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Keywords: redistribution, public transfers, inequality, optimization methods, interior-point algorithm, bi-
section method
JEL-codes: C61, D63, H23, H53, I38
F: Freie Universität Berlin, School of Business and Economics, j.koenig@fu-berlin.de
♠: DIW Berlin/SOEP & Freie Universität Berlin, School of Business and Economics, cschroeder@diw.de

We thank Giacomo Corneo and Shlomo Yitzhaki for valuable discussions.

j.koenig@fu-berlin.de
cschroeder@diw.de


1. Introduction

All over the world, policy-makers seek to reduce inequalities in market incomes via transfers (Joumard et al.
(2012)). Their distributional effects – their progressiveness – are usually evaluated by comparing inequality
indices from the market and post-transfer distributions. Unanswered is the issue of the effectiveness of
the transfer scheme: Is there an alternative scheme - for a given public budget - that yields a stronger
inequality reduction, and what is the maximum feasible inequality reduction? The present paper shows that
the maximum inequality reduction need not imply income equalization at the bottom of the distribution,
and identifies optimal transfer schemes by solving constrained minimization problems.
In our context, the problem is to minimize the inequality in a distribution of exogenously given incomes by
means of non-negative transfers with a fixed public budget. If the objective function, the index of interest,
and the set of constraints is convex, the program can be solved by an interior-point algorithm. If the
objective function is quasiconvex and the set of constraints is convex, the program can be solved by the
bisection method. Convexity requires that the second derivative of the objective function is non-negative.
Quasiconvexity requires that the function’s sublevel sets are convex. For example, the variance is convex and
the Gini coefficient is quasiconvex. At the heart of every solution to a minimization problem is the descent
along the negative gradient of the objective function. The effect of a marginal monetary transfer to any
given household is determined by the first derivative of the objective function with respect to the income of
the recipient: the larger the first derivative in absolute terms, the larger the inequality reduction.
What determines the first derivative? Suppose the population is homogeneous, meaning all units are of equal
composition, thus having the same material needs. The first derivative of any standard inequality measure
increases in the income or rank of the transfer recipient. This means transfers should always be donated to
the household units with the smallest pre-transfer income.
As an example, suppose the planner’s objective is the minimization of the Gini index, the public budget is 1
monetary unit, and the income distribution is (14, 20, 30, 40, 80) with a Gini index of 0.33043. The optimal
post-transfer distribution is (15, 20, 30, 40, 80) with a Gini index of 0.32432. If the budget were 20 units, the
optimal post-transfer distribution would be (27.5, 27.5, 30, 40, 80) with a Gini index of 0.22927. The latter
distribution is optimal as the entire budget is channeled to the households at the bottom of the distribution
and marginal social utilities for all transfer recipients (first derivatives of the Gini w.r.t. transfers) are equal.
We call the underlying transfer rule “bottom fill-up,” as it minimizes income differences at the bottom of the
distribution.
Now suppose the population is heterogeneous, meaning household units differ in composition (i.e., number
of household members) and needs, with the latter being measured by an equivalence scale1. The common
practice of measuring inequality in a heterogeneous population involves two steps. The first step is the
needs adjustment of incomes by dividing a household unit’s income by its equivalence scale. The second step
involves the weighting of household units to construct the equivalent-income distribution. The traditional
approach in inequality measurement is to weight households by the number of household members (size
weighting). It is consistent with the welfarist’s principle of normative individualism: each person is as
important as any other. Then the first derivative of the objective function is not determined by income
rank alone. Consider again the aforementioned income distribution (14, 20, 30, 40, 80) but now suppose

1An equivalence scale measures household-size economies and differences in needs across household members (e.g. of adults
and children). For example, the square-root equivalence scale adjusts household income using the square root of the number
of household members.
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household sizes are (1, 4, 1, 4, 1). Under size-weighting, the sorted equivalent income distribution under
the square-root scale is ((10, 4) (14, 1), (20, 4), (30, 1), (80, 1)), with the first number giving equivalent
income and the second the unit’s weight. The resulting Gini index is 0.36215. For the public budget of 20
units, the bottom fill-up rule gives ((18, 4) (18, 1), (20, 4), (30, 1), (80, 1)) with a Gini of 0.24026. There
is, however, a transfer scheme with an alternative feasible post-transfer distribution ((17, 1), (18.5, 4), (20,
4), (30, 1), (80, 1)) that results in a lower Gini coefficient of 0.23940. Bottom fill-up fails to produce the
optimal distribution because, for the size-weighted heterogeneous distribution, the inequality-reducing effect
of transfers not only depends on (a) the recipient household’s rank in the equivalent income distribution
(as in case of a homogeneous population), but also on (b) the household’s weight, and (c) the transfer-
induced change in average, equivalent income (which again depends on the recipient household’s weight and
equivalence scale). The bottom fill-up rule ignores channels (b) and (c).2

