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Abstract 

 
Purpose – The main purpose of this paper is to investigate the dynamic behavior of a 
bounded rational monopolist with a general nonlinear demand and quadratic cost 
functions reflecting diseconomies of scales. 
Design/methodology/approach – We suppose that locally the monopoly firm uses a 
gradient mechanism and looks at how the rate of growth of the quantity affects the 
variation of profits.  
Findings – We prove that the nonzero steady state is exactly the level of production 
that maximizes profits, as can be seen in the classic microeconomic theory. However, 
complex dynamics can arise.  
Research limitations/implications – For some values of a parameter there is a 
locally stable equilibrium which is the value that maximizes the profit function. 
Increasing these values, the equilibrium becomes unstable, through period-doubling 
bifurcation. 
 Originality/value – The result indicates that a limited reaction of the monopolist to 
changes in profits can stabilize the quantity produced. On the other hand turbulences 
in the market are generated by an overreaction. 
 
Keywords: Monopoly, Difference Equation, Equilibrium, Stability, Chaotic 
Behavior 
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1. Introduction 
The canonical approach of the 

monopoly theory is essentially static 
and the monopolist has full 
rationality: both perfect computa-
tional ability and large informational 
set in such a way that she can 
determine both quantity and price to 
maximize profits. However, in the 
real market producers do not know 
the entire demand function, though it 
is possible that they have a perfect 
knowledge of technology, represe-
nted by the cost function. Hence, it is 
more likely that firms employ some 
local estimate of the demand. This 
issue has been previously analyzed 
by Baumol and Quandt, 1964; Puu, 
1995; Naimzada and Ricchiuti, 2008, 
Askar, 2013. Naimzada and Ricchiuti 
evaluate a discrete time dynamic 
model with a cubic demand function 
without an inflexion point and linear 
cost function.  

In recent years, many researchers 
have demonstrated that economic 
agents may not be fully rational. Even 
if one tries to perform things 
correctly, it is important to utilize 
simple rules previously tested 
(Kahneman et al., 1986; Naimzada 
and Ricchiuti, 2008). Efforts have 
been made to model bounded 
rationality to different economic 
areas: oligopoly games (Agiza, 
Elsadany, 2003; Bischi et al., 2007); 
financial markets (Hommes, 2006); 
macroeconomic models such as 
multiplier-accelerator framework 

(Westerhoff, 2006). In particular, 
difference equations have been 
employed extensively to represent 
these economic phenomena (Elaydi, 
2005; Sedaghat, 2003).  

In this paper, the equilibrium state 
of a bounded rational monopolist 
model is studied. It is assumed a 
general demand and quadratic cost 
functions and that locally the 
monopoly firm uses a gradient 
mechanism and looks at how the rate 
of growth of the quantity affects the 
variation of profits. We show that 
complex dynamics can arise and the 
stability of the nonzero equilibrium 
state is discussed. The complex 
dynamics, bifurcations and chaos are 
displayed by computing numerically 
Lyapunov numbers and sensitive 
dependence on initial conditions. 

 
2. The model 

The inverse demand function has 
a general form, it is downward 
sloping and concave: 

𝑝 = 𝑎 − 𝑏𝑞𝑛, 𝑛 ∈  𝛧, 𝑛 > 2   (1) 

where p indicates commodity price, q 
indicates the quantity demanded and 
a and b are positive constants. The 
downward sloping is guaranteed if:  

n 1dp
nbq 0

dq

  

  (2) 
that is if b>0. 

The quantity produced, q, is 
positive and non-negative prices are 
achieved if  
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n
a

q
b


 (3) 

We suppose that the cost function 
is quadratic   

 
2C(q)=cq  (4) 

Moreover, we assume the general 
principle of setting price above 
marginal cost, p - c > 0, for each non 
negative q; that is, a > c. The main aim 
of the firm is to maximize the 
following profit function 

n 2( q ) ( a bq )q cq     (5) 
This function is concave and gives 

the following first order condition: 

n 1d
a 2cq ( n 1)bq 0

dq

     

 
   (6) 

The marginal profit is strictly 
decreasing with range in the interval

( ,a ] , therefore Eq. (6) has a unique 

solution *
q in this interval and the 

profit has a maximum at *
q . If 

*
( q ) 0   a positive equilibrium 

production is guaranteed. 
To achieve increasing profits, it is 

assumed that locally the monopoly 
firm, using a gradient mechanism, 
looks at how the rate of growth of the 
quantity affects the variation of 
profits. A positive (negative) 
variation of profits will induce the 
monopolist to change the quantity in 
the same (opposite) direction from 
that of the previous period. No 

changes will occur if profits are 
constant. This mechanism can be 
represented as follows: 

q( t 1) q( t ) d
k , t=0,1,2,...

q( t ) dq( t )

 


    (7) 
where k>0 is the speed of adjustment 
to misalignments. Substituting Eq. (6) 
in (7), we obtain the following one-
dimensional nonlinear difference 
equation: 

n

q( t 1) q( t ) kq( t )

             [ a 2cq( t ) ( n 1)bq ( t )]

   

