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Abstract 
 
This paper investigates the usefulness, within the frameworks of the standard bridge model and the 

‘bridging with factors’ approach, of a predictor selection procedure that builds on the elastic net 

algorithm. A pseudo-real time forecasting exercise is performed, in which estimates for Belgium’s 

quarterly GDP are generated using a monthly dataset of 93 potential predictors. While the 

simulation results indicate that specifying forecasting models using this procedure can lead to a 

slight improvement in terms of predictive accuracy over shorter horizons, the forecasting errors 

made by these ‘targeted’ models are not found to be significantly different from those based on the 

principal components extracted from the entire set of available indicators. In other words, the only 

advantage of following such an approach lies in the fact that it enables the forecaster to streamline 

the information set. 
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1. Introduction 

Among all the statistical information economists have at their disposal for monitoring real 

economic developments, quarterly GDP is definitely one of the most relevant. This aggregate 

can be viewed as the most representative of the state of the economy at a given point in time 

in the sense that it covers all the industries and incorporates all the demand components. 

However, GDP figures, like other quarterly national accounts statistics, have the disad-

vantage of being released with some delay after the end of the period they relate to. Conse-

quently, the lack of any timely data for GDP is often overcome by relying on other indicators 

such as those obtained from sentiment surveys, financial markets or administrative sources. 

In addition to being released earlier than the quarterly national accounts data, these indicators 

are often available at higher frequencies, typically monthly or daily, and can thus give at least 

a partial view on the economic developments in a given quarter, even before its end. 

There are different techniques – often referred to as nowcasting methods – that can be 

used to extract the information conveyed by these advanced indicators and to convert it into 

early estimates of GDP or other macroeconomic aggregates. Among practitioners, the most 

popular ones are typically the factor models and the bridge models, as well as a combination 

of these two approaches, referred to as ‘bridging with factors’. A recent survey of the litera-

ture on nowcasting can be found in Ba bura et al. (2013). 

Models based on factors, in particular that developed by Giannone et al. (2008) who for-

malise the process of nowcasting by introducing the release calendar as an essential element, 

have received much attention in the literature over the past twenty years. The idea that under-

pins these models is quite simple: it consists in estimating one or several unobserved varia-

bles, called ‘factors’, that capture the main co-movements driving a large set of macroeco-

nomic indicators assumed to reflect developments in the business cycle. The main asset of 

these models lies in their predictive performance. They have indeed proved to be relatively 

more accurate than other short-term forecasting methods. An implementation of a related 

approach based on Belgian data can be found in de Antonio Liedo (2014). 

Standard bridge models, on the other hand, have an advantage in terms of readability. The 

fact that they take the form of a simple linear equation makes it easier to grasp the link be-

tween the indicators included on its right-hand side and the forecast inferred from their 

movement. From the point of view of an economic analyst, this feature facilitates considera-

bly the communication about his/her assessment of the current economic situation by refer-
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ring to a limited number of advanced indicators. However, the fact that they can include only 

a small number of explanatory variables is also one of their main drawbacks, as it entails the 

risk of neglecting some indicators that could otherwise improve the accuracy of the forecast. 

It is therefore essential, when specifying such a forecasting model, to correctly identify the 

most informative variables among a larger set of indicators. 

This paper explores the potential benefits from predictor selection to forecast Belgium’s 

quarterly GDP, using both standard bridge models and the bridging with factors approach. 

The selection algorithm used takes two aspects into account, which are particularly relevant 

in the context of a real-time forecasting exercise. The first is, obviously, the individual indi-

cators’ predictive power over GDP. The second relates to the data release calendar, in partic-

ular to the fact that the availability of monthly data differs depending on the point in time at 

which the forecast is made. 

In that perspective, I have opted for one of the variable selection procedures suggested by 

Bai and Ng (2008), namely the elastic net algorithm originally proposed by Zou and Hastie 

(2005). Bai and Ng (2008) implement this algorithm in order to select a sub-set of ‘targeted’ 

predictors they include in a monthly factor model for inflation in the US. Using this method 

has  two advantages.  Firstly,  it  makes  it  possible  to  perform a  selection  among a  very  wide  

panel of potential predictors, which allows for some agnosticism in the variable selection 

process. Secondly, as underlined by Bai and Ng (2008), it avoids selecting variables that are 

too similar. I also take into account the fact that monthly indicators are not all released at the 

same time and that short-term forecasts of GDP are consequently usually based on ‘ragged-

edge’ datasets. For that purpose, I resort to a refinement suggested by Bessec (2013) that, in 

substance, involves running the elastic net on a dataset transformed in order to reflect the 

situation of data availability as it stands at the time the forecasting exercise is carried out. 

The relevance of this strategy for predicting Belgium’s quarterly GDP growth is evaluat-

ed on the basis of a dataset consisting of 93 monthly indicators deemed relevant for the anal-

ysis of the Belgian business cycle, and whose release calendar is also documented in this pa-

per. Applying this selection procedure to these indicators, and using the outcome to specify 

targeted bridge model yields, within the framework of a pseudo real-time forecasting exer-

cise, results that are in line with those obtained by Bai and Ng (2008) and Bessec (2013), in 

that the inclusion of only a sub-set of the indicators selected using this procedure gives rise to 

a slight reduction in the models’ forecast errors. However, this finding holds mainly for 

shorter forecast horizons and, in any case, the differences in terms of predictive accuracy 

with respect to a more standard diffusion index forecast based on the full dataset of monthly 
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indicators are not significant, neither when the predictor selection is based on the entire sam-

ple period nor – and even less so – when it is carried out recursively based on past observa-

tions. In other words, the advantage of using this approach would lie exclusively in the 

streamlining of the dataset used to produce the GDP forecasts, with neither gains nor detri-

mental effects on the model’s predictive performance. 

Furthermore, as already shown by Bessec (2013), the composition of the set of selected 

indicators differs strongly at various points in the data release calendar. Typically, the selec-

tion algorithm tends to favour soft data – such as indicators obtained from business and con-

sumer sentiment surveys – for the earliest estimates, when some observations are available 

solely for these indicators, which are therefore the only ones that provide some information 

on the developments in the quarter considered. Then, when hard data – in particular the turn-

over of Belgian firms – become available, some of them appear among the most relevant pre-

dictors owing to their higher correlation with GDP. 

Incidentally, the program platform used to carry out the different stages of the forecasting 

process described in this paper was named BREL, as it combines BRidge models with the 

ELastic net algorithm to select their right-hand-side variables. This platform has now become 

one of the main tools used by the National Bank of Belgium, along with the dynamic factor 

model of de Antonio Liedo (2014), to produce short-term forecasts of various quarterly mac-

roeconomic aggregates and to monitor the business cycle in Belgium. 

The remainder of this paper proceeds as follows. The second and the third section briefly 

describe the two forecasting techniques used, namely the standard bridge model and the 

bridging with factors approach, and the predictor selection procedure, respectively. The fore-

casting performances of the targeted models specified on the basis of the predictor selection 

procedure are then assessed by means of a pseudo real-time exercise in the fourth section. 

The outcome of the predictor selection, in particular its sensitivity to the availability of 

monthly data, is also examined in that part. Conclusions are drawn in the fifth and last sec-

tion. 
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2. Bridge models 

2.1. Standard bridge models 

As its name indicates, a bridge model relates a quarterly aggregate  Yt  to a set of monthly 

predictors converted to the quarterly frequency, denoted 
  
X i,t

Q .  In  its  most  general  form,  the  

model’s main equation – the bridge equation – is specified as an autoregressive-distributed 

lag model (ADL): 

  
Yt h jYt j i, j X i,t j

Q

j 0

q

t
i 1

n

j 1

p

 
 (1) 

where p is the number of autoregressive terms, n is the number of predictors, and q the num-

ber of lags for the explanatory variables. The parameters, i.e. the constant , the autoregres-

sive parameters 
 j  and the coefficients 

  i, j  are estimated via an ordinary least squares (OLS) 

regression.  

If h = 0, Equation (1) generates an out-of-sample prediction for  Yt  in the quarter that follows 

the last observation available, which will be henceforth referred to as the current quarter. For 

that purpose, the observation for the monthly predictors should in principle cover that quarter 

entirely. However, in a real-time forecasting exercise, these observations are often missing or 

available only for the first month or the first two months, depending on the indicators. These 

gaps are usually filled in by extending the predictor series over the remainder of the quarter 

using univariate ‘satellite’ models, such as autoregressive (AR) or autoregressive moving-

average (ARMA) processes. The former of these two options is by far the most popular be-

cause it is much less computationally intensive than the latter1. The satellite AR model for a 

given monthly predictor (
  X i ,m ) can be written as 

  
X i,m 0 j X i,m j m

j 1

l

  (2) 

                                                        
1 The estimation of the parameters of an ARMA process requires an iterative procedure, such as the Kalman 

filter or the non-linear least squares estimator. Consequently, it takes much more time to identify and estimate 
models with moving averages than models that include only autoregressive terms using the standard Box-
Jenkins procedure. Yet, experiments carried out based on the monthly indicators used in this paper did not 
show any significant differences between most of the forecasts obtained from these two approaches. These 
computational considerations also motivate the use of AR processes in the selection procedure described in 
Section 3. 
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where l stands for the number of autoregressive parameters. As a rule, the number of lags is 

selected so as to minimise Schwarz’s Bayesian information criterion (BIC), with a maximum 

of six lags. 

In addition to predicting the value of  Yt  in the current quarter, for which some monthly 

data are assumed to have already been released, forecasts for the next few quarters can also 

be generated using models with leads, i.e. with   h 1. In principle, the satellite AR models 

could be used to extend the monthly predictor series beyond the current quarter, and the quar-

terly aggregation of their forecasts could then be plugged into the bridge equation, along with 

the estimate of  Yt , to generate predictions for quarters t+1, t+2, and the subsequent ones. 

However, this strategy runs the risk of compounding forecast errors for the monthly predic-

tors over the forecast horizon, which might then have detrimental effects on the accuracy of 

the prediction of the quarterly aggregate. This issue can arise if the AR models are somehow 

misspecified, which is likely to be the case in the sense that they can only be considered as an 

approximation of the true data generation processes1. In order to limit the ensuing uncertain-

ty, I follow an approach similar to that of Andreou et al. (2013) within the mixed data sam-

pling  (MIDAS)  framework.  In  that  approach,  the  h-quarters ahead forecast is not obtained 

iteratively, but on the sole basis of the monthly data related to the current quarter (if neces-

sary complemented with autoregressive forecasts so as to make conversion to the quarterly 

frequency possible). 

The main downside of the bridge model is that it can incorporate only a limited number 

of predictors. Indeed, like in any other linear model estimated by OLS, including too many 

explanatory variables for a given number of observations increases parameter uncertainty, 

leading thereby to higher forecast errors. On the other hand, by restricting the number of pre-

dictors, one also runs the risk of ignoring some that could possibly provide relevant indica-

tions on the developments in the quarterly aggregate. 

 

2.2. Bridging with factors 

Unlike standard bridge models, the so-called ‘bridging with factors’ approach is not con-

strained by a limited number of predictors since these are replaced by some sort of weighted 

averages, called factors, which capture their main ‘co-movements’. This approach has been 

implemented in multiple ways, which mainly differ in the way factors are extracted. For ex-

                                                        
1 See also Marcellino et al. (2006) for an in-depth discussion on this topic. 
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ample, Giannone et al. (2008) exploit the Kalman filter to extract the main common factors 

from a large unbalanced dataset of predictor series, improving on the approach of Stock and 

Watson (2002), who aim to capture the information content of the data by estimating princi-

pal components. Both of these two approaches exhibit generally good forecasting perfor-

mances.  Cross-country  empirical  analyses,  such  as  those  conducted  by  Barhoumi  et al. 