The basic intuition why bottom fill-up fails for a size-weighted distribution is the following: Transferring
income not to the poorest but to a less poor and larger household unit can imply a stronger increase of
average equivalent income. This effect reduces any scale-invariant inequality index, and can overcompensate
the potential inequality reduction that could have been achieved by shrinking income gaps at the very bottom
of the distribution.
Section 2 shows solutions to the aforementioned optimization problem for convex and quasi-convex inequality
indices using constrained optimization techniques. Section 3 provides empirical applications. Section 4
concludes.

2. The Constrained Optimization Problem

Following Ebert and Moyes (2003), suppose households are defined by two attributes: household income
yi ≥ 0 and household type hi ∈ H={1,...,H}. Household material well-being is defined by equivalent income,
the ratio of household income and the household’s equivalence scale ESi = ES (hi) > 0. In total, the
population consists of N households and Q =

∑N
i=1

qi individuals, with qi denoting the number of individuals
in household i. Let wi denote the weight of a household. In case of a homogeneous or size-weighted
heterogeneous population wi = qi. In case of a needs-weighted heterogeneous population wi = ESi. Average
equivalent income is ȳ = (

∑N
i=1

wi(yi + ti)/ESi)/W with W =
∑N
i=1

wi.
The aim of the social planner is to minimize inequality for a given income distribution, Y , via transfers,
ti ≥ 0, with a given public budget, B =

∑N
i=1

ti.3 The planner assigns the same weight to each individual
of every household (size-weighting). Inequality is inferred from the distribution of equivalent income -
household income, yi, divided by equivalence scale, ESi. The planner’s objective function is an inequality

2Under size weighting, economies of scale create a wedge between household size and needs (equivalence scale). A possible
way to avoid the wedge is to abandon the principle of normative individualism, and weight households by needs rather than
size. Specifically, under needs weighting, the transfer-induced change of average equivalent income does not depend on the
recipient household’s composition. Characterizations of needs weighted distributions can be found in the theoretical works
of Ebert (1999), Ebert and Moyes (2003), and Shorrocks (2004). The downside is an “ethical dilemma because individuals
who have less extensive needs would be given a lower weight” (Wodon and Yitzhaki (2005, p. 3)).

3Extension to the case of the ti R 0 is straightforward, which enables a full derivation of a tax and transfer system. Further,
the investigator may introduce distortions. In the presence of such distortions, δi, the transfer net of the distortion is

t̃i = ti − δi and the post-transfer income is yi − δi + ti. The public budget is B =
∑N
i=1

ti.
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index, I : RN → R, which is at least twice continuously differentiable and convex or quasiconvex.4 Thus the
optimization problem is,

minimize
ti

I

({
wi,

yi + ti
ESi

}N
i=1

)
, (1)

subject to inequality constraints,

0 ≤ ti ∀i, (2)

and
N∑
i=1

ti ≤ B. (3)

This implies the following Karush-Kuhn-Tucker (KKT) conditions for optimality (first-order and slack con-
ditions,

∂L

∂ti
=

dI

({
wi,

yi+ti
ESi

}N
i=1

)
dti

− λ+ νi
!
= 0⇔

dI

({
wi,

yi+ti
ESi

}N
i=1

)
dti

∣∣∣∣∣∣∣∣
ti=t∗i

= λ− νi ∀i (4)

and
N∑
i=1

t∗i ≤ B, 0 ≤ t∗i ∀i, νi ≥ 0, νi(−t∗i ) = 0,

where λ is the Lagrange multiplier associated with the budget constraint and the νi are associated with
the non-negativity constraints of the ti. If the νi are zero and, consequently not binding at the optimum,
then the marginal social utilities of all transfer recipients should be equal to the shadow-price λ.5 Take, for
example, the Gini index,

G =
2

1/W
∑N
i=1

wi
yi+ti
ESi

Cov
(
yi + ti
ESi

, F

(
yi + ti
ESi

))

=
2

1/W
∑N
i=1

wi
yi+ti
ESi

1

W −W/N

N∑
i

wi

(
yi + ti
ESi

− ȳ
)(

F

(
yi + ti
ESi

)
− F̄

)
, (5)

where F (·) is the weighted cumulative distribution function (CDF).6

4Shalit and Yitzhaki (2005) minimize Gini’s mean difference subject to linear constraints in a finance context, while Yitzhaki
(1982) minimizes the squares of the differences of pre- and post-reform after-tax income subject to non-linear constraints.
Both papers consider a convex objective function, while we also provide solutions for quasiconvex functions.

