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Abstract

We develop an overlapping generations endogenous growth model with stocks
of produced capital, human capital, a non-renewable resource, and irreversibly ac-
cumulated greenhouse gases in deterministic and stochastic versions. The model
allows for analyzing different elasticities of substitution. We present a full ana-
lytical solution and characterization of the transition dynamics. We show that,
as a rule of thumb, the social cost of carbon grow at a rate equal to the econ-
omy’s growth rate divided by the elasticity of substitution. We analytically study
sensitivity of the social cost of carbon with respect to key parameters: the inter-
generational discount rate, the elasticity of substitution, and climate uncertainty.
We show that the social cost of carbon explode at a finite level of log-normally
distributed climate uncertainty. We illustrate results in a calibrated version of the
model.

Keywords: overlapping generations; substitutes vs. complements; stochastic re-
source dynamics; optimum growth; climate policy

JEL: Q54; O44; Q32

∗We are grateful to Geir Asheim, Lucas Bretschger, Moritz Drupp, Reyer Gerlagh, Gerard van der
Meijden, Rick van der Ploeg, Till Requate, Daniel Spiro, Christian Traeger, Cees Withagen, and par-
ticipants of conferences and seminars in Amsterdam, Ascona, Kiel, and Zurich for valuable comments.
This study was supported by the German Federal Ministry of Education and Research (BMBF) for
financial support under grant 01LA1104C and the German Research Foundation (DFG) under grant
QU357/10-1 within SPP 1689.

1



1 Introduction

A growing literature studies the economics of climate change and exhaustible resource

use in quantitative integrated assessment models (Nordhaus 1993, Stern 2006, and many

others). These models typically do not allow for analytical solutions, which makes it

difficult to assess the general properties of the (numerically computed) model solutions,

and in particular it is almost impossible to conduct a global sensitivity analysis. This

may be problematic, as several important parameter values are largely unknown, in-

cluding the time preference rate, the elasticity of intertemporal substitution, or the

parameters of the climate damage function.

Thus, it is useful to construct models that are simple enough to allow for closed-form

solutions, and yet rich enough to encompass the most relevant processes to study the

issues of climate change, exhaustible resource use, economic growth and sustainability.

Analytical models have been recently developed by Bretschger and Karydas (2013),

Golosov et al. (2014), Gerlagh and Liski (2012), and Traeger (2015). To enable a closed-

form solution, these models follow the tradition of the Brock and Mirman (1972) model

and assume that the production function is Cobb-Douglas and that the utility function

is logarithmic. A standard result from these models is that, “as a rule of thumb, the

optimal carbon tax grows at approximately the same rate as GDP” (Smulders et al.

2014, 435).

The assumptions of a Cobb-Douglas production function and logarithmic utility im-

ply that both the elasticity of substitution between production factors and the elasticity

of intertemporal substitution are both assumed to be equal to one. This may be a

too restrictive assumption, as it is well-known that the elasticity of substitution may

play a crucial role for the possibilities of sustainable growth (Dasgupta and Heal 1979).

Also the more recent endogenous growth literature has shown that substitution possi-

bilities play an important role for the long-run development. In this vein, Acemoglu

et al. (2012) show that, when accumulable and non-accumulable production factors are

complements, policy cannot avoid an environmental disaster, at least if a deterioration

in environmental quality is irreversible. On the other hand, complementarity between

renewable and non-renewable resource input can also create incentives for structural

change towards renewables (Bretschger and Smulders 2012).

Our model contributes to the literature on analytically solvable integrated assessment

models by proposing and analyzing a model that augments existing approaches in three

respects: First, our model allows to deviate from the standard assumption that the

production function is Cobb-Douglas and utility is logarithmic. While we maintain the
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assumption that the elasticities of substitution between production factors is the same

as the elasticity of intertemporal substitution, in order to obtain a closed-form solution

of the model, our model enables us to analyze the effects of an elasticity of substitution

smaller or larger than one. As discussed above, this is particularly important for studying

the long-term effects of climate policy and sustainability. Indeed, assuming that the

elasticity of substitution between production factors is equal to one does not seem to

be the most realistic specification. Krusell et al. (2000), for example, find that the

elasticity of substitution between skilled labor and capital equipment in production is

σ = 2/3. Also with respect to the elasticity of intertemporal substitution, a value below

one is much more common in numerical integrated assessment models. Nordhaus and

Sztorc (2013), Pindyck and Wang (2013), and Cai et al. (2015), for example, specify the

elasticity of intertemporal substitution to be σ = 2/3.

Second, we study an overlapping generations general equilibrium model with en-

dogenous growth driven by human capital accumulation. Deviating from the standard

approach of considering an infinitely-lived agent allows to disentangle the effects of time

preferences within and across generations (Schneider et al. 2012).

Third, our model captures the essence of irreversible climate change in a stylized

fashion. The stock variables of the model comprise two accumulating production fac-

tors, a man-made, consumable capital stock and human capital, and two exhaustible

resources/natural sinks, a non-renewable resource and accumulated atmospheric carbon.

Consistent with the most recent IPCC report (Collins et al. 2013), and with earlier con-

tributions by Stollery (1998) and Bretschger and Karydas (2013), climate change is

considered to be irreversible. This makes the remaining budget for carbon emissions a

non-renewable resource as well, which plays a crucial role in the analysis.

We present a full analytical characterization of the optimal dynamics in the model,

including the transition dynamics. The new aspects of the model allow to qualify and

augment existing results. Exploiting the overlapping generations structure of the model,

we show that only short-run transition dynamics are affected by the intergenerational

time preference rate, which applies to the intertemporal distribution of utility within

a generation. The optimal carbon tax and the long-run dynamics of the model are

affected mainly by the intergenerational discount rate. Confirming results from the

numerical integrated assessment models, we show that the optimal carbon tax is highly

sensitive to the intergenerational discount rate. We attribute this to the fact that carbon

emissions lead to largely irreversible effects (Collins et al. 2013). Moreover, we find that

uncertainty about climate dynamics has a strong impact on the social cost of carbon if

the elasticity of substitution is below one and uncertainty is relatively large.
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We show that allowing an elasticity of substitution different from one qualifies an-

alytical ‘rules of thumb’ on the optimal carbon tax that have been derived using the

standard Cobb-Douglas/logarithmic utility assumption. Specifically, the optimal car-

bon tax does not grow at a rate equal to the economy’s growth rate, but at a rate

approximately equal to the economy’s growth rate divided by the elasticity of substi-

tution. We further show that the optimal carbon tax is very sensitive to the elasticity

of substitution. Thus, a misspecification of this parameter can lead to grossly wrong

results.

The paper is structured as follows. In the next section, we describe the model. The

main results of the paper are contained in Section 3 where we present the closed-form

solution of the deterministic model; characterize the growth dynamics and the efficient

carbon tax; extend the model to take stochastic capital dynamics with Epstein-Zin

preferences into account. Section 4 presents a numerical illustration with a calibrated

version of the model. The final section discusses our analysis and concludes.

2 OLG Endogenous Growth Model with Irreversible

Climate Change

In the following we set up a discrete-time overlapping generations (OLG) model where

a representative household lives for two periods in time. In the first period, say t, they

receive a bequest Bt = Yt − Rt of consumable capital from their parent, which they

divide into consumption Ct and productive capital Kt. In the second period of their

life, they divide their earned income into retirement consumption Rt+1 and the bequest

they leave to their children.

In addition to produced capital (Kt) there is human capital (Ht) as another accu-

mulable production factor, and a non-renewable resource (St). When this resource, i.e.

fossil fuels such as coal or oil, is used in the production of goods, it generates emissions

Et that accumulate to a stock causing future climate damages.

Production output Yt+1 becomes available at the beginning of the next period. Using

Et ∈ [0, St] to denote resource input, and Lt ∈ [0, Ht] to denote skilled labor used in

production, the production function is assumed to be given by

Yt+1 = F (Kt, Et, Lt) =
(
αK

σ−1
σ

t + β E
σ−1
σ

t + γ L
σ−1
σ

t

) σ
σ−1

(1)

where F (Kt, Et, Lt) is a constant-returns-to-scale (α, β, γ > 0, α+β+γ = 1) production
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function, with σ > 0 specifying the constant elasticity of substitution (CES). For the

special case σ = 1, the production function (1) becomes the Cobb-Douglas function with

exponents α for capital Kt, β for resource input Et, and γ for skilled labor Lt.