  

    (8) 
 

3. Dynamical Analysis 
3.1 Equilibria and stability 
If 

nf ( q ) q kq[ a 2cq ( n 1)bq ]    

    (9) 
the fixed points of Eq. (8) are the 
solutions of the equation f ( q ) q , 

and then the nonzero fixed point is 
the solution q* of Eq. (6). Since 

 

 
2

* * *

2

df d
q 1 kq ( q )

dq q


 

  
   (10) 
the steady state is locally stable if: 

* *1 kq ( q ) 1  
 (11) 

or, equivalently, 

* *

2
0 k

q ( q )
 

  (12) 
It follows that: 
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Proposition. Map (8) has a unique     
nonzero     steady     state 
𝑞(𝑡) = 𝑞∗ which is exactly the 
quantity that maximizes profits. It is 

locally stable if 
* *

2
0 k

q ( q )
 

  
3.2. Numerical simulations 
The previous result indicates that 

a limited reaction of the monopolist 
to changes in profits can stabilize the 
quantity produced. On the other 
hand turbulences in the market are 
generated by an overreaction. To 
shed some light on what really 
happens in the market we employ a 
numerical analysis. Fixing the other 
parameters of the model as follows: 

a 4,b 0.6 ,c 0.5   , then, for n 6 , 
*

q 0.948 , *
k 0.104 . The dynamic 

map (8) satisfies the canonical 
conditions required for the flip 
bifurcation (Abraham et al., 1997) and 
there is a period doubling bifurcation 

if *
k k . When *

k k  the fixed point 

is attracting, when *
k k  it is 

repelling. Therefore, there is a change 
in the nature of dynamics when 

*
k k , a unique asympto-tically 
stable period two-cycle arises.  

We graphically show how the 
behavior of the map (8) changes for 
different values of the reaction 
coefficient, k. (Kulenovic, Merino, 
2002). 

 In Figure 1, we show the map (8) 
when k = 0.09. From Eq. (13), the 
steady state is asymptotically stable.  

In Figure 2, we show the particular 
set of parameters that determines a 
period two-cycle, actually, with k = 
0.12. Further growth of k leads the 
attractor to follow a typical route of 
flip bifurcations in complex price 
dynamics: a sequence of flip 
bifurcations generate a sequence of 
attracting cycles in period 2n, which 
are followed by the creation of a 
chaotic attractor.  

In Figure 3, a cycle of period four 
is shown. To clarify the dynamics 
depending on k, we have reported a 
bifurcation diagram in Figure 4. It 
shows different values of quantity for 
different values of k, particularly 
between 0 and 0.18. It is easily 
illustrated that we move from 
stability through a sequence of a 
period doubling bifurcations to 
chaos.  

In Figure 4 are represented also the 
Lyapunov numbers of the orbit of 
0.01, for k = 0.17, versus the number 
of iterations of the map (8). If the 
Lyapunov number is greater of 1, one 
has evidence for chaos. To 
demonstrate the sensitivity to initial 
conditions of Eq. (6), we compute two 
orbits (100 iterations of the map) with 

initial points q 0.010   and q 0.00010  , 

respectively.  
The results are shown in Figure 5. 

At the beginning the time series are 
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indistinguishable; but after a number 
of iterations, the difference between 
them builds up rapidly.

 
 
 
Figure 2: Cycle of period 2, for a =4, b=0.6, c= 0.5, n=6 and k= 0.12 
 

 
 
 
 
 

Figure 3: Cycle of period 4, for a =4, b=0.6, c= 0.5, n=6 and k= 0.134 
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Figure 4: For n=6, bifurcation diagram with respect to the parameter k 
against variable q, for q0=0.01 and 550 iterations of the map (8) (left) and 
Lyapunov numbers of the orbit of 0.01, for k =0.17, versus the number of 
iterations of the map (8) (right). 

  
 
 
 
Figure 5: For n = 6, sensitive dependence on initials conditions: q plotted 

against the time, parameter value k=0.17 and initial condition q0 = 0.01 (left), 
q0 = 0.0101 (right). 

  
 
 
 

4. Conclusion 
In this paper, we have analyzed 

the effects on the equilibrium of a 
monopoly when the monopolist has 
bounded rationality. We employ a 
discrete time dynamical model such 
as that used by Askar 2013; however, 
we use a quadratic cost function and 
we suppose that locally the 

monopoly firm uses a gradient 
mechanism, looks at how the rate of 
growth of the quantity affects the 
variation of profits. We prove that for 
some values of a parameter there is a 
locally stable equilibrium which is 
the value that maximizes the profit 
function. Increasing these values, the 
equilibrium becomes unstable, 
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through period-doubling bifurcation. 
The complex dynamics, bifurcations 
and chaos are displayed by 
computing numerically Lyapunov 
numbers and sensitive dependence 
on initial conditions. The result 
indicates that a limited reaction of the 
monopolist to changes in profits can 

stabilize the quantity produced. On 
the other hand turbulences in the 
market are generated by an 
overreaction. The case of demand 
and cost functions of a more general 
form and comparing the results is left 
for future research.
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