5See Luenberger (1968) and Arrow and Enthoven (1961) for references on quasiconvex programming.
6We treat F (·) as twice differentiable, with first derivative denoted by f (·) and second derivative f ′ (·). The mean of the CDF

is F̄ = 1/W
∑N
i=1

wiF
(

yi+ti
ESi

)
. For the empirical application we use a modification in the formula of the Gini coefficient to

make it differentiable. See Appendix B.
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Let u = 2

1/W
∑N
i=1

wi
yi+ti
ESi

and v = 1
W−W/N

∑N
i=1

wi

(
yi+ti
ESi

− ȳ
)(

F
(
yi+ti
ESi

)
− F̄

)
. The first-order condition is,

∂G

∂ti
− λ =

∂u

∂ti
v +

∂v

∂ti
u− λ !

= 0, (6)

with
∂u

∂ti
=
−2Wwi/ESi(∑N
i=1

wi
yi+ti
ESi

)2

and

∂v

∂ti
=

1

W −W/N

[
wi
ESi

(
(F − F̄ ) +

(
yi + ti
ESi

− ȳ
)
f

(
yi + ti
ESi

))

−
N∑
j=1

wjwi
ESiW

(
(F − F̄ ) +

(
yj + tj
ESj

− ȳ
)
f

(
yi + ti
ESi

)) .
The derivative ∂u

∂ti
reflects the marginal effect of a transfer on average equivalent income. The derivative ∂v

∂ti

shows that the transfer’s effect on inequality depends on the recipient household’s weight and equivalence
scale wi

ESi
together with its position in the equivalent income distribution.

For a homogeneous population
∂u

∂ti
=
−2

Nȳ2
,

∂v

∂ti
=

1

N − 1

((F − F̄ ) + ((yi + ti)− ȳ) f (yi + ti)
)
−

N∑
j=1

1

N

(
(F − F̄ ) + ((yj + tj)− ȳ) f (yi + ti)

) .
and ∂ȳ

∂ti
= ∂ȳ

∂tj
∀i, j. Hence, the redistributive effect of ti depends on the household’s position in the equivalent

income distribution but not on the household’s weight (channel (b)). In addition, the transfer-induced change
in average income is independent of the transfer recipient (channel (c)).7

For a size-weighted heterogeneous population with wi = qi, all three channels are reflected in the first-order
conditions. The “bottom fill-up”-rule therefore secures optimality only for the case of a homogeneous dis-
tribution. For heterogeneous distributions, the optimal transfer scheme can be derived using constrained
optimization techniques. If I(·) is convex, the planner’s problem can be solved with an interior-point algo-
rithm If I(·) is quasiconvex, the bisection method can be used. Table 1 shows the categorization of several
well-known inequality measures with respect to whether they are convex or quasiconvex.8

7For a needs-weighted heterogeneous population wi = ESi ∀i, ∂u
∂ti

= −2
Wȳ2 ,

∂v

∂ti
=

1

W −W/N

((F − F̄ ) +

(
yi + ti

ESi
− ȳ
)
f

(
yi + ti

ESi

))
−

N∑
j=1

wj

W

(
(F − F̄ ) +

(
yj + tj

ESj
− ȳ
)
f

(
yi + ti

ESi

))
and ∂ȳ

∂ti
= ∂ȳ

∂tj
∀i, j. So, the redistributive effect of ti depends on channels (a) and (b) but not on (c).

8See Appendix A for proofs.
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Table 1: Properties of Selected Measures
Measure Convex Quasiconvex
Variance Yes Yes
Absolute Mean Deviation Yes Yes
Relative Mean Deviation No Yes
Gini Coefficient No Yes
Theil Index No Yes
Atkinson Index No Yes

2.1. Solution for Convex Indices

Following Boyd and Vandenberghe (2004), an interior-point algorithm solves convex optimization problems
of the type,

minimize f
(
{xn}Mn=1

)
(7)

subject to gj
(
{xn}Mn=1

)
≤ 0, j = 1, . . . , J

where f(·) and the functions gj(·) map from RM to R and are twice continuously differentiable and convex.
In the context of the aforementioned social planner’s problem the program would be stated as,

minimize
ti

I

({
wi,

yi + ti
ESi

}N
i=1

)
(8)

subject to 0 ≤ ti, i = 1, . . . , N

N∑
i=1

ti ≤ B.