In a discrete-time framework, some assumption about the timing of consumption and

production within a period has to be made. The assumption here is that consumption

takes place before production of goods, and the remaining capital stock Kt is employed

in production. The output produced in period t is divided at into consumption and

productive capital at the beginning of the next period t + 1. The accounting equation

is Yt+1 = Kt+1 + Ct+1 +Rt+1.

Human capital is a growing production factor which can be produced independently

of the resource. With Lt being skilled labor employed in production, the remainder

Ht − Lt is used to build up the human capital stock according to

Ht+1 = (1− ε)Ht + κ (Ht − Lt) (2)

with κ > 0 being the productivity of human capital accumulation and 0 ≤ ε ≤ 1 being

the rate of human capital depreciation. As opposed to the input of nonrenewable re-

sources, human capital accumulation tends to increase future consumption possibilities.

We assume κ > ε, such that human capital will accumulate for sure if all time is spent

in human capital accumulation and none in the production of goods, i.e. if Lt = 0.

The stock of the non-renewable resource follows the usual equation of motion

St+1 = St − Et, (3)

i.e. the remaining resource stock St is simply reduced by the quantity extracted. The

overall size of the resource available is limited by the initial stock S0, thus resource

input in production must eventually decrease. This tends to impose a limit on fu-

ture consumption possibilities. In a sense, the model thus is a discrete-time version of

the Dasgupta-Heal-Solow-Stiglitz (DHSS) model (Dasgupta and Heal 1974, Solow 1974,

Stiglitz 1974a,b), extended to take into account human capital formation and climate

damage.

We adopt a very simple description of climate dynamics, using a single state variable

(Xt). This is a strong simplification, as it neglects time lags between emissions and

temperature increase (the effect of such a lag on optimal climate policies is studied by

Bretschger and Karydas 2013). However, our focus is on the long-term sustainability

effects of climate change. In that regard, the most important aspect is that carbon

emissions have consequences for consumption possibilities in the long run. Specifically,

5



we assume that climate damage is irreversible. This is in line with previous studies,

including Stollery (1998) and Bretschger and Karydas (2013). More importantly, there

is clear evidence from climate science that the consequences of emitting carbon are by

and large irreversible (Collins et al. 2013). Before formally describing the dynamics of

the atmospheric carbon stock, we briefly turn to assumptions on the utility function.

Utility depends on the consumption of private consumption (Ct and Rt+1) and on

climate damage, which, for simplicity, is assumed to be a function of the stock of atmo-

spheric carbon. This way of capturing climate damage is common in the literature, and

used, among others, by Tahvonen and Kuuluvainen (1991), Hoel and Sterner (2007),

Sterner and Persson (2008), Llavador et al. (2011), and van der Ploeg and Withagen

(2014). Following this literature, we assume that there is an upper threshold level for

the stock of atmospheric carbon beyond which it causes intolerable damages. Given this

assumptions on utility and the irreversibility of carbon emissions, there is a remaining

“budget” Xt of carbon emissions, which is the difference between the upper threshold

level and the current stock of atmospheric carbon.

The remaining carbon budget develops according to

Xt+1 = Xt − Et, (4)

with initial carbon budget X0, and Et ≤ min{St, Xt}. Thus, the intertemporal use of

carbon is limited by two constraints: One is the stock S0 of the carbon resource initially

available in ground; the other one is the initial budget X0 of carbon emissions into the

atmosphere. Only the tighter of these two constraints will be effective along an optimal

path. According to Collins et al. (2013) and McGlade and Ekins (2015), the effective

constraint is the remaining carbon budget. We thus assume X0 < S0. This means

that the remaining budget of carbon emissions is the scarce resource and the efficient

emission tax will capture the corresponding scarcity rent (Asheim 2013).

Using U(Ct, Xt) to denote the instantaneous utility function, a representative house-

hold’s intertemporal utility is given by

V (Bt, Xt, Ht) = U(Ct, Xt) + ψ U (Rt+1, Xt+1) + ϕV (Bt+1, Xt+1, Ht+1) . (5)

Here, ψ ∈ (0, 1) is the individual utility discount factor, and ϕ ∈ (0, 1) is the degree

altruism towards the child, where V (Bt+1, Xt+1, Ht+1) denotes intertemporal utility of

the representative dynasty that is endowed with the bequest package consisting of the

bequest Bt+1 = Yt+1 − Rt+1 of production output, resource stock Xt+1, and human

capital Ht+1.
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We will refer to ψ as the intragenerational discount factor and to ϕ as the intergen-

erational discount factor. For intergenerational discounting, we shall also analyze how

the endogenous variables, in particular the optimal tax on carbon emissions, depend

on the intergenerational discount rate ρ > 0, which is related to the intergenerational

discount factor as ϕ = 1/(1 + ρ).

We assume that the instantaneous utility function is

U(Ct, Xt) =

 σ
σ−1

(
C

σ−1
σ

t + δ X
σ−1
σ

t

)
for σ 6= 1

ln(Ct) + δ ln(Xt) for σ = 1.
(6)

Specification (6) of the instantaneous utility function assumes that the intertemporal

elasticity of substitution is constant and equal to the elasticity of substitution between

inputs in production. Using this assumption the model becomes solvable in closed

from. There is no obvious theoretical economic argument in support of this assumption.

However, as discussed above, a specification σ = 2/3 would be in line both with empirical

findings for the elasticity of substitution between production factors (Krusell et al. 2000),

and with an elasticity of intertemporal substitution common in numerical integrated

assessment models (Nordhaus and Sztorc 2013, Pindyck and Wang 2013, Cai et al.

2015).

Given the specification (6), where δ > 0 is a preference parameter that measures the

importance of climate damage relative to utility from consumption of private goods, the

stock of atmospheric carbon will never exceed the upper limit along an optimal path,

i.e. the remaining carbon budget will remain positive, Xt > 0.

3 Growth Dynamics and Optimal Carbon Tax

The optimal intertemporal allocation is obtained by solving the optimization problem

V (Bt, Xt, Ht) = max
Ct,Rt+1,Lt,Et

{
U(Ct, Xt) + ψ U (Rt+1, Xt+1) + ϕV (Bt+1, Xt+1, Ht+1)

}
(7)

subject to (1), (2), (4), and non-negativity constraints. The following proposition char-

acterizes the closed-form solution for the optimal feedback policies.

Proposition 1. The optimal policy functions are

Ct = c? Yt; Rt = (1− b?)Yt; Et = e?Xt; Lt = l?Ht (8)
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with constants

c? =
1− (ϕα)σ

1 +
(
ψ
ϕ

)σ (9a)

b? =
1 + (ψ α)σ

1 +
(
ψ
ϕ

)σ (9b)

β e?−
1
σ = δ

ψ + ϕ

1− ϕ (1− e?)−
1
σ

c?
1
σ (1− e?)−

1
σ (9c)

l? = 1− 1

κ
(ϕσ (1− ε+ κ)σ − (1− ε)) (9d)

and the value function has the form

V (B,X,H) =
σ

σ − 1

(
ΞB

σ−1
σ + ∆X

σ−1
σ + ΓH

σ−1
σ

)
(10)

with constants Ξ, ∆, and Γ given in Appendix A.

Proof. See Appendix A.

We are particularly interested in the fraction e? of the remaining carbon budget

that is used up in each period, which is determined by equation (9c). This equation

is derived from the familiar optimality condition that marginal abatement costs should

equal marginal damage, i.e.

FEt =
(ψ δ + ϕ∆) X

− 1
σ

t+1

ψR
− 1
σ

t+1

(11)

The marginal product of carbon (FEt) on the left hand side of this condition is a measure

for marginal abatement cost in terms of consumption possibilities at t+1. The right-hand

side of (11) equals marginal climate damage, given by the marginal rate of substitution

between climate damage and consumption in t+1. Total marginal climate damage, given

in utility terms by the numerator on the right-hand side of (11), consists of the marginal

damage from emissions at t that the emitters will suffer themselves in the second period

of their life (ψ δ X
−1/σ
t+1 ) and the marginal damage that will accrue to future generations

(ϕ∆X
−1/σ
t+1 ). Given the assumptions of the model, all variables cancel out and this

condition simplifies to (9c), which determines e?.

