Dreger, Christian; Wolters, Jürgen

Article — Published Version
Liquidity and Asset Prices: How Strong Are the Linkages?

Review of Economics and Finance

Provided in Cooperation with:
German Institute for Economic Research (DIW Berlin)

This Version is available at:
http://hdl.handle.net/10419/144573

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Liquidity and Asset Prices: How Strong are the Linkages?¹

Christian Dreger
German Institute for Economic Research (DIW Berlin)
Mohrenstr. 58, D-10117 Berlin, Germany
Tel: +49-30-89789-231 E-mail: cdreger@diw.de

Jürgen Wolters
Freie Universität Berlin
Boltzmannstr. 20, D-14195 Berlin, Germany
Tel: +49 30 838-52014 E-mail: wolters@wiwiss.fu-berlin.de

Abstract: The appropriate design of monetary policy in integrated financial markets is one of the most challenging areas for central banks. One hot topic is whether the increase in liquidity has contributed to the formation of price bubbles in asset markets in the years preceding the financial crisis. If linkages are strong, the inclusion of asset prices in the monetary policy rule may limit speculative runs and negative spillovers to the real economy in the future. To examine the impacts of liquidity shocks on real share and house prices, VAR models are specified for the US and the euro area, as well as global VARs to control for international feedback. The analysis points to some impact of liquidity shocks on house prices, but the effect is restricted to the US. Stock market prices are not affected. Thus, the results suggest that the link between liquidity and asset prices is fragile and far from being obvious.

JEL Classifications: E44, G10, C32, C52

Keywords: Liquidity shocks, Asset prices, GVAR analysis, Monetary policy

1. Introduction

The appropriate design of monetary policy in integrated financial markets is one of the most challenging areas currently facing central banks; see for example De Santis, Favero and Roffia (2008). One important aspect is whether monetary policy should respond to asset price fluctuations, if they are driven by mass psychology mechanisms such as herding behaviour (Shiller, 2005). Non fundamental increases in asset prices can trigger inflationary pressures and cause an inefficient allocation of resources. They could generate overconsumption patterns because of perceived wealth effects, and capital overaccumulation due to lower costs of capital (Dupor and Conley, 2004). Bursting bubbles may lead to financial crises that are transmitted to the real economy and undermine the growth perspectives for some time, like the collapse of the new economy after the turn of the century and the recent subprime and financial crisis.

A pre-emptive reaction of monetary policy might help to limit the buildup of financial imbalances and the risks for a bust in the future. Therefore, some authors have recommended that

¹ The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number 217266. We would like to thank an anonymous referee and the participants of the Global Liquidity and Asset Prices session of the annual meeting of the Verein für Socialpolitik, Kiel 2010, for helpful comments and suggestions.
central banks should lean against the wind, see for example Bordo and Jeanne (2002), Borio and White (2004) and Borio (2006). On the other hand, Bernanke and Gertler (2001) and Mishkin (2007) have stressed that rules that directly target asset prices can have undesirable side effects. In periods of rapid price increases in asset markets, a tighter monetary policy stance can lead to significant output losses. Thus, monetary policy should respond to asset prices only insofar as they affect inflation and output expectations.

Besides the difficulties that central banks are required to identify bubbles in the development of asset prices in real time, a leaning against the wind behaviour assumes a robust link between monetary policy and asset markets. In particular, liquidity shocks should have predictable consequences on asset prices. In order to explore the relationship, country individual and global VAR models are estimated for the US and the euro area. As a robustness check, asset prices are measured either by real share or real housing prices, respectively.

Generalized impulse response analysis and variance decomposition of forecast errors serve as the main tools of the analysis. The evidence shows that the impact of liquidity shocks on asset prices is far from being robust. While monetary policy does not affect share prices, it might have an impact on house prices, but this result is restricted to the US. Differences between the country individual and global VAR frameworks are not substantial in most cases, implying that the integration in financial markets does not have a huge impact on these results.

The rest of the paper is organized as follows. The main transmission channels between monetary policy and asset prices are reviewed together with the earlier empirical evidence in section 2. Section 3 discusses data properties and presents the results. Section 4 offers policy conclusions.

