithms try to reduce transaction
costs by balancing implicit costs, such as market impact, and the exposure
to timing risk by taking into account the investor’s level of urgency or risk
aversion. E.g., Implementation Shortfall (IS) – also known as Arrival Price
– determines the optimal trade horizon, as well as the appropriate trad-
ing schedule, by applying various cost and market models which take into
account factors such as order size, available time, expected price change (al-
pha), expected liquidity and volatility (see Subsection 2.2 for more details).
Finally, opportunistic algorithms, such as Price Inline (PI), are variants of
the impact-driven algorithms which are sensitive and self-adjusting to the
current market conditions.

Fabozzi, Focardi, Kolm et al. (2010) identify IS and VWAP as the two
most popular execution strategies. While VWAP’s execution costs are as-
sessed relative to the benchmark with the same name (see Subsection 2.1)
and the algorithm aims at reducing the absolute market impact costs, IS is
benchmarked to the arrival price – the price prevailing at the beginning of the
execution period – and is optimized towards minimizing the overall potential
risk-adjusted costs, with respect to a predefined coefficient of risk aversion.
In the following two subsections, selected variants of these two algorithmic
trading strategies are presented.

2.1 Volume Weighted Average Price

Volume-Weighted Average Price is an automated participation strategy which
tries to achieve an execution price close to the VWAP benchmark. The latter
corresponds to the overall turnover divided by the total volume VWAP =∑
n

vn pn/
∑
n

vn.3 According to Madhavan (2002), the main reason for choos-

ing this strategy is due to the benchmark choice, i.e. the criteria used for
measuring the execution performance. Thus, VWAP is an ideal option for
passive traders with no alpha and no need for urgency. The actual imple-
mentation consists in splitting the initial order over the entire trading period
– usually the entire or a large part of a trading day – based on a model of
the historical fractional daily volume pattern (see Figure 2). Since the actual
intraday volume pattern for any single day will be different from the histor-
ical average, the VWAP is not guaranteed and will mostly randomly miss

3If a large order represents too much (> 30%) of the average daily volume, VWAP has
practically no meaning.

5



the actual VWAP, especially on days with highly unusual volume patterns.
However, with the help of automation, the order can be split in a very large
number of smaller orders which can be spread over finer time grids and thus
reduce to some extent the problems associated with the model’s noise.
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Figure 2: VWAP

The left plot presents the hourly average values of the trading volume for Siemens (SIE),
traded at Xetra Frankfurt during the entire February 2012 – the notorious U-shape or
the volume “smile” can be roughly observed. The right plot describes the evolution of
the trading schedule and the hourly order sizes, corresponding to the historical volume
pattern, i.e. the nine one hour bins in the left plot.

The VWAP can be improved by replacing the standard historical pat-
tern with other models of the intraday volume dynamics. E.g., Bia lkowski,
Darolles and Le Fol (2008) suggest a dynamical volume model, which de-
composes the traded volume in two parts: one reflecting the common and
seasonal market evolution – modeled by an extension of CAPM with factors
estimated by principal component analysis – and a second one capturing the
intraday specific volume dynamics by means of an ARMA(1,1) or a SETAR
model. As a difference form the statical VWAP, the trading schedule cannot
be determined in advance at the start of the trading period, but needs to be
updated step-by-step, based on the one-step ahead prediction of the dynamic
component which takes into consideration also the previous intraday period
realization.

2.2 Implementation Shortfall

As its name suggests, Implementation Shortfall4 is benchmarked to the ar-
rival price – the price prevailing at the beginning of the execution period –
and is optimized towards minimizing the overall potential risk-adjusted costs
with respect to a predefined coefficient of risk aversion. According to Fabozzi
et al. (2010), this strategy is especially appropriate for market participants

4The shortfall is the difference between the arrival and the effective execution price.
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who know their risk-aversion profile and who have a strong belief about the
future returns.

The total cost of trading C(x) – in this case the shortfall – is the difference
between the initial market value and the effective execution value, as defined
in Equation 2.2. The price per share achieved on each trade P̃t is influenced
by the temporary market impact which affects only the execution price P̃t
and not the market equilibrium.5 This liquidity premium can be reduced by
sending smaller orders – corresponding to smaller ν(t) – while the permanent
market impact is independent of the trading strategy and sums up to the
same result, linear in total order size X0.