(2008) and Jansen et  al. (2013), show that they are generally more accurate in predicting 

quarterly GDP growth than several alternative methods, in particular those that consist in 

averaging predictions obtained from individual bridge equations, vector autoregressive 

(VAR) models or MIDAS models.  

I have opted here for the diffusion index framework because of its computational simplic-

ity. In its general form, this model can be compiled by replacing the n monthly predictors in 

Equation (1) by their common factors: 

  
Yt h

p

j 1
jYt j

r

i 1

q

j 0
i, j Fi ,t j

Q
t
  (3) 

where 
  Fi ,t  is  one  of  the  r factors included in the model, with r  <<  n, estimated using the 

principal components method. Let  X t  be a vector of size n, which contains the (standardised) 

monthly series, and  Ft  the vector of size r that includes the common factors. It is assumed 

that the former and the latter are related according to the following equation:  

 X t Ft t   (4) 

where the loadings in  are normalised so that 
  
1/ n Ir . The principal component 

estimator for  and  Ft  is obtained from minimising the sum of squared residuals of Equa-

tion (4). Finding the solution to this minimisation problem amounts to calculating the 

(normed) eigenvectors, denoted V, of the sample variance matrix of  X t , i.e. 

  
ˆ

X 1 T X t X t
'

t 1

T
, associated with the r first eigenvalues. The estimates for the common 

factors can then be calculated as 

  F̂t X tV   (5) 
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In a way, Equation (5) can be viewed as a weighted average of the monthly predictors. 

Finally,  ˆ  can be obtained from a simple OLS regression of  X t  on   F̂t : 

  
ˆ F̂ ' F̂

1
F̂ ' X   (6)   

To identify the optimal number of factors (r) in model depicted in Equations (3) and (4), I 

rely on the method of Bai and Ng (2002), who proposed a series of estimates based on vari-

ous  information  criteria.  Basically,  the  identification  of  the  number  of  factors  amounts  to  

solving an optimisation problem, which, if based on their 
  ICp2  criterion, can be formulated 

as 

   
r̂ argmin

0 k rmax
ln V k, F̂ k k n T

nT
ln min n,T

 (7)   

where 
  
V k , F̂ k 1 nT X t

ˆ F̂ k
t 1

T '
X t

ˆ F̂ k  is the sum of the squared residuals 

from Equation (4).  and  are the estimates from Equations (5) and (6), respectively, 

allowing for k factors in the model. The simulations performed by Bai and Ng (2002) show 

that this information criterion provides a consistent estimate of r. It is furthermore better at 

identifying the true number of factors than more conventional information criteria, such as 

the Akaike and the Bayesian information criteria. 

As for the selection of the number of lagged factors (q) and lagged dependents (p) to be 

included in the model, I simply follow Stock and Watson (2002) by using the combination of 

these  two  parameters  that  minimises  the  BIC  of  Equation  (3),  allowing  in  each  case  for  a  

maximum of two lags. 

Since   F̂ k  can only be calculated using a balanced dataset, forecasts for one or several pe-

riods ahead based on the diffusion index framework of Stock and Watson (2002) are usually 

made using models with leads. In order to exploit the monthly data released in the course of 

the current quarter, I extend the factors series until the last month of that quarter in the same 

way as Barhoumi et al. (2008). This is done by generating forecasts of the monthly series 

contained in  X t  by means of individual satellite AR models – analogous to those used in the 

bridge model – and multiplying them by the weights from the matrix V, as in Equation (5).  

The way the non-synchronous monthly data releases are treated in the bridging with fac-

tors approach followed throughout this paper is thus different from that proposed by 

  F̂ k   ˆ k
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Gianonne et al. (2008). It is also different from the multivariate method used by de Antonio 

Liedo (2014) on Belgian data, where all the variabes are jointly specified in terms of factors. 

As highlighted in the survey paper by Ba bura et al. (2013), the advantage of that latter ap-

proach is the possibility to derive the impact of news on the forecast for GDP. However, this 

issue is not dealt whith in this paper, which focuses on the identification of the variables that 

are most helpful at forecasting quarterly GDP growth, and not the analysis of forecasting re-

visions. In this regard, the diffusion index framework, like the standard bridge model, is a 

suitable and transparent methodology. 

 

3. Predictor selection 

The predictive performance of a forecasting model can be optimised by avoiding includ-

ing indicators that do not convey any adequate information on changes in the dependent vari-

able. To this end, one can rely on a variable selection procedure that helps in identifying the 

most relevant variables and leaving out the most ‘noisy’ ones. Such a procedure is best auto-

mated so that the selection and the resulting model can be reviewed periodically, as the corre-

lation of some potential predictors with the dependent variable, and hence their relevance, 

might change over time. 

Different selection methods were proposed in the literature. One selection algorithm often 

used within the framework of bridge models1 is the general-to-specific modelling strategy 

(PCGets) of Krolzig and Hendry (2001). This algorithm starts from a general unrestricted 

model, typically specified based on the econometrician’s assumptions on the data generating 

process, and estimated using an OLS regression. Non-significant variables are then removed 

sequentially  and  a  battery  of  tests  is  run  to  check  the  validity  of  the  reduction.  In  the  final  

stage, the models obtained from different search paths are compared in order to select the 

final model. The main disadvantage of this variable selection procedure is that it requires a 

pre-selection of a limited number of variables so as to ensure a sufficient number of degrees 

of freedom in the OLS estimation. Sédillot and Pain (2005) avoid such a pre-selection, which 

may  to  some  extent  be  arbitrary,  by  first  generating  a  ranking  of  a  large  set  of  predictors  

based on the adjusted R² from bivariate regressions with GDP growth as the dependent varia-

ble. Then they estimate ARDL models with all possible combinations of the four top-ranked 

                                                        
1 See for example Barhoumi et al. (2011). 
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variables.  The  final  bridge  equation  is  the  one  that  exhibits  the  smallest  BIC.  This  type  of  

method is known as hard thresholding. 

I have opted here for a soft thresholding method, namely the elastic net algorithm pro-

posed by Zou and Hastie (2005). In a nutshell, the elastic net, like the lasso which is a partic-

ular case of it, is based on a standard linear model augmented with a penalty, and the numeri-

cal method used to estimate the coefficients makes it possible to set to zero those for the less 

relevant explanatory variables. The number of the variables excluded from the model in that 

way is determined by a specific parameter, which can therefore be used to generate an order-

ing of a large number of potential predictors according to their explanatory power over the 

dependent variable. Another important advantage of this algorithm is that the initial model 

can include considerably more variables than available observations. Consequently, the selec-

tion can be carried out in a fairly agnostic way since a pre-selection of a limited number of 

potential variables is not necessary.  

The elastic net was first used in the context of economic forecasting by Bai and Ng 

(2008) within the diffusion index forecasting framework for predicting inflation in the US, 

along with alternative methods. They show that using only the most informative predictors – 

which they refer to as ‘targeted’ predictors – and leaving out the less relevant ones can im-

prove forecast accuracy. They also show that the gain is greater when predictors are selected 

using soft-thresholding methods like the lasso or the elastic net. One explanation for this find-

ing is that, in contrast to variable rankings based on hard-thresholding rules like the Student 

statistics from individual bivariate regressions1, the elastic net makes it possible to avoid se-

lecting variables which are too similar. Obviously, this feature is also of prime interest in the 

standard multivariate linear regression framework which forms the basis of the bridge model 

described in the previous section, as it should help avoid potential multicollinearity issues to 

which this type of model is prone. To my knowledge, the soft-thresholding selection methods 

advocated by Bai and Ng (2008) had thus far only been applied to bridge models by Bulligan 

et al. (2012), who used them in combination with the general-to-specific routine. Their find-

ings are consistent with those of Bai and Ng (2008), in that the forecasts from the models 

inferred from the variable selection outperform in most cases those from a diffusion index 

model estimated on the basis of the entire dataset. Another study worth mentioning is that of 

De Mol et al. (2008), who propose a soft-thresholding selection technique similar to the lasso 

in a much different framework, namely the Bayesian regression with a prior intended to 

                                                        
1 This rule tested by Bai and Ng (2008) along with the lasso and the elastic net is very similar to that of Sédillot 

and Pain (2005). 
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shrink all the coefficients towards zero. Using a large panel of time series characterised by a 

strong collinearity between them, they find that the forecasts obtained from that variable se-

lection approach are highly correlated with those obtained from variable aggregation based 

on principal components. These findings are compatible with the results that will be dis-

cussed in section 4.  

The elastic net algorithm used in this study involves more specifically minimising the 

sum of square errors from a linear model, like in the simple OLS regression, adding two pen-

alties for the number of parameters to the objective function which, if based on Equation (1), 

can be formulated as 

  (8) 

where . The variables marked with tildes represent de-

meaned series (e.g. ). The value of  is comprised between 0 and 1, and  is a 

real number greater than 0.  

The second and the third terms of Equation (8) make up the elastic net penalty, which ac-

tually combines two pre-existing variable selection methods, namely the ridge regression 

(Hoerl and Kennard, 1988) and the lasso (Tibshirani, 1996). Setting the value of  to 0 gives 

the objective function used in the former, which minimises the sum of squared errors subject 

to a penalty defined as the sum of the squared of the coefficients, while setting it to 1 yields 

one equivalent to that of the lasso, in which the penalty is defined as the sum of the absolute 

value of the coefficients. The downside of the ridge regression is that it does not actually re-

sult in a restricted model, as all of the estimated coefficients remain different from zero, alt-

hough those pertaining to the less relevant variables are smaller. The lasso, on the other hand, 

sets  to  zero  the  coefficients  pertaining  to  the  most  irrelevant  predictors,  the  proportion  of  

which is determined by the value of . This feature is particularly convenient as it enables  

to be used to generate a ranking of the potential predictors included in the model according to 

their explanatory power over the variable of interest. This can be done simply by running the 

algorithm  several  times  with  different  values  for  that  parameter.  However,  Zou  and  Hastie  

(2005) point out that the lasso tends to select only one predictor within groups of strongly 

correlated variables, and might thus overlook other potentially relevant predictors. In such a 

case, which is typically encountered with monthly indicators used for short-term forecasting, 
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the predictive performance of the ridge regression dominates that of the lasso. The elastic net 

is basically a compromise between these two selection methods, as it enables irrelevant vari-

ables to be excluded from a large dataset and, furthermore, it performs well with highly cor-

related variables. 

In contrast to the standard OLS regression, the elastic net is based on an estimation algo-

rithm that makes it possible to include many more explanatory variables than that of the 

available observations (i.e. with n  >>  T). The algorithm used by Zou and Hastie (2005) 

builds on the LARS (least angle regression) algorithm of Efron et al. (2004). I use an alterna-

tive algorithm developed by Friedman et al. (2010), which relies on a numerical optimisation 

technique known as the ‘coordinate descent’1, to estimate the coefficients pertaining to the 

potential predictors (
 j  and 

  i, j ) for given values of  and . Finding an optimal value for 

 is not necessary, as this parameter is actually used to establish a ranking of the ‘best’ pre-

dictors that will be subsequently included in the forecasting model. As for , which is 

bounded between 0 and 1, its optimal value can be easily determined by means of a grid 

search. Concretely, in every variable selection process, the elastic net is first run on the basis 

of different values for ,  within  an  interval  ranging  from 0.1  to  1  and  with  increments  of  

0.1, and, for each of them, the average root mean square error of the fitted dependent variable 

( )  is  calculated over the spectrum of the possible values of .  The value of  which is 

eventually picked is the one that minimises this criterion. In practice, however, it can be no-

ticed that the outcome of the selection is little sensitive to the value chosen for . 

