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1 Introduction

The basis of the theory of cointegration was laid out in a surge of articles

about the late eighties and early nineties, preceded by the seminal paper by

Granger (1981). By the mid-nineties, there was a relatively complete theoretical

framework for I(1) (Engle and Granger, 1987; Johansen, 1988; Johansen and

Juselius, 1990), I(2) cointegration (Paruolo, 1996; S., 1992), multicointegration

(Granger and Lee, 1989) and seasonal cointegration (Hylleberg et al., 1990).

Since then, much of of the attention in cointegration theory has been fo-

cused on panel data (Levin and Lin, 1993; Levin et al., 2002) or on fractional

cointegration (Engle and Granger, 1987; Granger and Joyeux, 1980). Latest de-

velopments are focused on particular cases as cointegration in dynamic panels

(Yu and Lee, 2010), or panel data multicointegration (Worthington and Higgs,

2010)).

Also, some contributions have been made to the foundations and algebraic

theory of multivariate integrated processes (Franchi, 2006, 2007). A concern

that may explain the persistence of interest in the algebra of cointegration is

the perceived necessity of a unifying theoretic framework for all situations.

In this article, we contribute in two ways to facilitate a more unified treat-

ment of cointegration. First, in section 2 we provide a general theoretical frame-

work that covers any process that can be represented by an autoregressive model

with unit roots. This framework has the following elements: (i) a classification

of all such models based on the Smith form (SF); (ii) a class of General Vector

Error Models (GVEC) that correspond to every unstable autoregressive model

and (iii) a consistency result for the Least Squares estimator of the GVEC mod-

els. The first two points are in fact straightforward generalizations of the kind

of reasoning that Hylleberg et al. (1990) used to find a seasonal vector error

correction model by assuming that the process had a Wold representation with

a Smith form of a particular shape. By removing the restriction on the SF, we

find a general family of VEC models (General VEC or GVEC, hereinafter). The

GVEC family covers the following cases: I(1), I(2), multicointegration (with a
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caveat that will be explained later), polynomial and seasonal cointegration. On

the other hand, this framework does not include panel data or fractional inte-

gration. At this point, we do not know how difficult will be to generalize our

results in those directions, but it seems that fractional integration poses more

difficulties from the theoretical point of view, whereas the algorithms we use are

not well-suited to panel data.

The second contribution (section 3) is an automatic method to identify

GVEC models based on an estimate of the SF of the autoregressive model.

We show by means of Monte Carlo simulations (section 4) that our method

works better than the Johansen test in the restricted cases in which the latter

applies. But of course, our method has also the advantage that it can detect

other situations. This is the case in the practical example of section 5, where our

algorithm detects both seasonal cointegration and higher order of integration.

Therefore, in series that have a marked seasonal behavior, with our method it is

no longer necessary to do a cointegration analysis with the seasonally adjusted

series, as is sometimes done.

2 General Vector Error Correction Models

Let us recall some fundamental results of the representation of cointegrated

variables by means of VEC models, following the ideas of Engle and Granger

(1988), although not their notation.

We will denote polynomials and power series using the inderminate z. When

we use them to define autoregressive or ARMA models, we substitute the back-

shift operator B for z, so for example φ(z) = φ0 + . . . + φpz
p, but φ(B)yt =

φ0yt + . . .+φpyt−p. Sometimes, when the context makes clear that φ is a poly-

nomial, we can drop the indeterminate for ease of notation. The same applies

for vectors and matrices whose entries are polynomials or power series.

Let us assume that yt is a n× 1 vector whose components are I(1), meaning

that (1−B)yt = yt− yt−1 is weakly stationary. We additionally assume that it
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is purely nondeterministic, so it has a Wold representation

(1−B)yt = Ψ(B)εt,

where εt is white noise with zero mean and covariance matrix Σ.

We say that yt is cointegrated with cointegration rank r if there exist r lin-

early independent n× 1 constant vectors a such that a′yt is stationary. We re-

produce partially below the well-known Granger Representation Theorem from

Engle and Granger (1988).