C(x) = X0 P0 −
T∑
t=1

ν(t) P̃t (2.2)

A model for the trading schedule xt, similar to the one proposed by Alm-
gren and Lorenz (2006), can be assumed to be the sum of two distinct tra-
jectories: (i) a linear execution (neutral/ TWAP) and (ii) a deviation – a
quadratic function with the roots at t = 0 and t = T , which corresponds to a
given “speed of execution” κ optimized by the proprietary trading strategy:

x(t) = X0
T − t
T
− κ t (T − t), (2.3)

where T − t is the remaining time, and consequently:

ν(t) =
1

T
X0 + κ (T + 1)− 2κ t. (2.4)

The tilting factor κ is independent of the order size and reflects the tim-
ing cost (price drift and volatility risk), as well as the risk aversion / sense
of urgency (see Equation 2.5). The trading schedule is front-weighted (ag-
gressive), as in the left plot of Figure 3, when the agent’s risk aversion or
the expected risk are higher, the expected temporary market impact is lower
and/or alpha is positive. In this case, the agent is willing to pay some pre-
mium in the form of higher temporary market impact to reduce the risk – at
extreme, when κ→∞ there is a single execution of the entire quantity at the

5Over a longer period of time, two components of the total market impact can be
distinguished. As described in Johnson (2010), (i) the permanent market impact leads to
a new price equilibrium (an information-based effect equal to the difference between the
pre-trade equilibrium and the post-trade equilibrium), while (ii) the temporary market
impact represents the cost of immediacy and corresponds to the difference between the
post-trade equilibrium and the trade print – the least favorable trade price obtained while
executing the market order. Some time after the trade, the order book is assumed to be
partially replenished.
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start of the trading period. Conversely, when alpha is negative or when the
agent is risk loving (negative λ), the trading schedule becomes back-weighted
(passive), as in the right plot of Figure 3. Finally, when κ = 0, i.e. no signif-
icant drift is expected (zero or small alpha) and/or the expected temporary
market impact is higher, the execution is neutral – constant trading rate.6

κ =
λασ

η
, (2.5)

where:
- α̂ price change expectation7

- σ̂ expected stock volatility
- η̂ expected temporary market impact cost8

Under certain assumptions, e.g., Glosten-Milgrom-Harris framework (Glosten
and Milgrom (1985), Glosten and Harris (1988)) and a model for the tempo-
rary market impact, an analytically derivation of the optimal function κ∗ is
possible, but is beyond the goal of this paper. However, critical values for κ
can be computed: if κ > 0 is too large, the trader will finish the execution
earlier than T – execution time is shortened T ∗ < T – while if κ is too small
and negative, the trader will start its trading schedule later t∗ > 0 – execution
is delayed and time is also shortened. In the first case, the following holds at
the end of the trading schedule x(T ∗) = 0 with two solutions: T ∗ = T and
T ∗ = X0

κT
. The critical value for κ∗+ = X0/T

2 > 0 is obtained by imposing the
top of the parabola x′(T ∗) = 0 to be at the end of the program T ∗ = T . In
the second situation, the condition at the start of the program is x(t∗) = X0,
with two solutions t∗ = 0 and t∗ = T + X0

κT
. The critical value is obtained by

imposing x′(t∗) = 0 and t∗ = 0 with the solution κ∗− = −X0/T
2 < 0. Various

examples for different values of κ are presented in Figure 4.

3 High-frequency trading

High-frequency trading is not a strategy per se, but a technology which allows
for the automation of a wide spectrum of trading strategies, propelled by the
ongoing advances in computer technology. Schwartz (2010) underlines the

6Alternatively, the risk adjustment could also be applied to VWAP trading schedule,
resulting into a tilted VWAP.

7A positive alpha indicates an unfavorable price change expectation, i.e. the expecta-
tion of prices moving lower while executing a sell order or moving higher for buy orders.

8The classic market impact function is considered to be a concave power function
h(ν(t)) = η ν(t)γ , where γ < 1 (?, Plerou, Gopikrishnan, Gabaix and Stanley (2002)).
However, it is questionable if this functional form holds also for individual, unconditional
orders (for a discussion, see Weber and Rosenow (2005)).
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Figure 3: Front- and back-weighted trading schedules

The solid line plots show the trajectories for front-weighted (top) and back-weighted (bot-
tom) trading schedules versus a neutral trading schedule plotted by means of a dashed
line. The bar charts below each of the two plots represent the associated trading rate ν(t)
at each time step t.

0 2 4 6 8 10

0
20

40
60

80

t

x(
t)

k= −2
k= −1
k= 0
k= 1
k= 2

Figure 4: Five trading trajectories corresponding to different values of κ

The three middle trading schedules κ ∈ {−1, 0, 1} correspond to the already presented
back-weighted, neutral and front-weighted scenarios. When κ = −2 (upper, solid line),
the trading schedule is not only back-weighted, but the execution is delayed and the trading
period is shortened. Similarly, when κ = 2 (bottom, long-dashed line), the execution is
front-weighted and the trader will finish the trading plan earlier.
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same idea – most of the strategies assimilated with HFT are nothing new,
they are only implemented using a modern and better technology which al-
lows for faster execution and application at higher-frequencies (shorter time-
frames).

Researchers (see, e.g., Aldridge (2009), Brogaard (2010)) as well as reg-
ulators across the world have tried to specify what are the attributes of
HFT-based strategies.9 Their findings could be summarised as follows: (1)
computer-based non-discretionary / automated strategies (no human inter-
vention in order initiation, generation, routing or execution), (2) proprietary
trading (as opposed to agency activity), (3) use of low latency HFT tech-
nologies (e.g., co-location services, proximity hosting, direct market access,
individual data feeds offered by exchanges), (4) real-time tick-by-tick data
processing, (5) high amount of intraday messages (orders, quotes or cancella-
tions) and trades, (6) small margins per trade (“scalping”), (7) high capital
turnover, and (8) flat over-night positions (no positions or fully hedged).