The selection algorithm described above can only be used on a balanced panel dataset, i.e. 

a dataset in which all of the explanatory and the dependent variables cover exactly the same 

period. However, the situations of data availability generally faced by professional forecast-

ers in the context of real-time exercises are considerably different. Regardless of the model 

used to generate them, early estimates of GDP or other macroeconomic aggregates are usual-

ly based on a set of various monthly indicators released before the official quarterly statistics, 

although at staggered dates. Some of these indicators are already available at the middle or 

the  end  of  the  month  they  relate  to.  This  is  typically  the  case  with  survey-based  sentiment  

indicators. Others might be released only one or two months after. Hard indicators, such as 

                                                        
1 The coordinate descent is an iterative procedure in which the objective function is optimised with respect to 

one single parameter in each iteration, considering the value of the other parameters as given. This operation is 
repeated for every parameter based on the value obtained for the other parameters in the previous iteration. 
The complete sequence of iterations is repeated until the vector of parameters has converged to one single val-
ue. Friedman et al. (2010) implemented their method by means of a program written in R. In the simulations 
presented further this paper, I used the version provided in MATLAB’s Statistics Toolbox. 
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industrial production indices, data on firms’ turnover and foreign trade data, belong to that 

category. As a result, monthly datasets used by forecasters do not cover the entire forecasting 

horizon and are usually characterised by a ‘ragged edge’, in which monthly observations are 

more  often  missing  for  those  indicators  that  are  released  with  some  delay.  Within  the  two  

forecasting frameworks discussed in the previous section, these missing observations need to 

be filled in by means of autoregressive forecasts in order to generate an estimate for the quar-

terly variable. 

Running the selection algorithm in-sample, without accounting for possible ragged edges, 

would obviously lead to selecting those indicators that are the most strongly correlated with 

GDP, in particular the hard indicators which are typically used to compile the quarterly statis-

tic. However, these indicators are also those released with the longest delays, making it nec-

essary, in a real-time forecasting exercise, to extend their series with autoregressive forecasts 

up to the end of the current quarter, thereby increasing the magnitude of forecast errors. On 

the other hand, since they are made available more rapidly, survey and financial indicators do 

not have that drawback, or at least to a lesser extent, even though their in-sample correlation 

with GDP is weaker. This means that earlier estimates using these indicators can be based  

more on real observations than on autoregressive forecasts, which reduces uncertainty linked 

to the prediction from the AR satellite models. Consequently, they might even have a higher 

predictive power over GDP in the absence of monthly data for hard indicators within the cur-

rent quarter. 

It is therefore important to adapt the selection procedure in order to take into account both 

the publication lags and the staggered releases of the monthly data. For that purpose, I follow 

the approach proposed by Bessec (2013), who refined the selection procedure advocated by 

Bai and Ng (2008). It involves running the elastic net on a transformed dataset in such a way 

that it reflects the availability of monthly data at the time the forecast is made. Concretely, if 

some monthly observations for a given indicator are lacking within the current quarter, which 

is more likely to be the case if it is subject to longer publication lags, the observations for the 

corresponding months within the other quarters in the whole sample period over which the 

elastic net is run are replaced by autoregressive forecasts. The idea is to assess the predictive 

ability of that indicator based only on the information conveyed by the partial intra-quarterly 

data available rather than on its in-sample explanatory power. Clearly, this substitution penal-

ises the indicator concerned by reducing its correlation with GDP. 

Bessec (2013) applied this refined selection procedure to the model of Giannone et al. 

(2008) and she used standard autoregressive forecasts to extrapolate the monthly series be-
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cause of the analogy with the AR process followed by the factors in that class of models. In 

my view, this argument makes even more sense for the bridge model and the bridging with 

factors approach discussed in the previous section, in which AR models are explicitly part of 

the forecasting process. 

The construction on the transformed dataset is illustrated in Figures 1 and 2 by means of a 

simplified example. Figure 1 represents a set of monthly series with the observation available 

at the time a prediction for the quarterly variable of interest ( Yt ) must be made. The latest 

observation for  Yt  relates to quarter T and a forecast must be generated for the current quarter, 

i.e. quarter T+1, and possibly the subsequent quarter(s). In that example, monthly data are 

available over the entire current quarter for two indicators (indicators 1 and 3) but some ob-

servations are lacking for others. This is the case for indicators 2 and 4, for which monthly 

data are missing for the third and the two last months, respectively, whereas no observation at 

all is yet available for indicator 5. Therefore, in order to perform a forecast for   YT 1 using one 

of the two models described in Section 2, these series must be extended with autoregressive 

forecasts up to the last month of the current quarter. The transformed dataset, shown in Fig-

ure 2,  aims at  reflecting this situation of data availability.  In the case of indicator 4,  for in-

stance,  the observations for the last  two months in every quarter covered by the sample are 

replaced by predictions from AR models estimated using the preceding observations. Thus, 

each quarterly data point related to that indicator used for running the elastic net consists of 

the aggregation of one observation and two autoregressive forecasts. On the other hand, the 

series for which monthly data are available over the entire current quarter (such as those of 

indicators 1 and 3) remain unchanged. 
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Figure 1 – Simplified example of a set of monthly series with staggered data releases 
 

Quarter Month Indicator 1 Indicator 2 Indicator 3 Indicator 4 Indicator 5 

1 1   X1,1
   X 2,1

   X 3,1
   X 4,1

   X 5,1
 

       

       

T-2 3T-8   X 1,3T 8
   X 2,3T 8

   X 3,3T 8
   X 4,3T 8

   X 5,3T 8
 

T-2 3T-7   X1,3T 7
   X 2,3T 7

   X 3,3T 7
   X 4,3T 7

   X 5,3T 7
 

T-2 3T-6   X 1,3T 6
   X 2,3T 6

   X 3,3T 6
   X 4,3T 6

   X 5,3T 6
 

T-1 3T-5   X 1,3T 5
   X 2,3T 5

   X 3,3T 5
   X 4,3T 5

   X 5,3T 5
 

T-1 3T-4   X1,3T 4
   X 2,3T 4

   X 3,3T 4
   X 4,3T 4

   X 5,3T 4
 

T-1 3T-3   X 1,3T 3
   X 2,3T 3

   X 3,3T 3
   X 4,3T 3

   X 5,3T 3
 

T 3T-2   X1,3T 2
   X 2,3T 2

   X 3,3T 2
   X 4,3T 2

   X 5,3T 2
 

T 3T-1   X 1,3T 1
   X 2,3T 1

   X 3,3T 1
   X 4,3T 1

   X 5,3T 1
 

T 3T   X1,3T
   X 2 ,3T

   X 3,3T
   X 4 ,3T

   X 5,3T
 

T+1 3T+1   X 1,3T 1
   X 2,3T 1

   X 3,3T 1
   X 4,3T 1

   X 5,3T 1

f  

T+1 3T+2   X1,3T 2
   X 2,3T 2

   X 3,3T 2
   X 4,3T 2

f    X 5,3T 2

f  

T+1 3T+3   X 1,3T 3
   X 2,3T 3

f    X 3,3T 3
   X 4,3T 3

f    X 5,3T 3

f  

  X i ,m
 = observation for indicator i on month m;   X i ,m

f  = forecast from an autoregressive model. 
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Figure 2 – Construction of the pseudo dataset 
 

Quarter Month Indicator 1 Indicator 2 Indicator 3 Indicator 4 Indicator 5 

8 22   X1,22
   X 2 ,22

   X 3,22
   X 4 ,22

   X5,22

f  

       

       

T-2 3T-8   X 1,3T 8
   X 2,3T 8

   X 3,3T 8
   X 4,3T 8

   X 5,3T 8

f  

T-2 3T-7   X1,3T 7
   X 2,3T 7

   X 3,3T 7
   X 4,3T 7

f    X 5,3T 7

f  

T-2 3T-6   X 1,3T 6
   X 2,3T 6

f    X 3,3T 6
   X 4,3T 6

f    X 5,3T 6

f  

T-1 3T-5   X 1,3T 5
   X 2,3T 5

   X 3,3T 5
   X 4,3T 5

   X 5,3T 5

f  

T-1 3T-4   X1,3T 4
   X 2,3T 4

   X 3,3T 4
   X 4,3T 4

f    X 5,3T 4

f  

T-1 3T-3   X 1,3T 3
   X 2,3T 3

f    X 3,3T 3
   X 4,3T 3

f    X 5,3T 3

f  

T 3T-2   X1,3T 2
   X 2,3T 2

   X 3,3T 2
   X 4,3T 2

   X 5,3T 2

f  

T 3T-1   X 1,3T 1
   X 2,3T 1

   X 3,3T 1
   X 4,3T 1

f    X 5,3T 1

f  

T 3T   X1,3T
   X 2 ,3T

f    X 3,3T
   X 4 ,3T

f    X 5,3T

f  

  X i ,m
 = observation for indicator i on month m;   X i ,m

f  = forecast from an autoregressive model. 

 

Formally, the formula used to calculate the transformed quarterly series from a monthly 

series 
  X i,t , for which the last data available refers to month  M i  is 

  
X i,t

Qf
2

l 0

X i,3t l1 3T 3h* M i l X i,3t l
f 1 3T 3h* M i l

  (9)
  

  h* denotes the number of quarters following quarter T for which some monthly information 

is already available (in the example illustrated in Figure 1,   h* 1) and 
  X i ,m

f  stands for the 

forecast of 
  X i,m  generated by an AR model. The forecast is made over a horizon of 

  3T 3h* M i  months, i.e. the same number of forecasts that needs to be generated in order 

to obtain a prediction for 
  YT h* , on the basis of the past observed values:  

              (10) 
  
X i,m

f Ê X i,m | X
i,m 3T 3h* M i

, X
i,m 3T 3h* Mi 1

, X
i,m 3T 3h* M i 2

,..., X i,1
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Since the generation of these forecasts requires some back data, the time coverage of the 

transformed dataset is necessarily shorter than that of the original dataset. In my computa-

tions, I have set to 22 the minimum number of observations used to estimate the AR models. 

As a result, the period covered by the transformed dataset runs from the eighth quarter of the 

original sample period. 

Once they are calculated, the transformed series ( X i
Qf ) are plugged into Equation (8), 

where they substitute to the original quarterly variables ( X i
Q ), and the elastic net is then run 

based on that specification. 

The outcome of this procedure is a ranking, in which indicators are ordered according to 

their predictive power over  Yt . The number of top-ranked indicators to take into account in 

the model should be determined in the next step of the forecasting process. One option is re-

lying on standard information criteria, such as the BIC, which entails little computational 

cost. A more rational approach in the context of real-time forecasting, albeit more computa-

tionally intensive, is using a measure of predictive accuracy for each n* first top-ranked vari-

ables (with n* < n) and pick the number of variables that yields the best performance over a 

recent period. In practice, the measure I use for that purpose is the root mean square forecast 

error (RMSFE1).  

 

4. Empirical analysis 

In this section, the gain in terms of predictive performance that can potentially arise from 

the selection procedure, both within the standard bridge framework (SB) and the bridging 

with factors approach based on the diffusion index (DI), is evaluated through a pseudo real-

time forecasting exercise. This exercise involves performing a series of recursive forecasts of 

the Belgian GDP using ‘targeted’ models with different numbers of indicators taken from the 

highest positions in the ranking (i.e. different n*) obtained from the selection procedure, and 

according to six different scenarios of data availability. The predictors included in the models 

are selected among a pre-selection of 93 monthly indicators deemed relevant for monitoring 

the business cycle in Belgium and covering a sufficiently long time period. 

 
                                                        

1 The RMSFE is defined as 
  

1 T Ŷ
t

Y
t

2

t 1

T
, for a series of recursive forecasts (  Ŷt

) carried out over a 

period spanning over T periods. 
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4.1. Data 

The dataset used in the simulation exercise includes both hard and soft indicators, as well 

as some financial series, which are listed in Annex 1.  

