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Abstract 

 

We introduce the class of FloGARCH models in this paper. FloGARCH models provide a 

parsimonious joint model for low frequency returns and realized measures and are sufficiently 

flexible to capture long memory as well as asymmetries related to leverage effects. We analyze the 

performances of the models in a realistic numerical study and on the basis of a data set composed 

of 65 equities. Using more than 10 years of high-frequency transactions, we document significant 

statistical gains related to the FloGARCH models in terms of in-sample fit, out-of-sample fit and 

forecasting accuracy compared to classical and Realized GARCH models. 

 

JEL classification: C22, C53, C58, G17 

Keywords: Realized GARCH models, high-frequency data, long memory, realized measures. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author: 
 
Harry Vander Elst, Université libre de Bruxelles, Av. Roosevelt 50 CP114, B1050 Brussels, 

Belgium. Tel: +32(0)26504395; Fax: +3226504475; havdelst@ulb.ac.be. 
 
Acknowledgments. This work was written while I visited the National Bank of Belgium in Brussels 
who provided financial support for this research. The views expressed in this paper are strictly mine 
and do not necessarily reflect those of the National Bank of Belgium. I gratefully acknowledge 
financial support from a FRESH grant from FNRS. I am indebted to Asger Lunde who provided me 
cleaned high-frequency data and to Matteo Luciani and Taiana Prass for codes and helpful 
suggestions about the estimation of ARFIMA and FIEGARCH processes. I am also grateful to 
David Veredas, Hans Dewachter, Raf Wouters, Bruno De Backer, Jean-Yves Gnabo and seminar 
participants at the National Bank of Belgium and at University of Namur for insightful comments and 
discussions. Finally, I would like to thank my wife Flo, who cleverly suggested the generic name for 
the models. All remaining errors are mine. 
 
The views expressed in this paper are those of the authors and do not necessarily reflect the views 
of the National Bank of Belgium or any other institutions to which one of the author is affiliated 



 

NBB WORKING PAPER - No. 280 - APRIL 2015 
 

 
 

TABLE OF CONTENTS 

 

1 Introduction ............................................................................................................................. 1 

2 FloGARCH models .................................................................................................................. 4 

2.1 Linear FloGARCH and FloLGARCH ..................................................................................... 4 

2.2 FloEGARCH  ....................................................................................................................... 5 

3 Quasi-maximum likelihood analysis ...................................................................................... 7 

3.1 Quasi-maximum likelihood and partial likelihood equations ................................................... 7 

3.2 Numerical studies................................................................................................................. 8 

4 Empirical analysis ................................................................................................................... 9 

4.1 Estimation results ............................................................................................................... 12 

4.1.1 Robustness check 1: A case against the linear specification ............................................... 12 

4.1.2 Robustness check 2: introducing skewness and kurtosis .................................................... 13 

4.2 Realized measures comparisons ........................................................................................ 14 

4.3 Constrained estimation ....................................................................................................... 15 

4.4 Models comparison: in-sample and out-of-sample fit .......................................................... 18 

5 Forecasting ........................................................................................................................... 20 

5.1 Forecasting with FloGARCH models .................................................................................. 20 

5.2 Forecast evaluation and empirical results  .......................................................................... 21 

6. Conclusion ............................................................................................................................ 24 

References .................................................................................................................................. 25 

Appendix: supplementary material ............................................................................................... 29 

National Bank of Belgium - Working papers series ....................................................................... 37 
 



1 Introduction

Strong regularities in financial time series suggest that asset returns volatility is subject to temporal

variation. Scholars in the field spurred intensive research in modeling the latent volatility process of asset

returns. Among the existing approaches, conditional heteroskedastic models, pioneered by Engle (1982)

and Bollerslev (1986) with the ARCH and GARCH models, have known undeniable success. Although

originally designed for inflation modeling, ARCH models have been found to replicate stylized facts of

asset returns highlighted by Mandelbrot (1963) including, but not limited to, volatility clustering, fat

tails in the distribution of returns and higher-order dependence in returns. Standard models have been,

since then, improved in three major directions; dealing with asymmetries, accommodating for long-range

dependencies and exploiting the potential of high-frequency data. This paper makes a contribution at the

intersection of these three axes by introducing a new class of long-memory asymmetric GARCH models

based on high-frequency data. The three next paragraphs summarize recent developments on these three

aspects.

First, standard extensions of the baseline models provide sufficient flexibility to capture the asym-

metric relationship between returns and volatility documented in Black (1976). Notable contributions

in this direction include among others the Exponential GARCH of Nelson (1991), the GJR-GARCH of

Glosten et al. (1993), the asymmetric GARCH of Engle and Ng (1993), the Threshold GARCH of Zakoian

(1994), the quadratic GARCH of Sentana (1995) and the family of smooth transition GARCH studied in

González-Rivera (1998) and Anderson et al. (1999). Parameters constraints imposed to ensure positivity

of the volatilities were also relaxed in some of these works (e.g. Nelson (1991)).

Second, another property found in financial returns is the long-range dependencies observed in

squared and absolute returns. Long-memory properties are best reproduced by the hyperbolic rates

of decay in the autocorrelation functions (henceforth ACF). Following Brockwell and Davis (1991), a

covariance stationary process has a long memory if its ACF, ρ(·), is such that ρ(k) ∼ Ck2d−1 as k→ ∞ for

C > 0 and d < 0.5. The first model to account for this property is the Integrated GARCH of Engle and

Bollerslev (1986). Further contributions include fractionally integrated models such as the FIGARCH of

Baillie et al. (1996), the FIEGARCH of Bollerslev and Mikkelsen (1996), the FIAPARCH of Tse (1998), the

HYGARCH of Davidson (2004) and the Seasonal FIEGARCH of Lopes and Prass (2013). Diebold and

Inoue (2001) argued that GARCH models with regime switches may also produce long-memory effects,

which are not to be confused with those produced by fractionally integrated models. Other models

include the Component GARCH model of Engle and Lee (1999) and the HARCH of Müller et al. (1997).

Third, all of the aforementioned models rely on an information set Ft = σ (rt, rt−1, . . .) spanned by

low frequency returns. However, the growing availability of high-frequency data has paved the way for a

new type of volatility estimates, commonly known as realized measures, and defined as non-parametric

estimators of the ex-post volatility of an asset over a fixed horizon (e.g. one day). The baseline realized

variances were introduced in Andersen et al. (2001), and followed by many alternative estimators with
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different properties (discussed in Section 4). As illustrated on the top panel of Figure 1, realized measures

provide a far more informative signal about the true latent volatility process than low frequency returns

and extend the information set Ft = σ (Xt,Xt−1, . . .) where Xt = (rt, xt,1, xt,2, ..., xt,m)
′ contains the low

frequency return and m different realized volatility measures. Not surprisingly, GARCH models relying

on an extended information set have proven to provide significant economic and statistical gains and to

react more quickly to sudden changes in the conditional volatility than their low frequency peers (see e.g.

Christoffersen et al. (2012) and Andersen et al. (2003)).

Models including realized measures in the GARCH equation (i.e. GARCH-X) were introduced by

Engle (2002) and further studied by Visser (2010). Hansen et al. (2012) completed GARCH-X models with

a measurement equation for the realized measure leading to the class of Realized GARCH models. Later,

Hansen and Huang (2012) introduced the Realized EGARCH to account for leverage effects and Hansen

et al. (2014b) the multivariate Realized Beta GARCH. Competing models include the multiplicative error

model (MEM) of Engle and Gallo (2006) and the HEAVY model of Shephard and Sheppard (2010). Further

models were constructed to directly forecast the realized measures instead of the conditional variance of

returns and include ARFIMA models (Andersen et al. (2003)), long-memory factor models (Luciani and

Veredas (2015)) and the well-known HAR-RV models (Corsi (2009)). They are of particular interest in

this paper as they all accommodate long-range dependencies in realized measures (see Andersen et al.

(2003)) and will be part of the set of competing models in the section devoted to forecasting. Further

high-dimensional semi-parametric approaches include Barigozzi et al. (2014).

This paper introduces a new class of volatility models belonging to the class of Realized GARCH

introduced by Hansen et al. (2012). Classical Realized GARCH fail to reproduce long-range dependencies

in the ACF of the realized measure. On the bottom panel of Figure 1, both solid lines represent the

ACF of realized kernels estimated from a S&P 500 ETF. 1 On the left side, the bars provide the ACF of

realized measures simulated from the Realized GARCH of Hansen et al. (2012) and, on the right side, the

realized measures simulated from our new long-memory model. The level of decay in the bars on the

left panel is faster than the solid line suggesting that the Realized GARCH model does not capture the

persistence found in the estimated realized kernels. This empirical feature motivates the introduction of

long-memory Realized GARCH. The right panel shows that both the bars and the solid line decay at the

same pace, which provides evidence on the empirical usefulness long-memory models. The new subclass

of Realized GARCH is called FloGARCH standing for fractionally integrated realized volatility GARCH.

The novelty of FloGARCH models lies in the combination of fractionally integrated polynomials for

long memory, leverage functions for asymmetries and the use of high-frequency data, which results in a

flexible and parsimonious class of models. This paper documents substantial improvements for modeling

volatilities that can be gained from the use of our models. A realistic numerical experiment sheds light on

the in-sample properties of the quasi-maximum likelihood estimation procedure and on the parameters’

stability. Extensive estimation results are provided along with numerous empirical findings. We also test

1Standard & Poors Depository Receipt – SPY henceforth.
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Figure 1: The top panel of this figure plots the logarithm of squared returns against the logarithm of realized kernels and

illustrates the relative noisiness of the signal provided by squared returns. The bottom panel provides the ACF of realized kernels

against the ACF of realized measures simulated from the Realized GARCH model of Hansen et al. (2012) (left) and from the

FloGARCH (right).

several likelihood functions and document the optimal implementation of FloGARCH models in terms

of parameters restrictions and realized measures choice. In-and-out of sample likelihood metrics are

provided for several realized measures and compared across all the available stocks. Finally, forecasting

performances are reported and compared with competing long-memory models.

Throughout the paper, we use the following notation, unless explicitly stated otherwise: rt denotes

the log-return at time t, ht denotes the conditional variance of returns at time t, h̆t can denote either ht

or log ht depending on the model considered. For example, for a GARCH model, it denotes ht while it

represents log ht in the case of a LGARCH or EGARCH model. Finally, xt stands for the realized measure

computed at at time t and, L denotes the lag operator defined such that LXt = Xt−1.

The paper proceeds as follows: Section 2 introduces notation and the FloGARCH models. In Section

3, the likelihood equations are provided and the quasi-maximum likelihood estimation procedure is

discussed. Simulation and bootstrap results are also analyzed. Empirical results are located in Section

4. Section 5 presents forecasting results and Section 6 concludes. Additional results are reported in the

Appendix.
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2 FloGARCH models

This section provides a detailed presentation of three FloGARCH models and introduces the notations

for the rest of the paper. FloGARCH models form a subclass of the general class of Realized GARCH

models defined in Hansen et al. (2012) as

rt = µ + h1/2
t zt, (1)

ht = v(ht−1, ...; xt−1...; rt−1, ...), (2)

xt = m(ht, zt, ut), (3)

where zt ∼ i.i.d. (0, 1) and ut ∼ i.i.d.
(
0, σ2

u
)

are two independent random variables. We label equation 1

as the return equation, equation 2 as the GARCH equation and equation 3 as the measurement equation.