Ideally, we would proceed to optimize a modified Lagrangian with first-order conditions given by equation
4. If we knew the optimal values of the Lagrange multipliers, ν∗i and λ∗, we could solve the first-order
conditions for the optimal t∗i , since

dI

({
wi,

yi+t
∗
i

ESi

}N
i=1

)
dti

− λ∗ + ν∗i = 0 ∀i. (9)

However, we know neither λ∗ nor ν∗i , so we need a way to work around this issue. To deal with the
inequality constraints, reformulate the objective function by adding terms that increase the value of the
objective function when the ti approach the boundary of the constraint set. This reformulation is the
so-called logarithmic barrier and is one of the most straightforward implementations of an interior-point
algorithm.9 The reformulated problem is,

9This section in no way aims to supply the reader with a full set of instructions to implement the method. We want to foster
understanding of why the method works and how it solves the problem of the planner.
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minimize Ĩ (t) = I

({
wi,

yi + ti
ESi

}N
i=1

)
+ ι
(
p, {ti}Ni=1

)
(10)

where ι
(
p, {ti}Ni=1

)
= −

∑N
i=1

1
pLog (ti) − 1

pLog
(
B −

∑N
i=1

ti

)
is a reasonable approximation to the indicator

function of the ti being inside the set of constraints, depending on how large p > 0 is.10 ι (·) will punish a
step toward the boundary of the constraint set by increasing the function value.11

The connection between equation (10) and the modified Lagrangian becomes transparent if the objective
function is restated. An equivalent problem to equation (10) is pI (·) −

∑N
i=1

Log (ti) − Log
(
B −

∑N
i=1

ti

)
. Now

assume that vector {t∗i }
N
i=1 solves the optimization problem and that {t∗i }

N
i=1 is within the constraint set,

then the following holds,

p

dI

({
wi,

yi+t
∗
i

ESi

}N
i=1

)
dt∗i

− 1

t∗i
−

(
−1

B −
∑N
i=1 t

∗
i

)
= 0 ∀i. (11)

To see how the first-order condition (11) resembles the first-order conditions (4), set ν∗i = − 1
pti

and λ∗ =
−1

p(B−
∑N
i=1 ti)

. Then,

dI

({
wi,

yi+t
∗
i

ESi

}N
i=1

)
dti

− λ∗ + ν∗i = 0 ∀i, (12)

which is the necessary and sufficient condition for the optimum of the modified Lagrangian.
Problem (10) can be solved by Newton’s method, proceeding through the three steps detailed below:

Step 1 Start from a feasible transfer schedule, t0, for example ti = B/N ∀i. This gives an initial value of
I (·), I0. To improve I0, calculate the Newton step, defined as,

∆t = −
(
∇2Ĩ (t)

)−1

∇Ĩ (t) . (13)

The Newton step is the product of two terms, the inverse of the Hessian,
(
∇2Ĩ (t)

)−1

, and the negative

gradient, −∇Ĩ (t). ∆t gives the change of the transfer schedule t0 (to be multiplied with step-size scalar, s).
Thus the Newton step gives the direction toward the optimum, defined by the weighted negative gradient.
Weighting by the Hessian provides the benefit of fitting the steps to the shape of the contour sets of the
function, as shown in Figure 1, thereby inducing fast convergence. The ellipse around t0 is given by the
points of unit distance measured in terms of the norm of the Hessian. Step 1 selects the point on the
boundary of the ellipse that gives the smallest value of the objective function.

Step 2 The line through the initial point t0 and the point on the boundary of the ellipse is defined by
t0 + s∆t (black line in Figure 1). Step 2 searches for the optimal s, s∗, that determines the point on the line

10As p approaches infinity, ι(·) approaches the indicator function I+

(
{ti}Ni=1

)
=

{
0,ti≥0 and

∑N
i=1 ti≤B

∞,ti<0 or
∑N
i=1 ti>B

.
11For the method to operate correctly, we require starting values of the ti to lie in the constraint set.

7



with the smallest level of Ĩ. This is the so-called line-search. One line-search variant is called backtracking.
It relies on the idea of approximating Ĩ along the direction ∆t with a first-order Taylor expansion. Set s = 1

and compute Ĩ. If the transfer-induced reduction of the objective function is sufficiently large, the line-search
algorithm terminates. Sufficiently large means that the new value of the objective function is smaller than
the first-order Taylor expansion around t0, scaled by α, i.e, Ĩ (t + s∆t) ≤ Ĩ(t) + αs∇Ĩ(t)′∆t. Parameter
α ∈ (0, 1) is set by the researcher to define the acceptable decrease of Ĩ along the current direction ∆t.12

Otherwise, rescale s with parameter β ∈ (0, 1), and repeat the above procedure. Again, β is determined by
the researcher.13 Completing step 2 gives the new point t1 = t0 + s∗∆t.