Some of the hard indicators taken into consideration are those used by the Belgian Na-

tional  Accounts  Institute  (NAI)  to  compile  quarterly  GDP,  namely  the  turnover  of  Belgian  

companies such as reported in their returns to the VAT administration and the industrial pro-

duction index. Since the turnover data can be broken down by industry, I also considered the 

turnover in some of the most important ones separately (namely manufacturing, construction, 

retail trade, hotels and restaurants, business services, and the service branches taken as a 

whole). Industrial production indices are also available for several industries but, in order to 

avoid excessively volatile variables due to a too refined breakdown, I limited the pre-

selection to the two main industries covered by these data, i.e. manufacturing and construc-

tion, and to the grouping by product category (energy, capital goods, intermediate goods, as 

well as durable and non-durable consumer goods). The dataset also comprises industry-

specific hard indicators, such as the number of building permits granted for new construc-

tions and the number of new cars registered, as well as others related to the developments in 

the labour market in Belgium, namely the unemployment rate, the number of job-seekers and 

the work volume of temporary workers (which includes both blue- and white-collar workers). 

Most of the soft indicators are derived from the replies to the business survey conducted 

by the National Bank of Belgium in four major industries, namely manufacturing, construc-

tion, trade and business-related services. The pre-selection was restricted to the main survey 

indicators, i.e. the replies to the individual survey questions reported on a monthly basis in 

the Bank’s publications. I did not consider the synthetic indicators since they do not provide 

any additional information. They are actually calculated as the averages of some indicators 

pertaining to specific questions. I also included the four main indicators from the consumer 

survey.  

As for the financial series, their number is more limited. They include a Belgian and a 

European stock market index (the Brussels All Shares Index and the Euro Stoxx Broad In-

dex),  the  ten-year  Belgian  government  bond  yield  as  well  as  the  spread  of  this  yield  com-

pared to that of the German Bund, oil prices, a broader price index for energy raw materials 

and a price index for other commodities.  

Finally, the dataset also comprises some hard and soft indicators related to external de-

velopments, notably production and foreign trade indices in the euro area, the advanced 
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economies and in the emerging economies, as well as industrial and consumer confidence 

indicators for Belgium’s neighbours.  

All the series, with the exception of the financial indicators, are seasonally adjusted and, 

if relevant, corrected for calendar effects. They are all log-transformed, unless they can take 

zero or negative values (which is the case of survey indicators) and expressed in first differ-

ence if a unit root is detected either by the ADF or the Philips-Perron test. 

The quarterly GDP series used in the simulations run from the first quarter of 1995 to the 

last quarter of 2013. Most of the 93 indicators cover the same period but two of them do not 

start until April 1996, namely the price index for energy raw materials and that for other 

commodities. Consequently, taking the differentiation of these two non-stationary series into 

account, the predictor selection procedure is performed over a period starting from the third 

quarter of 1996. Furthermore, the simulation results presented below are based on a series of 

recursive forecasts carried out from the first quarter of 2005 onwards, so as to ensure that 

both the predictor selections and the model estimations are made using a sufficiently large 

number of observations. 

It should be noted that the simulations are based on the most recent data vintage, both for 

the monthly indicators and quarterly GDP, since I did have the information that would have 

enabled me to construct different series corresponding to the different vintages. Nonetheless, 

as far as the monthly indicators are concerned, this limitation does not affect the survey-based 

indicators and the financial series, which are not subject to revisions1. In addition, an inspec-

tion of the last releases did not reveal any major changes between the successive vintages for 

most of the hard indicators. But this is the case for certain indicators related to real economic 

activity, such as the monthly data on foreign trade in goods and on construction of new build-

ings started, for which revisions might sometimes be important. These monthly series were 

excluded from the pre-selection for that reason. Quarterly GDP, on the other hand, may be 

subject to revisions up to two years after the initial release, and the revisions may sometimes 

be substantial. The series used in this paper correspond to the latest official estimates of GDP 

available at the time the simulations were performed, i.e. the final estimates up until the last 

quarter of 2012 and the ‘one-year’ estimates for the four quarters of 2013. Therefore, the pre-

dictive accuracy of the various models are largely assessed by their ability to predict the latest 

data released by the NAI. 

                                                        
1 With the exception of revisions due to methodological changes. For instance, the NBB changed the way it 

calculated its synthetic survey indicators – which are not included in the dataset – in 2009 (De Greef and Van 
Nieuwenhuyze, 2009). 
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4.2. Design of the simulation exercise 

The predictive performance of the various models is evaluated according to the six differ-

ent data scenarios described in Table 1. Each of them corresponds to a situation of data avail-

ability that could be encountered by a forecaster who needs an estimate for Belgian GDP in 

quarter Q at a certain point in time. The idea is to replicate, in a simplified manner, the re-

lease calendar of the various monthly indicators included in the dataset.  
 
Table 1 – Data availability scenarios for forecasting GDP in quarter Q 
 

Scenario Survey and finan-
cial data 'Early' hard data† Hard data Lagged dependent 

1.  Three months before 
the end of Q 3rd month of Q-1 2nd month of Q-1 1st month of Q-1 Q-2 

2.  Two months before 
the end of Q 1st month of Q 3rd month of Q-1 2nd month of Q-1 Q-2 

3.  One month before the 
end of Q 2nd month of Q 1st month of Q 3rd month of Q-1 Q-2 

4.  End of Q 3rd month of Q 2nd month of Q 1st month of Q Q-1 

5.  One month after the 
end of Q 1st month of Q+1 3rd month of Q 2nd month of Q Q-1 

6.  Two months after the 
end of Q 2nd month of Q+1 1st month of Q+1 3rd month of Q Q-1 

† Including, in particular, data related to the labour market and new car registrations. 
 

Survey indicators, whether they relate to Belgium or other countries, are typically availa-

ble at the end of the month they pertain to. For instance, Eurostat publishes the results from 

the monthly consumer and business surveys conducted in the EU countries by the end of each 

month, while the National Bank of Belgium publishes those for Belgium earlier, around the 

18th day of the month for the consumer survey and around the 24th for the business survey. 

Since stock market data, interest rates and commodity prices (i.e. the ‘financial’ data) are 

available on a daily basis, their monthly averages are known at the end of the month. On the 

other hand, hard indicators such as industrial production or turnover data are generally re-

leased much later, most of the time seven or eight weeks after the end of the month consid-

ered. Nonetheless, others types of hard data, like those for unemployment, temporary work 

and the number of cars registered, are released earlier. These indicators are classified as a 

separate category, named ‘early hard’ data.  
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Furthermore, the fact that quarterly GDP is published 70 days1 after the end of the quarter 

it  pertains to has also been accounted for.  It  is  therefore considered as known at the end of 

third month that follows that quarter. Consequently, an observation for the model’s lagged 

dependent variable – i.e. GDP growth in the previous quarter – is only available starting from 

the end of quarter Q, that is as from the fourth data scenario. 

Two simulations are performed. In the first, predictors are selected on the basis of data 

from the entire sample period. So, the specification of the forecasting model, for a given data 

scenario, remains the same for all the recursive forecasts. The models’ parameters, including 

those of the satellite AR models, are nevertheless re-estimated in each recursion. In the sec-

ond simulation, the selection is made recursively. That is, a different ‘targeted’ model is used 

for each quarter in the simulation period and includes predictors selected on the basis of ob-

servations available for the previous quarters. Of course, the exact number of intra-quarterly 

observations taken into account in the selection procedure differs across monthly indicators 

and is determined by the data availability scenario. 

These two types of simulation serve different purposes. Those based on the selection that 

exploits the entire sample are the ones a forecaster would use in order to assess the error mar-

gin of different models if he/she were to make a prediction for GDP in the quarter after the 

last  one  covered  by  the  available  data.  It  is  also  the  most  suitable  option  for  assessing  the  

predictive ability of the indicators that emerge from the selection procedure. On the other 

hand, repeating the selection procedure at each recursion is clearly more appropriate to meas-

ure the performance of the forecasting strategy as a whole. In particular, it gives a better view 

of the accuracy of the forecasts that would have been produced if that method had been used 

over a relatively long time period. 

In the results reported below, the predictive performances of the various targeted models 

specified based on the rankings obtained via the selection procedure are compared to two 

benchmark models. The first, which is often used in the literature on short-term forecasting, 

is the simple AR model. This benchmark can be interpreted as a ‘naive’ prediction in the 

sense that it involves forecasting GDP growth using only its past observations (the exact 

number of which is determined on the basis of the BIC), without taking into account the in-

formation conveyed by the monthly indicators. While this benchmark is helpful in assessing 
                                                        
1 This was the time limit set by Eurostat in the period over which the simulations are performed. According to 

the new publication rules that came into force in the second half of 2014, quarterly national accounts are to be 
published 60 days after the end of the quarter. A first estimate of GDP, known as the ‘flash’ estimate, is also 
released by the National Accounts Institute 30 days after the end of the quarter. It is nevertheless based on par-
tial information, as only the hard data for the two first months are available at that moment. That first estimate 
is consequently often revised in the subsequent publications. 
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the informative content of the predictors included on the right-hand side of the targeted mod-

els, it remains quite weak in terms of predictive capability. So I rely on the forecasts from a 

more conventional diffusion index model as the main benchmark, i.e. the model described in 

Section 2.2 based on all of the 93 indicators included in the dataset, without running the pre-

dictor selection procedure beforehand. The motivation for this choice is twofold. Firstly, as 

discussed in Section 2, this forecasting approach appears as one of the most accurate. Sec-

ondly, using all the indicators from the dataset also makes it possible to gauge whether it is 

worth relying on the selection procedure. Indeed, if the principal component(s) extracted 

from all the indicators exhibit better predictive performances than a model using only a sub-

set of selected predictors, this could naturally cast some doubt on the reliability and the use-

fulness of the selection procedure. 

In the results presented in the next section, the accuracies of the forecasts from the target-

ed SB and DI models are compared to that of the benchmark factor model by means of the 

test proposed by Diebold and Mariano (1995). Basically, the Diebold-Mariano (DM) test 

statistic determines whether the magnitudes of the forecast errors from two distinct models 

are statistically equal based on the difference between their respective loss functions (the loss 

differential). Assuming these loss functions are both quadratic, the DM test statistic is defined 

as 

  

DM d

1 T dt d
2

t 1

T

  (11)

 

 d  stands for the average of the loss differential 
  
dt e1,t

2 e2,t
2  (where 

  e1,t  and 
  e2,t  are the fore-

cast errors from models 1 and 2, respectively)1. In large samples, and under the null hypothe-

sis  that  the  magnitudes  of  the  errors  from the  two models  are  similar,  the  DM test  statistic  

follows a normal distribution with a zero mean and a unit variance. 

 
  

                                                        
1 Equation (11) is actually a particular form of the DM test statistics that does not take into account the possible 

autocorrelation in  dt  that might arise when performing multiple-step-ahead forecasts. Since the forecasts 
made within the framework of the simulation exercise are carried out over a horizon of only one quarter, this 
refinement is not relevant in this case. 
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4.3. Predictive performance 

Table 2 reports the RMSFEs from the recursive out-of-sample forecasts made using SB 

and DI models that include the top-ranked variables from the ordering obtained by running 

the selection procedure over the entire sample period, i.e. from the third quarter of 1996 to 

the fourth quarter of 2013. The forecasts were produced with different numbers n* of predic-

tors and for each of the six data scenarios described above. In each scenario, the elastic net 

was run on a dataset transformed so that it reflects the corresponding situation of data availa-

bility, following the method discussed in Section 3. The RMSFEs of the two benchmark 

models, namely the AR model and the DI model that includes all the indicators from the da-

taset, are also mentioned. In line with the assumptions regarding the data release calendar, the 

recursive forecasts based on the autoregressive model – like the other models considered – do 

not take into account GDP growth in the quarter before the current quarter as that observation 

should  be  available  only  at  the  end  of  the  latter.  Therefore,  the  RMSFEs  reported  for  that  

model are based on two-quarter-ahead forecasts from data scenarios 1 to 3, and on one-

quarter-ahead forecasts starting from scenario 4. 