The comparative statics of e? leads to intuitive results. The rate e? at which the

remaining carbon budget is reduced decreases with the parameter δ capturing marginal

damage from greenhouse gas emissions. It increases with the parameter β that cap-
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tures the marginal abatement costs of atmospheric carbon. In line with intuition, e?

approaches zero as the discount factor ϕ approaches one, or, equivalently, as the inter-

generational discount rate ρ approaches zero. To study this relationship further, we are

interested in how e? changes with ρ at small values of ρ, and, hence, at small values of

e?. This elasticity depends on σ (see Appendix A):

lim
e?→0

ρ

e?
de?

dρ
=

{
1 for σ ≤ 0

σ for σ ≥ 0.
(12)

For limited substitution possibilities, σ ≤ 1, and a small intergenerational discount rate

ρ, a one-percent increase in the discount rate leads to a one-percent increase in the rate

at which the remaining carbon budget is used. For favorable substitution possibilities,

σ > 1, the relationship is even stronger, with a one-percent increase in the discount

rate leading to an increase of e? by σ percent. We will come back to this issue when we

discuss the optimal carbon tax in Section 3.2.

In a similar fashion, we derive the semi-elasticity of e? with respect to the elasticity

of substitution in Appendix A. For a small value of e?, and keeping the savings rate

1− c? fixed, this semi-elasticity is

lim
e?→0

1

e?
de?

dσ
= ln

(
β

δ

1− ϕ
1 + ψ

ϕ

)
. (13)

Unless β is much larger than δ, the result is that e? is decreasing with σ. The rate e?

at which the remaining carbon budget is reduced is particularly sensitive to the exact

specification of σ if β � δ, ϕ is close to one, and if the intragenerational discount rate

is large compared to the intergenerational discount rate, ψ � ϕ.

3.1 Growth dynamics

To further study growth dynamics, we use the result from Proposition 1 in the equations

of motion (1), (2), and (4). The state variables, each taken to the power σ−1
σ

, develop

according to the following linear system
Y

σ−1
σ

t+1

H
σ−1
σ

t+1

X
σ−1
σ

t+1

 =

α (b? − c?)
σ−1
σ γ l?

σ−1
σ β e?

σ−1
σ

0 (1− ε+ κ (1− l?))
σ−1
σ 0

0 0 (1− e?)
σ−1
σ



Y

σ−1
σ

t

H
σ−1
σ

t

X
σ−1
σ

t

 (14)
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As stated in Proposition 1 the feedback policies for all three capital and resource stocks

are to utilize a constant fraction in production. For the carbon budget and human

capital this implies constant growth rates.

The optimal consumption growth rate, by contrast, changes over time and depends

on the initial state of the economy. The following proposition characterizes the growth

patterns of the economy depending on the value of σ.

Proposition 2 (Optimal growth dynamics). There exists a value Y 0(H0, X0) such that

growth dynamics are characterized as follows.

1. If σ > 1, growth monotonically accelerates if Y0 > Y 0(H0, X0), while growth first

slows down and later accelerates if Y0 < Y 0(H0, X0).

2. If σ < 1, growth monotonically slows down if Y0 < Y 0(H0, X0), while growth

first accelerates and later slows down if Y0 > Y 0(H0, X0). If σ < 1 and the initial

carbon budget is large enough, there will be a temporary phase with an intermediate

steady state during which the economy grows at a rate Ĥ.

3. If σ = 1 ḡ ≡ (1 − e?)
β

1−α (1 + Ĥ)
γ

1−α > 0, growth monotonically accelerates if

Y0 < Y 0(H0, X0), while it first slows down and later accelerates if Y0 > Y 0(H0, X0).

If σ = 1 and ḡ < 0, growth will first accelerate and later slow down if Y0 <

Y 0(H0, X0), while it will monotonically slow down if Y0 > Y 0(H0, X0).

Proof. See Appendix B.

The intuition for this result is that there is first a phase of catching up if the economy

initially is poor in produced capital relative to human capital and the carbon budget.

Thus, the initial growth rate is high in this case.

In the longer run, the economy’s growth rate is determined by the most abundant

factor (human capital) if the factors are substitutes, σ > 1. In this case, growth ul-

timately accelerates approaching the growth rate of human capital. If the factors are

complements, σ < 1, the long-run growth rate is limited by the growth of the scarcest

factor, and the economy’s growth rate ultimately falls to this level. For the case σ = 1

the relative productivities α, β, and γ matter for the long-run growth rate as well.

3.2 Social cost of carbon

Now we shall analyze how the social cost of carbon, which correspond to the optimal

carbon emission tax in a market setting, depend on the state of the economy and im-

portant parameters. The optimal emission tax is equal to both marginal abatement cost
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(the marginal product of carbon emissions) and the marginal damage from atmospheric

carbon. According to condition (11) these two expressions are equal along an optimal

path. The following result is proven in Appendix C.

Proposition 3. The optimal tax rate on emissions is given by

τt = FEt =
Y

1
σ
t+1

X
1
σ
t

β e?−
1
σ . (15)

The optimal tax rate increases at a rate τ̂t given by

1 + τ̂ =

(
1 + Ŷt
1− e?

) 1
σ

,

where τ̂ has the following properties.

1. If σ ≤ 1, the optimal tax rate increases at a rate larger than the economy’s growth

rate, τ̂ > Ŷt for all t.

2. If σ > 1, the optimal tax rate increases at a rate larger, equal, or smaller than the

economy’s growth rate according to

τ̂ R Ŷt ⇔ 1 + Ŷt Q (1− e?)−
1

σ−1 . (16)

3. As a ‘rule of thumb’,

τ̂ ≈ (1− e?)−
1
σ

1

σ
Ŷt >

Ŷt
σ
. (17)

For an initial capital stock which is not unreasonably large, it will always be the case

that Ŷt > −e? (cf. Proposition 1). Thus, the optimal tax rate will grow at a positive

rate.

For the case of logarithmic utility, the optimal tax rate is proportional to consump-

tion, as under the optimal policy, Yt+1 = Ct+1/c. This result is in line with previous

findings (Golosov et al. 2014, Bretschger and Karydas 2013). It does not generalize for

the case σ 6= 1, however. For σ > 1, the optimal tax rate is concave in consumption; for

σ < 1, the optimal tax rate is convex in consumption. Furthermore, the optimal carbon

tax rate does not increase at the same rate as GDP. Thus the ‘rule of thumb’ stated in

Smulders et al. (2014, 435) does not hold in general. Rather, the tax rate grows at a

rate approximately equal to the the economy’s growth rate divided by the elasticity of
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substitution. This may make a big difference. For a specification σ = 2/3, for example,

the growth rate of the optimal carbon tax is 50% larger than the economy’s growth rate.

Furthermore, in our modeling framework, the optimal carbon tax rate grows faster

than GDP even for the case of logarithmic utility. This difference to previous analytical

integrated assessment models (Golosov et al. 2014, Gerlagh and Liski 2012, Traeger

2015) arises, as we assume that climate damage is irreversible. Thus, the optimal tax

rate increases over time not only because of economic growth, but also because the

remaining carbon budget is decreasing over time.

Proposition 4 (Sensitivity of the Social Cost of Carbon to intergenerational discount-

ing). For a small value of the intergenerational discount rate ρ, and given output Yt+1

and carbon budget Xt, the elasticity of the carbon tax rate to the social discount rate is

given by

lim
ρ→0

ρ

τt

dτt
dρ

=

{
−1 for σ ≥ 1

− 1
σ

for σ ≤ 1
. (18)

Proof. The result follows from (12) with (15).

For the case of logarithmic utility, σ = 1, this result is in line with Traeger (2015,

Proposition 2), who shows that the optimal carbon tax rate is approximately propor-

tional to 1/ρ. This result generalizes to the case σ ≥ 1, if the intergenerational discount

rate is small. For σ < 1, the optimal carbon tax rate is even more sensitive to the

intergenerational discount rate: The elasticity is equal to −1/σ < −1.

Proposition 4 takes the output in period t as given. If one alternatively considers

the sensitivity of the tax rate to the intergenerational discount rate for given stock sizes

at t, one has to take into account that also Yt+1 increases as ρ decreases. The optimal

tax rate becomes even more sensitive to the intergenerational tax rate.