Moreover, E[rt|Ft−1] = µ, V[rt|Ft−1] = ht > 0 and Ft = σ (Xt,Xt−1, . . .) with Xt = (rt, xt)
′. The

conditional mean process is kept constant throughout this paper and we limit the amount of realized

measures to one. Finally, our framework allows to integrate low-frequency squared returns in the GARCH

equation. However, we follow empirical findings of Hansen et al. (2012), who showed that low-frequency

returns were not informative in the presence of realized measures, and do not include daily returns for

the sake of clarity. The rest of Section 2 is divided into two parts linking the FloGARCH models with

their low-frequency counterparts.

2.1 Linear FloGARCH and FloLGARCH

The Realized GARCH(p,q) and Realized LGARCH(p,q) of Hansen et al. (2012) can be written as

rt = µ + h1/2
t zt,

h̆t = ω̄ + β(L)h̆t + α(L)x̆t,

x̆t = ξ + ϕh̆t + δ(zt) + ut,

where β(L) = β1L + · · ·+ βpLp, α(L) = α1L + · · ·+ αqLq, h̆t and x̆t denote either ht and xt or their loga-

rithmic transformations and δ(zt) = δ1zt + δ2
(
z2

t − 1
)

captures the leverage effect in the measurement

equation. 2 The modeling strategy for the return and the realized measure is identical for all FloGARCH

models. The main input is provided in the GARCH equation. Following the construction of the FIGARCH

introduced by Baillie et al. (1996), the GARCH equation is transformed to include long-memory effects. If

νt = x̆t − h̆t, the ARMA representation of the model is given by

(1− α(L)− β(L))x̆t = ω̄ + (1− β(L))νt.

Similarly to GARCH models, the estimated polynomial 1− α̂(z)− β̂(z) = 0 is typically found to have

roots close to 1 suggesting that x̆t may be an I(1) process. 3 However, a large strand of the literature has
2In the FloLGARCH model, we have that ht = exp(h̆t).
3More empirical evidence about the persistence parameter of Realized GARCH models can be found in Table 2 of Hansen et al.

(2012).
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underlined the mean reverting property of volatility and suggested that fractional orders of integration

may reconcile both stylized facts. As pointed out by Baillie et al. (1996) and Bollerslev and Mikkelsen

(1996), factorizing the autoregressive polynomial (1− α(z)− β(z)) = γ(L)(1− z)d, where γ(z) = 0 has

roots outside the unit circle, allows for long-range dependencies in x̆t. The model can then be written as

h̆t = ω +
[
1− γ(L)(1− β(L))−1(1− L)d

]
x̆t. (4)

The fractional differencing operator (1− L)d is defined by its Maclaurin series expansion. Denoting

the gamma function by Γ(·), one obtains,

(1− L)d =
∞

∑
k=0

Γ(k− d)
Γ(k + 1)Γ(−d)

.

The volatility process of the linear FloGARCH and the FloLGARCH models is defined by equation

4. Both of them can be seen as the high-frequency counterparts of the FIGARCH and the FILGARCH

models respectively and, for the sake of compactness, can be written using their Realized ARCH(∞) form

h̆t = ω + λ(L)x̆t,

where λ(L) = ∑∞
j=0 λjLj and λ0 = 0 (see Appendix 7.1 for more details on the computation of the

coefficients). The model implies a long memory structure on r2
t and x̆t through the GARCH equation. The

Flo(L)GARCH(1,d,1) specification can be written as h̆t = ω +
[
1− (1− γL)(1− βL)−1(1− L)d

]
x̆t and

will be used our empirical application.

Importantly, Baillie et al. (1996) showed that the FIGARCH model is not weakly stationary for

0 < d < 1. By contrast, following results from Nelson (1990), they pointed out that, under some

conditions, the FIGARCH model is strictly stationary and ergodic. Many questions concerning weakly

stationary solutions remain open for the FIGARCH. In contrast, FloGARCH models are based on x̆t

and not on low frequency returns. In fact, stationary solutions found in the case of low frequency

models do not necessarily hold for Realized GARCH models. There is a wide literature on ARCH(∞)

stationary processes (see e.g. Kazakevicius and Leipus (2002), Zaffaroni (2004) and Giraitis et al. (2009))

and extending the existing results to the case of the Realized ARCH(∞) is left for future research.

2.2 FloEGARCH

The construction of the FloEGARCH is inspired from the FIEGARCH model of Bollerslev and Mikkelsen

(1996). The Realized EGARCH(1,1) was introduced by Hansen and Huang (2012). A more general

specification for Realized EGARCH(p,q), following from the definition of the EGARCH(p,q) given by

Nelson (1991), includes several lags of the leverage function τ(zt). The starting point is the equation of

the logarithmic volatility

rt = µ + eh̆t/2zt,

h̆t = ω̄ + ϑ(L)h̆t + α(L)τ(zt) + γ(L)ut,

x̆t = ξ + ϕh̆t + δ(zt) + ut,
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where h̆t = log(ht) and x̆t = log(xt). Additionally ϑ(L) = ϑ1L + · · ·+ ϑpLp, α(L) = α1L + · · ·+ αqLq

and γ(L) = γ1L + · · ·+ γqLq. The polynomial accounting for leverage effects is often written with α1 = 1.

This definition departs from the usual EGARCH(p,q) model not only through the inclusion of realized

measures, but also in the form of the news impact function. Originally specified as τ(zt) = τ1zt + τ2(|zt| −

E |zt|), it will be parametrized here as an Hermite polynomial of degree 2, τ(zt) = τ1zt + τ2(z2
t − 1).

Bollerslev and Mikkelsen (1996) underlined that the estimated polynomial ϑ̂(z) = 1 often presents roots

close to one. Tables 2 to 4 from Hansen and Huang (2012) confirm the validity of this empirical feature for

the Realized EGARCH, which motivates the FloEGARCH. Factorizing 1− ϑ(z) = β(z)(1− z)d, where all

the roots of β(z) = 0 lie outside the unit circle, the GARCH equation of the FloEGARCH model may be

written as

h̆t = ω + β(L)−1(1− L)−d
[
α(L)τ(zt) + γ(L)ut

]
,

where β(z) = 1−∑
p
i=1 βizi. The FloEGARCH(1,d,1) will be used in this paper and is given by

h̆t = ω + (1− βL)−1(1− L)−d
[
τ(zt−1) + γut−1

]
, (5)

where τ1 and τ2 capture the leverage effect and are usually negative and positive respectively. Likewise,

δ(zt) is also an Hermite polynomial of degree 2 and δ1 and δ2 exhibit equivalent signs as τ1 and τ2

respectively.

The FloEGARCH with low frequency returns has a strong connection with the EGARCH, the FIE-

GARCH and the Realized EGARCH models, which will be the main competing models among GARCH-

type models. More details about the coefficients are provided in Appendix 7.2. For d < 0.5, Lopes and

Prass (2014) proved that the FIEGARCH is weakly and strictly stationary under some further conditions

extensively discussed in their work.

Remark 1. Temporal aggregation is an important challenge in time series models. A baseline example

illustrates the difficulties related to high-frequency data. Consider the classical realized volatilities of

Andersen et al. (2001)

E
[

xt|Ft−1

]
= E

[ n

∑
i

r2
i,t|Ft−1

]
= ht,

where we assume that ri,t =
(

ht
n

) 1
2
εi,t with εi,t ∼ i.i.d. (0, 1). This model corresponds to a diffusion model

with constant volatility and provides an intuitive way to link high-frequency returns to conditional

daily volatilities. Nonetheless, three main challenges prevent the use of this approach. First intraday

volatility is not constant. Second, intraday prices display large unexpected movements or jumps, which

hampers proper measurement of volatility. Finally, it well-known that high-frequency data are polluted

by microstructure noise. Hence, there is strong empirical evidence against this simple model and a more

sophisticated approach should be used. However, this is beyond the scope of this paper and the three

previous arguments motivate us to consider realized measures xt as exogenous signals and to provide

them with a proper measurement equation that allows for simulations and multi-step ahead forecasts.
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3 Quasi-maximum likelihood analysis

In this section, we discuss the estimation of the parameters of the FloGARCH models. For each of the

three models, the estimation relies on quasi-maximum likelihood (henceforth QMLE) and the in-sample

properties of the estimated parameters are uncovered in a realistic numerical experiment. Estimation

results based on skewed and fat-tailed distributions are left for the Section 4.

3.1 Quasi-maximum likelihood and partial likelihood equations

A classical question related to GARCH models concerns the choice of the probability distribution used in

the estimation. Because the distribution of residuals is often difficult to characterize properly, the usual

maximum likelihood procedure may be infeasible and alternative techniques have to be used. Bollerslev

and Wooldridge (1992) proposed to use the quasi-maximum likelihood technique in order to estimate the

parameters of GARCH-type models. They showed that a misspecified Gaussian log-likelihood provides

consistent and asymptotically normal results. Lee and Hansen (1994) showed consistency and asymptotic

normality for strictly stationary and ergodic GARCH(1,1) models. Jensen and Rahbek (2004) extended

their results to the case where stationarity and ergodicity do not hold for the GARCH(1,1) process.

Robinson et al. (2006) established the same results for ARCH(∞) processes under certain regularity

conditions. QMLE is also the estimation procedure used by Engle (2002), Shephard and Sheppard (2010),

Hansen et al. (2012) and Hansen and Huang (2012). Hence, there is strong evidence in favor of QMLE in

many instances including non-standard cases. Consistently with the literature, we use Gaussian-QMLE

for the FloGARCH models and document the goodness of the procedure in a numerical study based on

the parametric bootstrap (see Paparoditis and Politis (2009)). Conditionally on Ft = σ(χs, s ≤ t) where

χs = {rs, xs}, the log-likelihood function can be recursively separated as

l(r, x; θ) =
T

∑
t=1

log f (rt, xt; θ|Ft−1),

which provides the objective function to maximize. Using Bayes’ rule, we have the decomposition

f (rt, xt|Ft−1) = f (rt|Ft−1) f (xt|rt,Ft−1), which allows to extract the partial likelihood of the return

equation from the joint likelihood of the model. It will be useful to compare Realized GARCH models

with standard GARCH. Using the logarithmic transformation, the full objective function becomes

l(r, x; θ) = −1
2

T

∑
t=1

[log(2π) + log(ht) + (rt − µ)2/ht]−
1
2

T

∑
t=1

[log(2π) + log(σ2
u) + u2

t /σ2
u ].

The parameters contained in the vector θ are estimated by maximizing the objective function. The

FloGARCH and FloLGARCH models have the same parameters θL = (µ, ω, γ, d, β, ξ, ϕ, δ1, δ2, σ2
u) while

the FloEGARCH has more parameters θE = (µ, ω, d, β, α, τ1, τ2, γ, ξ, ϕ, δ1, δ2, σ2
u). The first summand of

the objective function denotes the partial log-likelihood of returns and stands as the objective function

used to estimate GARCH models. Therefore, it is taken as the basis to compare different models. In-

sample and out-of-sample likelihood are used in the analysis of the models: Say, a sample of size N is
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available and we decide to divide it in two subsamples. We use the first subsample to estimate the model.

The likelihood resulting from the estimation is referred to as the in-sample likelihood. Then, using the

estimated parameters, we compute the likelihood of the second subsample and call it the out-of-sample

likelihood. The latter provides a measure of out-of-sample fit. Properties of these quantities and related

statistics are studied in Hansen (2009).

The polynomial in the ARCH(∞) representation needs to be truncated for estimation. Baillie et al.

(1996) and Bollerslev and Mikkelsen (1996) showed that using a truncation level of 1000 lags provides

good in-sample results without destroying the long-term structure. The optimal level of truncation for

FloGARCH models is analyzed on our panel of stocks by comparing the in-sample likelihood at different

levels of truncation. Figure 2 provides the average likelihood and the 0.25 and 0.75 percentiles for different

levels of truncation and results indicate that the truncation level has little impact on the likelihood for

the FloGARCH and the FloLGARCH. However, the likelihood of the FloEGARCH increases with the

truncation level, advocating in favor of higher levels of truncation.