Step 3 Here the decrease of Ĩ between transfer scheme t0 and t1 in terms of the squared Newton decrement,

defined as ND2 (t) = ∇Ĩ(t)′
(
∇2Ĩ(t)

)−1

∇Ĩ(t), is evaluated. If the squared Newton decrement is smaller
than the specific threshold, 2ε, with ε defined by the researcher, then the algorithm terminates. Otherwise,
start with t1 and repeat Steps 1-3 again.
Newton’s method with backtracking line search is summarized in the box below.

Algorithm 1 Newton’s Method with Backtracking Line-Search
Start from some point t in the domain of Ĩ (·) and choose ε > 0 as the tolerance.

Compute ∆t and ND2 (t) at the current point.
while ND2 (t) /2 > ε do

1. Line-Search: Choose some α ∈ (0, 1) and a β ∈ (0, 1) Set s = 1.
while Ĩ (t + s∆t) > Ĩ(t) + αs∇Ĩ(t)′∆t do

Set s = βs.
end while
2. Update: Change the current point t to be t = t + s∆t

end while

2.2. Solution for Quasiconvex Indices

Solutions to quasiconvex optimization problems exploit the structure of the quasiconvex function, turning
the problem into a sequence of convex optimization problems: since every quasiconvex function has convex
sublevel sets, there exists a convex function Φk (I(t), k) for some fixed k. For example, the Gini index is
quasiconvex, but

∑N
j=1 wj

∑N
i=1 wi

∣∣∣yi+tiESi
− yj+tj

ESj

∣∣∣− k2W
∑N
i=1 wi

yi+ti
ESi

is convex.14 Finding the lowest k in
the sequence of convex optimization problems defined by k is the objective. This is achieved through the
so-called bisection method, which proceeds as follows:

Step 1 Determine an upper and lower bound of the inequality index, denoted u and l. For example, in the
case of the Gini, one can set l = 0 and u to its inital pre-transfer value. Further, define a level of tolerance
as stopping criterion, ε > 0.

12α cannot be set to be larger than 1, since, at best, the condition Ĩ (t + s∆t) = Ĩ(t) + s∇Ĩ(t)′∆t can be fulfilled with an
infinitesimal s. The Taylor expansion is a lower bound on the function Ĩ.

13Backtracking is quite insensitive to the choice of α and β. See Boyd and Vandenberghe (2004).
14See Appendix A.
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Figure 1: Newton’s Method with Backtracking Line-Search for the Function f(t) = et1+3t2−0.1 +
et1−3t2−0.1 + e−t1−0.1. Dotted lines are contour sets of f(t). The ellipse around t0 is given by{
x
∣∣‖x− t0‖∇2f(t0)= 1

}
. The black line is given by t0 + s∆t.

Step 2 Compute the candidate value for the sublevel set, k = l+u
2 .

Step 3 Use an interior-point algorithm to solve the inequality-constrained optimization problem: minimize
0 s.t. Φk(t) ≤ 0,

∑N
i=1 ti ≤ B , ti ≥ 0 ∀i. This is also called a feasibility problem, since any point will be

optimal if it lies within the feasible set. If a feasible transfer scheme is found, set u = k. Otherwise, set
l = k.

Step 4 Repeat steps 2-3 until u− l < ε.
The bisection method is detailed in the box below, and converges after Log2 (u− l/ε) iterations.

Algorithm 2 Bisection Method
Set the value l as the lower bound of the function and u as the upper bound. Define ε > 0 to be the tolerance.

while u− l ≥ ε do
1. Set k = l+u

2 .
2. Minimize 0 s.t. Φk(I(t)) ≤ 0,

∑N
i=1 ti ≤ B, ti ≥ 0 ∀i

if the xn found in the last step satisfy the constraints then
set u = k

else
set l = k

Below we give an illustration of the bisection method. The illustration assumes three iterations. In the first
two iterations the feasibility problem is solved and new upper bounds u1 and u2 are obtained. In the third
iteration no feasible solution is found, leaving the interval [l3, u3], which satisfies the tolerance condition.