To study the sensitivity of the optimal carbon tax with respect to the elasticity

of substitution, we will consider changes in σ that leave the observables unchanged. In

particular, we assume that the income share of carbon energy, θEt = Et FEt/Yt+1, output

Yt+1, and the initial carbon budget are fixed.

Proposition 5 (Sensitivity of the Social Cost of Carbon to the elasticity of substitu-

tion). For a small value of e?, and given the income share of carbon energy, output Yt+1,

and carbon budget Xt+1, the semi-elasticity of the carbon tax rate to the elasticity of

substitution is given by

lim
e?→0

1

τt

dτt
dσ

= − ln

(
β

δ

1− ϕ
1 + ψ

ϕ

)
. (19)
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Proof. Differentiating FEt = (θEt Yt+1/Xt+1) 1
e?

with respect to σ, we find lim
e?→0

1
τt

dτt
dσ

=

− lim
e?→0

1
e?

de?

dσ
. Using (13) gives the result.

The optimal carbon tax rate is rather sensitive to the elasticity of substitution if the

damage parameter δ is much larger than the productivity parameter β, if the intergen-

erational discount rate ρ is small (i.e., if ϕ is large), and if the intragenerational discount

factor is much larger than the intergenerational discount factor, ψ � ϕ. In a sense, the

more severe the climate problem is, the more sensitive is the optimal carbon tax to the

elasticity of substitution.

3.3 Stochastic Climate Damage

The model can be extended to take stochastic capital dynamics into account. Here we

focus on the case where climate damage is uncertain. Specifically, we replace (4) by the

stochastic equation of motion

Xt+1 = ζt (Xt − Et) , (4’)

where ζt is series of iid random shocks to the carbon budget. This captures in a stylized

way uncertainty about the remaining carbon budget. For each generation, ζt may turn

out to be larger or smaller than the expected value E [ζt]. The effect on the remaining

carbon budget is permanent. For example, if ζt turns out to be larger than expected, the

increased carbon budget will benefit the current and all future generations. To focus

on the effect of uncertainty, we assume E [ζt] = 1, although the model would also be

solvable if there was a constant expected decay, E [ζt] < 1.

Assuming σ 6= 1, the optimal stochastic feedback policies are found by solving the

stochastic optimization problem

V (Bt, Xt, Ht) =
σ

σ − 1
max

Ct,Rt+1,Lt,Et

{
C

σ−1
σ

t + δ X
σ−1
σ

t

+ Eζt
[(
ψ
(
R

σ−1
σ

t+1 + δ X
σ−1
σ

t+1

)
+ ϕV (Bt+1, Xt+1, Ht+1)

)]
(20)

In Appendix D we prove the following result, which is a generalization of Proposi-

tion 1.

Proposition 6. If σ ≥ 1, or if σ < 1 and uncertainty is small such that ϕ E
[
ζ
σ−1
σ

]
< 1,

13



the optimal policy functions are

C̃t = c? Yt; R̃t = (1− b?)Yt; Ẽt = ẽ Xt; L̃t = l?Ht (21)

with constants c?, b?, and l? given by (9a), (9b), and (9d), and ẽ determined by

(1− e?)
1
σ = ϕ E

[
ζ
σ−1
σ

]
+
δ

β

ψ + ϕ

ϕ
c?

1
σ ẽ

1
σ (22)

Uncertainty about the remaining carbon budget has no direct effect on the policy

functions corresponding to the stocks other than the climate system. Indirectly and in

the longer run, however, the change in carbon emissions will affect the growth rate of

the economy as well. For a somewhat simpler interpretation of the effect of uncertainty,

we have organized terms in (22) slightly different than in (9c). It is easy to see that the

two conditions are identical in the case of no uncertainty E
[
ζ
σ−1
σ

]
= 1.

The rate ẽ depends on the product of the intergenerational discount factors ϕ and

ψ and the effect of uncertainty, E [ε
σ−1
σ

t ]. Obviously, E
[
ζ
σ−1
σ

]
≤ 1 for the case σ ≥ 1.

If, however, σ < 1, we have E
[
ζ
σ−1
σ

]
≥ 1, and the product of this expression and the

intergenerational discount factor in the first term on the right-hand side of (22) may

even exceed one if uncertainty is large enough. We thus have the following result, where

we assume that ζt is log-normally distributed.

Proposition 7. If σ < 1 and ζt is log-normally distributed with mean one and variance

vζ, the stochastic optimization problem has a solution only if

vζ < v̄ζ ≡ (1 + ρ)
2σ2

1−σ − 1 (23)

Proof. The stochastic optimization problem has a solution only if ϕ E
[
ζ
σ−1
σ

]
< 1. For a

log-normal distribution with mean one and variance vζ , we have E
[
ζ
σ−1
σ

]
= (1 + vζ)

1−σ
2σ2 .

Thus, the stochastic optimization problem has a solution only if (23) holds.

This result can be seen as a variant of Weitzman’s (2009) ‘dismal theorem’. If

uncertainty becomes too large, the standard approach to determining the social cost

of carbon has no solution. Note, however, the here the result is obtained with a very

standard assumption about the distribution of uncertainty. It is a pure consequence of

the irreversibility of climate change and lasting uncertainty about the remaining carbon

budget.

CLimate uncertainty affects the optimal carbon tax rate. In a similar way as in

14



Proposition 3 it is straightforward to show that the optimal carbon tax rate under

climate uncertainty is given by

τ̃t =
Y

1
σ
t+1

X
1
σ
t

β ẽ−
1
σ . (15’)

The optimal carbon tax is rather sensitive to climate uncertainty, if σ < 1, and uncer-

tainty is relatively large. The following result is proven in Appendix D.

Proposition 8 (Sensitivity of the Social Cost of Carbon to climate risk). Under the

assumptions of Proposition 7, if the variance of climate uncertainty (vζ) approaches v̄ζ

(defined in 23) from below, and given output Yt+1 and carbon budget Xt, the elasticity

of the optimal carbon tax rate to climate uncertainty is given by

lim
vζ→v̄ζ

vζ
τt

dτt
dvζ

=
1

σ
. (24)

Thus, if uncertainty is relatively large, and if the elasticity of substitution is below

one, the social cost of carbon becomes very sensitive to further increases in uncertainty.

4 Calibration and Sensitivity of the Social Cost of

Carbon to key Parameters

To explore quantitative effects we calibrate the model in the following. We calibrate the

deterministic version of the model. Our focus in this section is on the sensitivity of the

optimal carbon tax rate τ with respect to the key parameters ρ, σ, and vζ .

Symbol σ α β γ δ ε κ ψ ϕ X0 Y0 H0

Value 2/3 .06 .53 .41 43.2 .71 4.03 .82 .59 3000 .54 2.28

Table 1: Calibrated parameter values. Rates are per generation of 30 years; X0 is in
gigatons of carbon; Y0 and H0 are in units of world output in the first generation.

For the calibration we use a generation time of G = 30 years. In our benchmark

calibration we assume an elasticity of substitution between skilled labor and capital

equipment of σ = 2/3 found by Krusell et al. (2000). Given the assumption that

the elasticity of intertemporal substitution is the same as the elasticity of substitution

between the production factors, this implies an a value for the preference for consumption

smoothing 1/σ = 1.5, which is not uncommon in the literature (e.g. Nordhaus and Sztorc

2013, Pindyck and Wang 2013, Cai et al. 2015). Some authors argue for the somewhat

larger value 1/σ = 2 (Weitzman 2007; Sterner and Persson 2008; Gollier 2012, 2015).
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An alternative calibration for σ = 1/2 is straightforward and leads to more pronounced

effects of complementarity in our model framework.

In addition to the assumptions on generation time and σ, we base our calibration on

data for the growth rate of the global economy, Ŷt, the pure rate of return on capital

rt, and income shares for capital, labor, and carbon energy. For the growth rate of

per capita consumption we use Ŷt = 0.021 from Piketty (2014, Figure 2.4). We use

rt = 0.05 for the pure rate of return on capital, which is roughly the average of the

estimates rBt = 0.046 for Britain and rFt = 0.053 for France from Piketty (2014, Figures

6.3 and 6.4). For the income share of capital (θK = 0.25) and skilled labor (θL = 0.70)

we approximately use the figures of Piketty (2014, Figures 6.1 and 6.2) for Britain and

France in the past 50 years, allowing for an carbon energy share of θE = 0.05 (in line

with IEA 2015), which is not included in Piketty’s figures.