A further complication arises from the treatment of initial conditions. Several initial conditions

for FloGARCH and FloLGARCH models have been tested and provided fairly similar results in the

estimation. Accordingly, the first observation of the (logarithmic) realized measure is used as starting

point for the volatility filter. This departs from Baillie et al. (1996) who used the unconditional variance

estimator. We follow Bollerslev and Mikkelsen (1996) for the FloEGARCH and set the initial value of the

leverage functions to zero.

3.2 Numerical studies

A parametric bootstrap procedure based on Paparoditis and Politis (2009) is used to investigate the

in-sample properties of the estimated parameters and confirms the validity of QMLE. Figure 3 represents

the empirical standardized distribution of the estimated parameters computed with kernel densities. Each

column provides results for one model: first, the linear FloGARCH (FloLin), second, the FloLGARCH

(FloLog) and then the FloEGARCH (FloExp). Each row provides the kernel densities for the parameter

with reference on each plot. The three FloGARCH models specified as (1,d,1) have been estimated on

basis of the daily returns and realized measures of SPY. Then, residuals have been used to re-sample the

observations and re-estimate the models several times. The re-sampling procedure is based on 10.000

samples of size T = 1000.

Figure 3 suggests that most of the estimated parameters have an in-sample distribution similar to

a standard normal distribution. Nonetheless, the peaks and the asymmetry in the densities of d̂ and β̂

point to a less standard distribution for the FloGARCH and the FloLGARCH. Moreover, outliers may

be present on the left side of the density of d̂. Results for FloEGARCH are more convincing as all the

estimated empirical densities are very close to a standard normal distribution. Finally, standard errors

computed from the bootstrap procedure provide very similar results to the robust standard errors of

parameters based on the usual sandwich-formula. Only µ̂ provides different results (of order O(100)) for
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Figure 2: This figure shows the likelihood as a function of the truncation level both for open-to-close and close-to-close returns.

The models considered are the FloGARCH(1,d,1), the FloLGARCH(1,d,1) and the FloEGARCH(1,d,1). The data base used for the

estimation is described in the next section.

the standard deviation. Constrained versions of the model imposing µ = 0 are discussed below.

4 Empirical analysis

Section 4 is based on data for 64 stocks and one ETF of the S&P 500 (SPY) traded on the NYSE from

January 2002 to April 2012. High-frequency data was obtained from the TAQ database and cleaned

following Barndorff-Nielsen et al. (2009). Open-to-close and close-to-close log-returns were computed for

each stock. Realized measures rely on high-frequency data spanning the official market opening hours, i.e.

between 9:30 am and 4:00 pm, but do not contain overnight information. Hence, they provide a precise

proxy of the latent volatility of open-to-close returns but are downward biased signals of close-to-close

returns’ volatility. This bias will be reflected in the coefficients of the model. The sample is divided into

two subsamples covering the periods from January 2002 to December 2008 (in-sample period) and from

January 2009 to April 2012 (out-of-sample period) respectively. Within the data set, several trading days

are removed to avoid outliers in the estimation. Incomplete trading sessions are omitted if recorded

trades cover less than 90% of the trading time. Finally, zero returns are replaced by 10−5 in order to avoid

issues related to the logarithmic transformations.
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Figure 3: This figure provides the in-sample standardized distribution of some estimated parameters from the different FloGARCH

models. The distributions were generated from a parametric bootstrap procedure on the basis of estimated residuals from SPY.
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Remark 2. Realized measures provide an imperfect signal for the conditional volatility and may be

conditionally biased. Since δ(zt) + ut is a martingale difference sequence, we have from the measurement

equation that

E
[

x̆t|Ft−1

]
= ξ + ϕE

[
h̆t|Ft−1

]
.

Realized measures would be conditionally unbiased if the parameters ξ and ϕ were be found to be equal

to 0 and 1, respectively.

4.1 Estimation results

Estimation results are presented for SPY and summarized in Table 1. Further estimation results for the

FloLGARCH and the FloEGARCH can be found in Appendix 7.3.

First, notable differences appear in the estimated mean parameter µ depending on the choice of

returns, roc
t or rcc

t , and suggest that µoc = 0 and µcc > 0. This observation implies that µco > 0 and leads

to the conclusion that overnight information generates more performance for the market index. This is

confirmed for each model estimated on SPY.

Second, the coefficients of the measurement equation are not sensitive to the specification of the

GARCH equation and significantly different from zero. However, they are sensitive to the choice of

returns and important differences appear in point estimates, e.g. ξoc > ξcc. These differences are explained

by adjustments required to account for biases in realized measures with respect conditional volatilities.

In fact, the biases in realized measures can be captured by the parameters ξ and ϕ. If ξ = 0 and ϕ = 1,

then E[x̆t|Ft−1] = h̆t and the realized measure is conditionally unbiased. The FloLGARCH and the

FloEGARCH display stronger adjustments for open-to-close returns in the intercept, i.e. ξ < 0, which is

also observed in Table 2 of Hansen et al. (2012). The FloLGARCH and the FloEGARCH display values

for ϕ close to one and the bias is corrected through a more negative intercept. In the linear model, ξoc

appears to be close to zero while the estimated values of ϕ are strictly smaller than 1 and do not vary

with the choice of returns.

4.1.1 Robustness check 1: A case against the linear specification

We discuss model validation and express our doubts about the linear specification. Figure 4 provides

strong evidence against the linear specification. Similarly, Hansen et al. (2012) pointed out that the

linear Realized GARCH provides odd results in terms of estimated residuals and displays high levels of

heteroskedasticity. Figure 4 provides equivalent observations and leads to similar conclusions.

Three models have been estimated for SPY, the FloGARCH(1,d,1), the FloLGARCH(1,d,1) and the

FloEGARCH(1,d,1). The two latter provide convincing results in terms of estimated residuals, as em-

phasized on the upper panel of Figure 4. The scatter plot of residuals {ẑt, ût} is similar to the one of a

bivariate standard normal distribution. Moreover, it appears that a plot of log xt against the regressor

log ht provides evidence of homoskedasticity in the measurement equation. These facts are however
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Figure 4: The upper panel of this figure provides a scatter plot of the estimated residuals {ẑt, ût} respectively for the FloGA-

RCH(1,d,1), the FloLGARCH(1,d,1) and the FloEGARCH(1,d,1) estimated on SPY. The x-axis provides values for ẑt and the y-axis

for ût. The lower panel provides scatter plots of ĥt or log ĥt on the x-axis against xt or log xt on the y-axis for the same models as on

the upper panel.

transgressed by the linear FloGARCH. Residuals are not jointly normal and heteroskedasticity appears in

the model validation plot. Hansen et al. (2012) suggested that a higher order leverage function may help

to better capture heteroskedasticity, which decreases QMLE efficiency. As a result, we advocate in favor

of logarithmic specifications through the FloLGARCH and FloEGARCH, which provide more convincing

empirical results.

4.1.2 Robustness check 2: introducing skewness and kurtosis

Alternative distributions are used to estimate the FloLGARCH and the FloEGARCH models. In the

log-likelihood function

l(r, x; θ) =
T

∑
t=1

log f (rt|Ft−1) +
T

∑
t=1

log f (xt|rt,Ft−1),

we replace both f (rt|Ft−1) and f (xt|rt,Ft−1) by the Student-t distribution and then by a skewed version

of the Student-t distribution introduced by Fernández and Steel (1998). Both distributions have been used

to estimate GARCH models by Bollerslev (1987) and Lambert et al. (2012). Results are useful to study

the empirical distribution of the residuals. The Student-t distribution takes an additional parameter ν

representing the degrees of freedom of the distribution, which accounts for the fat-tails found in residuals.

13



The higher this parameter, the closer residuals behave to a Gaussian distribution. The skewed version

has two additional parameters ν and κ, which control tails and skewness respectively. The interpretation

of ν is similar as before. Skewness follows this pattern: κ = 1 corresponds to a symmetric case, κ > 1

corresponds to a positive or right-skewed density while κ < 1 has a negative or left-skewed density.

Table 2 provides the discussed parameters and their standard deviations. 4 All parameters are significant

at 1% and suggest that residuals of both the return and the realized measure equations are not Gaussian.

Fat-tails can be conjectured from the value ν and are more present for the residuals of the realized

measure. Moreover, the tails of the returns residuals are fatter for close-to-close returns. Finally, skewness

has opposite directions for the realized measures residuals and the returns residuals.

Table 2: Various distributions.

FloLogoc
stud FloLogcc

stud FloLogoc
skew FloLogcc

skew FloExpoc
stud FloExpcc

stud FloExpoc
skew FloExpcc

skew

Panel A: Point estimates for zt:

κr 0.84
(0.02)

0.86
(0.02)

0.84
(0.02)

0.86
(0.02)

νr 16.65
(4.22)

8.95
(1.48)

18.97
(6.52)

9.30
(1.57)

15.97
(4.79)

8.47
(1.37)

17.13
(5.54)

8.92
(1.46)

Panel B: Point estimates for ut:

κx 1.15
(0.03)

1.14
(0.03)

1.13
(0.03)

1.11
(0.03)

νx 7.59
(0.95)

7.69
(0.98)

7.81
(1.01)

8.07
(1.08)

7.49
(0.92)

8.52
(1.19)

7.69
(0.98)

8.84
(1.29)

Table 2 provides point estimates for the parameters ν and κ when using a student or a skewed student to estimate the models’

parameters. The FloLGARCH(1,d,1) and FloEGARCH(1,d,1) are tested with open-to-close and close-to-close returns. zt and ut

denote the residuals of the return equation and measurement equation of the realized measure.

4.2 Realized measures comparisons

Subsection 4.2 documents that two dimensions in the realized measure choice improve the model

performance. First, jump-robustness increases model fit and, second, subsampled and pre-averaged

realized measures tend to provide more accurate signals of conditional variances.

Realized measures have been at the center of many recent developments at the frontier of probability

theory and financial econometrics. 5 Realized volatilities are low frequency ex-post measures of volatility

typically computed on a daily basis using high frequency data. The baseline realized variances introduced

in the seminal work of Andersen et al. (2001), simply obtained by summing up the squared intraday

returns, are known to produce upward biases in presence of market microstructure noise and jumps.

4We do not provide the parameters of the volatility models since they are similar to those obtained from the Gaussian-QMLE.
5See Barndorff-Nielsen and Shephard (2006), McAleer and Medeiros (2008) and Andersen and Benzoni (2008) for reviews on

recent developments.
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The impact of microstructure noise on realized variances (documented in Zhou (1996), Hansen and

Lunde (2006) and Bandi and Russell (2008)) can be decreased by sparse sampling (Andersen et al. (2001)),

subsampling (Zhang et al. (2005)), pre-averaging (Podolskij and Vetter (2009) and Jacod et al. (2009)) or by

using realized kernels (Barndorff-Nielsen et al. (2008)).

Jumps represent an additional source of variation in asset returns, which hinders reliable measure-

ments of the latent volatility. As a result, several jump-robust measures of volatility have been introduced

including the bipower variation of Barndorff-Nielsen and Shephard (2004), the quantile-based realized

variance of Christensen et al. (2010b) and the median and minimum realized variance of Andersen et al.

(2012). Some extensions were proposed in the multivariate setup (see e.g. Vander Elst and Veredas (2014)).

Several recent realized measures are used to compare the ability of FloGARCH models to fit returns.