Proposition 1 (Granger representation theorem). If yt has cointegration rank

r, then:

(a) Ψ(1) is of rank n− r.

(b) There is an ARMA representation A(B)yt = m(B)εt such that A(1) has

rank r, A(0) = I and m(z) is a polynomial with m(1) 6= 0.

(c) There are full-rank n×r matrices α and γ such that α′Ψ(1) = 0, Ψ(1)γ = 0

and A(1) = γα′.

(d) There is an error correction representation with Γ(B)(1−B)yt = −γα
′yt−1+

M(B)εt with Φ(0) = I.

We will generalize this result in three directions: greater orders of inte-

gration, unit roots other than unity (among other things, to include seasonal

integration) and polynomial cointegration (including multicointegration).

Assumption 1. Let s be a positive integer and d(z) a real polynomial such that

all its roots belong to {ωk}
s−1
k=0 where ωk = exp 2πik/s and d(B)yt is stationary

and purely nondeterministic.

The fact that we limit the roots of d to that set is just for convenience, as the

most common cause of unit roots other than the unity is seasonal integration.

Hence, s can be interpreted as the number of observations per year (or per

week in the case of daily data). All the subsequent developments can easily be

adapted to the general case, although most applications do not require that.
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Under assumption 1, we can say that yt is integrated of order dk with respect

to ωk and denote this property as yt ∼ Ik(dk). With this notation, I0(j) is

equivalent to I(j). When ωk is complex, so is (1 − ω−1
k B)dkyt. We can remain

in the realm of the real numbers by applying instead (1 − 2ReωkB + B2)dkyt,

which differentiates yt simultaneously respect to ωk and its complex conjugate

ω∗
k.

We say that yt is polynomially cointegrated of order j at ωk when there

exists a polynomial vector a(z) such that a(B)′yt is Ik(dk − j). There can be

several cointegration relationships for yt. For each k and j, let us say there is a

set A of such vectors with exactly rk,j elements and {a(ωk)}a∈A is linearly inde-

pendent. For the sake of generality, we do not require that all the components

of yt have the same order of integration, so there may be trivial cointegration

relationships. Then, if yt = (y1,t, y2,t)
′, where y1,t ∼ I(1) and y2,t ∼ I(0), a

trivial cointegrating vector would be (0, 1)′. For convenience, we can say that

yt is cointegrated of order 0 with rank n, so rk,0 = n. Clearly rk,j ≥ rk,j+1 and

there is some j from which rk,j = 0 onwards. We call rk,j cointegration ranks.

Assumption 2. Ψ(z) is rational, that is, its entries are polynomial fractions.

Now, we will present our generalization of the Granger representation theo-

rem in two parts. First, we adapt statements (a)-(c) of proposition 1.

Proposition 2. If assumptions 1 and 2 hold and yt has cointegration ranks

rk,j , then

(a’) Ψ(z) = U(z)D(z)V (z), where detU(z) and detV (z) have no roots in the

closed unit circle, D(z) = D0(z) · . . . ·Dk(z) and

Dk(z) =

















Ik,s0 0 0 . . .

0
(

1− ω−1
k z

)

Ik,s1 0 . . .

0 0
(

1− ω−1
k z

)2
Ik,s2 . . .

. . . . . . . . . . . .

















where sk,j = rk,j − rk,j+1. D(z) is called the Smith form1 of Ψ(x). Con-

1The concept is fully developed in 3.1
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versely, if the SF is as above, then yt has cointegration ranks rk,j .

(b’) There is a VARMA representation A(B)yt = m(B)εt such that m(z) is a

polynomial. If D divides d, then the SF of A(z) is d(z)D(z)−1 and m(z)

has no unit roots. In this case, there is also the infinite VAR representation

Φ(B)yt = m(B)−1A(B)yt = εt.

(c’) There are full rank n× rk,j polynomial matrices α(z) and γ(z) such that

α(z)′Ψ(z) and Ψ(z)γ(z) have jth-order zeros at ωk.