The main focus of the numerical investigation is the comprehensive sensitivity anal-

ysis of the optimal carbon tax. To this end, we set up a benchmark calibration of

the model such that the optimal quantity of emissions is similar to values obtained in

standard integrated assessment models. According to Golosov et al. (2014, Figure 3)

optimal carbon emissions are initially about 60% of the laissez-faire carbon emissions.

Carbon dioxide emissions from fossil fuel combustion in the 30 years from 1985 to 2015

were about 690 gigatons, equivalent to 188 gigatons of carbon (IEA 2015, :48). We use

these figures for our calibration, assuming e?X0 = 0.6× 188 gigatons. Based on IPCC

we consider a budget of X0 = 3000 gigatons of carbon (Collins et al. 2013, Friedlingstein

et al. 2014). Thus,

e? =
0.6× 188

3000
= 0.038, (25)

i.e. every generation uses 3.8 percent of the remaining carbon budget. Units of mea-

surement are chosen such that world output in t = 1 is normalized to one, Y1 = 1.

In what follows we focus on the calibration of parameter values needed to derive the

optimal carbon tax. Further steps of calibration an numerical analysis can be found in

Appendix E. Resulting parameter values are summarized in Table 1.

For the calibration of the intergenerational discount factor, we use that the interest

factor is given by FKt = αK
− 1
σ

t Y
1
σ
t+1 = α (b? − c?)−

1
σ

(
1 + Ŷt

) 1
σ
. Using a result from
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Appendix A, we have 1/ϕ = α (b? − c?)−
1
σ . Rearranging yields

ϕ =

(
1 + Ŷt

) 1
σ

FKt
=

(
1.0211.5

1.05

)G
= 0.59, (26)

The resulting intergenerational discount factor of ϕ = 0.59 per generation corresponds

to an intergenerational discount factor of 0.983 per year, or an intergenerational discount

rate of 1.7% per year.

For calibrating the parameter values for α, β, and γ we use the income shares

θKt =
FK0 K0

Y0

= αK
σ−1
σ

0 = 0.25 (27a)

θEt =
FE0 E0

Y0

= β E
σ−1
σ

0 = 0.70 (27b)

θLt =
FL0 L0

Y0

= γ L
σ−1
σ

0 = 0.05 (27c)

Using the above calibration e? = 0.0376 and X0 = 3000 gigatons of carbon, we obtain

β = 0.53. As detailed in Appendix E, we further calibrate α = 0.06. To calibrate the

intragenerational discount factor, we assume that in both periods of life equal fraction

of output is consumed, 1 − b? = c?. From this condition we obtain (ψ/ϕ)σ − (ψ α)σ =

1 + (ϕα)σ, and thus

ψ = ϕ

(
1 + (ϕα)σ

1− (ϕα)σ

) 1
σ

= 0.81. (28)

Using these values in (9c) yields

δ = β
(1− e?)

1
σ − ϕ

ψ+ϕ
ϕ

(c? e?)
1
σ

= 43.2. (29)

We use this calibration of the model to study how the optimal carbon tax rate is

affected by important parameters of the model, specifically the elasticity of substitution

σ and the intergenerational discount rate ρ. To this end, we vary the parameters σ and

ρ, keeping the other parameters fixed at their benchmark levels given in Table 1, and

compute the optimal share of energy use e∗. Figure 1 shows the optimal carbon tax rate,

relative to the optimal carbon tax in the baseline parameterization, as a function of the

elasticity of substitution; with the vertical axis in logarithmic scale. Similarly, Figure 2

shows the social cost of carbon as a function of the intergenerational discount rate.
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Figure 1: Optimal tax rate as a function of the elasticity of substitution σ. Calibrated
parameter values are given in Table 1.

For both parameters, the optimal tax rate is very sensitive to the exact specification.

For the elasticity of substitution, values between σ = 1/2 and 1 are common in the

literature. Yet, the resulting optimal carbon tax rate varies by more than two orders

of magnitude for this range of different elasticities of substitution. The optimal carbon

tax is similarly sensitive to the intergenerational discount rate. As formally shown in

Proposition 4 for the case of very small discount rates, the elasticity at which the social

cost of carbon change with the intergenerational discount rate is given by the preference

for consumption smoothing, 1/σ, if ρ is small. As also seen in Figure 2 the optimal

carbon tax is extremely sensitive against the exact specification of ρ, in particular for

small values of ρ. This is a direct consequence of the fact that carbon emissions lead to

largely irreversible consequences. Thus the marginal abatement costs have to be traded

off against damage costs for very many generations to come in the future, which have a

high weight in decision-making if ρ is small.

We finally use the calibrated model to assess the effect of risk on the optimal carbon

tax. Figure 3 shows how the tax rate depends on the variance a log-normally distributed

climate shock. For small levels of the variance, the effect of climate uncertainty on the

social cost of carbon is moderate, but as the variance approaches the critical level given

in (23), the social cost of carbon explodes with further increasing uncertainty.
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Figure 2: Optimal tax rate as a function of the intergenerational discount rate. Cali-
brated parameter values are given in Table 1.

5 Conclusion

In this paper we have proposed and analyzed an overlapping generations endogenous

growth model in discrete time with stocks of produced capital, human capital, and

irreversible climate change. We fully characterized optimal dynamics and the social

cost of carbon both in a deterministic setting and with long-term shocks on the climate

system. Our approach differs from standard analytical integrated assessment models

by allowing the elasticity of substitution between production factors and intertemporal

consumption to differ from one.

Our analysis qualifies the standard ‘rule of thumb’ that the social cost of carbon are

proportional to GDP and that the social cost of carbon grow at the same rate as GDP.

These results have been found in models that assume that the elasticity of substitution

is equal to one (Bretschger and Karydas 2013, Golosov et al. 2014, Gerlagh and Liski

2012, Traeger 2015). Here, we have shown that the social cost of carbon are proportional

to GDP to the power of 1/σ, and that the social cost of carbon grow at a rate somewhat

larger than the GDP growth rate divided by the elasticity of substitution. Our analysis

confirms the result for the case σ = 1 considered in standard analytical integrated

assessment models. However, a value σ = 2/3 seems more in line with the quantitative

evidence and numerical integrated assessment modeling (Krusell et al. 2000, Nordhaus

and Sztorc 2013, Pindyck and Wang 2013, Cai et al. 2015). Given this elasticity of
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Figure 3: Optimal tax rate as a function of the variance of log-normally distributed
climate shocks. Calibrated parameter values are given in Table 1.

substitution, the social cost of carbon grow at a rate much larger than the economy’s

GDP growth rate.

Moreover, our analysis allows to assess analytically how sensitive the social cost of

carbon is to key parameters. We confirm that varying the intergenerational discount

rate in a range of values generally deemed plausible (Drupp et al. 2015), the social cost

of carbon varies over several orders of magnitude, making it very difficult to derive a

conclusive numerical value for the social cost of carbon (Pindyck 2013).

We have further shown that the social cost of carbon are similarly sensitive to the

specification of the elasticity of substitution. This puts into question the common ap-

proach in analytical integrated assessment models that assume an elasticity of substitu-

tion equal to one. An interesting question for future research will be to analyze whether

the social cost of carbon are more sensitive toward the elasticity of substitution between

production factors or the elasticity of intertemporal substitution.