Results for open-to-close and close-to-close returns are provided in Table 3 and in Table 9 in Appendix

7.3. These tables provide the sample mean of the parameters computed over the whole data set and

summarize results for the (1,d,1) specification. Results are generally coherent between roc
t and rcc

t .

The pre-averaged quantile-based realized variance of Christensen et al. (2010b) is successful both

in terms of in-sample and out-of-sample likelihood and provides the highest average level of memory

for the linear specification. This finding is in line with similar evidence from Andersen et al. (2007)

who reported the usefulness of the continuous component of the quadratic variation to describe assets

volatility. Moreover, 1-min realized variances provide good in-sample fit for the FloLGARCH and the

FloEGARCH. For roc
t , the 1-min subsampled MedRV of Andersen et al. (2012) is more successful than the

baseline realized variance. This also true for rcc
t for the FloEGARCH but not for the FloLGARCH that

shows higher out-of-sample fit when used with 1-min realized variances.

Two noteworthy remarks: First, both the in-sample and the out-of-sample likelihood decrease with the

sampling frequency. Sparser frequencies decrease the amount of data used to compute realized measures

and seems to worsen the model fit. Second, not surprisingly, subsampling increases the quality of both the

in-sample and out-of-sample fit. Subsampling allows to smooth out the variability in realized measures

produced by noisy log-returns and all the subsampled measures are more successful in terms of model fit

than their standard versions.

4.3 Constrained estimation

Hansen and Huang (2012) pointed out that some parameters of the Realized EGARCH were very

similar across assets. Moreover, they underlined that imposing restrictions to the models could improve

the estimation procedure and make parameter interpretation easier. This subsection examines several

constrained versions of FloGARCH models implemented with realized kernels and documents that,

either no restrictions should be imposed or several parameters should be jointly constrained.

Restrictions are imposed on two parameters common to every model. First, µ = 0 and ϕ = 1 are

imposed separately in the various models and then both restrictions are imposed together. Restricted

models are analyzed with roc
t and rcc

t . Results can be found in Table 4 and in Table 10 located in Appendix
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Table 3: Comparison Table for different realized measures based on O-C returns.

Flo-Lin Flo-Log Flo-Exp

d ϕ l IS(r) lOS(r) d ϕ l IS(r) lOS(r) d ϕ l IS(r) lOS(r)

RV1m 0.58 0.98 −7773.75 −3718.73 0.70 0.99 −3628.80 −1925.83 0.70 1.03 −3623.89 −1920.71

RV5m 0.48 1.02 −7700.19 −3632.18 0.67 0.99 −3913.25 −2110.22 0.70 1.03 −3900.57 −2099.45

RV15m 0.44 1.02 −7764.72 −3876.64 0.64 0.99 −4266.78 −2264.81 0.69 1.00 −4240.29 −2255.08

ssRV1m 0.58 0.98 −7773.75 −3718.73 0.70 0.99 −3628.80 −1925.83 0.70 1.03 −3623.89 −1920.71

ssRV5m 0.47 1.01 −7731.18 −3747.91 0.70 0.99 −3845.47 −2038.97 0.70 1.03 −3819.59 −2039.46

ssRV15m 0.48 0.99 −7419.73 −3614.17 0.69 0.99 −4096.69 −2154.56 0.70 1.01 −4069.30 −2157.45

BPV1m 0.59 0.98 −7753.31 −3708.64 0.66 1.00 −3740.57 −1999.80 0.70 1.05 −3724.79 −2010.98

BPV5m 0.51 1.00 −7596.86 −3613.82 0.68 0.99 −3964.14 −2127.48 0.70 1.03 −3958.05 −2115.04

BPV15m 0.48 1.01 −7414.59 −3870.88 0.66 0.99 −4321.39 −2316.67 0.70 1.01 −4299.38 −2303.98

MinRV1m 0.60 0.98 −7675.00 −3736.27 0.69 1.00 −3730.76 −1984.46 0.70 1.02 −3716.94 −1982.24

MinRV5m 0.49 1.01 −7679.55 −3630.45 0.68 0.99 −4087.13 −2194.72 0.70 1.02 −4068.73 −2183.45

MinRV15m 0.46 1.02 −7687.82 −3963.74 0.65 0.99 −4479.68 −2412.75 0.70 1.02 −4443.45 −2399.14

ssMinRV1m 0.61 0.97 −7716.51 −3616.88 0.69 1.00 −3662.04 −1930.25 0.70 1.03 −3646.82 −1928.52

ssMinRV5m 0.53 0.99 −7551.89 −3655.44 0.69 0.99 −3902.72 −2076.56 0.70 1.03 −3879.94 −2082.53

ssMinRV15m 0.49 1.00 −7402.63 −3687.39 0.67 0.99 −4165.32 −2234.36 0.70 1.02 −4139.53 −2224.02

prgMinRV 0.52 1.01 −9258.43 −4386.10 0.53 1.04 −3918.59 −2130.35 0.70 1.19 −3886.89 −2108.23

MedRV1m 0.60 0.97 −7686.31 −3665.40 0.69 1.00 −3690.21 −1927.49 0.71 1.03 −3675.10 −1924.91

MedRV5m 0.51 1.01 −7595.49 −3629.39 0.69 0.99 −3996.59 −2153.39 0.70 1.03 −3971.63 −2137.56

MedRV15m 0.48 1.00 −7519.54 −3862.12 0.64 0.99 −4353.88 −2340.53 0.70 1.02 −4337.21 −2328.09

ssMedRV1m 0.60 0.97 −7739.80 −3604.07 0.69 0.99 −3644.16 −1905.74 0.70 1.04 −3628.64 −1903.22

ssMedRV5m 0.53 0.98 −7504.28 −3650.60 0.70 0.99 −3871.56 −2064.78 0.70 1.03 −3849.81 −2060.61

ssMedRV15m 0.53 0.99 −7270.60 −3608.36 0.66 0.99 −4135.83 −2209.87 0.70 1.03 −4109.46 −2205.10

prgMedRV 0.45 1.06 −9247.67 −4405.88 0.54 1.03 −3870.37 −2096.90 0.70 1.14 −3857.67 −2074.83

RK 0.56 1.00 −7573.66 −3625.53 0.69 0.99 −3752.18 −1959.25 0.70 1.03 −3719.90 −1960.90

TTS 0.59 0.98 −7426.43 −3656.90 0.66 1.00 −3723.39 −2049.90 0.71 1.08 −3718.42 −2034.24

MSC 0.59 0.99 −7488.72 −3599.30 0.67 1.00 −3677.74 −1920.79 0.71 1.09 −3654.21 −1938.58

prgRV 0.51 1.00 −7775.62 −3683.42 0.70 0.99 −3869.70 −2022.98 0.69 1.03 −3865.57 −2027.86

prgQRV 0.67 0.97 −6951.38 −3387.07 0.56 1.02 −4824.43 −2402.58 0.74 1.20 −4717.99 −2298.28

Average 0.52 0.99 −7677.27 −3661.15 0.68 0.99 −3887.14 −2086.73 0.70 1.03 −3872.76 −2078.68

Table 3 provides estimation results for the FloGARCH(1,d,1), the FloLGARCH(1,d,1) and the FloEGARCH(1,d,1) estimated on the

whole data set of stocks using different realized measures. The reported values correspond to the sample mean of each parameter

computed over the results for the 65 securities. For each model, the value of the parameters d and ϕ are reported. The parameter

d summarizes the level of memory in the model while ϕ is informative of potential biases contained in realized measures. The

in-sample and the out-of sample likelihood was computed following the procedure described in Section 3. Results were obtained

from roc
t . Equivalent results for rcc

t can be found in Appendix 7.3.
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7.3. These tables report summary statistics for the in-sample likelihood, the the out-of-sample likelihood,

the AIC and the BIC computed over the 65 assets of the data set.

Table 4: Comparison Table for constrained versions of FloGARCH - OC-returns.

FloLin FloLog FloExp

l IS(r) lOS(r) AIC(p) BIC(p) l IS(r) lOS(r) AIC(p) BIC(p) l IS(r) lOS(r) AIC(p) BIC(p)

Panel A: Unrestricted Models

Average −7958.2 −3618.5 15934.4 16049.4 −3850.9 −1948.4 7719.8 7834.8 −3825.6 −1943.2 7673.2 7813.8
Median −7573.7 −3625.5 15165.3 15280.3 −3752.2 −1959.3 7522.4 7637.4 −3719.9 −1960.9 7461.8 7602.4
Q.25 −8880.4 −4250.0 13954.9 14069.9 −4309.0 −2173.9 6810.6 6925.6 −4284.5 −2173.9 6777.3 6917.8
Q.75 −6968.4 −2724.2 17778.9 17893.9 −3396.3 −1665.4 8636.1 8751.1 −3377.6 −1670.0 8591.0 8731.6

Panel B: µ = 0

Average −7959.7 −3618.6 15935.3 16037.5 −3852.4 −1948.5 7720.7 7823.0 −3827.2 −1943.2 7674.3 7802.1
Median −7576.7 −3625.3 15169.3 15271.6 −3752.4 −1960.9 7520.7 7623.0 −3720.1 −1960.2 7460.2 7588.0
Q.25 −8882.0 −4249.7 13953.1 14055.3 −4309.7 −2173.9 6808.8 6911.0 −4284.9 −2174.4 6775.2 6903.0
Q.75 −6968.5 −2725.5 17779.9 17882.1 −3396.4 −1664.8 8635.5 8737.7 −3377.6 −1670.0 8589.8 8717.6

Panel C: ϕ = 1

Average −7960.8 −3616.4 15937.7 16039.9 −3852.2 −1945.0 7720.4 7822.7 −3828.7 −1944.4 7677.4 7805.1
Median −7577.7 −3624.0 15171.4 15273.6 −3752.2 −1959.2 7520.5 7622.7 −3720.2 −1961.2 7460.4 7588.2
Q.25 −8881.7 −4246.1 13969.7 14072.0 −4309.2 −2174.9 6809.0 6911.2 −4286.9 −2174.9 6776.3 6904.1
Q.75 −6976.9 −2726.4 17779.4 17881.6 −3396.5 −1664.9 8634.4 8736.6 −3378.1 −1669.6 8593.8 8721.6

Panel D: µ = 0∩ ϕ = 1

Average −7962.3 −3616.3 15938.5 16028.0 −3853.5 −1945.2 7721.0 7810.5 −3830.1 −1944.2 7678.3 7793.3
Median −7580.6 −3623.8 15175.1 15264.6 −3752.4 −1960.8 7518.8 7608.3 −3720.4 −1960.5 7458.8 7573.8
Q.25 −8883.7 −4245.8 13969.8 14059.3 −4309.9 −2174.9 6807.1 6896.6 −4287.8 −2176.8 6774.4 6889.5
Q.75 −6977.9 −2727.5 17781.5 17870.9 −3396.6 −1664.2 8633.8 8723.3 −3378.2 −1669.2 8593.6 8708.6

Table 4 reports sample means of the statistics computed over the 65 stocks available in the data set. The results rely on roc
t and the

same specification is used for the three classes of models: (1,d,1). Results for rcc
t can be found in Appendix 7.3.

Results from Table 4 suggest that either no restriction should be imposed to the model or that µ = 0

and ϕ = 1 should be imposed simultaneously. There is little evidence in favor of separate restrictions.

The BIC criterion always points to smaller models and penalizes additional coefficients. Not surprisingly,

the AIC, which tends to select larger models, often points to unrestricted models. Nevertheless, in some

instances, it also provides evidence for smaller models and even never points to the unrestricted model

for close-to-close returns. Consequently, these results advocate in favor of smaller models.