3. Application

This section presents two applications of constrained optimization techniques in the context of inequality.
The first application relies on a synthetic dataset and serves two purposes: 1) to illustrate the difference

9



l0 u0

u1 =
l0+u0

2
l1

u2l2

l3 u3

u3 − l3 < ε

Figure 2: Bisection of Parameter Range [l0, u0]

between a transfer-scheme based on bottom fill-up and the optimal transfer scheme; and 2) to give an
impression of the optimization problem’s computational burden as a function of sample size. The second
application is a real-world implementation.
The synthetic dataset is presented in first four columns of Table 2. The planner’s exogenous budget is 100
monetary units. Two indices serve as criteria: the quasiconvex Gini coefficient and the convex absolute mean
deviation (AMD). The adjacent column provides the transfers under bottom fill-up, while the final column
provides the optimal transfer scheme.15

Table 2: Synthetic Data
yi qi ESi yi/ESi tfill-up topt

180 4 2 90 73.34 100
100 1 1 100 26.66 0
400 3 1.8 160 0 0
300 1 1 300 0 0
450 2 1.5 300 0 0
800 4 2 400 0 0
600 1 1 600 0 0
1100 1 1 1100 0 0

Inequality Measures
AMD 159.86 158.75
Gini 0.3415 0.3381

To gain an impression of the computational burden of the optimization, we sequentially take n-folds of the
original number of observations up to 2048 observations, while proportionally adjusting the transfer budget.
Figure 3 shows the computational burden in seconds using a computer with an Intel i7-4771 (3.5GHz)
processor, 8 GB RAM, Windows 10, and Matlab R2014b. It reveals that computer-time should not be an
issue for the applicability of the optimization procedures detailed above.
The real-world application deals with the potential re-distributive effects of a German pension reform, the
so-called Riester scheme, subject of the study in Corneo et al. (2015): For dependently employed individuals,
15We provide the Matlab-code for the Bisection Method in Appendix C. Implementation of the optimization of a convex

measure is straightforward. One needs to code the inequality measure and then optimize using fmincon.
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Figure 3: Computational Burden of Optimization in Seconds for Gini Coefficient and AMD along Increasing
Number of Observations.

the scheme grants allowances and tax cuts based on saving efforts and their household’s composition. The
policy was supposed to have a progressive effect on the German income distribution. Corneo et al. (2015)
find that the progressive effect of the Riester scheme on the distribution of equivalent incomes is quite small:
For 2010, they find a reduction of the Gini coefficient between the pre-Riester and post-Riester distribution
from 0.32960 to 0.32946. The total transfer volume is 2,790 million e. The question arises if the small effect
(0.04 percent reduction of the Gini coefficient) is due to the small transfer budget (compared to aggregate
household income) or an noneffective allocation (in terms of inequality reduction). Applying the bisection
method results in a Gini coefficient of 0.32633. Accordingly, the budget would have allowed an almost 1
percent Gini reduction.

4. Conclusion

One important aim of many transfer schemes is the reduction of inequality in the distribution of market
incomes. Because populations are heterogeneous, meaning households differ in composition and needs, simply
transferring income to the bottom of the distribution fails to guarantee a maximum inequality reduction.
Here we have suggested and implemented procedures that identify the optimal transfer schemes in terms of
inequality reduction relying on the interior-point algorithm and the bisection method, depending on whether
the inequality index of interest is convex or quasiconvex. In application, we show that computer time should
not undermine the applicability of the detailed procedures.
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Appendix

A. Proofs of Convexity and Quasiconvexity

The following proofs show the property of convexity or quasi-convexity of a few inequality measures. We
use yi to denote the income of an individual or a household. The proofs are without loss of generality as one
could easily replace yi with yi+ti

ESi
and scale the sums with weights wi without changing the outcomes of the

proofs. Using yi simply makes the exposition less convoluted.16

A.1. The Variance is Convex

The variance is defined as,

V
(
{yi}Ni=1

)
=

1

N

N∑
i=1

(
yi −

1

N

N∑
i=1

yi

)2

. (14)

The functions yi − 1
N

∑N
i=1 yi are affine and therefore convex for all i. Squaring these functions and then

summing preserves convexity. Therefore the variance is convex.

A.2. The Absolute Mean Deviation is Convex

The absolute mean deviation is defined as,

AMD
(
{yi}Ni=1

)
=

1

N

N∑
i=1

∣∣∣∣∣yi − 1

N

N∑
i=1

yi

∣∣∣∣∣ . (15)

Now the functions yi− 1
N

∑N
i=1 yi are composed with the absolute value, which is a norm. Norms are convex

and, therefore, the convexity of the expression is preserved.17 As before with the variance, this implies that
the absolute mean deviation as a whole is convex.

A.3. The Gini Coefficient is Quasiconvex

One definition of the Gini Coefficient is

G
(
{yi}Ni=1

)
=

1

2N
∑N
i=1 yi

N∑
j=1

N∑
i=1

|yi − yj | . (16)

To establish quasiconvexity of G(·), we need to establish that G(·) is quasiconvex in the yi. To make progress
we need to introduce sub-level sets of G(·). Call these Γ.