Finally, we have studied the case where the remaining carbon budget is unknown

and subject to long-lasting shocks. We have found that for the case σ < 1 there is no

solution for the stochastic optimization problem if uncertainty is too large. This result,

which has a similar flavor as Weitzman’s (2009) ‘dismal theorem’, comes about because

the motive for precautionary reduction of emissions that cause unknown and irreversible

climate damage becomes overly dominant. For smaller levels of uncertainty, the social

cost of carbon become increasingly sensitive to climate shocks as uncertainty increases.
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Appendix

A Proof of Proposition 1

Using the guess (10) in (7),

ΞB
σ−1
σ

t + ∆X
σ−1
σ

t + ΓH
σ−1
σ

t = max
Ct,Rt+1,Lt,Et

{
C
σ−1
σ

t + δ X
σ−1
σ

t +ψ

(
R
σ−1
σ

t+1 + δ (Xt − Et)
σ−1
σ

)
+ ϕ

(
Ξ (F (Bt − Ct, Et, Lt)−Rt+1)

σ−1
σ

+ ∆ (Xt − Et)
σ−1
σ + Γ ((1− ε)Ht + κ (Ht − Lt))

σ−1
σ

)}
, (30)

with Bt+1 = Yt+1 − Rt+1, Yt+1 = F (Kt, Et, Lt) given by (1), Xt+1 given by (4), and Ht+1

given by (2), leads to first-order conditions

C
− 1
σ

t = ϕΞFKt B
− 1
σ

t+1 (31a)

ψR
− 1
σ

t+1 = ϕΞB
− 1
σ

t+1 (31b)

ϕΞFEt B
− 1
σ

t+1 = ψ δ X
− 1
σ

t+1 + ϕ∆X
− 1
σ

t+1 (31c)

ΞFLt B
− 1
σ

t+1 = ΓκH
− 1
σ

t+1 (31d)

Using (31b) in (31c) leads to condition (11).

Using the guesses (8) and the properties of the production function, i.e. FKt = αK
− 1
σ

t Y
1
σ
t+1

and so on, these equations simplify to

(c? Yt)
− 1
σ = ϕΞα ((b? − c?) Yt)−

1
σ Y

1
σ
t+1 (b? Yt+1)−

1
σ (32a)

ψ ((1− b?)Yt+1)−
1
σ = ϕΞ (b? Yt+1)−

1
σ (32b)

ϕΞβ (e?Xt)
− 1
σ Y

1
σ
t+1 (b? Yt+1)−

1
σ = ψ δ ((1− e?)Xt)

− 1
σ + ϕ∆ ((1− e?)Xt)

− 1
σ (32c)

Ξ γ (l?Ht)
− 1
σ Y

1
σ
t+1 (b? Yt+1)−

1
σ = Γκ ((1− ε+ κ (1− l?))Ht)

− 1
σ (32d)

Canceling common factors and rearranging, we obtain

(c?)−
1
σ = ϕΞα (b? − c?)−

1
σ (b?)−

1
σ (33a)

ψ (1− b?)−
1
σ = ϕΞ (b?)−

1
σ (33b)

ϕΞβ (e?)−
1
σ (b?)−

1
σ = ψ δ (1− e?)−

1
σ + ϕ∆ (1− e?)−

1
σ (33c)

Ξ γ (l?)−
1
σ (b?)−

1
σ = Γκ (1− ε+ κ (1− l?))−

1
σ (33d)

21



Furthermore, equating coefficients for B
σ−1
σ

t , X
σ−1
σ

t , and H
σ−1
σ

t in (30) leads to the conditions

Ξ (b?)
σ−1
σ = (c?)

σ−1
σ +

(
ψ (1− b?)

σ−1
σ + ϕΞ (b?)

σ−1
σ

)
α (b? − c?)

σ−1
σ (33e)

∆ = δ + (ψ δ + ϕ∆) (1− e?)
σ−1
σ +

(
ψ (1− b?)

σ−1
σ + ϕΞ (b?)

σ−1
σ

)
β (e?)

σ−1
σ (33f)

Γ = ϕΓ (1− ε+ κ (1− l?))
σ−1
σ +

(
ψ (1− b?)

σ−1
σ + ϕΞ (b?)

σ−1
σ

)
γ (l?)

σ−1
σ (33g)

Solving gives the coefficients c?, b?, e?, and l? stated in the proposition.

Dividing (33a) by (33b),

c?−
1
σ

ψ (1− b?)−
1
σ

= α (b? − c?)−
1
σ (34a)

Using (33b) in (33e),

Ξ b?
σ−1
σ = c?

σ−1
σ + ψ (1− b?)−

1
σ α (b? − c?)

σ−1
σ

(34a)
= b? c?−

1
σ (34b)

Using this in (33a) and solving yields

b? − c? = (ϕα)σ (34c)

Few obvious further steps lead to (9a) and (9b). Furthermore,

Ξ =

(
1 + (ψ α)σ

1− (ϕα)σ

) 1
σ

(34d)

Using (33b) in (33f),

∆ = δ + (ψ δ + ϕ∆) (1− e?)
σ−1
σ + ϕΞ b?−

1
σ β e?−

1
σ e? (34e)

(33c)
= δ + (ψ δ + ϕ∆) (1− e?)

σ−1
σ + ψ δ (1− e?)−

1
σ e? + ϕ∆ (1− e?)−

1
σ e?

= δ
(

1 + ψ (1− e?)−
1
σ

)
+ ϕ∆ (1− e?)−

1
σ (34f)

Solving yields

∆ = δ
1 + ψ (1− e?)−

1
σ

1− ϕ (1− e?)−
1
σ

(34g)
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Plugging this and (34b) in (33c) we obtain

ϕβ e?−
1
σ c?−

1
σ = (ψ δ + ϕ∆) (1− e?)−

1
σ (34h)

= δ (1− e?)−
1
σ

(
ψ + ϕ

1 + ψ (1− e?)−
1
σ

1− ϕ (1− e?)−
1
σ

)
(34i)

= δ (1− e?)−
1
σ

ψ + ϕ

1− ϕ (1− e?)−
1
σ

(34j)

rearranging leads to (9c). Using (33b) in (33g),

Γ = ϕΓ (1− ε+ κ (1− l?))
σ−1
σ + ϕΞ (b?)−

1
σ γ (l?)−

1
σ l? (34k)

(33d)
= ϕΓ (1− ε+ κ (1− l?))

σ−1
σ + ϕΓκ (1− ε+ κ (1− l?))−

1
σ l? (34l)

= ϕΓ (1− ε+ κ (1− l?))−
1
σ (1− ε+ κ (1− l?) + κ l?) . (34m)

Rearranging leads to (9d). Plugging l?, b?, and Ξ in (33g) yields Γ.

For the comparative statics with respect to ρ, write (9c) as

(1− e?)
1
σ =

1

1 + ρ
+ f(ρ) e?

1
σ (35)

with finite f and fρ. The total differential at e? = ρ = 0 is

1

σ
de? = dρ− fρ e?

1
σ − 1

σ
f e?

1
σ
−1 de? (36)

For σ < 1 the second and third term vanish at e? = 0 implying e?ρ = σ and thus ρ/e? e?ρ = 1.

For σ = 1 the second terms still vanishes at e? = 0 and the third term goes to f(0)/σ implying

e?ρ = σ/(1+f(0)) and thus ρ/e? e?ρ = 1. For σ > 1 the second term still vanishes, but the third

term goes to infinity implying e?ρ = σ/(1 + f e?
1
σ
−1) to vanish. For the elasticity we obtain

lim
ρ→0

ρ

e?
e?ρ = σ lim

ρ→0

ρ

e? + f e?
1
σ

= σ lim
ρ→0

1

e?ρ + fρ e?
1
σ + 1

σ f e
?

1
σ
−1 e?ρ

= σ. (37)

As for the comparative statics with respect to σ, write (9c) as

e? =
1

c?

(
(1− e?)

1
σ − ϕ

δ
β
ψ+ϕ
ϕ

)σ
≈ 1

c?

(
β

δ

ϕ (1− ϕ)

ψ + ϕ

)σ
(38)

Thus, the semi-elasticity of e? with respect to σ is as given in equation (13).
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B Proof of Proposition 2

Before turning to the proof of the proposition, we first derive some preliminary results on

the transition dynamics. We focus on the development of the economy’s growth rate Ŷt. As

Yt+1 = (1 + Ŷt)Yt, equation (14) implies

Y
σ−1
σ

t+1 = α (b? − c?)
σ−1
σ Y

σ−1
σ

t + β e?
σ−1
σ X

σ−1
σ

t + γ l?
σ−1
σ H

σ−1
σ

t (39)

(1 + gt+1)
σ−1
σ Y

σ−1
σ

t+1 = α (b? − c?)
σ−1
σ Y

σ−1
σ

t+1 + β e?
σ−1
σ X

σ−1
σ

t+t + γ l?
σ−1
σ H

σ−1
σ

t+1 (40)

As thus also

(1 + gt)
σ−1
σ = α (b? − c?)

σ−1
σ + β e?