Statements (a’) and (b’) are of paramount importance for our results, be-

cause they mean that the cointegration structure of yt can be entirely obtained

from the SF of Ψ(z) or Φ(B). In order to distinguish both diagonal matrices we

can use DΨ(z) and DΦ(z). Let δ1(z), . . . , δh(z) be the distinct diagonal elements

of DΦ(z).

For j = 1, . . . , h− 1, we denote by mjk the multiplicity of ωk in δj+1/δj . If

we define

∆jkℓ(z) =







δj+1(z)

(1−ω−1

k
z)ℓ

Imωk = 0

δj+1(z)
(1−2Reωkz+z2)ℓ Imωjk > 0

and ∆h = δh. Now, we can generalize statement (d).

Proposition 3. (d’) In the conditions of proposition 2 yt satisfies the model

Γ(B)∆h(B)yt =

h−1
∑

j=1

{

∑

Imωjk=0

mjk
∑

ℓ=1

Π
(j)
kℓ ∆jkℓ(B) +

∑

Imωjk>0

mjk
∑

ℓ=1

(Π
(j,−)
kℓ +Π

(j,+)
kℓ B)∆jkℓ(B)

}

yt−1 +m(B)εt, (1)

where Γ(z) is a polynomial matrix. If DΨ(z)|d(z), then there is a repre-

sentation with Γ(z) an infinite power series and m(B) = 1.

REMARK 1: the rank of the matrices Π
(1)
kℓ is given by the number r1 of

times δ1 is repeated in {di}
n
i=1. The rank of the matrices Π

(1)
kℓ that correspond

to real roots is r1, whereas the rank of Π
(1,−)
kℓ is 2r1. For greater j, if rj is the

times δj appears in {di}
n
i=1, then the rank of Π

(j)
kℓ and Π

(j,±)
kℓ are bounded by

r1 + . . .+ rj and 2(r1 + . . .+ rj) respectively.
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Let us see now some examples of known models that are particular cases of

GVEC.

Example 1 (VAR model in differences). If DΦ(z) = diag(1 − z, . . . , 1 − z),

the components of yt are not cointegrated. A stable VAR model can be fitted

for their differences (∇y1t , . . . ,∇y
n
t ). In a similar fashion, if DΦ(z) = diag(1−

zs, . . . , 1− zs), a stable VAR is appropriate for the seasonal differences.

Example 2 (VEC model for I(1)). When

DΦ(z) =





Ir 0

0 (1− z)In−r





the model (1) reduces to the usual VEC model Γ(B)∇yt = Πyt−1 + εt, where

rankΠ = r.

Example 3 (VEC model for I(2)). If the matrix DΦ(z) has the form

DΦ(z) =











Ir1 0 0

0 (1− z)Ir2 0

0 0 (1− z)2Ir3











,

then we get the I(2) model Γ(B)∇2yt = Π
(1)
1,1yt−1 +Π

(1)
1,2∇yt−1 + εt.

Example 4 (Seasonal integrated processes). For the more general case that the

roots are among exp 2πki/s, with k = 0, . . . , s− 1, in some cases, the model (1)

boils down to the model in section 4 of Hylleberg et al. (1990). Let as assume

that

DΦ(z) =





Ir 0

0 (1− z4)In−r



 .

Then, the model has the form

Γ(B)(1 −B4)yt = Π
(1)
0,1(1 +B +B2 +B3)yt−1 +

(

Π
(1,+)
1,1 +Π

(1,−)
1,1 B

)

(1−B2)yt−1 +Π
(1)
2,1(1−B −B2 +B3)yt−1 + εt.

Example 5. (Multicointegration.) Following Granger and Lee (1989), consider

the case of the production (pt) and sales (st). They satisfy a multicointegra-

tion relation, that is, they are cointegrated I(1) variables, so there is a vector
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(in particular (1,−1)) such that pt − st is stationary and, in addition to that,

∇−1(st − pt) is cointegrated with st (again, with (1,−1)). This relation holds,

for example, when ∇(pt, st)
′ = Ψ(B)εt and

Ψ(B) =





∇ ∇+ 1

∇ 1



 .