A comparison to lower-frequency strategies (LFT) shows that HFT-based
strategies address very short time-frames for generating entry and exit signals
(associated with small expected returns), hold positions for very short periods
of time (in terms of seconds or milliseconds),10 trade very often and need a
smaller risk capital, which they are able to relocate several times on a short-
time basis, leading to their overall profitability. It has to be noted that
profit opportunities at these short time-frames are only temporary and the
available liquidity for entry/exit positions is limited, thus only the fastest
competitors are able to trade. On the other side, in order to avoid losses,
the liquidity-supplying strategies need to be able to quickly re-quote before
others can take advantage of their outdated bids/asks (adverse selection risk).
What these strategies have in common is that they are highly sensitive to
their relative-to-competition reaction speed which continuously pushes them
to minimising latencies of all kind.

According to EUREX, the main HFT-based strategies are liquidity provi-
sion, (statistical) arbitrage, short term momentum and liquidity detection.11

HF liquidity provision traders are quasi market makers which try to cash in
the bid-ask spread when the order flow is balanced. Pure and statistical arbi-

9BaFin, German HFT Bill – Hochfrequenzhandelsgesetz; European Comission, MiFid
2 – Directive 2014/65/EU of the European Parliament and of the Council of 15 May 2014
on markets in financial instruments and amending Directive 2002/92/EC and Directive
2011/61/EU; European Securities and Markets Authority (ESMA), Consultation paper
“Guidelines on systems and controls in a highly automated trading environment for trad-
ing platforms, investment firms and competent authorities”, Reference ESMA/2011/224;
Securities and Exchange Commission (SEC), “Concept release on equity market struc-
ture”, Release no. 34-61458, File no. S7-02-10, p. 45

10As a consequence, it is not unusual for HFT-based strategies “to switch between
long and short net positions several times throughout the day”, as opposed to their LFT-
correspondents, as underlined in Brogaard (2010).

11“High-frequency trading – a discussion of relevant issues”, London, 8
May 2013, http://www.eurexchange.com/blob/exchange-en/455384/490346/6/data/
presentation_hft_media_workshop_lon_en.pdf
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trageurs compare prices of the same assets across different markets or across
economically similar (correlated) products and take advantage of any market
inefficiencies. Short term momentum and liquidity detection strategies try
to anticipate the short-term market direction due to new information or just
due to participants’ order flow.

3.1 Passive HFT - liquidity traders

Traditionally, on-exchange designated market makers (DMM) or specialists
have played the role of providing liquidity by continuously double quoting
bid and ask prices at which they are committed to buy and sell specific asset
quantities. Trading is thus facilitated as other market participants are pro-
vided with immediacy, i.e. the ability to trade quickly and with reduced trans-
action costs. On the other side, when completing a round-trip, i.e. the buy
and sell of the same quantity, without any price change, the market maker is
compensated with the bid-ask spread differential. In case of an unfavourable
price shift, the realised profit becomes smaller than the quoted spread or can
even turn into a loss. Besides exchanges that employ a monopolistic mar-
ket maker (e.g., NYSE), other exchanges (e.g., NASDAQ) rely on a different
strategy for liquidity provision by allowing for multiple market-makers, where
the overall performance comes from competition, rather than from strict indi-
vidual obligations. In the case of exchanges which implement a maker-taker
pricing model (e.g., NYSE Euronext’s Arca Options platform, NASDAQ’s
NOM platform, BATS Global Markets options exchange), market-makers
have an extra revenue source consisting in the rebates paid by the exchange
for passively providing limit orders, which are matched by liquidity-taking
market orders – as opposed to standard equal pricing.

According to Harris (2002), vanilla market making strategies – which do
not also speculate, hedge, or invest – are uninformed with respect to the
fair value of the underlying assets and do not form expectations about the
future market direction. Therefore, in order to avoid any inventory risk,
market makers try to keep their inventory under control by quoting prices
which produce two-sided order flows. When their inventory deviates from
the target levels, market makers have to adjust their quotes (bid/ask prices,
spread width, bid/ask quantities) in order to stimulate order flow which will
offset their imbalance. According to Aldridge (2009), another risk of market
making, which is compensated by the bid-ask spread, is the time-horizon
risk – the risk of an adverse market move decreases proportionally with the
remaining trading time.12

Eventually, the specific levels of inventory targets, maximum allowed im-
balances and holding time before restoring target inventories depend to a
great extent on the degree of information about the market equilibrium price
– the larger the confidence in the estimated future price dynamics, the lower

12In other words, the spreads at the beginning of the trading session are larger than
near its end.
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the perceived adverse selection risk and the higher the willingness to take
large positions and hold them for a longer period of time in order to increase
realised spreads and profitability, accordingly.