σ−1
σ
X

σ−1
σ

t

Y
σ−1
σ

t

+ γ l?
σ−1
σ
H

σ−1
σ

t

Y
σ−1
σ

t

(41)

Dividing equation (41) for t + 1 by (41) for t, and solving for gt+1 yields the following

result.

Lemma 1. The growth rate of the economy develops over time according to

1 + gt+1 =

(
α (b? − c?)

σ−1
σ

(1 + gt)
σ−1
σ

(1 + gt)
σ−1
σ +

(
1− α (b? − c?)

σ−1
σ

(1 + gt)
σ−1
σ

) (
1 +

ˆ̂
Yt

)σ−1
σ

) σ
σ−1

, (42a)

i.e. the growth factor at t+ 1 is a generalized mean, with state-dependent weighting factors, of

the growth factor at t and a term 1 +
ˆ̂
Yt with

1 +
ˆ̂
Yt ≡

(
β e?

σ−1
σ
(
X0 (1− e?)t

)σ−1
σ

β (e?X0 (1− e?)t)
σ−1
σ + γ (l?H0 (1 + gH)t)

σ−1
σ

(1− e?)
σ−1
σ

+
γ
(
l?H0 (1 + gH)t

)σ−1
σ

β (e?X0 (1− e?)t)
σ−1
σ + γ (l?H0 (1 + gH)t)

σ−1
σ

(1 + gH)
σ−1
σ

) σ
σ−1

(42b)

being again a generalized mean, with time-dependent weighting factors, of the factor 1− e? at

which the remaining carbon budget is decreased and the growth factor 1+gH of human capital.

Proof. Consider equation (41) for t+ 1

(1 + gt+1)
σ−1
σ − α (b? − c?)

σ−1
σ = β e?

σ−1
σ

(
Xt+1

Yt+1

)σ−1
σ

+ γ

(
l?Ht+1

Yt+1

)σ−1
σ

= β e?
σ−1
σ

(
(1− e?)Xt

(1 + Ŷt)Yt

)σ−1
σ

+ γ

(
l? (1 + gH)Ht

(1 + Ŷt)Yt

)σ−1
σ

(43)
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and divide it by (41) for t,

(1 + gt)
σ−1
σ − α (b? − c?)

σ−1
σ = β e?

σ−1
σ

(
Xt

Yt

)σ−1
σ

+ γ

(
l?Ht

Yt

)σ−1
σ

(44)

This leads to

(1 + gt+1)
σ−1
σ − α (b? − c?)

σ−1
σ

(1 + gt)
σ−1
σ − α (b? − c?)

σ−1
σ

=
1

(1 + Ŷt)
σ−1
σ

β (e? (1− e?)Xt)
σ−1
σ + γ (l? (1 + gH)Ht)

σ−1
σ

β (e?Xt)
σ−1
σ + γ (l?Ht)

σ−1
σ︸ ︷︷ ︸

≡(1+
ˆ̂
Yt)

σ−1
σ

In (42b) we have used Xt = (1− e?)tX0 and Ht = (1 + gH)tH0. Solving

(1 + gt+1)
σ−1
σ − α (b? − c?)

σ−1
σ

(1 + gt)
σ−1
σ − α (b? − c?)

σ−1
σ

=
(1 +

ˆ̂
Yt)

σ−1
σ

(1 + Ŷt)
σ−1
σ

for 1 + gt+1 yields the proposed result (42a).

This result can be used to fully characterize the optimal dynamics of the model. Consider

first equation (42b). This equation defines the expression
ˆ̂
Yt, which is a weighted generalized

average of the growth rates 1 − e? of the remaining carbon budget, and 1 + gH of human

capital. This implies that
ˆ̂
Yt is in between 1 − e? < 0 and 1 + gH > 0 at any point in time.

The weighting factors depend on the current stock sizes of the remaining carbon budget and

human capital, and both weights are changing over time in a uniform way. The direction of

change is determined by the value of σ. If σ > 1,
ˆ̂
Yt monotonically increases over time, as the

weight on 1 + gH increases over time. If σ < 1,
ˆ̂
Yt monotonically decreases over time, as the

weight on 1− e? increases over time in this case.

Now consider (42a). Similar as discussed for
ˆ̂
Yt, the economy’s growth factor 1 + gt+1 at

t+ 1 is a weighted generalized average, now of the growth factor at t, 1 + gt, and of the above

discussed moving average 1 +
ˆ̂
Yt of 1 − e? and 1 + gH . It follows immediately from (41) that

0 < α (b?−c?)
σ−1
σ

(1+gt)
σ−1
σ

< 1, i.e. both weights are between zero and one, and obviously add up to one.

The property that 1 + gt+1 is a generalized mean of 1 + Ŷt and 1 +
ˆ̂
Yt implies that 1 + gt+1

must lie in between the two, and in the long run, the dynamics of Ŷt are purely driven by the

dynamics of
ˆ̂
Yt.

Note that the value of
ˆ̂
Yt depends on the intergenerational discount factor ϕ, but not the

intragenerational discount factor ψ: This part of the dynamics of the growth rate is purely

driven by intergenerational distribution, not by intragenerational distribution. Intragenera-

tional distribution matters for short-run dynamics, though. The weights on Ŷt and
ˆ̂
Yt depend

on the intragenerational discount factor, ψ.

The long-run behavior of the economy immediately follows from Lemma 1: If σ > 1, the
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economy’s growth rate eventually will reach gH , while for σ < 1, it will eventually contract at

a rate −e?. This result resembles the famous findings from the Dasgupta-Heal-Solow-Stiglitz

model (Dasgupta and Heal 1974, Solow 1974, Stiglitz 1974a,b). For σ = 1, the equations from

Lemma 1 simplify to

1 + gt+1 = (1 + gt)
α (1− e?)β (1 + gH)γ (45a)

⇔ 1 + gt =
(

(1− e?)
β

1−α (1 + gH)
γ

1−α
)1−αt

(1 + g0)α
t

(45b)

As 1−α = β+γ, the first term in brackets on the right-hand-side of this equation is a weighted

geometric mean of 1−e? and 1+gH , just as in the general case. This weighted geometric mean

determines the long-term growth rate of the economy. The economy will grow in the long-run

if (1− e?)β (1 + gH)γ > 1 and contract in the long-run if (1− e?)β (1 + gH)γ < 1. The growth

rate for generation t, Ŷt, again is a weighted geometric mean, namely of the long-term growth

rate and the initial growth rate. In the course of time, the weight on the long-run growth rate

increases.

In general, the growth rate at t+1 lies in between the growth rate at t and
ˆ̂
Yt. The transition

dynamics in particular depend on whether the economy initially is relatively abundant or

relatively poor in produced capital, with the threshold level defined by

Y 0(H0, X0) ≡

(
β (e?X0)

σ−1
σ + γ (l?H0)

σ−1
σ

(1 + g0)
σ−1
σ − α (b? − c?)

σ−1
σ

) σ
σ−1

, (46a)

where g0 is given by (42b) for t = 0. For σ = 1, we have

Y 0(H0, X0) ≡ lim
σ→1

(
β

1− α
(e?X0)

σ−1
σ +

γ

1− α
(l?H0)

σ−1
σ

) σ
σ−1

= (e?X0)
β

1−α (l?H0)1− β+δ
1−α

(46b)

Now we turn to the proof of the proposition.

Ad 1. For σ > 1, it follows from (42a) that g1 < g0 if

(1 + g0)
σ−1
σ < (1 + ḡ0)

σ−1
σ

⇔ α (b? − c?)
σ−1
σ + β e?

σ−1
σ

(
X0

Y0

)σ−1
σ

+ γ

(
l?H0

Y0

)σ−1
σ

< (1 + ḡ0)
σ−1
σ

Solving for Y0 leads to the condition Y0 < Y 0(H0, X0). If Y0 > Y 0(H0, X0), it follows that

g1 > g0. As
ˆ̂
Yt is increasing over time, so must be gt+1, which is a weighted average of Ŷt and

ḡt, and the weight on
ˆ̂
Yt is increasing over time (cf. Lemma 1).
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Ad 2. For σ < 1, it follows from (42a) that g1 > g0 if

(1 + g0)
σ−1
σ < (1 + ḡ0)

σ−1
σ

⇔ α (b? − c?)
σ−1
σ + β e?