The in-sample likelihood of the unrestricted model is on average similar to restricted versions but

is mainly choosing the unrestricted model for both types of returns. Statistical theory provides some

intuition for this finding as bigger models often lead to better in-sample fit and weaker out-of-sample

performances. In fact, the out-of-sample likelihood does not provide so clear results in our experiment. It

picks often to restricted models but this is not always the case.

The main result is that parameters should be jointly constrained or left free. Yet, it is difficult to draw

systematic conclusions from Table 4 and 10. Despite results found in Hansen and Huang (2012), our

preferred specification remains, a priori, the unrestricted model. On the one hand, there is no unequivocal
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evidence in the presented tables pointing to one or the other restriction. On the other hand, these

restrictions are heavily dependent on idiosyncratic properties of assets and more generally of asset classes.

Nonetheless, those restrictions can be useful but should be tested for each asset separately.

4.4 Models comparison: in-sample and out-of-sample fit

In this section, several GARCH models are compared using in-sample and out-of-sample partial like-

lihood. Models are classified in three categories: linear, logarithmic and exponential. The linear class

contains the baseline GARCH model and the FIGARCH extension. The high-frequency counterparts

are represented by the Realized GARCH and the linear FloGARCH. The logarithmic class contains the

LGARCH, the FILGARCH, the Realized LGARCH and the FloLGARCH while the exponential class is

composed of the EGARCH, the FIEGARCH, the Realized EGARCH and the FloEGARCH.

Hansen and Huang (2012) have documented that the Realized EGARCH implemented with realized

kernels provide the best fit. In order to provide a fair comparison basis, all models are estimated using

realized kernels and the optimal implementation of FloGARCH provided in the previous subsection is

ignored to avoid unfair comparison. Results are provided in Table 5 and contain summary statistics for

the 65 securities.

There are three main observations. First, both for roc
t and rcc

t , adding a long memory component

increases the average in-sample and out-of-sample fit of all models. Long term dependencies are found

both in squared returns and realized measures and the statistical gains of long memory models confirm

the need to account for it.

Second, as pointed out by many authors before, realized measures improve the models’ performances

and provide tangible statistical gains. Realized measures are far less noisy than returns and their gains

have been documented in the literature (see Christoffersen et al. (2012)).

Third, the in-sample and out-of-sample partial likelihood evaluated on open-to-close returns provide

better statistical fit than close-to-close returns. The reason is related to the data used to compute realized

measures that only spans the trading day and does not contain overnight information. It should be

mentioned that in most of the practical applications, close-to-close returns properties are of interest and

adapting the realized measures to include close-to-open information may provide better statistical fit.

Finally, in many cases, FloGARCH models perform better than the competing models and provide

better fit. The Realized GARCH models perform better in the linear and logarithmic category in terms of

in-sample likelihood but only for close-to-close returns. The FloLGARCH and FloEGARCH provide the

most convincing results for the models and outperform most of the competitors.
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5 Forecasting

FloGARCH models allow to construct multi-step ahead forecasts for the latent volatility process of

financial securities. The first part of this section introduces the forecasting algorithms. Performances

are then compared with competing models. Two Realized GARCH models are included in the set of

competing models together with two long-memory benchmarks, namely the HAR-RV model of Corsi

(2009) and the ARFIMA specification suggested by Andersen et al. (2003). Multiple forecasts comparison

is performed on the basis of the Model Confidence Set of Hansen et al. (2011) and by comparing the R2

computed from Mincer-Zarnowitz regressions (see e.g. Patton and Sheppard (2009)). Finally, open-to-close

returns are used in Section 5 and all models are specified as the usual (1,d,1).6

5.1 Forecasting with FloGARCH models

Linear FloGARCH and FloLGARCH. Denoting by h̆t and x̆t the sequences ht and xt or their logarithmic

transformation, the equation for the k-steps ahead observation is written as

h̆t+k = ω + ∑
j≥1

λj x̆t+k−j,

x̆t+k = ξ + ϕh̆t+k + δ(zt+k) + ut+k,

where δ(zt+k) + ut+k is a martingale difference sequence leading to x̆t+k|t = ξ + ϕh̆t+k|t. Recursive

forecasts for the conditional variance of returns can then be extracted from the previous system as

h̆t+k|t =
[
ω + ξ

k−1

∑
j=1

λj

]
+ ϕ

k−1

∑
j=1

λj h̆t+k−j|t + ∑
j≥k

λj x̆t+k−j.

The previous equations provide a general framework for FloGARCH(p,d,q) and FloLGARCH(p,d,q).

The coefficients of the infinite filter can be adapted to the model specification. Three remarks are in order.

First, the infinite polynomial λ(z) has to be truncated in order to compute forecasts and initial values

need to be provided for the recursion. Following empirical results from Baillie et al. (1996), Bollerslev

and Mikkelsen (1996), a truncation level of 1000 is used together with the same initial conditions as in

Section 3. Second, the recursive algorithm provides only sufficient tools to forecast h̆t+k while the object

of interest lies in ht+k. This is specific to the FloLGARCH and FloEGARCH models and more details are

provided below. Finally, given the arguments against the linear FloGARCH provided in Subsection 4.1.1,

we focus on the FloLGARCH.

FloEGARCH. We denote h̆t = log ht and x̆t = log xt and as for the previous section, the k-steps ahead

observation is written

h̆t+k = ω + β(L)−1(1− L)−d
[
α(L)τ(zt+k) + γ(L)ut+k

]
,

x̆t+k = ξ + ϕh̆t+k + δ(zt+k) + ut+k.

6We use the following notation to denote k-steps ahead forecast: E[h̆t+k |Ft] = h̆t+k|t.
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The innovations τ(zt+k) and ut+k are both martingale difference sequences. Moreover, the GARCH

equation can be restated using infinite filters h̆t+k = ω + ∑j≥1 λjτ(zt+k−j) + ∑i≥1 ψiut+k−i, which allows

to compute forecasts as

h̆t+k|t = ω + ∑
j≥k

λjτ(zt+k−j) + ∑
i≥k

ψiut+k−i.

Notice again that forecasting h̆t+k is not central to our approach but will be useful to extract informa-

tion about expected values for ht+k.

Simulation and bootstrap predictions. Modeling the logarithmic volatilities instead of the volatilities

avoids parameter constraints ensuring non-negative conditional variances. However, Jensen’s inequality

implies that E[log ht+k|Ft] ≤ log E[ht+k|Ft] and prevents direct forecasts for volatilities. Nonetheless,

assuming a probability distribution on the residuals, formulas can be derived for some models such

as the EGARCH (see Tsay (2005)). Otherwise, numerical methods have to be used to extract multi-step

ahead forecasts. We describe two procedures.

First, simulations can be constructed from the model. Based on the normal distribution, the variables

can be generated from the system

ζt+k :=

 zt+k

ut+k

 ∼ N2

0,

 1 0

0 σ2
u

 , k = 1, ..., H.

From these variables and the estimated model, h̆t+k can be computed at different horizons. If one

generates N paths for the log-volatility process, consistent estimates of ht+k can be obtained at each

horizon from 1
N ∑N

i=1 exp(h̆t+k). In spite of its simplicity, the Gaussian distribution is often a questionable

assumption for the joint distribution of residuals and other distributions or procedures may be preferred.

Nevertheless, it is noteworthy to mention that the Gaussian distribution may be useful for some asset

classes as pointed out by Hansen et al. (2014a).

Second, the bootstrap provides a simple distribution-free technique for which the methodology

remains essentially similar. ζt+k is randomly generated by re-sampling the estimated residuals from the

model (ζ̂1, ..., ζ̂t). Based on evidences from Subsection 4.1.2, we use the bootstrap procedure in this paper.

5.2 Forecast evaluation and empirical results

Following studies from Andersen and Bollerslev (1998) and Hansen and Lunde (2005a), our procedure

to compare forecasts is based on Mincer-Zarnowitz regressions, the mean-squared error (MSE) and the

model confdence set of Hansen et al. (2011). Patton (2011) studied forecast evaluation for unobserved

variables based on imperfect proxies. He defines a loss function as robust if it yields an equivalent ranking

of competing forecasts when evaluated using an unbiased proxy or the true object of interest. We use the

MSE loss function that is robust and is provided by the following expression:

L(σ̂2
t , ht) = (ht − σ̂2

t )
2,
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where σ̂2
t and ht denote respectively the proxy of the latent volatility and the forecast for the same period.

The MSE losses are used as inputs for the Model Confidence Set of Hansen et al. (2011) (MCS

henceforth). The MCS is based on recursive testing and elimination of poor forecasting models. Starting

from a set of modelsM0 used to compute multi-step ahead forecasts, the MCS tests the null that all the

models are indistinguishable in terms of forecasting performance (i.e. this is the equivalence test δM). If

H0,M is rejected, the MCS removes one forecasting model from the set of modelsM0 with an elimination

rule eM. The algorithm proceeds recursively until a non-rejection of H0,M providing a data-driven optimal

set of models M̂?
1−α that are statistically not distinguishable in terms of forecasting losses. The analysis is

performed for all stocks and we report the percentage of time each model was included in the MCS at 5%

level. Results of this section are based on 5-min subsampled realized volatilities. Robustness checks by

using different proxies and additional results are reported in Appendix 7.3.

Table 6: Forecasting Results.

Horizon 1 2 3 4 5 10 15 20 40

Panel A: Model Confidence Set results – MSE

HAR− RV 0.38 0.43 0.37 0.43 0.35 0.29 0.23 0.28 0.22
ARFIMA 0.35 0.43 0.40 0.38 0.35 0.34 0.32 0.32 0.31
RealLGARCH 0.11 0.08 0.05 0.08 0.06 0.09 0.11 0.09 0.12
RealEGARCH 0.20 0.12 0.14 0.12 0.12 0.25 0.22 0.20 0.25
FloLGARCH 0.54 0.40 0.35 0.34 0.35 0.31 0.20 0.14 0.23
FloEGARCH 0.43 0.34 0.35 0.35 0.37 0.45 0.43 0.46 0.58

Panel B: R2 from Mincer-Zarnowitz regressions

HAR− RV 0.49 0.49 0.49 0.49 0.49 0.46 0.40 0.38 0.32
ARFIMA 0.24 0.36 0.36 0.37 0.37 0.37 0.32 0.29 0.25
RealLGARCH 0.51 0.47 0.45 0.45 0.45 0.44 0.38 0.35 0.31
RealEGARCH 0.52 0.47 0.45 0.45 0.44 0.44 0.38 0.34 0.30
FloLGARCH 0.55 0.53 0.51 0.50 0.51 0.48 0.43 0.38 0.37
FloEGARCH 0.57 0.54 0.53 0.53 0.54 0.52 0.48 0.44 0.40

Panel A summarizes percentage of stocks over the data set for which the model is included in the MCS at 5% at different horizons.

Panel B summarizes the R2 from Mincer-Zarnowitz regressions. Results in both panels are based on 5-min subsampled realized

volatilities.

Forecasts are computed for 40 periods ahead and the initial sample for the pseudo out-of-sample

forecasting exercise contains data from January 2002 to December 2008. A rolling window strategy based

on a window size of 1500 observations is used. The main results can be found in Figures 5 and 6 and

in Table 6. The Mincer-Zarnowitz regression uses forecasts as regressors and the volatility proxies as

dependent variables. The regression provides R2 that allow to gauge the predicting power of the forecast

on the proxy. It can be used for multiple models comparison and higher R2 suggest better performances.