If we calculate the SF of Ψ(B) in R[z], we get the representation

∇





pt

st



 =





1 0

B 1









1 0

0 ∇2









∇ ∇+ 1

1 1



 εt. (2)

Note that the alternative representation by Haldrup and Salmon (1998),

∇





pt

st



 =





∇ ∇−1 +∇−2

∇ ∇−2









1 0

0 ∇2









1 0

0 1



 εt

is in a greater ring, that contains ∇−1. The condition DΨ|d is violated because

the second element ∇2 in the diagonal of the SF of Ψ(B) does not divide the

operator ∇ that we use to make (pt, st) stationary. Nevertheless, in order to get

a representation without a moving average part this problem can be circumvented

by modeling the integrated vector ∇(Pt, St)
′ = (pt, st)

′ (∇ = lcm(∇,∇2)∇−1).

From (2), we get





−∇+ 1 1

−1 ∇









1 0

0 ∇2









−B 1

1 0









Pt

St



 = εt.

We are now in a situation like in example 3, with r2 = 0. In fact, we can follow

the constructive proof of proposition 3 and arrive to the model

∇2





Pt

St



 = −∇yt−1 +





1 −1

1 −1



 yt−1 + εt.

Here we can see the two cointegration relations. The second row means that sales

and inventory are cointegrated, and the sum of the two rows gives the relation

between sales and production.
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2.1 Estimation

We will get asymptotic properties of of the least squares estimation of models

of the form of (1) in the case that Γ(B) is of finite order, but first we need an

additional assumption.

Assumption 3. Let Ft be the σ−field generated by {εs : s ≤ t}. Then,

E[εt|Ft−1] = 0,
∑

t,i E[|εit|
2+δ|Ft−1] <∞ almost surely for δ > 0 and V[εt|Ft−1] =

Σ, where Σ is positive definite.

Proposition 4. Let yt satisfy model (1), where Γ(z) is a polynomial matrix

and εt fulfils assumption 3. In addition, for simplicity we assume that d|D,

so m(z) = 1 . Let us stack the coefficients of model (1) as β = [Γ : Π] with

Γ = [Γ1, . . .], Π = [Π(1), . . . ,Π(h)] and Π(j) = [Π
(j)
11 , . . .] and let β̂ = [Γ̂ : Π̂] be

the least squares estimator of β. Then, β̂
p
→ β and

T 1/2(Γ̂− Γ)
d
→ N(0,Ξ) (3)

LT (Π̂−Π) = Op(1) (4)

where LT = diag(T qjkℓIn)jkℓ, qjkℓ is the minimum multiplicity of the unit roots

of ∆jkℓ(z).

REMARK 1: it is likely that consistency could be proved in the case that

the true Γ(B) has infinite order. That would require the order of the estimate

Γ̂(B) to diverge to infinity at a certain rate, as in Lewis and Reinsel (1985).

REMARK 2: this result should be extended to allow the presence of moving

average terms in the model. The results of Barrio Castro and Osborn (2011),

suggest that significant improvements could be achieved with this generalization,

that could be attempted following the lines of Yap and Reinsel (1995).

3 Identification

We have built an R package to automatically identify and estimate GVEC mod-

els. This package can be obtained from the corresponding author until it is
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uploaded to a public repository. The main steps of the procedure are: (i) es-

timate a VAR representation Φ(B)yt = εt; (ii) estimating the SF of Φ(z) and

(iii) applying proposition 3 to obtain the GVEC model.

This procedure resembles the unit root determination method of the program

TRAMO2, albeit with the additional complication that polynomial matrices

cannot be factorized as simply as polynomials. The method of TRAMO is

described in the introductory notes by Maravall (2008).

Steps (i) and (iii) are straightforward. What we need now is a way to

estimate the SF of a polynomial or rational matrix. In fact, we will describe a

method to estimate the SF in any ring in which we can perform the Euclidean

division (Euclidean ring). In subsection 3.1 we will describe the algorithm to

do that. In subsection 3.2 we adapt the algorithm to identify GVEC models.

3.1 Smith form

Let us review first the theory about the SF. We take the following proposition

from Hungerford (1980).