σ−1
σ

(
X0

Y0

)σ−1
σ

+ γ

(
l?H0

Y0

)σ−1
σ

< (1 + ḡ0)
σ−1
σ

Solving for Y0 leads to the condition Y0 < Y 0(H0, X0). If Y0 > Y 0(H0, X0), it follows that

g1 < g0. As
ˆ̂
Yt is decreasing over time, so must be gt+1, which is a weighted average of Ŷt and

ḡt, and the weight on
ˆ̂
Yt is decreasing over time (cf. Lemma 1).

Ad 3.For σ = 1 it follows from (45a) that g1 > g0 if Y0 < Y 0(H0, X0) and g1 < g0 if

Y0 > Y 0(H0, X0). In this case, ḡ is constant over time, and thus Ŷt approaches the constant ḡ

over time.

C Proof of Proposition 3

The tax rate in the efficient market equilibrium must equal the marginal product of carbon

emissions. Using the fact that FEt = β E
− 1
σ

t Y
1
σ
t+1, and Et = e?Xt from Proposition 1, we

obtain

τt = FEt = β (e?Xt)
− 1
σ Y

1
σ
t+1, (47)

as proposed. We thus further have

τt+1

τt
=
Y

1
σ
t+2

Y
1
σ
t+1

X
1
σ
t

X
1
σ
t+1

=

(
(1 + Ŷt)Yt+1Xt

Yt+1 (1− e?)Xt

) 1
σ

=

(
1 + Ŷt
1− e?

) 1
σ

. (48)

For σ ≤ 1 we have

(
1 + Ŷt

)σ−1
σ ≥ 1 > (1− e?)

1
σ (49)

⇒ 1 + τ̂ =

(
1 + Ŷt
1− e?

) 1
σ

> 1 + Ŷt. (50)

D Proof of Proposition 6

Guessing the value function

V (B,X,H) =
1

1− 1
σ

(
ΞB

σ−1
σ + ∆̃X

σ−1
σ + ΓH

σ−1
σ

)
(51)
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and using the guesses for the feedback policies in (20) yields

Ξ (Yt −Rt)
σ−1
σ + ∆̃X

σ−1
σ

t + ΓH
σ−1
σ

t = max
Ct,Rt+1,Lt,Et

{
C
σ−1
σ

t + δ X
σ−1
σ

t + ψR
σ−1
σ

t+1

+ δ Eζt
[
X

σ−1
σ

t+1

]
+ ϕ

(
Ξ (Yt+1 −Rt+1)

σ−1
σ + ∆̃ Eζt

[
X

σ−1
σ

t+1

]
+ ΓH

σ−1
σ

t+1

)}
(52)

with Yt+1 determined by (1). It is straightforward to see that the first-order conditions remain

the same for Ct, Rt+1, and Lt both in the deterministic case and in the case with stochastic

climate dynamics. Thus, the feedback policies are the same as in the deterministic case.

The first-order condition from optimizing with respect to Et leads to

ϕΞFEt B
− 1
σ

t+1 = ψ δ E
[
ζ
σ−1
σ

]
(ẽ Xt)

− 1
σ + ϕ∆ E

[
ζ
σ−1
σ

]
(ẽ Xt)

− 1
σ (53)

Using a similar line of argument as in Appendix A we find

∆̃ = δ +
(
ψ δE

[
ζ
σ−1
σ

]
+ ϕ∆E

[
ζ
σ−1
σ

])
(1− ẽ)

σ−1
σ + ϕΞ b?−

1
σ β ẽ−

1
σ ẽ (54)

(53)
= δ +

(
ψ δE

[
ζ
σ−1
σ

]
+ ϕ∆E

[
ζ
σ−1
σ

])
(1− ẽ)

σ−1
σ

+ ψ δ E
[
ζ
σ−1
σ

]
(1− ẽ)−

1
σ ẽ+ ϕ∆ E

[
ζ
σ−1
σ

]
(1− ẽ)−

1
σ ẽ

= δ
(

1 + ψ E
[
ζ
σ−1
σ

]
(1− ẽ)−

1
σ

)
+ ϕ∆ E

[
ζ
σ−1
σ

]
(1− ẽ)−

1
σ (55)

Solving yields

∆ = δ
1 + ψ E

[
ζ
σ−1
σ

]
(1− ẽ)−

1
σ

1− ϕ E
[
ζ
σ−1
σ

]
(1− ẽ)−

1
σ

(56)

For the optimal feedback rule we obtain

ϕβ ẽ−
1
σ c?−

1
σ =

(
ψ δ E

[
ζ
σ−1
σ

]
+ ϕ ∆̃ E

[
ζ
σ−1
σ

])
(1− ẽ)−

1
σ (57)

= δ E
[
ζ
σ−1
σ

]
(1− ẽ)−

1
σ

ψ + ϕ
1 + ψ E

[
ζ
σ−1
σ

]
(1− ẽ)−

1
σ

1− ϕ E
[
ζ
σ−1
σ

]
(1− ẽ)−

1
σ

 (58)

= δ E
[
ζ
σ−1
σ

]
(1− ẽ)−

1
σ

ψ + ϕ

1− ϕ E
[
ζ
σ−1
σ

]
(1− ẽ)−

1
σ

(59)
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From this, we get the equivalent to (9c).

β ẽ−
1
σ = δ E

[
ζ
σ−1
σ

] ψ + ϕ

1− ϕ E
[
ζ
σ−1
σ

]
(1− ẽ)−

1
σ

c?
1
σ (1− e?)−

1
σ (60)

Rearranging leads to (22).

For the comparative statics with respect to vζ in the case where ζ is log-normally distributed

with mean one and variance vζ , write (22) as

(1− ẽ)
1
σ =

(
1 + vζ
1 + v̄ζ

) 1−σ
2σ2

+ f ẽ
1
σ (61)

where (1 + v̄ζ)
1−σ
2σ2 = 1 + ρ and f is independent of vζ . The total differential at e? = 0 and

vζ = v̄ζ is

1

σ
dẽ =

1− σ
2σ2

dvζ
1 + v̄ζ

− 1

σ
f ẽ

1
σ
−1 dẽ (62)

For σ < 1 the second term vanishes at ẽ = 0 implying that ẽvζ is constant and thus vζ/ẽ ẽvζ = 1.

E Further details on calibration of the model

In this appendix we provide some further elements of calibration.

To calibrate the parameters of human capital accumulation, we assume that the global

economy is in the ‘intermediate’ steady state where consumption grows at the human capital

growth rate, as characterized in Proposition 2. From the condition Ŷt = ϕσ (1 − ε + κ)σ − 1

we obtain

1− ε+ κ =
(1 + Ŷt)

1
σ

ϕ
= FKt = 1.0530 = 4.32. (63)

For the rate of human capital depreciation we use the estimate of roughly 0.04 per year

(Heckman 1976, table 1), i.e. ε = 1− 0.96G = 0.71. This yields κ = 4.32− 1 + 0.71 = 4.02.

From these parameter values, we obtain the labor share used in production, given by (9d),

as

l? = 1− 1

κ

(
Ŷt + ε

)
=

1 + κ− ε− (1 + Ŷt)

κ
=

4.32− 1.02130

4.02
= 0.61. (64)
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In the next steps we use the income shares (27) From (41) we obtain(
(1 + g0)

σ−1
σ − α (b? − c?)

σ−1
σ

)
Y

σ−1
σ

0 = β E
σ−1
σ

0 + γ (l?H0)
σ−1
σ

⇔

(
(1 + g0)

σ−1
σ

ϕσ−1 ασ
− 1

)
α ((b? − c?)Y0)

σ−1
σ = β E

σ−1
σ

0 + γ (l?H0)
σ−1
σ (65)

where we have used (b? − c?)
1
σ = ϕα (cf. Proposition 1). Using (27), 1 + g0 = 1.02130, and

the above calibrated σ = 2
3 and ϕ = 0.59 we obtain the condition(1.02130

)− 1
2

0.59−
1
3 α

2
3

− 1

 0.25 = 0.05 + 0.70 ⇔ α = 0.060. (66)

Using this in (27b), we obtain Y0 = 0.54, measured in units of world output in period 1.

Finally, from (27c),

H0 =
1

l?

(
0.70

1− α− β

) σ
σ−1

= 2.28 (67)

This is roughly four times the initial stock of consumable capital Y0, which is in line with

empirical evidence (Liu 2014, figure 4).
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