2. Monetary Policy and Asset Prices

Several arguments point to an impact of monetary policy on asset prices. A positive liquidity shock will affect the quantity and marginal utility of money holdings relative to other financial assets, consumption and capital goods. To restore equilibrium a rebalancing of the liquidity/asset ratio compatible with optimal portfolio allocation is required (Congdon, 2005). The adjustment process triggers higher asset demand and subsequent price increases, see Friedman (1988) and Meltzer (1995). According to Adrian and Shin (2008) this effect is amplified through a procyclical balance sheet management of the financial intermediaries. The leverage, defined as the ratio of total assets to equity is raised in asset price booms and reduced in downturns. The achievement of higher price stability might have reduced risk premia and asset price volatility, thereby creating excess credit pressures and additional leverage (see Borio and Lowe, 2002). Easily available credit, eventually caused by a global savings glut, led to low real interest rates that boosted asset demand, see Himmelberg, Mayer and Sinai (2005) and Taylor (2009). The presence of liquidity constraints can weaken these effects. Furthermore, the link between monetary policy and asset prices is not unidirectional. A reversed causation is justified from a money demand perspective. Higher asset prices increase demand for liquidity due to a rise in the net household wealth position. Greiber and Setzer (2007) and Dreger and Wolters (2009) have reported empirical evidence for this effect in the euro area.

Previous papers have explored the impact of monetary shocks on asset prices, but the results are far from being conclusive. Baks and Kramer (1999) stressed that a rise in global liquidity coincides with a decrease in real interest rates and an increase in stock market returns. Due to Roffia and Zaghini (2007), periods of strong monetary growth are likely to be followed by periods of high inflation, provided that money growth is accompanied by asset price inflation. A monetary expansion appears to be less harmful to overall inflation if asset prices do not accelerate. Adalid and Detken (2007) found that monetary policy and asset prices are associated over mechanically identified boom and bust cycles in asset markets. Shocks to real liquidity appear to be a major driver of real estate prices in boom episodes and have some explanatory power for the depth of post...
boom recessions. Belke, Orth and Setzer (2008) have emphasized that a global liquidity shock leads
to a rise in consumer and global house prices, where the latter reaction is more pronounced.
However, the results cannot be generalized, as there is no impact on share prices. Likewise, Rüffer
and Stracca (2006) failed to detect any significant reaction of asset prices to liquidity shocks.

3. Data Issues and Results

According to Giuliodori (2005) and other authors, the linkages between liquidity shocks
and asset prices are investigated by means of VAR models, as these tools are standard to analyse the
interactions between the relevant variables. However, the findings at the individual country level
might blur the effects actually at work. Liquidity shocks in one region can be absorbed by other
regions due to integrated financial markets, see Giese and Tuxen (2007) and Assenmacher-Wesche
and Gerlach (2008). To obtain robust evidence, both country individual and global VARs are
specified. Differences in the results can provide a measure on the impact of financial market
integration.

In a global VAR, the evolution of domestic variables can be driven by foreign series, as
international linkages are taken into account, see Pesaran, Shuermann and Smith (2004) and Dées,
Di Mauro, Pesaran and Smith (2007). Foreign variables refer to a weighted average of variables
from other regions and can enter contemporaneously and with lags. Weights might be chosen, for
example, with respect to GDP or trade shares. However, if only a few countries are involved,
aggregation is not strictly required. A global VAR can be re-written as an ordinary VAR for all
variables of the system, see the appendix. Therefore, different aggregation methods cannot affect
the results. In the normal case, the individual VARs augmented with foreign variables are estimated
and the global VAR is then obtained by solving for the contemporaneous explanatory variables
from the individual estimates. As there are only two regions with five endogeneous variables, a
sufficient number of degrees of freedom is available to estimate the VAR even without the
restrictions normally imposed on GVAR models.