Passive HFTs apply similar market making strategies, which are also
known as electronic liquidity provision (ELP), seeking to capture both the
bid-ask spread and the rebates paid by the trading venues as incentives for
posting liquidity. They are very poorly informed about fundamental values
and therefore try to minimize the risk of liquidity provision by quickly off-
setting even small inventory imbalances or by trying to identify toxic order
flow, which ultimately leads to opening positions against the future market
move (for more details on toxic order flow, see Easley, de Prado and O’Hara
(2012)). Their round-trip gains and inventory sizes are smaller than the ones
of better informed market makers, but their overall profitability comes from
a larger number of round-trips due to quoting more often at the best bid and
best ask, leading to a higher cumulative spread. HFT market makers com-
pete to be the first counterparts in providing liquidity, as well as to profitably
close their positions, which makes it vital being able to quickly update their
outstanding orders in face of a changing market state.

The strategies employed by passive HFTs are sometimes referred to as
quasi market making, because HFTs can suspend their activity whenever the
market state would lead to their unprofitability, e.g., due to high volatility or
trending, as they face no legal obligation to maintain quotes and guarantee
market liquidity. Therefore, there is a general critique that the liquidity pro-
vided by HFT is often illusory, since HFTs stay in the market only when they
are confident to make profits and retreat or even turn into liquidity-consumers
under adverse conditions. In Government Office For Science (2012), this
phenomena is named periodic illiquidity and is also explained by the oppor-
tunistic style and tight risk management of HFT market makers. Moreover,
a particular type of ELP, known as rebate arbitrage, tries to profit only from
collecting liquidity rebates paid by the trade venue by opening and clos-
ing positions at the same price on different exchanges (no spread capture),
without really contributing to liquidity. Menkveld (2011) states that HFT
“cream skimming” strategies, requiring little capital, have driven out tradi-
tional market makers with large capital and inventories, leading to a drastic
change in the structure of liquidity provision sources, with large potential
implications for the market dynamics in times of stress. On the other side,
the Eurex Exchange finds evidence against this critique, by analyzing the be-
havior of HFTs on the 25th of August, 2011 – a high volatile day for the DAX
Futures (FDAX).13 The report concludes that HFTs actually contribute to
liquidity and prevent fast price movements during periods of high volatility
or strong directional trading.

Nevertheless, some ELP strategies are considered to be used as signal de-
tectors of large institutional block orders, which launch active HFT strategies

13“High-frequency trading in volatile markets – an examination”, Eurex Exchange,
November 2011.
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seeking to profit on this new information, and ultimately lead to amplifying
investors’ market impact (more details in Subsection 3.2).14

In a literature review, Aldridge (2013) identifies two main types of au-
tomated market making models: inventory models and information-based
models.15 The first class is concerned only with the effective management of
inventory, without any opinion on the drift or any autocorrelation structure.
A representative model is described in Avellaneda and Stoikov (2008). The
optimal bid and ask quotes in the Avellaneda-Stoikov model are identified
following a two-step procedure. First, assuming a standard Brownian motion
with constant volatility and no drift, a reservation price (a personal indiffer-
ence valuation for the stock) is computed as a deviation from the mid-price
mt, given the current inventory imbalance It (see Equation (3.1)).

rt(It) = mt − γ It σ2 (T − t), (3.1)

where γ is the risk aversion coefficient, σ2 is the mid-price variance, (T − t)
is the remaining time.

In the second step, the optimal spread size (st) around the reservation
price rt is determined (see Equation (3.2)). The execution probabilities of
the quoted bid and ask are assumed to be given by a Poissonian process,
where the arrival rates are functions of the relative distance to the mid-
price. Moreover, the size of market orders is considered to follow a power
law distribution (fQ(x) ∼ x−1−α) and the market impact function to have a
logarithmic shape (∆p ∼ K ln(Q)).

st = γ σ2 (T − t) + (2/γ) ln(1 + γ/k) (3.2)

The final solution of st depends on the mid-price variance σ2, remaining
time (T − t), risk aversion γ and a parameter k = αK, which captures
the overall market environment as a combination between exponent α and
coefficient K. The optimal quotes are set at qa,bt = rt(It)±st/2. A numerical
simulation shows that the Avellaneda-Stoikov strategy has a smaller average
return, but also a smaller variance, compared to a näıve fixed offset and
symmetric around the mid-price strategy.

Simplified versions of the Avellaneda-Stoikov model have been proposed
in the literature. In Aldridge (2009), the arrival rates are not functions of
the relative limit distance any more, but just per minute basis counters of
the best bid changes λb, respectively best ask changes λa. Every new minute,
the optimal bid and ask prices are computed as in Equation (3.4), relative

14“The hidden alpha in equity trading”, Oliver Wyman Consulting, 2013.
15As explained later, information-based models do not rely on external fundamental

information, but try to identify the true value from the market itself.
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to the buy and sell reservation prices defined in Equation (3.3) or directly to
the outstanding bid and ask quotes.

rb,at (It) = mt − γ (It ± 1/2)σ2 (T − t) (3.3)

pbt = rbt−
1

γ
ln

(
1− γ λbt

λbt − λbt−1

)
; pat = rat +

1

γ
ln

(
1− γ λat

λat − λat−1

)
(3.4)

In case the optimal bid price pb crosses the current ask quote, a unitary
market buy order is initiated or, vice versa, a market sell order. Alterna-
tively, a market buy order is triggered if the optimum bid price is closer to
the current bid than the difference between the optimum ask price and the
current ask or, vice versa, a market sell order. At the end of the day, the
entire net position is offset at market prices.