The Mincer-Zarnowitz regression was computed for all assets of the data set and Figure 5 reports the

average R2. The left panel provides results with for the FloLGARCH. It provides for many periods

higher average values than the competing models. The HAR model of Corsi (2009) performs almost

as well while the ARFIMA provides the least convincing results. On the right panel, performances of
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Figure 5: Mincer-Zarnowitz R2 for FloLGARCH(1,d,1) and FloEGARCH(1,d,1).
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Figure 6: Mean-squared error for FloLGARCH(1,d,1) and FloEGARCH(1,d,1).

the FloEGARCH are reported against competing models and it appears more clearly that the model

outperforms all the competing models at all horizons. It can be seen from Table 6 that the FloEGARCH

provides uniformly higher R2 than the competing models. These results are robust to the volatility proxy

used in the regression and additional figures in Appendix 7.3 illustrate the superior performance of

FloGARCH models.

Figure 6 reports the average MSE of the forecasts at the different horizons computed over the data

base of stocks. As expected, the values increase with the horizon, i.e. forecasts become less precise for

longer horizons. The FloLGARCH is outperformed by the HAR model that has uniformly smaller MSE.

On the other hand, the right panel suggests that the FloEGARCH provides better forecasting precision

than competing models except for the HAR model and at very short horizons. These two observations

are confirmed by results reported in Table 6, which report the percentage of stocks for which the model is
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included in the MCS. Clearly, the HAR model provides good results for short horizons (i.e. 1 to 5 periods

ahead) but the FloEGARCH performs better at the remaining horizons. Conclusions based on the two

first parts of the analysis suggest that the FloGARCH models are a serious class of competing models to

predict markets volatility.

6 Conclusion

This paper introduces a new class of long-memory models for the joint-dynamics of low-frequency

returns and realized measures. The class of model is called FloGARCH and includes three different

models, the linear FloGARCH, the FloLGARCH and the FloEGARCH. The latter is flexible enough

to capture asymmetric shocks between volatility and returns. FloGARCH models can be estimated

using Gaussian-QMLE and the estimation procedure is accurate and straightforward to implement. A

numerical analysis underlines the reliability of the methodology and the desirable in-sample properties

of the estimated parameters. We present empirical evidences about the usefulness of the models and their

superior performance. In-sample and out-of sample likelihood measures are used to show the higher

ability of FloGARCH to fit historical data. The models are tested with various realized measures and

parameters constraints. A pseudo out-of-sample forecasting exercise shows that the FloGARCH models

provide more accurate forecasts than benchmark long-memory models and Realized GARCH models.

Finally, we see three sensible directions for future research. First, extending the theoretical properties

of Realized ARCH(∞) models. These properties include stationary solutions and asymptotic theory for

QMLE. Second, our FloGARCH models may be further developed to include several realized measures

and a conditional mean similarly to Christensen et al. (2010a). The latter development would provide

a convenient framework to study the relationships between the historical stock market premium and

realized measures. Finally, following recent developments in factor models, FloGARCH models could be

extended using a factor structure for residuals similar in spirit to the Realized Beta GARCH model of

Hansen et al. (2014b). It would then provide a useful tool for the analysis of large dimensional conditional

covariance matrices capturing intrinsic long-run relationships among conditional correlations and betas.
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7 Appendix: supplementary material

7.1 Coefficients of FloGARCH(1,d,1) and FloLGARCH(1,d,1)

The coefficients of the infinite polynomial can be recursively computed. The fractional differencing

operator (1− L)d can be expressed as

(1− L)d =
∞

∑
k=0

δd,kLk.

The coefficients are computed as δd,k = δd,k−1
k−1−d

k where δd,0 = 1. From section 2, the filter of

Flo(L)GARCH(p,d,q) is written as λ(L) = 1−γ(L)(1− β(L))−1(1− L)d, which gives for Flo(L)GARCH(1,d,1)

λ(L) = 1− (1− γL)(1− βL)−1(1− L)d. From this expression one has

λ(L) = 1− (1− γL)
∞

∑
k=0

( k

∑
j=0

βjδd,k−j

)
Lk,

= 1−
∞

∑
k=0

ψk

(
Lk − γLk+1

)
.

From the previous filter one can observe that ∀k ≥ 1 : λk = −ψk + γψk−1 and λ0 = −ψ0 + 1 = 0, which

provides the sufficient recursion to compute the coefficients of λ(L). Notice that Caporin (2003) has

provided conditions on parameters of FIGARCH ensuring non-negativity of the latent volatility process

that are used for the FloGARCH specification.

7.2 Coefficients of FloEGARCH(1,d,1)

The FloEGARCH(1,d,1) is expressed as

h̆t = ω + (1− βL)−1(1− L)−d
[
τ(zt−1) + γut−1

]
.

The infinite polynomial is denoted by (1− βL)−1(1− L)−d and coefficients computation follows along

the same line as in the previous Appendix. Denoting c = −d allows to write (1− L)c = ∑∞
k=0 δc,kLk where

δc,k = δc,k−1
k−1−c

k = δ−d,k−1
k−1+d

k . This simple trick leads to

(1− βL)−1(1− L)−d =
∞

∑
k=0

( k

∑
j=0

βjδ−d,k−j

)
Lk.

The filter can be computed for any specification following the same strategy or from Proposition 2 of

Lopes and Prass (2014).
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7.3 Further estimation results

This section gathers supplementary estimation results that were not included in the main text to save

some space. In order of appearance:

• Table 7: Estimation results for FloLGARCH(1,d,1) based on roc
t .

• Table 8: Estimation results for FloEGARCH(1,d,1) based on roc
t .

• Table 9: Comparison table for different realized measures based on rcc
t .

• Table 10: Comparison table for constraint versions of the models based on rcc
t .

• Figures 7 to 9: Robustness checks for Mincer-Zarnowitz regressions.
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Table 7: Estimation results - FloLGARCH(1,d,1) - roc
t .

µ ω γ d β ξ ϕ δ1 δ2 l(r, x) l(r) σ̂2
u

AA −0.13 0.04 0.15 0.64 0.32 −0.01 0.99 −0.04 0.08 −6161.7 −5071.6 0.14
ABT 0.05 −0.07 0.29 0.60 0.45 0.06 1.00 −0.02 0.06 −5097.6 −3806.8 0.17
AES −0.00 0.20 0.39 0.83 0.71 −0.15 0.97 −0.03 0.07 −7184.3 −5520.6 0.23
AIG −0.09 0.23 0.68 0.78 0.84 −0.20 0.98 −0.02 0.05 −6834.6 −5199.3 0.22
AKS −0.17 0.38 0.79 0.28 0.73 −0.55 1.15 −0.04 0.09 −8295.2 −6451.8 0.26
AMD −0.13 0.20 0.48 0.57 0.61 −0.24 1.03 −0.02 0.09 −7305.2 −6062.4 0.16
AXP 0.04 0.10 −0.20 0.63 −0.07 −0.10 1.01 −0.03 0.08 −5717.7 −4530.9 0.15
BA 0.00 0.01 −0.44 0.51 −0.37 −0.03 1.03 −0.03 0.07 −5449.1 −4363.0 0.14
BAC 0.01 0.12 0.52 0.79 0.70 −0.10 0.98 −0.03 0.09 −5760.6 −4555.1 0.16
BMY −0.01 −0.13 0.38 0.68 0.63 0.13 0.99 −0.04 0.09 −5396.1 −3948.3 0.19
BSX −0.07 0.19 0.50 0.44 0.60 −0.23 1.05 −0.02 0.12 −6846.2 −5082.0 0.25
C −0.07 0.06 0.17 0.66 0.25 −0.04 0.98 −0.03 0.10 −6060.1 −4786.3 0.17
CAG 0.01 −0.08 0.37 0.56 0.55 0.08 1.01 −0.03 0.08 −5073.1 −3544.3 0.20
CAT 0.01 0.07 0.40 0.78 0.65 −0.05 0.98 −0.04 0.07 −5628.9 −4607.1 0.13
CHK −0.06 0.12 0.36 0.75 0.66 −0.07 0.97 −0.05 0.08 −6742.1 −5296.7 0.19
CLF 0.10 0.43 0.09 0.47 0.19 −0.48 1.05 −0.02 0.10 −7885.7 −6060.5 0.26
COH 0.03 0.19 0.37 0.68 0.63 −0.18 0.99 −0.01 0.11 −6678.8 −5233.1 0.19
CSX 0.06 0.11 0.31 0.64 0.52 −0.12 1.00 −0.02 0.07 −5950.9 −4773.3 0.15
D 0.03 −0.06 −0.21 0.61 −0.06 0.06 1.00 −0.02 0.07 −4838.2 −3537.4 0.17
DD 0.03 −0.09 0.25 0.71 0.45 0.10 0.98 −0.05 0.06 −5269.5 −4133.9 0.15
DIS 0.08 −0.06 0.39 0.72 0.61 0.07 0.99 −0.05 0.08 −5373.2 −4229.4 0.15
DNR 0.01 0.17 0.17 0.71 0.55 −0.16 0.99 −0.03 0.10 −7407.6 −5556.5 0.27
DOW 0.02 0.01 0.27 0.76 0.54 0.01 0.97 −0.05 0.07 −5916.9 −4648.6 0.16
EMC 0.10 −0.02 0.57 0.61 0.69 0.02 1.00 −0.02 0.09 −6104.2 −4979.9 0.15
EXC −0.01 −0.03 0.15 0.68 0.41 0.02 1.00 −0.03 0.08 −5266.4 −3984.3 0.17
F −0.16 0.13 0.51 0.68 0.71 −0.12 0.99 −0.03 0.09 −6975.7 −5302.1 0.23
FCX −0.05 0.21 0.25 0.54 0.32 −0.24 1.03 −0.05 0.08 −6762.3 −5615.7 0.15
GE −0.01 −0.04 0.28 0.71 0.50 0.05 0.99 −0.02 0.07 −5276.3 −4114.0 0.15
GIS 0.02 −0.09 0.51 0.70 0.75 0.08 0.99 0.01 0.06 −4568.0 −3227.6 0.17
GLW −0.06 0.10 0.45 0.69 0.64 −0.07 0.98 −0.04 0.09 −6734.3 −5409.7 0.17
HAL 0.00 −0.01 0.28 0.78 0.58 0.05 0.97 −0.04 0.08 −6404.9 −5303.1 0.14
HD 0.02 −0.01 0.38 0.73 0.63 0.02 0.99 −0.03 0.07 −5443.6 −4368.2 0.14
IBM 0.13 −0.11 0.23 0.74 0.47 0.10 0.98 −0.04 0.06 −4638.2 −3607.9 0.14
INTC −0.01 −0.01 0.46 0.69 0.62 0.02 0.99 −0.02 0.07 −5543.9 −4652.9 0.12
IRM 0.03 0.31 0.32 0.36 0.30 −0.36 1.07 −0.03 0.06 −6552.5 −4456.3 0.32
JCP 0.02 0.18 0.46 0.66 0.67 −0.18 1.00 −0.02 0.06 −6680.4 −5340.8 0.17
JNJ 0.02 −0.21 0.32 0.82 0.65 0.19 0.97 0.00 0.06 −4246.8 −3017.3 0.16
JPM 0.01 0.07 0.42 0.78 0.63 −0.06 0.99 −0.03 0.08 −5787.2 −4706.4 0.14
KEY −0.01 0.02 0.29 0.71 0.52 −0.00 0.99 −0.02 0.09 −6204.9 −4772.6 0.19
KO 0.05 −0.15 0.33 0.61 0.47 0.14 1.00 −0.02 0.07 −4424.2 −3259.2 0.15
MCD 0.06 −0.06 0.34 0.70 0.64 0.05 0.99 −0.03 0.09 −5093.0 −3795.0 0.17
MDT 0.03 −0.06 0.25 0.65 0.47 0.06 0.98 −0.03 0.07 −5087.5 −3853.8 0.16
MMM 0.01 −0.09 0.33 0.72 0.55 0.10 0.98 −0.04 0.06 −4885.6 −3678.0 0.16
MO 0.02 −0.02 0.33 0.90 0.77 0.03 0.95 −0.01 0.06 −5217.4 −3666.1 0.21
MRK −0.01 0.01 0.41 0.65 0.62 −0.01 1.00 −0.03 0.05 −5574.1 −4130.3 0.19
MSFT 0.04 −0.09 0.31 0.73 0.55 0.10 0.97 −0.04 0.07 −5014.9 −4025.4 0.13
NBR −0.09 0.19 0.33 0.64 0.54 −0.20 1.01 −0.03 0.07 −6652.5 −5523.6 0.15
NEM −0.09 0.09 0.40 0.66 0.57 −0.08 1.00 −0.03 0.07 −5774.2 −5043.8 0.11
ORCL 0.07 −0.05 0.57 0.66 0.72 0.06 0.99 −0.02 0.09 −5802.8 −4697.4 0.14
PFE −0.03 −0.09 0.44 0.67 0.64 0.09 0.99 −0.04 0.08 −5131.5 −3993.4 0.15
PG 0.07 −0.21 0.36 0.65 0.53 0.20 0.98 −0.04 0.06 −4368.9 −3103.7 0.16
S −0.01 0.18 0.48 0.64 0.68 −0.17 1.01 −0.01 0.09 −7155.2 −5544.8 0.22
SLB 0.03 −0.00 0.35 0.72 0.58 0.01 1.00 −0.04 0.06 −5868.1 −4998.8 0.12
SPY 0.00 0.16 0.29 0.75 0.47 −0.17 0.98 −0.08 0.06 −4131.8 −3094.3 0.14
T −0.02 −0.03 0.45 0.77 0.70 0.04 0.97 −0.03 0.08 −5388.0 −4067.3 0.17
TJX 0.08 −0.01 −0.09 0.53 0.04 0.01 1.02 −0.00 0.07 −5815.6 −4453.3 0.18
USB 0.05 −0.06 0.28 0.72 0.47 0.07 0.99 −0.03 0.08 −5661.7 −4290.0 0.18
UTX 0.00 −0.06 0.27 0.67 0.47 0.06 0.98 −0.03 0.07 −5087.9 −3903.2 0.15
VLO −0.02 0.20 0.32 0.70 0.56 −0.20 1.00 −0.02 0.09 −6484.8 −5284.0 0.16
VZ −0.02 −0.13 0.27 0.68 0.50 0.13 0.99 −0.03 0.07 −5111.1 −3853.8 0.16
WFC −0.00 −0.03 0.37 0.77 0.61 0.04 0.99 −0.03 0.08 −5441.7 −4326.0 0.15
WMT 0.00 −0.18 0.28 0.67 0.50 0.18 1.00 −0.01 0.07 −4500.2 −3494.0 0.13
WY −0.02 0.13 0.33 0.64 0.52 −0.13 1.00 −0.03 0.08 −5867.3 −4748.9 0.15
XOM 0.07 −0.09 0.28 0.80 0.55 0.09 0.98 −0.07 0.06 −4823.4 −3837.4 0.13
XRX 0.11 0.05 0.30 0.63 0.51 −0.03 0.99 −0.03 0.08 −6487.4 −4893.1 0.2231