Γ = {x ∈ S : G(x) ≤ γ}, S = dom(G(·)) (17)

16If we optimize with respect to the ti, then yi+ti
ESi

is just an affine transformation of the ti and therefore preserves concavity
or convexity. Changing the sums to be weighted also preserves concavity or convexity. See Boyd and Vandenberghe (2004).

17See Boyd and Vandenberghe (2004).
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If the elements of Γ are convex for every γ, then G(·) is quasiconvex. The sub-level set for an arbitrary γ
may be denoted by

1

2N
∑N
i=1 yi

N∑
j=1

N∑
i=1

|yi − yj | ≤ γ (18)

N∑
j=1

N∑
i=1

|yi − yj | − γ2N
N∑
i=1

yi ≤ 0 (19)

This holds since the mean is non-negative. This expression can be shown to describe a convex set in yi by
establishing that the left-hand side is a convex function in yi for all γ. This is sufficient, since any sub-level
set of a convex function is a convex set and here we are studying the sub-level set of the function with
level-value zero.
To advance, we need to re-express the left-hand side as a function that has known convexity properties. We
note that the left-hand side can be expressed as the point-wise maximum of 2N−1 linear expressions in yi
with another linear function in yi subtracted. For example if N = 2 :

max {2 (y1 − y2) , 2 (y1 − y2)} − γ4
2∑
i=1

yi (20)

The point-wise maximum of linear expressions is convex, so the maximum term is convex.18 The second
term is linear in the yi and therefore also convex. So the whole left-hand side is convex for any γ. Ergo, the
Gini coefficient is quasiconvex in the yi.

A.4. The Relative Mean Deviation is Quasiconvex

This is builds on the result that the absolute mean deviation is convex. Since RMD =
AMD({yi}Ni=1)

1
N

∑N
i=1 yi

, we
can form the sublevel sets

AMD
(
{yi}Ni=1

)
− α 1

N

N∑
i=1

yi ≤ 0, (21)

where the lefthand side contains only convex terms making the sub-level sets of the RMD convex. Therefore,
the RMD is quasiconvex.

A.5. The Atkinson Index is Quasiconvex

The Atkinson-Index is defined as

Aε

(
{yi}Ni=1

)
= 1− 1

1
N

∑N
i=1 yi

(
1

N

N∑
i=1

(yi)
1−ε

) 1
1−ε

. (22)

18See Boyd and Vandenberghe (2004).
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First, consider only the second term of Aε and substitute p = 1− ε. Then

s
(
{yi}Ni=1

)
=

(
1

N

N∑
i=1

(yi)
p

) 1
p

. (23)

This function is concave whenever (p − 1) < 0 or equivalently ε ≥ 0.19 To show quasiconvexity then, we
need to establish that the sub-level sets of Aε are convex. This is sufficiently shown by verifying that the
negative term of Aε has convex sub-level sets, as the rest is just an affine transformation.
The sub-level sets are given by

− 1
1
N

∑N
i=1 yi

(
1

N

N∑
i=1

(yi)
1−ε

) 1
1−ε

≤ α (24)

−

(
1

N

N∑
i=1

(yi)
1−ε

) 1
1−ε

− α 1

N

N∑
i=1

yi ≤ 0 (25)

Now we determine whether the functions on the left-hand side are convex. If they are, they generate sets
that are convex given any α, which implies quasiconvexity. Since the first function is convex – the negative
of s

(
{yi}Ni=1

)
is convex – and the second function is affine, this is the case.

A.6. The Theil Index is Quasiconvex

The definition of the Theil Index is

T =
1

N

N∑
i

Nyi∑N
i yi

Log

[
Nyi∑N
i yi

]
. (26)

For quasiconvexity the sublevel sets of the Theil Index need to be convex. Accordingly,

1

N

N∑
i

Nyi∑N
i yi

Log

[
Nyi∑N
i yi

]
≤ α (27)

N∑
i

yiLog

[
Nyi∑N
i yi

]
− α

N∑
i

yi ≤ 0. (28)

The functions on the left-hand side induce convex sets if they are convex. The second term is affine and
therefore convex. The first term needs further investigation. It is convex if its Hessian is positive semi-
definite. The second partial derivatives of f({yi}Ni=1) =

∑N
i yiLog

[
Nyi∑N
i yi

]
are

fyi,yi =
1

yi
− 1∑N

i yi
, fyi,yj = − 1∑N

i yi
. (29)

19See Boyd and Vandenberghe (2004, p. 87).
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Then the Hessian of f({yi}Ni=1) is

Hf =


1
y1
− 1∑N

i yi
− 1∑N

i yi
· · ·

− 1∑N
i yi

1
y2
− 1∑N

i yi
...