The second class of market making strategies tries to extract the infor-
mation which other market participants may possess, by analysing the order
flow (buying and selling pressure) and/or the shape of the order book. The
theoretical model proposed in Glosten and Milgrom (1985) relies on Bayesian
learning to combine new information into the market maker’s prior beliefs
about the true market value of the traded asset (V ) – the general form of
the Bayes rule is:

Pr(h|D) =
Pr(h)Pr(D|h)

Pr(D)
, (3.5)

where Pr(h|D) is the conditional posterior belief, Pr(h) the prior belief,
Pr(D|h) the degree to which the hypothesis predicts the observed data (like-
lihood), Pr(D) the prior probability of the data.

In a market making setting, the observed data (D) can take the form
either of a buy or of a sell market order. The market maker assumes two mu-
tually exclusive hypothesis: the true market value deviates from (h : V ≶ m)
or is equal to the current mid-price (h̄ : V = m).16 The marginal likeli-
hood of the data Pr(D) can be independently computed using the theorem
of total probability: Pr(D|h)Pr(h) + Pr(D|h̄)Pr(h̄). Let the probabil-
ity of informed trading Pr(informed) = α.17 If the market maker cannot
distinguish between informed and uninformed trading (α = 0.5), then the
probability of receiving a market order given that the true market value is

16Equivalently, the two hypothesis can be considered the true market value is outside
(h : V < Pb, V > Pa) or in-between the current market maker spread (h̄ : Pb ≤ V ≤ Pa).

17An estimate for informed trading could be given by the volume imbalance and trade
intensity indicator (VPIN toxicity metric) proposed in Easley et al. (2012).
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lower/higher is given by Pr(D|h) = 0.75.18 Complementary, the probabil-
ity of a market order under the assumption of an “equal” market value is
Pr(D|h̄) = 1−Pr(D|h) = 0.25. If the market maker is uninformed, then the
unconditional probabilities of the two hypothesis are Pr(h) = Pr(h̄) = 0.5.
Finally, the optimal bid and ask quotes, which include the adverse trading
risk and assume zero profit (perfect competition), are computed as expecta-
tions of the true market value given the two possible market events:

Pb = E[V |sell] ;Pa = E[V |buy] (3.6)

The Das model in Das (2005, 2008) extends the theoretical model of
Glosten and Milgrom by introducing a method to explicitly compute the
solutions to the quote-setting Equation (3.6), based on an online probabilistic
estimate of the true underlying value of the asset. This density estimate takes
the form of a discrete distribution Pr(V = x), computationally represented
as a vector with a range from µV −4σV to µV +4σV , where µV and σ2

V are the
mean and variance of the true value. The vector is initialized with a normal
pdf N(µV , σV ) and is continuously updated by means of a nonparametric
density estimation technique. There are three possible market events which
lead to updating the density estimate: receiving a buy, a sell or no market
order. E.g., in the case of a buy order, standard Bayesian updating, as
described in Equation (3.7), is applied over the entire vector. The buy prior
Pr(buy) in the denominator is the same for all x and can be ignored during
the update, before renormalizing.

Pr(V = x|buy) =
Pr(V = x)Pr(buy|V = x)

Pr(buy)
, (3.7)

where Pr(V = x) is the prior density estimate.

According to Equation (3.6), the market maker’s optimal quotes are equal
to the conditional expected value given that a particular type of order is
received. E.g., an approximation of the ask price Pa = E[V |buy] can be
computed as in Equation (3.8).

Pa =
Vmax∑

xi=Vmin

xi Pr(V = xi|buy) =

Vmax∑
xi=Vmin

xi Pr(V = xi)Pr(buy|V = xi)

Pr(buy)

(3.8)

18The market order can be generated either by an informed or uninformed trader. If
the trader were informed, the probability of placing exactly an order of the respective sign
is 100%, while if uninformed, the probability of placing a buy or sell order is equal to 50%.
Therefore, the conditional probability Pr(D|h) = α+ 0.5 (1− α).
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Such quotes correspond to a zero-profit situation and represent the max-
imum bid price and the minimum ask price the market maker is willing to
quote in order to cover the adverse selection risk.

Das (2005) also proposes a basic profit-making strategy, achieved by
widening the spread around the break-even bid-ask spread with a fixed
amount. The market maker faces a trade-off between large spreads (higher
profits) with few round-trips and small spreads with many trades. The opti-
mal solution of this trade-off depends on the market informativeness degree,
as well as on the level of competition. When the competition between mar-
ket makers is high, Das (2008) suggests placing bids and asks just inside the
current spread as long as they are associated with a non-negative expected
profit, i.e. the Glosten and Milgrom condition. It is to be noted that the only
signals about the true market value come from direct trading, so that quote
placement plays an important role in sampling the distribution on trades
induced by the true value.