Table 8: Estimation results - FloEGARCH(1,d,1) - roc
t .

µ ω d β τ1 τ2 γ ξ ϕ δ1 δ2 l(r, x) l(r) σ̂2
u

AA −0.14 1.26 0.66 0.18 −0.07 0.06 0.40 −0.07 1.03 −0.05 0.07 −6123.8 −5066.3 0.14
ABT 0.04 0.43 0.68 0.09 −0.05 0.04 0.41 0.07 0.99 −0.02 0.06 −5079.6 −3803.8 0.17
AES −0.02 2.51 0.71 0.02 −0.08 0.06 0.45 −0.04 0.91 −0.03 0.08 −7141.3 −5502.9 0.22
AIG −0.07 0.30 0.63 0.10 −0.07 0.05 0.59 −0.07 0.90 −0.01 0.05 −6768.5 −5158.9 0.22
AKS −0.13 1.89 0.66 −0.01 −0.05 0.05 0.26 −0.93 1.31 −0.04 0.09 −8241.5 −6447.6 0.25
AMD −0.15 2.48 0.67 0.01 −0.03 0.06 0.32 −0.68 1.24 −0.02 0.10 −7269.3 −6054.5 0.16
AXP 0.03 1.34 0.67 0.21 −0.08 0.06 0.43 −0.14 1.04 −0.03 0.08 −5665.3 −4531.4 0.15
BA −0.01 0.96 0.67 0.14 −0.06 0.05 0.33 −0.11 1.14 −0.03 0.07 −5404.0 −4356.0 0.14
BAC 0.01 1.17 0.68 0.09 −0.08 0.09 0.54 −0.07 0.95 −0.04 0.08 −5692.7 −4538.2 0.15
BMY −0.01 0.87 0.70 0.01 −0.04 0.05 0.39 0.13 1.01 −0.04 0.09 −5393.6 −3945.1 0.19
BSX −0.07 1.41 0.63 0.05 −0.03 0.05 0.29 −0.39 1.18 −0.02 0.12 −6831.1 −5078.8 0.24
C −0.06 1.13 0.66 0.17 −0.07 0.09 0.52 −0.02 0.97 −0.03 0.09 −6014.7 −4773.1 0.16
CAG 0.00 0.11 0.69 −0.00 −0.04 0.04 0.34 0.08 1.04 −0.03 0.08 −5058.7 −3537.3 0.20
CAT 0.01 0.95 0.70 0.05 −0.06 0.06 0.42 −0.15 1.10 −0.04 0.07 −5598.8 −4602.1 0.13
CHK −0.07 1.51 0.67 0.06 −0.06 0.08 0.36 −0.09 0.99 −0.04 0.08 −6685.3 −5283.5 0.18
CLF 0.11 1.19 0.66 0.11 −0.07 0.07 0.26 −0.64 1.16 −0.02 0.10 −7785.7 −6010.7 0.25
COH 0.03 1.54 0.68 0.01 −0.07 0.07 0.34 −0.27 1.05 −0.01 0.11 −6636.7 −5230.2 0.18
CSX 0.06 1.19 0.71 0.08 −0.05 0.04 0.34 −0.28 1.16 −0.02 0.07 −5916.5 −4766.0 0.15
D 0.03 0.06 0.67 0.24 −0.04 0.05 0.39 0.06 1.03 −0.02 0.07 −4813.1 −3527.9 0.17
DD 0.03 0.56 0.66 0.17 −0.07 0.05 0.46 0.10 0.98 −0.05 0.06 −5240.5 −4134.2 0.14
DIS 0.06 1.44 0.69 0.11 −0.08 0.05 0.42 0.05 1.02 −0.05 0.08 −5342.0 −4222.8 0.15
DNR 0.01 1.37 0.70 0.14 −0.04 0.05 0.25 −0.41 1.15 −0.03 0.09 −7375.8 −5542.5 0.26
DOW 0.01 1.31 0.67 0.15 −0.09 0.06 0.44 0.05 0.93 −0.05 0.07 −5882.4 −4643.9 0.16
EMC 0.08 1.91 0.66 0.13 −0.04 0.05 0.46 0.04 0.98 −0.02 0.09 −6096.4 −4978.7 0.15
EXC −0.01 0.47 0.71 0.15 −0.04 0.06 0.37 0.01 1.05 −0.03 0.08 −5241.4 −3975.5 0.16
F −0.17 1.47 0.65 −0.09 −0.05 0.08 0.40 −0.23 1.07 −0.03 0.09 −6930.9 −5301.2 0.22
FCX −0.06 1.73 0.66 0.12 −0.07 0.06 0.33 −0.60 1.24 −0.06 0.08 −6682.4 −5600.6 0.14
GE −0.02 0.84 0.70 0.11 −0.05 0.06 0.40 0.01 1.04 −0.02 0.08 −5235.6 −4116.2 0.15
GIS 0.02 0.07 0.67 0.00 −0.05 0.04 0.42 0.09 1.02 0.00 0.07 −4544.1 −3221.0 0.17
GLW −0.08 2.37 0.69 0.05 −0.05 0.07 0.45 −0.08 0.98 −0.04 0.09 −6727.0 −5411.1 0.17
HAL −0.02 2.21 0.70 0.04 −0.07 0.06 0.38 −0.10 1.06 −0.04 0.08 −6368.3 −5300.4 0.14
HD 0.01 0.80 0.70 0.03 −0.06 0.05 0.42 −0.02 1.04 −0.03 0.07 −5418.7 −4367.4 0.14
IBM 0.12 0.27 0.70 0.13 −0.08 0.05 0.45 0.10 1.00 −0.04 0.06 −4601.4 −3604.9 0.13
INTC −0.03 1.76 0.68 0.08 −0.06 0.06 0.48 0.02 0.98 −0.02 0.07 −5510.2 −4651.0 0.12
IRM 0.04 0.61 0.60 0.08 −0.03 0.03 0.30 −0.50 1.25 −0.02 0.07 −6524.3 −4459.4 0.31
JCP 0.02 1.58 0.67 0.05 −0.06 0.03 0.37 −0.38 1.14 −0.02 0.06 −6650.1 −5335.0 0.17
JNJ 0.02 −0.04 0.71 0.04 −0.06 0.04 0.46 0.20 1.00 −0.00 0.06 −4224.4 −3016.7 0.16
JPM 0.00 1.55 0.73 0.03 −0.07 0.07 0.49 −0.07 1.00 −0.04 0.08 −5741.0 −4699.2 0.14
KEY −0.00 0.62 0.71 0.09 −0.08 0.07 0.43 0.01 0.98 −0.03 0.09 −6157.2 −4765.0 0.18
KO 0.05 0.08 0.68 0.12 −0.05 0.05 0.44 0.14 1.01 −0.02 0.07 −4405.3 −3255.6 0.15
MCD 0.05 0.63 0.72 0.03 −0.05 0.04 0.38 0.05 1.00 −0.03 0.09 −5086.3 −3791.4 0.17
MDT 0.03 0.35 0.69 0.10 −0.05 0.04 0.40 0.06 1.01 −0.03 0.07 −5078.9 −3849.5 0.16
MMM 0.01 0.30 0.68 0.11 −0.07 0.03 0.43 0.08 1.05 −0.04 0.06 −4866.0 −3678.7 0.15
MO 0.02 0.17 0.68 0.09 −0.06 0.03 0.51 0.06 0.80 −0.02 0.06 −5192.2 −3663.9 0.20
MRK −0.00 0.31 0.71 −0.02 −0.05 0.02 0.39 −0.08 1.14 −0.03 0.05 −5559.8 −4123.0 0.19
MSFT 0.03 1.05 0.67 0.10 −0.06 0.06 0.48 0.12 0.92 −0.04 0.07 −5000.1 −4023.8 0.13
NBR −0.10 1.79 0.70 0.05 −0.06 0.05 0.33 −0.44 1.17 −0.03 0.07 −6607.0 −5502.3 0.14
NEM −0.09 0.95 0.68 0.10 −0.03 0.05 0.41 −0.21 1.11 −0.03 0.07 −5760.1 −5040.9 0.11
ORCL 0.04 1.94 0.67 0.04 −0.06 0.08 0.43 0.01 1.02 −0.02 0.10 −5766.8 −4699.2 0.14
PFE −0.04 0.53 0.68 0.08 −0.04 0.05 0.41 0.06 1.07 −0.04 0.08 −5121.4 −3991.3 0.15
PG 0.07 −0.14 0.68 0.10 −0.06 0.04 0.44 0.22 1.04 −0.04 0.06 −4356.7 −3101.2 0.16
S 0.00 1.15 0.68 0.05 −0.05 0.06 0.37 −0.24 1.05 −0.01 0.09 −7125.8 −5540.5 0.21
SLB 0.02 1.40 0.69 0.03 −0.06 0.05 0.38 −0.24 1.20 −0.04 0.06 −5810.7 −4989.6 0.11
SPY −0.00 −0.25 0.68 0.15 −0.11 0.06 0.42 −0.16 1.05 −0.09 0.06 −4049.4 −3102.2 0.13
T −0.02 1.09 0.70 0.05 −0.06 0.07 0.51 0.09 0.89 −0.03 0.08 −5360.3 −4054.2 0.17
TJX 0.07 0.79 0.65 0.21 −0.05 0.03 0.38 −0.03 1.06 −0.00 0.07 −5792.7 −4450.2 0.18
USB 0.04 0.82 0.70 0.13 −0.08 0.08 0.47 0.08 0.97 −0.03 0.08 −5610.9 −4285.6 0.17
UTX −0.00 0.70 0.69 0.16 −0.08 0.05 0.39 0.05 1.01 −0.03 0.07 −5032.5 −3900.2 0.15
VLO −0.02 0.91 0.69 0.03 −0.04 0.07 0.34 −0.47 1.20 −0.02 0.09 −6428.9 −5266.2 0.15
VZ −0.02 0.52 0.70 0.12 −0.06 0.05 0.41 0.12 1.01 −0.03 0.07 −5087.4 −3855.1 0.16
WFC −0.01 0.31 0.72 0.08 −0.08 0.06 0.50 0.06 0.96 −0.03 0.07 −5395.0 −4317.7 0.14
WMT −0.01 0.47 0.69 0.10 −0.04 0.05 0.39 0.17 1.05 −0.01 0.07 −4480.4 −3491.9 0.13
WY −0.02 1.01 0.69 0.08 −0.04 0.05 0.40 −0.20 1.07 −0.03 0.08 −5852.7 −4747.1 0.14
XOM 0.06 0.57 0.68 0.14 −0.08 0.06 0.43 0.06 1.08 −0.08 0.06 −4792.4 −3833.3 0.13
XRX 0.09 1.80 0.64 0.18 −0.07 0.04 0.38 −0.04 0.99 −0.03 0.08 −6468.1 −4891.6 0.2132