Two patterns emerge from the simulation results presented in Table 2. Firstly, they show 

a clear relationship between the availability of monthly data within the current quarter and 

the accuracy of the forecasts generated by the various models. Predictive performance is gen-

erally poor in data scenarios 1 and 2, i.e. when no monthly data related to the current quarter, 

or only one month of survey and financial data, are taken into account. It improves consider-

ably starting from the third scenario, when soft data for the second month and the first hard 

data (the ‘early’ hard data) are used. The average errors further decrease in scenario 4 and 5, 

and the best level of predictive performance appears to already have been reached in the lat-

ter. The RMSFEs are indeed quite similar in the two last data scenarios, suggesting that the 

last observations for the hard indicators taken into account in scenario 6 do not bring about 

any significant improvement in terms of forecast accuracy. Secondly, the relationship be-

tween the forecast errors and the number of top-ranked indicators included in the models is 

nonlinear. In most of the six data scenarios, the SB model using only the indicator that ap-

pears in the first position of the ranking established via the selection procedure exhibits on 

average the highest forecast errors. The RMSFEs reach considerably lower levels between 

the fourth and the eight positions, depending on the data scenario, and do not evolve signifi-

cantly over the subsequent positions. The detrimental effects on forecast accuracy arising 

from the addition of low-ranked indicators – presumably the most ‘noisy’ ones – are more 
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noticeable for the targeted DI models. For these models, the ‘optimal’ number of predictors 

ranges between 5 and 20. Like the SB models, this number differs somewhat across the data 

scenarios. 

 

Table 2 – RMSFEs of the predictions for quarterly GDP growth, using indicators 
selected based on the entire data sample 
(percentage points; recursive forecasts performed over the period 2005Q1-2013Q4) 
 
  Data scenario 
  1 2 3 4 5 6 

             
Targeted SB model including the 
n* top-ranked indicators 

            n* = 1 0.638 
 

0.807 
 

0.516 
 

0.475 
 

0.497 
 

0.396 
 n* = 2 0.616 

 
0.600 

 
0.522 

 
0.407 

 
0.432 

 
0.375 

 n* = 3 0.575 
 

0.577 
 

0.460 
 

0.422 
 

0.407 
 

0.389 
 n* = 4 0.560 

 
0.578 

 
0.449 

 
0.417 

 
0.347 

 
0.429 

 n* = 5 0.575 
 

0.594 
 

0.437 
 

0.398 
 

0.349 
 

0.397 
 n* = 6 0.579 

 
0.603 

 
0.435 

 
0.444 

 
0.339 

 
0.397 

 n* = 7 0.574 
 

0.585 
 

0.422 
 

0.422 
 

0.342 
 

0.371 
 n* = 8 0.568 

 
0.587 

 
0.404 

 
0.423 

 
0.346 

 
0.378 

 n* = 9 0.566 
 

0.540 
 

0.406 
 

0.417 
 

0.346 
 

0.381 
 n* = 10 0.547 

 
0.602 

 
0.408 

 
0.424 

 
0.331 

 
0.373 

 n* = 11 0.526 
 

0.592 
 

0.378 
 

0.434 
 

0.344 
 

0.368 
 n* = 12 0.505 

 
0.591 

 
0.389 

 
0.447 

 
0.369 

 
0.362 

 n* = 13 0.488 
 

0.600 
 

0.379 
 

0.400 
 

0.372 
 

0.365 
 n* = 14 0.489 

 
0.517 

 
0.383 

 
0.410 

 
0.396 

 
0.370 

 n* = 15 0.489 
 

0.467 
 

0.385 
 

0.432 
 

0.397 
 

0.372 
 

             Targeted DI model including the 
n* top-ranked indicators 

            n* = 5 0.528 * 0.550 
 

0.411 
 

0.338 * 0.354 
 

0.379 
 n* = 10 0.519 ** 0.500 

 
0.369 

 
0.353 

 
0.301 ** 0.360 

 n* = 15 0.542 * 0.500 
 

0.366 
 

0.351 * 0.354 
 

0.339 
 n* = 20 0.535 ** 0.572 

 
0.444 

 
0.393 

 
0.332 

 
0.283 ** 

n* = 25 0.616 
 

0.593 
 

0.445 
 

0.393 
 

0.336 
 

0.299 *** 
n* = 30 0.608 

 
0.680 

 
0.452 

 
0.420 

 
0.389 

 
0.316 ** 

n* = 35 0.658 
 

0.575 
 

0.450 
 

0.445 
 

0.426 
 

0.324 ** 
n* = 40 0.562 

 
0.560 

 
0.512 

 
0.444 

 
0.444 

 
0.322 ** 

n* = 45 0.564 
 

0.654 
 

0.520 
 

0.465 
 

0.454 
 

0.409 
 n* = 50 0.563 

 
0.567 

 
0.517 

 
0.448 

 
0.462 

 
0.429 

 
             DI model including all the indica-

tors 0.586 
 

0.545 
 

0.461 
 

0.404 
 

0.389 
 

0.386 
 

             p.m. Autoregressive forecast 0.767 
 

0.767 
 

0.767 
 

0.553 
 

0.553 
 

0.553 
                           

The highlights indicate the smallest RMSFEs for a given data scenario. The signs “*”, “**” and “***” indicate the rejection 
of the null hypothesis of equal forecast accuracy with respect to the benchmark DI model that includes all the indicators, at 
the 10%, 5% and 1% levels, respectively, based on the DM test statistic. 
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In practically all cases (with the only exception of the SB model with one single variable 

in scenario 1), the targeted SB and DI models display significantly lower forecast errors than 

the  simple  AR  model.  This  means  that  the  selected  indicators  do  effectively  provide  some  

advance information on GDP growth in the current quarter. More strikingly, provided they 

include a reasonable number of the top-ranked indicators, many of the targeted models per-

form better than the DI model that includes all the predictors from the dataset. In other words, 

the selection procedure seems at first sight successful in finding a sub-set of indicators that 

provides early estimates of GDP growth which are at least as accurate as those obtained from 

the full information set, if not more. This finding confirms those from existing studies, in 

particular that of Bai and Ng (2008), that it can indeed pay off to limit the number of varia-

bles to the most informative ones and to leave out the ‘noisy’ indicators. However, the gains 

in terms of forecast accuracy is rarely significant according to the DM test statistics.  

It is also important to stress that the predictors used for this simulation exercise were se-

lected by running the selection procedure over the entire data sample, which means that, in 

each recursion, data related to time periods after the forecast horizon were used to specify the 

model. This is obviously a luxury an economic analyst does not have in the context of a real-

time exercise since he/she has to specify a forecasting model based only on the quantitative 

relationships between GDP and the various monthly indicators that were observed in the past. 

In this regard, one crucial question is whether the forecasting strategy discussed here could 

also work in a real-time environment, if only past data can be used in the predictor selection 

process. This question is addressed in the second simulation exercise, in which the selection 

procedure is repeated at each recursion. The results of this additional exercise are reported in 

Table 3. 

  



25 

Table 3 – RMSFEs of the predictions for quarterly GDP growth, using indicators 
selected recursively based on past observations 
(percentage points; recursive selections and forecasts performed over the period 2005Q1-
2013Q4)  
 
  Data scenario 
  1 2 3 4 5 6 

             
Targeted SB model including the 
n* top-ranked indicators 

            n* = 1 1.092 
 

0.848 
 

0.526 
 

0.487 * 0.503 ** 0.496 ** 
n* = 2 0.999 

 
0.689 

 
0.481 

 
0.539 ** 0.450 

 
0.405 

 n* = 3 0.972 
 

0.697 * 0.487 
 

0.497 * 0.423 
 

0.381 
 n* = 4 0.956 

 
0.631 

 
0.497 

 
0.471 

 
0.398 

 
0.392 

 n* = 5 0.965 
 

0.624 
 

0.521 
 

0.458 
 

0.372 
 

0.402 
 n* = 6 0.955 

 
0.660 

 
0.490 

 
0.443 

 
0.357 

 
0.388 

 n* = 7 0.972 
 

0.679 
 

0.531 
 

0.463 
 

0.388 
 

0.378 
 n* = 8 1.001 

 
0.664 

 
0.520 

 
0.490 * 0.384 

 
0.375 

 n* = 9 0.983 
 

0.638 
 

0.513 
 

0.491 * 0.404 
 

0.400 
 n* = 10 0.979 

 
0.630 

 
0.501 

 
0.476 * 0.387 

 
0.394 

 n* = 11 0.987 
 

0.670 
 

0.477 
 

0.492 
 

0.397 
 

0.401 
 n* = 12 0.975 

 
0.611 

 
0.486 

 
0.472 

 
0.396 

 
0.431 

 n* = 13 0.886 
 

0.650 
 

0.473 
 

0.469 
 

0.380 
 

0.444 
 n* = 14 0.909 

 
0.648 

 
0.502 

 
0.434 

 
0.403 

 
0.427 

 n* = 15 0.930 * 0.601 
 

0.485 
 

0.454 
 

0.391 
 

0.430 
 

             Targeted DI model including the 
n* top-ranked indicators 

            n* = 5 0.730 ** 0.565 
 

0.542 ** 0.409 
 

0.385 
 

0.407 
 n* = 10 0.812 

 
0.593 

 
0.480 

 
0.415 

 
0.405 

 
0.429 

 n* = 15 0.772 
 

0.607 
 

0.560 
 

0.411 
 

0.377 
 

0.376 
 n* = 20 0.787 * 0.594 * 0.477 

 
0.365 

 
0.359 

 
0.362 

 n* = 25 0.770 * 0.594 * 0.539 * 0.388 
 

0.391 
 

0.379 
 n* = 30 0.759 

 
0.578 

 
0.535 ** 0.412 

 
0.395 

 
0.378 

 n* = 35 0.757 
 

0.520 
 

0.530 ** 0.399 
 

0.395 
 

0.389 
 n* = 40 0.738 

 
0.531 

 
0.524 * 0.421 

 
0.414 

 
0.403 

 n* = 45 0.729 
 

0.535 
 

0.503 * 0.412 
 

0.381 
 

0.408 
 n* = 50 0.720 

 
0.535 

 
0.508 ** 0.418 

 
0.517 

 
0.423 

 
             DI model including all the indica-

tors 0.586 
 

0.545 
 

0.461 
 

0.404 
 

0.389 
 

0.386 
 

             p.m. Autoregressive forecast 0.767 
 

0.767 
 

0.767 
 

0.553 
 

0.553 
 

0.553 
                           

The highlights indicate the smallest RMSFEs for a given data scenario. The signs “*”, “**” and “***” indicate the rejection 
of the null hypothesis of equal forecast accuracy with respect to the benchmark DI model that includes all the indicators, at 
the 10%, 5% and 1% levels, respectively, based on the DM test statistic. 

 

Quite intuitively, compared to the previous simulations exercise, the RMSFEs are now 

systematically higher for most of the models considered, which also indicates that the lower 

forecast errors reported in Table 2 can be attributed to the benefit of hindsight. The DI mod-

els that include more than 30 of the top-ranked predictors are a notable exception but, starting 
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from the third data scenario, these are nevertheless still outperformed by many of the more 

restricted models. Consequently, the magnitude of the forecast errors of most of the targeted 

models is now larger than that of the benchmark DI model, in particular in the first scenario 

of data release, albeit the advantage of the former in terms of predictive accuracy is found 

significant based on the DM test only in a limited number of cases. 