The individual country VARs are specified for the US and the euro area (initial member
states) and comprise five variables: the nominal money stock as a liquidity measure (m), the
nominal interest rate for financial assets with long periods to maturity (i), the price level (p), real
income (y), and real asset prices (w), the latter proxied either as real share or housing prices. The
global VAR is based on these ten variables, i.e. the same set of variables for both regions. In
addition, the oil price enters as an exogeneous variable in all models. Generalized impulse
responses and variance decompositions of forecast errors are employed to avoid problems related to
the ordering of the variables (Pesaran and Shin, 1998).

The analysis is built on quarterly seasonally adjusted data ranging from 1985.1-2007.4, i.e.
the endpoint of the sample is just before the economic downturn due to the financial crisis. Nominal
monetary aggregates refer to end of period values for M2 in the US and M3 in the euro area.
Nominal income is GDP at current prices. Asset prices are share prices on the stock market or price
indexes for new houses. Series in real terms are obtained by deflating the respective nominal
measure with the GDP deflator (2000=100). The long term interest rate is the yield for government
bonds with 10 years to maturity. The main data source is the World Market Monitor provided by
Global Insight. GDP figures for the pre-euro area period are from Brand and Cassola (2004). All
series are expressed in logarithms, except of interest rates.

The VAR models are specified for the series defined in their levels. For integrated variables
this leads to consistent estimates, as cointegrating relationships are implicitly embedded (see Sims,
Stock and Watson, 1990). The lag length is determined by the Schwarz criterion, as this measure is
the most accurate one for integrated data and the relevant sample size (Ivanov and Kilian, 2005).
This parameter is equal to 2 in the country models and 1 in the global VAR environment. All
specifications are estimated with a linear time trend. As the impulse responses are estimated rather
imprecisely, one standard error confidence bands obtained by Monte Carlo methods are preferred
instead of the conventional significance levels, as recommended by Sims and Zha (1999).
Figure 1. Impulse response analysis, benchmark model: United States

Note: Generalized impulse responses. Dashed lines denote one standard error band.
First, individual country models are estimated without asset prices, see Figure 1. These models serve as a benchmark for the further analysis. Most responses are in line with theoretical reasoning. In line with standard models of money demand, a positive income shock raises liquidity in the euro area in the short and long run. In the US this effect holds in the long run. Furthermore, prices and long term interest rates are expected to increase due to higher inflation pressure. A shock in liquidity leads to an interest rate cut in the US, but to a rise in the euro area. Nonetheless, the latter reaction might be plausible, because prices also increase, and inflation expectations are embedded in the nominal interest rate. By the same sort of argument, a positive response of prices and income to higher interest rates can be justified. In the US, money declines after a positive price shock. This can indicate portfolio shifts from liquid to real assets. Overall, the benchmark does not produce implausible results and should be appropriate to examine the linkages between liquidity and wealth.

Figure 2 displays the interactions between liquidity and asset prices, when the latter is proxied by share prices, while figure 3 has the same information for the house price alternative. The two columns on the left are obtained from the country models, and the columns on the right hand side are from the global VAR. In order to save space, only these interactions are exhibited. The entire set of impulse responses is available from the authors upon request.
Figure 2. Impulse response analysis, share price model
Note: Generalized impulse responses. Dashed lines denote one standard error band.
First and second column country model, third and fourth column global model

Figure 3. Impulse responses, house price model
Note: Generalized impulse responses. Dashed lines denote one standard error band.
First and second column country model, third and fourth column global model
The evidence is broadly similar for the individual country and the global VAR, i.e. does not depend heavily on the degree of international spillovers. According to Figure 2, a significant long run effect of liquidity to share prices is observed for the US VAR. However, this effect is not robust: it vanishes, if international spillovers are taken into account. Reversed effects are not existent. As a striking feature, house prices react to liquidity shocks. However, a positive reaction is limited to the US (Figure 3). For the euro area, the multipliers are not significant, and become even negative in the global model. This result might be linked to institutional differences in the mortgage markets. The reversed channel, i.e. rising liquidity as a response to an increase in wealth seems to be more relevant and could be interpreted as an indication for the presence of wealth effects on money demand. In any case, these results cast serious doubts on the existence of a strong link running from liquidity to asset prices.