Proposition 5. If A is a n × n matrix of rank r > 0 over a Principal Ideal

Domain R, then A is equivalent to a matrix D of the form





Lr 0

0 0



, where

Lr is an r × r diagonal matrix with nonzero diagonal entries d1, . . . , dr such

that d1|d2| . . . |dr. The ideals (d1), . . . , (dr) in R are uniquely determined by the

equivalence class of A.

D is the Smith form of the general matrix A. Note that the SF is not strictly

unique. The assertion that the ideal (di) generated by the ith element of the

main diagonal of D is unique entails that di is unique up to multiplication by

an invertible element of R. Hence, to achieve uniqueness of D, it is necessary

to impose additional constraints. For example, in the ring R[z] of polynomials

2Current versions of this program, together with SEATS have been developed by Agust́ın

Maravall and his team at the Bank of Spain, upon the programs originally developed by A.

Maravall and V. Gómez.
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over R we may set the coefficient of the highest order term equal to unity, that

is, to force di to be monic.

In general, we will denote by R1 a subset of R such that for any a ∈ R there

is a unique a1 ∈ R1 with a = ua1 and u invertible (R1 always exists because by

the axiom of choice, we can pick one element from each equivalence class with

respect to the relation a ∼ b ⇔ ∃u ∈ R, a = u−1b). Thus, when R = R[z], R1

is the set of the monic polynomials. We define a function a 7→ u(a) such that

u(a) is invertible and u(a)a ∈ R1.

The proof of proposition 5 boils down to showing that there is an algorithm

that by means of elementary operations transforms A into D. We will call

that the ’exact algorithm’ for reasons that will be obvious later. In the next

subsection, we will present a stylized description of the algorithm.

We say that R is a Euclidean Ring with degree function ϕ : R − {0} 7→ N

when: (i) pq 6= 0 implies ϕ(pq) ≥ ϕ(p) and (ii) for any p, q ∈ R, there are some

m, r ∈ R such that p = mq + r and r = 0 or ϕ(r) < ϕ(r).

Let Mn(R) be the ring of the n × n matrices with elements in R and A ∈

Mn(R). We will call admissible operations the following elementary operations:

(a) Exchange rows i and j.

(b) Exchange columns i and j.

(c) Add c times row i to row j, where c is the quotient of the Euclidean

division of aij by aii and aii ∈ R1.

(d) Add c times column i to column j, where c is the quotient of the Euclidean

division of aji by aii and aii ∈ R1.

(e) Multiply column i or row j by u(aii).

Proposition 6. There exist algorithms to obtain the SF of a matrix over an

Euclidean ring that have the following form:

(i) e0 = 1, A(0) = A.

11



(ii) For k > 0,

ek = f0(ek−1, A
(k−1)) (5)

A(k) = g(ek−1, A
(k−1)) (6)

(iii) The algorithm stops when ek = 0 and D = A(k),

where f0 : N×Mn(R) 7→ N and g : N×Mn(R) 7→Mn(R) satisfy

(a) If ∀i, j, either Ai,j = Bij = 0 or Ai,j , Bij 6= 0, then f0(e, A) = f0(e,B).

(b) g(e, A) is obtained from A by performing an admissible operation that

depends on e.

Condition (a) means that f0 depends only on (1) its first argument and (2)

which elements of the second argument are zero.

We can identify the algorithm with the functions f0 and g. The interest of

all this is not to prove proposition 5, that is proved in Hungerford (1980). The

reason to go into this detail is that we need to use later a modification of this

scheme. Let us see now with an example, why a modification is necessary.

Assume that the ring R is endowed with a topology (that makes the sum

and product continuous) so that we can speak of random elements in R. Then,

for a certain matrix A, we may have an estimate obtained with a sample of

size T , say ÂT . Furthermore, suppose ÂT is consistent in probability. We are

interested in the SF D of A, so we could in principle, proceed by applying the

exact algorithm to ÂT obtaining a D̂T with the hope that when ÂT
p
→ A,

D̂T
p
→ D. Unfortunately, it is easy to prove with an example that this does not

work. Let us consider the case of a 2× 2 matrix with elements in the ring of the

polynomials over R. In order to achieve uniqueness, we set the highest order

coefficient equal to one. Assume that ε̂T
p
→ 0, P [ε̂T 6= 0] = 1 and the estimate

is such that,

ÂT =





x+ ε̂T 0

0 x





p
→ A = D =





x 0

0 x





12



but if D̂T is the SF of ÂT , then

D̂T =





1 0

0 x2 + ǫ̂Tx





p
→





1 0

0 x2



 6= D

Consequently, we have to take a less direct approach to estimate the SF.