The prior of a buy order is:

Pr(buy) =
Vmax∑

xi=Vmin

Pr(V = xi)Pr(buy|V = xi) (3.9)

The computation of the above conditional probabilities depend on as-
sumptions about the trader population. Das (2008) describes a market maker
trading against informed agents, who only know the true value under the form
of a noisy signal W = V + N(0, σW ).19 In other words, the noisy informed
trader sends a buy market order if W > Pa, a sell order if W < Pb and no
order if Pb ≤ W ≤ Pa.

20 Under these conditions, the conditional probability
of a buy order is:

Pr(buy|V = x) = Pr(W > Pa) = Pr(N(0, σW ) > Pa − x) (3.10)

The optimum ask and bid quotes are the solutions of the fixed point equa-
tions given by substituting Equation (3.10) into Equation (3.8). Das (2005)
also finds out that, following a fundamental shock, the market-maker’s spread
increases, reflecting its uncertainty about the underlying true value. While
the probability mass of the density estimate becomes more concentrated,
spreads also get lower. The drawback is that the pdf values in the outer re-
gions are also getting very small and hinder the estimate update when future
fundamental shocks occur. A solution proposed by Das (2005) is to recenter
the density estimate around the current expected value and reinitialize it
with a normal distribution after a fundamental jump has happened – such

19The σW parameter can control for the level of order flow toxicity (informativeness).
20The case of a mixed populations of uninformed and (perfectly or noisy) informed

traders is analysed in Das (2005) and described in Appendix A, B.
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a moment could be identified by an order imbalance-based classifier which
simply counts the difference between the number of buy and sell orders (or
bought and sold volumes) over a certain amount of time. Another extension,
which takes into account also the portfolio risk, is presented in Das (2005).
The proposed technique consists in shifting the pre-determined bid and ask
quotes with a linear function of the current inventory I: f(I) = −γ I, where
γ is a risk-aversion coefficient.21

Another market making model based on the Bayesian framework is in-
troduced in Lin (2006). This time, the true value belief is updated by means
of a discrete Kalman filter, where the measurement is given by the net order
flow observed over some period of time. A different framework used to de-
rive market making algorithms is reinforcement learning. Chan and Shelton
(2001) train a market-maker strategy which observes three (discrete) state
variables: own inventory, order flow imbalance, bid-ask spread. The market
maker’s set of actions include changing of the bid and/or ask prices, while the
quoted sizes remain fixed. Finally, the reward function takes into considera-
tion multiple objectives by means of a weighted-linear combination between
profit and bid-ask spread (as a measure of market quality).

3.2 Active HFT - order anticipators

As opposed to their passive counterpart, active HFTs act as liquidity takers,
by trading with aggressive, liquidity-consuming market-orders. There are
two main lines of active HFT development: the first one seeks to predict
market momentum and incoming order-flow and makes profits from short-
term market shifts, while the second one tries to exploit the technological
structure of the trading network system and superior speed advantage in
order to detect and “front run” distributed executions of large orders.

Many order anticipator strategies have existed before the advent of HFT
and have only been adapted and applied at higher-frequencies, where human
traders are not able to react. Traditionally, according to Harris (2002), order
anticipators try to profit from information about third parties’ trading inten-
tions, rather than from own fundamental information regarding the traded
asset. This type of profit-motivated speculators, also described as “parasitic
traders” or “predatory”, can be further subdivided between front runners,
sentiment-oriented technical traders and squeezers. While front-running and
squeezing are considered to be illegal strategies, due to exploiting confidential
information or being guilty of market manipulation, the sentiment-oriented
technical traders (technical analysts or chartists) use public available infor-
mation in order to predict future price returns. Depending on the underlying
time-frame, various sources of information can be used by these technical
strategies. For example, end-of-day strategies process aggregated informa-
tion related to the daily price (open, high, low, close, average, median) or

21Alternatively, a sigmoid function allows for a gradual increase, as well as for limiting
the inventory control impact.
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to the daily turnover in order to generate profitable trading signals. On the
other side, intraday trading relies on additional information available at the
market microstructure level, such as order book liquidity, order flow, trade
and tick history. The main idea is to identify persistent relationships between
various market indicators and future short-term market moves or incoming
customer order flow, upon which profitable trading strategies can be built.

In a high-frequency setting, the analysed time-series are usually in a raw
format (tick-by-tick), i.e. without any aggregation, and the information pro-
cessing as well as trading are conducted in a non-discretionary and automated
fashion by means of computer programs (no human intervention). The actual
trading rules can either be specified by a human specialist or can be “learned”
from past data through various quantitative and computational methods
(e.g., machine learning, artificial intelligence, evolutionary techniques). A
related general concern, conformed by Brogaard (2010), is that HFT-based
strategies are not very diversified or, equivalently, their trading signals are
highly correlated, leading to an exacerbation of market movements.