The statistics reported in Table 3 should be somewhat nuanced since the forecasting accu-

racies of various models are not constant over the simulation period. This is illustrated in 

Figure  3,  which  displays  the  evolution  of  the  absolute  forecast  errors  from the  targeted  SB 

and DI models that include the 6 and the 20 top-ranked indicators, respectively, i.e. the opti-

mal number of predictors, or nearly, in the last data scenarios. Forecast errors are generally 

higher in the great recession period, from mid-2008 to mid-2009. In the first data scenario, 

this is more particularly the case for the targeted SB and DI models, which also means that 

the higher RMFEs obtained for these models is to a great extent attributable to the errors 

made for that period. Interestingly, in the last three data scenarios, the SB with 6 predictors 

performs slightly better than the DI models most of the time during the period that preceded 

the recession. The DI models (with and without selection) nevertheless provide more accurate 

predictions from 2011 to 2013. This suggests that more indicators than can be included in an 

SB model were actually needed to obtain a proper diagnosis of the economic situation in the 

recent period. 

To sum up, these results show that the algorithm seems effective in streamlining the da-

taset used for performing the forecast. A DI model that takes into account only the 20 first 

top-ranked indicators that emerge from the selection procedure or a bridge model using only 

the first 6 or 7 first indicators from that same selection can provide forecasts whose accuracy 

falls within the same range as a model that encompasses all the available monthly data. This 

finding is in line with the conclusions of De Mol et al. (2008) who argue that, in the presence 

of strong collinearity in the panel of time series used to generate the prediction, a few appro-

priately selected variables should capture the bulk of their covariations, thereby delivering a 

forecast which is highly correlated with that generated from the principal components. The 

obvious corollary of this finding is that the selection procedure does not lead to any signifi-

cant improvement in forecasting accuracy compared to that well-proven method.  
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Figure 3 – Evolution of the absolute forecast errors over the simulation period 
(averages over 4-quarter windows expressed in percentage) 

 
Note: the scale of the Y-axes is different for every chart.   
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4.4. The ‘best’ indicators 

The simulation results examined above suggest that plugging the 6 best indicators picked 

by the selection procedure into an SB model, or the 20 best into a DI model, produces a rela-

tively sound level of accuracy, regardless of the data release situation. It is nevertheless inter-

esting to note that the set of selected predictors changes significantly depending on the num-

ber of available monthly observations, as illustrated by the estimates of the six bridge equa-

tions reported in Table 4. These equations are actually those used to generate the forecasts for 

GDP growth in the last quarter of 2013 based on the 6 first top-ranked variables. A more 

comprehensive list of indicators, which includes the 20 first positions from these rankings, is 

enclosed in Annex 2. 

The results for the first scenario show that, in the absence of monthly data pertaining di-

rectly to the current quarter, the selection procedure tends to favour survey and financial indi-

cators. Survey indicators are still dominant in the subsequent scenarios, i.e. the second to the 

third scenarios, which simulate their progressive release, while hard data are still either una-

vailable or scarce. Hard indicators, in particular those related to external developments, rep-

resent by contrast a larger proportion of the selection in the two last scenarios, which stand 

for situations where their observations cover the first two or three months. In the specific case 

of the 6th data scenario, which assumes that all the monthly data have been released, all of the 

variables taken into account in the bridge equation are actually hard indicators. Yet, it can be 

also noted that, when a sufficient amount of hard data can be used, many survey indicators 

remain highly ranked among the top 20 indicators that emerge from the selection procedure 

(see Annex 2). This suggests that soft indicators, in particular survey data, still contain some 

information relevant for estimating GDP growth that is not conveyed by the hard data. These 

results are broadly in line with those of Bessec (2013), who also emphasised the predomi-

nance of indicators characterised by short publication lags when forecasts are to be made 

over longer horizons and in the absence of a sufficient number of observations for hard indi-

cators. 

Even though the rankings, as well as the resulting models, undergo significant changes 

depending on the data scenario, some indicators keep their relevance in different situations of 

data availability. This is notably the case of the unemployment expectations taken from the 

consumer survey, industrial confidence in the Netherlands, the industrial production index for 

the advanced economies and for the euro area and, in the last two data scenarios, total turno-

ver  of  Belgian  firms  based  on  the  VAT returns.  The  importance  among these  indicators  of  



29 

those related to the international environment, in particular to industrial confidence in one of 

Belgium’s neighbouring countries, might seem surprising at first sight, as they are by defini-

tion not directly related to developments in domestic activity. Their relevance can neverthe-

less be corroborated by the fact that Belgium is a small open economy and, consequently, 

heavily reliant on external developments, in particular the economic activity of its main trad-

ing partners. By contrast, financial indicators, such as stock market indices, appear only in 

the top ranking positions in the first data scenario, i.e. in the case of the pure out-of-sample 

forecast, suggesting they provide some advanced information on developments in real activi-

ty in the near future, but not as well as survey indicators. Indeed, they practically disappear 

from the list of the best 20 ranked indicators when survey data are released in the first month 

of the current quarter1. 

Besides, the explanatory power of the bridge equation specified for the first scenario is 

quite weak, with a   R2  of 42%. This is an indication that its six right-hand-side variables do 

not provide much information about GDP growth in the subsequent quarter2, which is already 

confirmed by the simulation results. The in-sample fits of the equations estimated for the five 

other data scenarios are better, their   R2  standing around 70%. The results from the Breusch-

Godfrey test, however, point to some autocorrelation in the residuals but the extent of this 

issue is limited to the equation pertaining to the second scenario. For the other equations rep-

resented in Table 4, this test statistic is either significant only at the 10% level or not signifi-

cant at all. 

While  the  coefficients  generally  have  the  expected  sign,  a  large  proportion  of  them are  

not significant. This stems mainly from the high correlation between the explanatory varia-

bles, even though the elastic net should normally avoid selecting too similar indicators. Such 

correlation is actually quite usual between indicators reflecting trends in economic activity. 

Of course, DI models, unlike SB models, are not subject to that multicollinearity issue since 

the factors calculated using the principal components method are orthogonal. 

  

                                                        
1 A more thorough analysis, based on the same predictor selection procedure as the one used in this paper, of the 

most relevant indicators for predicting GDP, as well as other quarterly macroeconomic aggregates is given by 
Piette and Langenus (2014). 

2 It should be recalled that, for this scenario, the dependent variable has one lead. 
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Table 4 – Bridge equations used to predict 2013Q4, by data scenario 
(dependent variable: log-difference of quarterly GDP†) 
 
        
Data scenario 1: three months before the end of the current quarter 

  
    Rank Variable Coefficient 

 
Intercept 0.0033 *** 

1 Business-related services survey; general demand expectations 0.0000 
 2 Industrial confidence in the euro area 0.0000 
 3 Trade survey; trend in prices (lagged) -0.0004 *** 

4 Euro Stoxx Broad Index 0.0032 
 5 Brussels All Shares Index 0.0152 
 6 Commodity import prices in international markets, excluding energy 0.0206 * 

      R 2 = 0.415; F = 8.815***; JB = 32.352***; BG = 7.866*; BP = 5.155 
  Estimation sample:  1996Q4-2013Q2 (67 observations) 
          

    Data scenario 2: two months before the end of the current quarter 
  

    Rank Variable Coefficient 

 
Intercept 0.0037 *** 

1 Industrial production in the advanced economies 0.1603 *** 
2 Industrial confidence in the Netherlands 0.0005 

 3 Consumer survey; unemployment in Belgium -0.0001 ** 
4 Industrial confidence in the euro area -0.0001 

 5 Commodity import prices in international markets, excluding energy 0.0114 
 6 Industrial production in the emerging economies 0.0194 
 

      R 2 = 0.681; F = 24.875***; JB = 4.975*; BG = 13.250**; BP = 7.064 
  Estimation sample: 1996Q3-2013Q2 (68 observations) 
          

    Data scenario 3: one month before the end of the current quarter 
  

    Rank Variable Coefficient 

 
Intercept 0.0044 *** 

1 Industrial confidence in the Netherlands 0.0001 
 2 Manufacturing industry survey; assessment of total order book 0.0002 * 

3 Industrial production in the advanced economies 0.1500 *** 
4 Construction survey; trend in prices 0.0001 

 5 Manufacturing industry survey; demand expectations 0.0001 ** 
6 Construction survey; price expectations 0.0000 

 
      R 2 = 0.693; F= 28.098***; JB = 0.711; BG = 3.753; BP = 2.233  

  Estimation sample: 1995Q2-2013Q2 (73 observations) 
          

† In the case of the first data scenario, the dependent variable has one lead. 
F = F test statistic for the significance of the model; JB = Jarque-Berra test statistic for normality of residuals; BG = 
Breusch-Godfrey test statistic for serial correlation in the residuals (using 4 lags); BP = Breusch-Pagan test statistic for 
heteroskedasticity in the residuals. “*”, “**” and “***” stand for significance of a coefficient or a test statistic at the 
10%, 5% and 1% levels, respectively. 
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Table 4 – Bridge equations used to predict 2013Q4, by data scenario (continued) 
(dependent variable: log-difference of quarterly GDP) 
 
        
Data scenario 4: end of the current quarter 

  
    Rank Variable Coefficient 

 
Intercept 0.0044 *** 

1 Industrial confidence in the Netherlands 0.0004 
 2 Manufacturing industry survey; demand expectations 0.0002 ** 

3 Industrial production in the euro area -0.0439 
 4 Construction survey; trend in prices 0.0001 
 5 Consumer survey; unemployment in Belgium -0.0001 * 

6 Industrial production in the advanced economies 0.1718 ** 

      R 2 = 0.692; F= 28.275***; JB = 1.991; BG =  8.549*; BP = 1.123  
  Estimation sample: 1995Q2-2013Q3 (74 observations) 
          

    Data scenario 5: one month after the end of the current quarter 
  

    Rank Variable Coefficient 

 
Intercept 0.0025 *** 

1 Industrial production in the advanced economies 0.0430 
 2 Industrial confidence in the Netherlands 0.0001 
 3 Work volume of temporary workers 0.0385 ** 

4 Total turnover 0.0857 *** 
5 Trade in goods in the emerging economies 0.0326 

 6 Consumer survey; unemployment in Belgium -0.0001 
 

      R 2 = 0.734; F= 34.529***; JB = 0.458; BG =11.007 ; BP = 3.319 
  Estimation sample: 1995Q2-2013Q3 (74 observations) 
          

    Data scenario 6: two months after the end of the current quarter 
  

    Rank Variable Coefficient 

 
Intercept 0.0029 *** 

1 Industrial production in the euro area 0.0111 
 2 Production of intermediate goods 0.0232 
 3 Trade in goods in the advanced economies -0.0068 
 4 Trade in goods in the euro area 0.0404 
 5 Total turnover 0.0841 *** 

6 Industrial production in the advanced economies 0.0962 
 

      R 2 = 0.689; F= 27.972***; JB = 1.810; BG = 8.399*; BP = 3.787  
  Estimation sample: 1995Q2-2013Q3 (74 observations) 
          

F = F test statistic for the significance of the model; JB = Jarque-Berra test statistic for normality of residuals; BG = 
Breusch-Godfrey test statistic for serial correlation in the residuals (using 4 lags); BP = Breusch-Pagan test statistic for 
heteroskedasticity in the residuals. “*”, “**” and “***” stand for significance of a coefficient or a test statistic at the 
10%, 5% and 1% levels, respectively.  
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It is possible to use stepwise regressions, rather than OLS, to remove the less significant 

variables from the bridge equations and thus limit the multicollinearity problem. In order to 

examine whether this refinement could effectively lead to some improvements in terms of 

predictive performance, I have carried out an additional simulation exercise that involves a 

series of recursive forecasts based on changing predictor selections (as in Table 3), in which 

the equations estimated by OLS are replaced by reduced specifications obtained from step-

wise regressions, using the BIC as the inclusion criterion. The results from this exercise, re-

ported in Annex 3 are not convincing: the forecast errors generated by these reduced models 

are, on average, most often higher than those estimated by OLS. This may also be viewed as 

evidence that the less significant indicators included in the bridge equations do actually pro-

vide some relevant information for predicting GDP growth over the short term. 