The variance decomposition exercise is broadly in line with the impulse responses, see Tables 1 and 2. According to some specifications, the variance of forecast errors in asset prices at longer forecasting horizons can be traced to a large extent to liquidity shocks, see the share price model in the US and the house price model for the euro area. However, this evidence is not robust. In particular, it cannot be replicated in the global VAR environment. In this sense, these results are blurred due to the exclusion of international spillovers.

Table 1. Forecast error variance decomposition of liquidity shock

(1) Share price model

<table>
<thead>
<tr>
<th></th>
<th>Country VAR</th>
<th></th>
<th>Global VAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>United States</td>
<td>Euro area</td>
<td>United States</td>
<td>Euro area</td>
</tr>
<tr>
<td>Steps</td>
<td>m</td>
<td>w</td>
<td>m</td>
<td>w</td>
</tr>
<tr>
<td>4</td>
<td>87.8</td>
<td>0.3</td>
<td>88.6</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>79.5</td>
<td>6.8</td>
<td>74.8</td>
<td>0.9</td>
</tr>
<tr>
<td>16</td>
<td>47.8</td>
<td>22.5</td>
<td>58.5</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Note: Entries show the percentage share of the forecast error variance of liquidity or asset prices, respectively, that are related to liquidity shocks.

(2) House price model

<table>
<thead>
<tr>
<th></th>
<th>Country VAR</th>
<th></th>
<th>Global VAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>United States</td>
<td>Euro area</td>
<td>United States</td>
<td>Euro area</td>
</tr>
<tr>
<td>Steps</td>
<td>m</td>
<td>w</td>
<td>m</td>
<td>w</td>
</tr>
<tr>
<td>4</td>
<td>81.6</td>
<td>2.6</td>
<td>85.1</td>
<td>8.1</td>
</tr>
<tr>
<td>8</td>
<td>71.9</td>
<td>2.1</td>
<td>51.2</td>
<td>42.9</td>
</tr>
<tr>
<td>16</td>
<td>41.8</td>
<td>2.2</td>
<td>18.8</td>
<td>75.9</td>
</tr>
</tbody>
</table>

Note: Entries show the percentage share of the forecast error variance of liquidity or asset prices, respectively, that are related to liquidity shocks.

2 If short term interest rates are used instead of the money stock, the differences between the results are not substantial.
Table 2: Forecast error variance decomposition of wealth shock

(1) Share price model

<table>
<thead>
<tr>
<th>Country VAR</th>
<th>Global VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>Euro area</td>
</tr>
<tr>
<td>Steps</td>
<td>m</td>
</tr>
<tr>
<td>4</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>4.5</td>
</tr>
<tr>
<td>16</td>
<td>10.5</td>
</tr>
</tbody>
</table>

(2) House price model

<table>
<thead>
<tr>
<th>Country VAR</th>
<th>Global VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>Euro area</td>
</tr>
<tr>
<td>Steps</td>
<td>m</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
</tr>
<tr>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>16</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Note: Entries show the percentage share of the forecast error variance of liquidity or asset prices, respectively, that are related to shocks in asset prices.

4. Conclusions

The appropriate design of monetary policy in integrated financial markets is one of the most challenging areas for central banks. One hot topic is whether the rise in liquidity in recent years has contributed to the formation of price bubbles in asset markets. If strong linkages exist, the inclusion of asset prices in the monetary policy rule might be an appropriate strategy to limit speculative runs and negative spillovers to the real economy in the future. In this paper the impacts of liquidity shocks on real share and house prices are investigated for the period from 1985.1 to 2007.4, i.e. the endpoint of the sample is just before the economic downturn due to the financial crisis. Standard VAR models are specified for the US and the euro area. To control for international dependencies, global VARs are also considered. Differences in the results can provide a measure on the impact of financial market integration. The specifications point to some impact of liquidity shocks on house prices in the US, while share prices are not affected. For the euro area, a significant relationship cannot be established. Thus, the results suggest that the link between liquidity and asset prices is fragile and far from being obvious.

References