One simple HFT strategy proposed by Aldridge (2009) is based on order
flow short-term autocorrelation, which consists in opening position in the
direction of the order flow imbalance, i.e. the difference between the cumu-
lative number/volume of buy and sell orders, or buyer- and seller-initiated
trades. Another strategy relies on mimicking aggressive trading, as a proxy
for informed traders’ expectations. An indicator measuring the orders’ ag-
gressiveness can be computed as the percentage of market as opposed to limit
orders. Besides the share of market orders, where limit orders are placed,
i.e. the shape of the order book, can also reveal the future expectations of
market participants. For example, the order book imbalance, quantified as
the difference between the cumulated volumes up to a certain depth level
on each side of the order book, can influence the aggressiveness of incoming
orders in two ways.22 When their side of the book is thicker and crowded,
traders price their orders more aggressively in order to increase their order
execution probability (competition effect). Conversely, traders become less
aggressive when the opposite side is deeper, forecasting a favorable short-
term order flow (strategic effect). Order-flow related are also the inter-trade
and price/volume durations, which can indicate changes in liquidity and
volatility due to new information.23 Short-term momentum/reversal can also
be detected by means of econometric models taking into consideration phe-
nomenological observations such as autocorrelation of price returns (serial
dependence for small intraday scales), fat tails and volatility clustering.

A second class of active HFTs tries to identify patterns of execution al-
gorithms (processing large institutional orders) and trade ahead the remain-

22Alternatively, the book imbalance and the short-term price return can be assessed
by comparing the bid-ask midpoint with the weighted price at a given depth of the order
book as in Cao, Hansch and Wang (2009).

23The time interval between subsequent volume changes of a specified magnitude is
known as volume duration.
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ing execution program (“electronic front-running”). For example, when the
liquidity is fragmented over a number of trading venues, the execution algo-
rithms route their orders across different locations, and in case their trading
activity is exposed, ultra-HFTs can exploit their ultra-low-latency compet-
itive advantage and profit from the “working” of the large order (latency-
based arbitrage). Similarly, algorithmic traders can be taken advantage of if
their order generating pattern is predictable from the observable order flow
(order-flow detection). In the same framework of multiple exchanges, ultra-
HFTs can profit from temporary market inefficiencies by picking off outdated
orders belonging to market participants with a higher reaction latency (slow-
market arbitrage). As a negative side effect, the institutional investor suffers
from an increased market price impact and, consequently, a reduced “alpha”.
Retail investors are usually not affected because their orders are too small.
First of all, it is questionable whether the term “front-running” is justified or
not in this case, since the ultra-HFTs do not have direct access to the actual
order to be executed, and this is only induced in a noisy manner from public
trading data. On the execution side, smart routing strategies which are able
to minimize the speed advantage of ultra-HFTs have been developed. E.g.,
Royal Bank of Canada’s THOR R© routing technology precomputes the rout-
ing latencies and sends the different slices of the total order in such a way
so they reach the targeted trading venues at the same time and therefore
eliminating any information leakage.

4 Conclusions

The current contribution describes a range of computer-based trading strate-
gies which are widely applied by market participants, in the context of nowa-
days increased trading automation and market fragmentation. The strategies
were classified both based on the profile of market participants and on the
technology type. Informed traders use algorithmic trading strategies in or-
der to reduce their transaction costs and smart order routing technologies
in order to minimize information leakage. Based on their risk profile and
on the performance benchmark for the execution, different algorithmic trad-
ing strategies are preferred. The classic optimisation problem of trading has
been defined and both basic implementations, as well as extended versions
of the two main algorithmic trading strategies, i.e. Volume Weighted Aver-
age Price and Implementation Shortfall, have been introduced. In the case
of uninformed liquidity traders or market-makers, high-frequency trading
technologies have been introduced in order to maintain the low-latency ad-
vantage as trading edge. Several models of market making strategies, which
can be classified in two types based on their core objective, i.e. inventory-
and information-based models, have been introduced. For the latter type,
two different machine learning frameworks, i.e. Bayesian learning and Re-
inforcement learning, have been discussed. Finally, order anticipators make
use of the increased computational power in order to process in real time
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a larger amount of trading information – including the rich microstrucutre
data, e.g., order flow and order book data – and to develop new predictive
models which can be applied at high-frequency time-series. Others simply
rely on their ultra-low-latency advantage and speculate the fragmented struc-
ture of the trading network in order to detect and “front run” the execution
of large orders.
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A Das model with uninformed and perfectly

informed traders

Assume the proportion of informed traders to be α. Uninformed traders send
buy and sell orders with equal probability 0.5. The informed trader sends a
sell market order with certainty if V < Pb, a buy market order if V > Pa and
no order otherwise (Pb ≤ V ≤ Pa).