Finally, it might also be worth mentioning that, throughout the simulation period, many 

indicators keep appearing among the top-ranked ones in similar situations of data availability. 

For instance, running the selection procedure over a sample period limited to the observations 

prior to the crisis of 2008 and 2009, in order to identify those indicators that were at the time 

the most relevant to obtain an estimate for GDP growth in the last quarter of 2007, results in 

specifications that have many similarities with those obtained from using the entire data sam-

ple (see Annex 4). The industrial confidence index for the Netherlands and total turnover, 

among others, remain in the bridge equation specification for the two last data scenarios. 

Other variables, by contrast, disappear from the selection if observations for the period corre-

sponding to the crisis and the subsequent periods are taken into consideration, an indication 

that their quantitative link with contemporaneous GDP growth weakens over time. This is in 

particular the case of lagged GDP growth which was included in the bridge equations used to 

predict GDP in the last quarter of 2007 but not in those that generate the forecast for the last 

quarter of 2013. 
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5. Concluding remarks 

In their study, Bai and Ng (2008) showed that using targeted predictors, that is predictors 

selected according to the variable of interest and the forecast horizon, could be helpful in 

improving forecasting accuracy. They also pointed to the effectiveness of the elastic net algo-

rithm for this purpose. Based on Belgian data, the results presented in this paper are in line 

with their findings in that the elastic net method, along with the refinement proposed by Bes-

sec (2013) in order to take into account the ‘ragged edge’ of the dataset, can indeed slightly 

improve predictive performance within the bridge and ‘bridging with factors’ frameworks. 

However, these gains do not appear significant compared to a more standard approach that 

consists in summarising all the information available using the principal component method 

without any pre-selection. That latter forecasting technique appears actually difficult to sur-

pass. 

In addition, the predictive performance of a targeted model specified using that selection 

procedure is strongly conditioned by the number of indicators placed in the first positions of 

the resulting ordering that are finally included. In particular, the information provided by the 

very first top-ranked indicators does not yield a satisfactory level of forecast accuracy, while 

too many of them entails the risk of also picking the unnecessary and the most noisy indica-

tors. Hence the importance of choosing the cut-off rank carefully on the basis of historical 

forecasting performances. 

In this regard, it is also noteworthy that using only a limited number of selected predictors 

does not lead to many detrimental effects on the quality of the forecast, compared to using the 

full set of monthly data. In practice, this can considerably facilitate an analyst’s communica-

tion, as his/her assessment of the current economic situation can therefore be motivated on 

the  basis  of  recent  developments  in  a  much-reduced  set  of  monthly  data.  In  the  absence  of  

significant improvements in terms of predictive accuracy, this is basically the main merit of 

using a variable selection method in short-term economic forecasting. 
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Annex 1 – Indicators included in the dataset 
 
Indicator Category Log. Diff. Source 

     Business survey indicators 
         Manufacturing industry 
    Trend in the production rate soft no 0 NBB 

Trend in orders from the domestic market soft no 0 NBB 
Trend in export orders soft no 0 NBB 
Trend in prices soft no 0 NBB 
Assessment of total order books soft no 1 NBB 
Assessment of export order books soft no 0 NBB 
Assessment of the level of stocks of finished products soft no 0 NBB 
Employment expectations soft no 1 NBB 
Demand expectations soft no 0 NBB 
Price expectations soft no 0 NBB 

     Construction 
    Trend in activity soft no 0 NBB 

Trend in orders soft no 0 NBB 
Trend in equipment soft no 0 NBB 
Trend in employment soft no 0 NBB 
Trend in prices soft no 1 NBB 
Demand expectations soft no 1 NBB 
Assessment of order books soft no 1 NBB 
Employment expectations soft no 1 NBB 
Price expectations soft no 1 NBB 

     Trade 
    Trend in sales soft no 0 NBB 

Trend in prices soft no 0 NBB 
Assessment of sales soft no 1 NBB 
Assessment of the level of stocks soft no 0 NBB 
Demand expectations soft no 0 NBB 
Intentions of placing orders soft no 1 NBB 
Employment expectations soft no 0 NBB 
Price expectations soft no 0 NBB 

     Business-related services 
    Trend in activity soft no 1 NBB 

Trend in employment soft no 1 NBB 
Trend in prices soft no 0 NBB 
Assessment of activity soft no 1 NBB 
Activity expectations soft no 1 NBB 
General demand expectations soft no 1 NBB 
Employment expectations soft no 1 NBB 
Price expectations soft no 0 NBB 

     Civil engineering and roadworks 
    Trend in activity soft no 0 NBB 

Trend in number of tenders soft no 0 NBB 
Trend in number of contracts concluded soft no 0 NBB 
Trend in amount of work to be done soft no 0 NBB 
Trend in prices soft no 1 NBB 
Assessment of order books soft no 1 NBB 
Demand expectations soft no 1 NBB 
Employment expectations soft no 1 NBB 
Price expectations soft no 1 NBB 
          EC = European Commission, HWWI = Hamburgisches WeltWirtschaftsInstitut; NAI = National Accounts Institute; NBB = 

National Bank of Belgium; NEO = National Employment Office; SB = Statistics Belgium; Th. R. = Thomson Reuters.  
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Annex 1 – Indicators included in the dataset (continued) 
 
Indicator Category Log. Diff. Source 

     Consumer survey indicators (forecast for the next 12 
months) 

         Economic situation in Belgium soft no 0 NBB 
Unemployment in Belgium soft no 1 NBB 
Financial situation of households soft no 1 NBB 
Household savings soft no 1 NBB 
              Indicators on developments in real activity and in the 
labour market 

        Turnover at constant prices (based on the VAT returns) 
    Manufacturing hard yes 1 NAI† 

Construction hard yes 1 NAI† 
Retail trade hard yes 1 NAI† 
Hotels and restaurants hard yes 1 NAI† 
Business services hard yes 1 NAI† 
Services (total) hard yes 1 NAI† 
Total turnover hard yes 1 NAI† 

     Industrial production 
    Manufacturing hard yes 1 SB 

Construction hard yes 0 SB 
Energy hard yes 1 SB 
Capital goods hard yes 1 SB 
Intermediate goods hard yes 1 SB 
Durable consumer goods hard yes 0 SB 
Non-durable consumer goods hard yes 1 SB 
Total industrial production, excluding construction hard yes 1 SB 

     Registration of new private cars early hard yes 1 SB 
Permits for new residential buildings (in m2) hard yes 0 SB 
Permits for new non-residential buildings (in m2) hard yes 0 SB 
Work volume of temporary workers early hard yes 1 Federgon 
Unemployed job-seekers early hard yes 1 NEO 
Harmonised unemployment rate early hard no 1 EC 

              Financial indicators 
         Ten-year Belgian government bond yield financial no 1 Th. R. 

Spread on ten-year Belgian government bonds com-
pared to the German Bund financial no 1 Th. R. 
Brussels All Shares Index  financial yes 1 Th. R. 
Euro Stoxx Broad Index financial yes 1 Th. R. 
Crude Oil-Brent Dated Free on Board financial yes 1 Th. R. 
Import prices of energy raw materials in international 
markets financial yes 1 HWWI 
Commodity import prices in international market, ex-
cluding energy financial yes 1 HWWI 
Spot price of gold (Standard & Poors GSCI) financial yes 1 Th. R. 
         † Using data from the FPS Finance, Statistics Belgium and the NBB. 

EC = European Commission, HWWI = Hamburgisches WeltWirtschaftsInstitut; NAI = National Accounts Institute; NBB = 
National Bank of Belgium; NEO = National Employment Office; SB = Statistics Belgium; Th. R. = Thomson Reuters. 
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Annex 1 – Indicators included in the dataset (continued) 
 

Indicator Category Log. Diff. Source 

     Indicators on real external developments 
         Trade in goods (average of exports and imports of 

goods) 
    Euro area hard yes 1 CPB 

Advanced economies hard yes 1 CPB 
Emerging economies hard yes 1 CPB 

     Industrial production 
    Euro area hard yes 1 EC 

Advanced economies hard yes 1 CPB 
Emerging economies hard yes 1 CPB 
Germany hard yes 1 EC 
France hard yes 1 EC 

     Industrial confidence 
    Euro area soft no 1 EC 

Germany soft no 1 EC 
France soft no 1 EC 
Netherlands soft no 1 EC 

     Consumer confidence 
    Euro area soft no 1 EC 

Germany soft no 1 EC 
France soft no 1 EC 
Netherlands soft no 1 EC 

          
EC = European Commission, HWWI = Hamburgisches WeltWirtschaftsInstitut; NAI = National Accounts Institute; NBB = 
National Bank of Belgium; NEO = National Employment Office; SB = Statistics Belgium; Th. R. = Thomson Reuters. 
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Annex 2 – Top 20 indicators for predicting GDP growth, by data scenario 
(based on the predictor selection performed over the period 1996Q3-2013Q4) 
 
    
Data scenario 1: three months before the end of the current quarter 
  1 Business-related services survey; general demand expectations 
2 Industrial confidence in the euro area 
3 Trade survey; trend in prices (lagged) 
4 Euro Stoxx Broad Index 
5 Brussels All Shares Index 
6 Commodity import prices in international markets, excluding energy 
7 Trade survey; trend in prices 
8 Business-related services survey; price expectations (lagged) 
9 Civil engineering and roadworks survey; trend in number of contracts concluded 
10 Construction survey; trend in orders 
11 Construction survey; trend in orders (lagged) 
12 Manufacturing industry survey; price expectations (lagged) 
13 Consumer confidence in France (lagged) 
14 Civil engineering and roadworks survey; trend in number of tenders (lagged) 
14† Manufacturing industry survey; assessment of the level of stocks of finished products (lagged) 
16 Manufacturing industry survey; trend in prices (lagged) 
17 Consumer survey; economic situation in Belgium 
18 Turnover in services (lagged) 
19 Trade survey; demand expectations 
19† Total turnover (lagged) 

  
Data scenario 2: two months before the end of the current quarter 
  1 Industrial production in the advanced economies 
2 Industrial confidence in the Netherlands 
3 Consumer survey; unemployment in Belgium 
4 Industrial confidence in the euro area 
5 Commodity import prices in international markets, excluding energy 
6 Industrial production in the emerging economies 
7 Manufacturing industry survey; demand expectations 
8 Import prices of energy raw materials in international markets 
9 Trade survey; trend in prices (lagged) 
10 Manufacturing industry survey; assessment of total order books 
11 Production in construction (lagged) 
12 Business-related services survey; activity expectations 
13 Trade survey; intentions of placing orders 
14 Manufacturing industry survey; assessment of the level of stocks of finished products (lagged) 
15 Civil engineering and roadworks survey; employment expectations (lagged) 
16 Civil engineering and roadworks survey; trend in number of tenders 
17 Civil engineering and roadworks survey; trend in number of contracts concluded 
18 Ten-year Belgian government bond yield 
19 Turnover in services (lagged) 
20 Total turnover (lagged) 
    

† The selection procedure sometimes results in ties. Consequently, the same rank might be attributed to two variables (or 
more). 