. . .

 . (30)

We can reshape the matrix before we test for positive semi-definiteness as

Hf =


1
y1

0 · · ·
0 1

y2
...

. . .

−


1∑N
i yi

1∑N
i yi

· · ·
1∑N
i yi

1∑N
i yi

...
. . .

 . (31)

The Hessian is positive semi-definite iff for any vector υ,

υ′


1
y1

0 · · ·
0 1

y2
...

. . .

υ − υ′


1∑N
i yi

1∑N
i yi

· · ·
1∑N
i yi

1∑N
i yi

...
. . .

υ ≥ 0. (32)

To show this, we use the Cauchy-Schwarz-Inequality, which states that for any two vectors a and b,

(a′a)(b′b) ≥ (a′b)2. (33)

State the dot-product of the Hessian with ι as summations.

1∑N
i yi

( N∑
i

yi

)(
N∑
i

υ2
i

yi

)
−

(
N∑
i

υi

)2
 ≥ 0 (34)

To complete the proof, pick a′ = (
√
y1,
√
y1, . . .) and b′ = ( υ1√

y1
, υ2√

y2
, . . .), which establishes that the above

sums are greater or equal to zero.
Since both functions determining the sublevel sets are convex for any α, the Theil is quasiconvex.

B. Modification of Indices for Empirical Applications

Indices like the Gini coefficient in the following form,

G =
1

2W
∑N
i=1

wi
yi+ti
ESi

N∑
i=1

wi

N∑
j=1

wj

∣∣∣∣yi + ti
ESi

− yj + tj
ESj

∣∣∣∣ .
or the RMD and AMD involve the absolute value, which is not differentiable at zero. Since we require the
objective functions to be twice continuously differentiable, we cannot simply proceed with such functions.
We address this issue by replacing the absolute value with a quadratic and then optimize; obtaining the
optimal transfers for the original indices. This exploits the ordinal equivalence property of the absolute
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value function and the quadratic function, which implies that the transfer scheme at the minimum of the
modified index is the same for the original index.
The absolute value and the quadratic are ordinally equivalent iff ∀a, b ∈ R,

|a| ≤ |b| ⇔ a2 ≤ b2.

This is true since the formula for the absolute value is

|·| =
√

(·)2

and thus the quadratic is the result of applying a positive monotone transformation to the absolute value
function, which preserves orderings.
The formula for the modified Gini coefficient thus is

G =
1

2W
∑N
i=1

wi
yi+ti
ESi

N∑
i=1

wi

N∑
j=1

wj

(
yi + ti
ESi

− yj + tj
ESj

)2

.

This modification also retains the (quasi)convexity properties of the indices, since the quadratic function is
a convex function.

C. Matlab Code

The bisection method is implemented using three functions in Matlab. The central file is Bisec.

function [ minGini ] = Bisec(y,es,w,u,l,e,A,b,st,LB)
while u-l > e
k=(u+l)/2;

x=fmincon(@(x)0,st,A,b,[],[],LB,[],@(x)cons(y,w,es,x,k)
,optimoptions(’fmincon’,’Algorithm’,’interior-point’,’TolCon’,10^(-7),’TolX’,10^(-7)))

cand=MGC(y,w,es,x);

if cand <= k
u=k

else
l=k

end

end
minGini=[u,x];
end

One passes the data in terms of the variables y , es and w. u and l are the upper and lower bounds for the
bisection method. e is the level of tolerance. A and b let us define the budget inequality constraint. st is
the vector of starting values and LB is the lower bound for our variables.
The inequality constraints are implemented via the function cons. Here the sublevel set of the modified Gini
coefficient (Appendix B) is calculated.
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function [ c,ceq ] = cons( y,w,es,x,k )
s=2*sum(w)*(sum(w.*(es.^-1.*(y+x))));
yt=es.^-1.*(y+x);

S=0;

for i = 1:length(y)
S=S+(w(i)*transpose(w)*(yt(i)-yt).^2);

end

c=(S)-k*s;
ceq=[];
end

Bisec checks the value of the modified Gini coefficient against the reference value k using the function MGC,
which simply calculates the modified Gini coefficient.

function [ g ] = MGC(y,w,es,t)
s=2*sum(w)*(sum(w.*(es.^-1.*(y+x))));
yt=es.^-1.*(y+x);

S=0;

for i = 1:length(y)
S=S+(w(i)*transpose(w)*(yt(i)-yt).^2);

end
g=S/s;
end
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