The conditional probabilities are:

Pr(buy|V ≤ Pa) = 0.5 (1− α)

Pr(buy|V > Pa) = 0.5 (1− α) + α = 0.5 (1 + α)

Pr(sell|V < Pb) = 0.5 (1− α) + α = 0.5 (1 + α)

Pr(sell|V ≥ Pb) = 0.5 (1− α)

The priors of buy and sell orders are given by:

Pr(buy) =
Vmax∑

xi=Vmin

Pr(buy|V = xi)Pr(V = xi)

=
Pa∑

xi=Vmin

Pr(buy|V = xi, xi ≤ Pa)Pr(V = xi)

+
Vmax∑
xi=Pa

Pr(buy|V = xi, xi > Pa)Pr(V = xi)

= 0.5 (1− α)
Pa∑

xi=Vmin

Pr(V = xi) + 0.5 (1 + α)
Vmax∑

xi=Pa+1

Pr(V = xi)

Pr(sell) =
Vmax∑

xi=Vmin

Pr(sell|V = xi)Pr(V = xi)

=

Pb−1∑
xi=Vmin

Pr(sell|V = xi, xi < Pb)Pr(V = xi)

+
Vmax∑
xi=Pb

Pr(sell|V = xi, xi ≥ Pb)Pr(V = xi)

= 0.5 (1 + α)

Pb−1∑
xi=Vmin

Pr(V = xi) + 0.5 (1− α)
Vmax∑
xi=Pb

Pr(V = xi)
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The ask and bid quote-setting equations (fixed point equations):

Pa = E[V |buy] =
Vmax∑

xi=Vmin

xi Pr(V = xi|buy)

=
Vmax∑

xi=Vmin

xi Pr(buy|V = xi)Pr(V = xi)

Pr(buy)

=
1

Pr(buy)

Pa∑
xi=Vmin

xi Pr(buy|V = xi, xi ≤ Pa)Pr(V = xi)

+
1

Pr(buy)

Vmax∑
xi=Pa+1

xi Pr(buy|V = xi, xi > Pa)Pr(V = xi)

=
0.5 (1− α)

Pr(buy)

Pa∑
xi=Vmin

xi Pr(V = xi) +
0.5 (1 + α)

Pr(buy)

Vmax∑
xi=Pa+1

xi Pr(V = xi)

Pb = E[V |sell] =
Vmax∑

xi=Vmin

xi Pr(V = xi|sell)

=
Vmax∑

xi=Vmin

xi Pr(sell|V = xi)Pr(V = xi)

Pr(sell)

=
1

Pr(sell)

Pb−1∑
xi=Vmin

xi Pr(sell|V = xi, xi < Pb)Pr(V = xi)

+
1

Pr(sell)

Vmax∑
xi=Pb

xi Pr(sell|V = xi, xi ≥ Pb)Pr(V = xi)

=
0.5 (1 + α)

Pr(sell)

Pb−1∑
xi=Vmin

xi Pr(V = xi) +
0.5 (1− α)

Pr(sell)

Vmax∑
xi=Pb

xi Pr(V = xi)

Update equations:

1. Receive a market buy order: multiply all probabilities for V = xi, xi >
Pa by 0.5 (1 + α) and all the other by 1− 0.5 (1 + α), before renormalizing.

2. Receive a market sell order: multiply all probabilities for V = xi, xi <
Pb by 0.5 (1 + α) and all the other by 1− 0.5 (1 + α), before renormalizing.
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B Das model with uninformed and noisy in-

formed traders

The conditional probabilities are:

Pr(buy|V = xi, xi ≤ Pa) = (1− α) 0.5 + αPr(xi +N(0, σW ) > Pa)

= (1− α) 0.5 + αPr(N(0, σW ) > Pa − xi)

Pr(buy|V = xi, xi > Pa) = (1− α) 0.5 + αPr(xi +N(0, σW ) > Pa)

= (1− α) 0.5 + αPr(N(0, σW ) < xi − Pa)

Pr(sell|V = xi, xi < Pb) = (1− α) 0.5 + αPr(xi +N(0, σW ) < Pb)

= (1− α) 0.5 + αPr(N(0, σW ) < Pb − xi)

Pr(sell|V = xi, xi ≥ Pb) = (1− α) 0.5 + αPr(xi +N(0, σW ) < Pb)

= (1− α) 0.5 + αPr(N(0, σW ) > xi − Pb)

Pr(no order|V = xi, xi < Pb) = αPr(xi +N(0, σW ) > Pb)

= αPr(N(0, σW ) > Pb − xi)

Pr(no order|V = xi, Pb ≤ xi ≤ Pa) = α (Pr(xi +N(0, σW ) > Pb)+

Pr(xi +N(0, σW ) < Pa)) = α (Pr(N(0, σW ) > Pb − xi)+
Pr(N(0, σW ) < Pa − xi))

Pr(no order|V = xi, xi > Pa) = αPr(xi +N(0, σW ) < Pa)

= αPr(N(0, σW ) > xi − Pa)

The priors of buy and sell orders, the optimal ask and bid quotes, as
well as the updating equations can be derived by substituting the above
conditional probabilities in the general forms 3.9, 3.8 and 3.7.
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