 
  



40 

Annex 2 – Top 20 indicators for predicting GDP growth, by data scenario (continued) 
(based on the predictor selection performed over the period 1996Q3-2013Q4) 
 
    
Data scenario 3: one month before the end of the current quarter 
  1 Industrial confidence in the Netherlands 
2 Manufacturing industry survey; assessment of total order books 
3 Industrial production in the advanced economies 
4 Construction survey; trend in prices 
5 Manufacturing industry survey; demand expectations 
6 Construction survey; price expectations 
7 Consumer survey; unemployment in Belgium 
8 Import prices of energy raw materials in international markets 
9 Industrial production in the euro area 
10 Commodity import prices in international markets, excluding energy 
11 Trade survey; trend in prices (lagged) 
12 Trade survey; trend in prices 
13 Production of durable consumer goods (lagged) 
14 Construction survey; trend in orders 
15 Manufacturing industry survey; assessment of the level of stocks of finished products (lagged) 
16 Business-related services survey; trend in activity 
17 Consumer confidence in the Netherlands 
18 Industrial production in the emerging economies 
19 Brussels All Shares Index 
20 Construction survey; trend in activity 

  
Data scenario 4: end of the current quarter 
  1 Industrial confidence in the Netherlands 
2 Manufacturing industry survey; demand expectations 
3 Industrial production in the euro area 
4 Construction survey; trend in prices 
5 Consumer survey; unemployment in Belgium 
6 Industrial production in the advanced economies 
7 Import prices of energy raw materials in international markets 
8 Crude Oil-Brent Dated Free on Board 
9 Industrial production in the emerging economies 
10 Commodity import prices in international markets, excluding energy 
11 Manufacturing industry survey; assessment of total order books 
12 Trade in goods in the emerging economies 
13 Trade survey; trend in prices (lagged) 
14 Construction survey; trend in orders 
15 GDP at market prices (lagged) 
16 Manufacturing industry survey; assessment of the level of stocks of finished products (lagged) 
17 Production of durable consumer goods (lagged) 
18 Business-related services survey; trend in activity 
19 Permits for new non-residential buildings (in m2) 
20 Production in construction (log-transformed) 
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Annex 2 – Top 20 indicators for predicting GDP growth, by data scenario (continued) 
(based on the predictor selection performed over the period 1996Q3-2013Q4) 
 
    
Data scenario 5: one month after the end of the current quarter 
  1 Industrial production in the advanced economies 
2 Industrial confidence in the Netherlands 
3 Work volume of temporary workers 
4 Total turnover 
5 Trade in goods in the emerging economies 
6 Consumer survey; unemployment in Belgium 
7 Construction survey; trend in prices 
8 Manufacturing industry survey; demand expectations 
8† Import prices of energy raw materials in international markets 
10 Turnover in services 
11 Manufacturing industry survey; assessment of total order books 
12 Trade in goods in the euro area 
13 Crude Oil-Brent Dated Free on Board 
14 Trade survey; trend in prices (lagged) 
15 Business-related services survey; activity expectations 
16 Business-related services survey; trend in activity 
17 Construction survey; trend in orders 
18 Manufacturing industry survey; assessment of the level of stocks of finished products (lagged) 
19 Industrial production in the emerging economies 
20 Trade survey; price expectations (lagged) 

  
Data scenario 6: two months after the end of the current quarter 
  1 Industrial production in the euro area 
2 Production of intermediate goods 
3 Trade in goods in the advanced economies 
4 Trade in goods in the euro area 
5 Total turnover 
6 Industrial production in the advanced economies 
7 Work volume of temporary workers 
8 Industrial confidence in the Netherlands 
9 Trade in goods in the emerging economies 
10 Consumer survey; unemployment in Belgium 
11 Manufacturing industry survey; assessment of total order books 
12 Manufacturing industry survey; demand expectations 
13 Crude Oil-Brent Dated Free on Board 
14 Construction survey; trend in prices 
15 Turnover in services 
16 Business-related services survey; trend in activity 
17 Trade survey; trend in prices (lagged) 
18 Construction survey; trend in orders 
19 Manufacturing industry survey; assessment of the level of stocks of finished products (lagged) 
20 Civil engineering and roadworks survey; trend in number of contracts concluded 
    

† The selection procedure sometimes results in ties. Consequently, the same rank might be attributed to two variables (or 
more). 

 
  



42 

Annex 3 – RMSFEs of the predictions for quarterly GDP growth generated by bridge 
equations estimated using stepwise regressions 
(percentage points; recursive selections and forecasts performed over the period 2005Q1-
2013Q4) 
 
  Data scenario 
  1 2 3 4 5 6 

             
Targeted SB model including the 
n* top-ranked indicators 

            n* = 1 1.091 
 

0.847 
 

0.525 
 

0.487 * 0.505 ** 0.495 ** 
n* = 2 1.001 

 
0.711 

 
0.488 

 
0.528 ** 0.449 

 
0.401 

 n* = 3 0.996 
 

0.745 * 0.491 
 

0.522 * 0.436 
 

0.407 
 n* = 4 0.973 

 
0.668 

 
0.495 

 
0.506 

 
0.404 

 
0.432 

 n* = 5 0.977 
 

0.653 
 

0.507 
 

0.506 
 

0.383 
 

0.425 
 n* = 6 1.010 

 
0.658 

 
0.566 

 
0.504 

 
0.387 

 
0.416 

 n* = 7 1.023 
 

0.652 
 

0.562 
 

0.502 
 

0.393 
 

0.428 
 n* = 8 0.997 

 
0.654 

 
0.568 

 
0.518 * 0.387 

 
0.427 

 n* = 9 0.987 
 

0.657 
 

0.565 
 

0.502 * 0.440 
 

0.423 
 n* = 10 0.938 

 
0.654 

 
0.559 

 
0.493 * 0.411 

 
0.417 

 n* = 11 0.891 
 

0.653 
 

0.554 
 

0.509 
 

0.429 
 

0.409 
 n* = 12 0.883 

 
0.710 

 
0.558 

 
0.503 

 
0.431 

 
0.410 

 n* = 13 0.812 
 

0.705 
 

0.552 
 

0.494 
 

0.421 
 

0.408 
 n* = 14 0.801 

 
0.704 

 
0.557 

 
0.463 

 
0.421 

 
0.411 

 n* = 15 0.801 * 0.703 
 

0.552 
 

0.465 
 

0.413 
 

0.416 
 

             DI model including all the indica-
tors 0.586 

 
0.545 

 
0.461 

 
0.404 

 
0.389 

 
0.386 

 
             p.m. Autoregressive forecast 0.767 

 
0.767 

 
0.767 

 
0.553 

 
0.553 

 
0.553 

                           
The highlights indicate the smallest RMSFEs for a given data scenario. The signs “*”, “**” and “***” indicate the rejection 
of the null hypothesis of equal forecast accuracy with respect to the benchmark DI model that includes all the indicators, at 
the 10%, 5% and 1% levels, respectively, based on the DM test statistic.  
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Annex 4 – Bridge equations used to predict 2007Q4, by data scenario 
(dependent variable: log-difference of quarterly GDP†) 
 
        
Data scenario 1: three months before the end of the current quarter 

  
    Rank Variable Coefficient 

 
Intercept 0.0079 *** 

1 Trade survey; price expectations (lagged) 0.0000 
 2 Manufacturing industry survey; employment expectations 0.0004 ** 

3 Trade survey; trend in sales -0.0001 * 
4 Manufacturing industry survey; trend in prices (lagged) 0.0000 

 5 Civil engineering and roadworks survey; trend in amount of work to be done 
(lagged) 0.0002 *** 

6 Manufacturing industry survey; price expectations (lagged) -0.0002 
 

      R 2 = 0.430; F = 6.915***; JB = 0.727; BG = 9.859**; BP = 10.897* 
  Estimation sample: 1995Q3-2007Q2  (48 observations) 
          

    Data scenario 2: two months before the end of the current quarter 
  

    Rank Variable Coefficient 

 
Intercept 0.0045 *** 

1 Business-related services; general demand expectations 0.0000 
 2 Trade in goods in the emerging economies 0.0257 
 3 Consumer confidence in the Netherlands 0.0003 *** 

4 Industrial production in the advanced economies 0.1369 
 5 Construction survey; trend in prices 0.0002 
 6 Manufacturing industry survey; assessment of total order books 0.0001 
 

      R 2 = 0.494; F = 8.798***; JB = 0.791; BG = 7.815*; BP = 1.999 
  Estimation sample: 1995Q2-2007Q2 (49 observations) 
          

    Data scenario 3: one month before the end of the current quarter 
  

    Rank Variable Coefficient 

 
Intercept 0.0047 *** 

1 Construction survey; trend in prices 0.0002 
 2 Industrial confidence in the Netherlands 0.0003 
 3 Consumer confidence in the Netherlands 0.0003 ** 

4 Industrial production in the advanced economies 0.1196 
 5 Trade in goods in the advanced economies 0.0345 
 6 Trade survey; trend in sales (lagged) 0.0000 
 

      R 2 = 0.476; F = 8.265***; JB = 0.901; BG = 12.128**; BP = 8.906 
  Estimation sample: 1995Q2-2007Q2 (49 observations) 
          

† In the case of the first data scenario, the dependent variable has one lead. 
F = F test statistic for the significance of the model; JB = Jarque-Berra test statistic for normality of residuals; BG = 
Breusch-Godfrey test statistic for serial correlation in the residuals (using 4 lags); BP = Breusch-Pagan test statistic for 
heteroskedasticity in the residuals. “*”, “**” and “***” stand for significance of a coefficient or a test statistic at the 
10%, 5% and 1% levels, respectively.  
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Annex 4 – Bridge equations used to predict 2007Q4, by data scenario (continued) 
(dependent variable: log-difference of quarterly GDP) 
 
        
Data scenario 4: end of the current quarter 

  
    Rank Variable Coefficient 

 
Intercept 0.0033 *** 

1 Industrial confidence in the Netherlands 0.0001 
 2 Consumer confidence in the Netherlands 0.0004 *** 

3 Construction survey; trend in prices 0.0002 
 4 GDP at market prices (lagged) 0.2637 ** 

5 Consumer survey; unemployment in Belgium 0.0000 
 6 Trade in goods in the emerging economies 0.0442 
 

      R 2 = 0.504; F = 9.115***; JB = 1.271; BG = 8.673; BP = 7.623 
  Estimation sample: 1995Q3-2007Q3 (49 observations) 
          

    Data scenario 5: one month after the end of the current quarter 
  

    Rank Variable Coefficient 

 
Intercept 0.0033 *** 

1 Industrial confidence in the Netherlands 0.0000 
 2 Industrial production in the advanced economies 0.1035 
 3 Consumer confidence in the Netherlands 0.0004 *** 

4 Construction survey; trend in prices 0.0001 
 5 Trade in goods in the emerging economies 0.0307 
 6 GDP at market prices (lagged) 0.2278 * 

      R 2 = 0.511; F = 9.356***; JB = 0.342; BG = 7.128; BP = 7.419 
  Estimation sample: 1995Q3-2007Q3 (49 observations) 
          

    Data scenario 6: two months after the end of the current quarter 
  

    Rank Variable Coefficient 

 
Intercept 0.0035 *** 

1 Industrial confidence in the Netherlands 0.0002 
 2 Industrial production in the advanced economies 0.0955 
 3 Consumer confidence in the Netherlands 0.0003 ** 

4 Total turnover 0.0737 *** 
5 Construction survey; trend in prices 0.0001 

 6 GDP at market prices (lagged) 0.1472 
 

      R 2 = 0.576; F = 11.850***; JB = 1.112; BG = 11.368**; BP = 4.402 
  Estimation sample: 1995Q3-2007Q3 (49 observations) 
          

F = F test statistic for the significance of the model; JB = Jarque-Berra test statistic for normality of residuals; BG = 
Breusch-Godfrey test statistic for serial correlation in the residuals (using 4 lags); BP = Breusch-Pagan test statistic for 
heteroskedasticity in the residuals. “*”, “**” and “***” stand for significance of a coefficient or a test statistic at the 
10%, 5% and 1% levels, respectively. 
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