Table 9: Comparison Table for different realized measures - rcc
t .

Flo-Lin Flo-Log Flo-Exp

d ϕ l IS(r) lOS(r) d ϕ l IS(r) lOS(r) d ϕ l IS(r) lOS(r)

RV1m 0.63 0.96 −8076.97 −3894.09 0.69 0.99 −3918.85 −2076.86 0.71 1.08 −3899.54 −2071.66

RV5m 0.58 0.96 −7956.43 −3815.78 0.67 0.99 −4257.84 −2268.44 0.70 1.06 −4237.56 −2276.54

RV15m 0.55 0.95 −8110.97 −4124.61 0.61 1.00 −4613.08 −2471.15 0.68 1.04 −4584.08 −2466.64

ssRV1m 0.63 0.96 −8076.97 −3894.09 0.69 0.99 −3918.85 −2076.86 0.71 1.08 −3899.54 −2071.66

ssRV5m 0.58 0.95 −7918.38 −3957.74 0.67 0.99 −4177.07 −2234.27 0.70 1.06 −4148.82 −2221.36

ssRV15m 0.61 0.94 −7755.44 −3830.78 0.62 1.00 −4450.13 −2373.53 0.70 1.04 −4417.40 −2369.55

BPV1m 0.66 0.95 −8010.24 −3887.57 0.66 1.00 −4035.23 −2141.76 0.71 1.09 −4003.56 −2146.04

BPV5m 0.59 0.96 −7886.54 −3827.18 0.65 1.00 −4322.75 −2308.25 0.70 1.08 −4294.57 −2309.49

BPV15m 0.60 0.94 −7699.30 −4118.16 0.63 0.99 −4684.98 −2489.94 0.69 1.04 −4652.20 −2491.14

MinRV1m 0.65 0.94 −8045.40 −3909.97 0.69 0.99 −4088.77 −2131.42 0.71 1.08 −4056.35 −2130.82

MinRV5m 0.57 0.96 −7939.42 −3820.81 0.64 1.00 −4412.26 −2372.61 0.70 1.07 −4381.90 −2372.96

MinRV15m 0.59 0.94 −7932.17 −4180.67 0.62 0.99 −4833.27 −2584.13 0.70 1.04 −4803.85 −2576.36

ssMinRV1m 0.66 0.94 −8053.66 −3820.51 0.68 0.99 −4009.76 −2085.31 0.71 1.08 −3976.69 −2084.46

ssMinRV5m 0.62 0.94 −7769.90 −3845.18 0.67 0.99 −4216.65 −2266.56 0.70 1.07 −4198.74 −2260.99

ssMinRV15m 0.67 0.92 −7715.90 −3893.27 0.63 1.00 −4519.56 −2417.06 0.70 1.04 −4480.27 −2409.10

prgMinRV 0.59 0.96 −9513.72 −4551.96 0.53 1.03 −4221.17 −2285.26 0.70 1.26 −4198.89 −2288.31

MedRV1m 0.66 0.95 −8070.07 −3841.67 0.69 0.99 −4032.87 −2109.00 0.71 1.08 −4019.38 −2104.88

MedRV5m 0.59 0.96 −7835.44 −3818.92 0.65 1.00 −4327.75 −2321.13 0.70 1.07 −4296.58 −2318.38

MedRV15m 0.61 0.94 −7780.45 −4075.78 0.63 0.99 −4728.01 −2514.89 0.69 1.04 −4694.42 −2510.91

ssMedRV1m 0.66 0.94 −8026.32 −3804.54 0.69 0.99 −3975.35 −2082.35 0.71 1.10 −3961.33 −2067.62

ssMedRV5m 0.64 0.94 −7747.78 −3869.62 0.68 0.99 −4196.97 −2250.72 0.70 1.07 −4178.28 −2239.52

ssMedRV15m 0.65 0.92 −7614.96 −3815.61 0.64 1.00 −4500.85 −2401.81 0.69 1.05 −4460.93 −2396.05

prgMedRV 0.56 0.96 −9520.31 −4556.53 0.54 1.02 −4186.22 −2248.56 0.69 1.18 −4145.07 −2247.44

RK 0.64 0.95 −7947.46 −3796.62 0.68 1.00 −4044.32 −2136.27 0.70 1.08 −4003.53 −2134.65

TTS 0.69 0.95 −7781.17 −3848.61 0.63 1.00 −4040.27 −2232.58 0.70 1.11 −4024.34 −2219.94

MSC 0.69 0.95 −7838.97 −3821.58 0.65 1.00 −3964.54 −2096.21 0.70 1.11 −3942.58 −2094.58

prgRV 0.62 0.95 −8003.15 −3868.28 0.66 1.00 −4197.41 −2215.86 0.69 1.06 −4160.21 −2210.63

prgQRV 0.72 0.96 −7134.90 −3609.96 0.52 1.03 −5054.52 −2524.47 0.73 1.18 −4931.84 NaN

Average 0.63 0.95 −7935.80 −3858.45 0.65 1.00 −4207.03 −2258.64 0.70 1.07 −4188.51 NaN

Table 9 provides estimation results for FloGARCH(1,d,1), FloLGARCH(1,d,1) and FloEGARCH(1,d,1) estimated on the whole data

set of stocks using different realized measures. It summarizes results for rcc
t and is the twin Table of Table 9, which provided results

for roc
t . For each model, the value of the parameters d and ϕ are reported. The parameter d summarizes the level of memory in the

model while ϕ is informative of potential biases contained in realized measures. The in-sample and the out-of sample likelihood

was computed following the procedure described in Section 3 devoted to QMLE.
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Table 10: Comparison Table for constrained versions of FloGARCH - rcc
t .

FloLin FloLog FloExp

l IS(r) lOS(r) AIC(p) BIC(p) l IS(r) lOS(r) AIC(p) BIC(p) l IS(r) lOS(r) AIC(p) BIC(p)

Panel A: Unrestricted Models

Average −8251.2 −3781.4 16520.4 16635.4 −4167.9 −2119.1 8353.8 8468.8 −4140.7 −2116.7 8303.5 8444.0
Median −7947.5 −3796.6 15912.9 16027.9 −4044.3 −2136.3 8106.6 8221.7 −4003.5 −2134.7 8029.1 8169.6
Q.25 −9151.9 −4490.4 14482.0 14597.0 −4607.4 −2347.1 7563.7 7678.7 −4576.9 −2360.9 7493.3 7633.9
Q.75 −7232.0 −2906.4 18321.8 18436.8 −3772.8 −1813.5 9232.9 9347.9 −3735.6 −1812.2 9175.7 9316.3

Panel B: µ = 0

Average −8251.9 −3781.4 16519.9 16622.1 −4168.7 −2120.2 8353.3 8455.6 −4141.6 −2115.7 8303.2 8431.0
Median −7947.9 −3797.6 15911.7 16014.0 −4045.8 −2136.6 8107.6 8209.8 −4003.6 −2134.6 8027.2 8155.0
Q.25 −9152.6 −4489.9 14481.4 14583.6 −4608.3 −2350.3 7561.9 7664.1 −4578.7 −2358.1 7491.4 7619.2
Q.75 −7232.7 −2906.6 18321.1 18423.4 −3772.9 −1813.2 9232.5 9334.8 −3735.7 −1811.5 9177.3 9305.1

Panel C: ϕ = 1

Average −8253.6 −3780.6 16523.2 16625.4 −4170.0 −2118.3 8356.0 8458.3 −4145.9 −2117.0 8311.8 8439.6
Median −7948.6 −3799.2 15913.1 16015.3 −4044.4 −2137.9 8104.8 8207.1 −4004.4 −2134.0 8028.8 8156.6
Q.25 −9154.8 −4491.1 14481.1 14583.3 −4610.7 −2348.5 7563.0 7665.2 −4594.9 −2360.3 7500.7 7628.5
Q.75 −7232.6 −2907.0 18325.6 18427.9 −3773.5 −1813.5 9237.4 9339.6 −3740.4 −1812.4 9209.8 9337.6

Panel D: µ = 0∩ ϕ = 1

Average −8254.3 −3780.5 16522.7 16612.1 −4170.6 −2118.1 8355.2 8444.7 −4146.9 −2116.1 8311.7 8426.7
Median −7948.9 −3800.2 15911.9 16001.4 −4045.9 −2138.0 8105.8 8195.2 −4004.4 −2134.0 8026.9 8141.9
Q.25 −9155.5 −4490.7 14480.5 14570.0 −4610.1 −2348.2 7561.2 7650.7 −4596.3 −2357.7 7498.8 7613.8
Q.75 −7233.3 −2907.3 18325.0 18414.5 −3773.6 −1813.3 9234.3 9323.7 −3740.4 −1811.6 9210.6 9325.6

Table 10 reports sample means of the statistics computed over the 65 stocks available in the data set. The results rely on rcc
t and the

same specification is used for the three classes of models: (1,d,1).
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Figure 7: Mincer-Zarnowitz R2 for FloLGARCH(1,d,1) and FloEGARCH(1,d,1) computed from RV5min.
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Figure 8: Mincer-Zarnowitz R2 for FloLGARCH(1,d,1) and FloEGARCH(1,d,1) computed from ssRV15min.
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Figure 9: Mincer-Zarnowitz R2 for FloLGARCH(1,d,1) and FloEGARCH(1,d,1) computed from RV15min.
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