We assume now that R is endowed with a modulus function a ∈ R 7→ |a| ∈ R

such that for any a, b ∈ R,

(i) |a+ b| ≤ |a|+ |b|.

(ii) |ab| ≤ |a| · |b|.

(iii) a = 0 if and only if |a| = 0.

To simplify matters, we may assume also that |a| = |−a| in that case, |a−b|

is a metric.

Assumption 4 (Continuity of the Euclidean division). For any (p, q) ∈ R×R1,

µ ∈ N and ǫ > 0, there is some δ > 0 such that for all (p′, q′) ∈ R × R1 such

that ϕ(p) ≤ µ, |p− p′| < δ and |q− q′| < δ imply |r− r′| < ǫ, when r and r′ are

the remainders of the divisions of p by q and p′ by q′ respectively.

Let Mn(R) be the ring (and R-module) of the n × n matrices with entries

in R. In analogy with the usual notation in linear algebra, we will write for

A ∈Mn(R),

‖A‖ = sup
a∈Rn,a 6=0

‖Aa‖

‖a‖
. (7)

where for a = (a1, . . . , an), ‖a‖ =
(
∑

j |aj |
2
)1/2

. The finiteness of the supre-

mum in (7) can be proved in a similar fashion as in the vector space case. From

now onwards, convergence of elements of R and matrices will be referred to the

topologies generated by | · | and ‖ · ‖ respectively.

Now, we can introduce the ’approximate algorithm’.

Definition 1. For any f0 and g as in proposition 6, and for a certain ǫ, the

ǫ−approximate algorithm is the one obtained when we replace f0 by fǫ that

satisfies that fǫ(e, A) = f0(e,B), where Bij = 0 when |Aij | < ǫ and otherwise,

Bij = Aij .

13



In other words, when the exact algorithm depends on whether Aij = 0, the

approximate algorithm depends on whether |Aij | < ǫ.

Let us introduce some notation. For a matrix A, S(A, ǫ) is the output of the

ǫ−approximate algorithm. When there is ambiguity, we will specify the ring in

which we are operating as S(A, ǫ;R). Consequently, S(A, 0) is the output of

the exact algorithm, that is the SF of A. In particular, if we use the algorithm

described in the appendix, we get the unique version in which the elements in

the main diagonal of A belong to R1 (in the polynomial case, they are monic).

Let now ÂT be an estimate of A.

Theorem 1. If assumption 4 holds, the mapping u is continuous, ÂT (z) =

A+Op(ξT ) and

ǫT −→ 0 (8)

ǫT /ξT −→ ∞, (9)

then ‖S(ÂT , ǫT )− S(A, 0)‖ = Op(ξT ).

3.2 Automatic procedure

The central tool of the procedure is the approximate algorithm of subsection

3.1, but how to use it is not completely straightworfard. We have to make some

considerations before presenting it in full.

(1) To use proposition 5 we need to specify in which ring we are considering

the entries of the matrices. For the theoretical results of section 2, the ring

considered is R1(z) := {f/g : f, g ∈ R[z], ∀z, |z| ≤ 1, g(z) 6= 0}, that is, the

rational fractions without poles at any ωk. That this is an Euclidean Ring and

the continuity of the Euclidean division are both proved in the mathmatical

appendix (lemmas 1 and 3).

(2) To estimateDΦ when Φ(z) is a polynomial matrix, we can take advantage

of the fact that the SF of Φ(z) in the ring of polynomials R[z] is also the SF

in R1(z). That is because R[z] ⊂ R1(z), the invertible elements of R[z] are also

invertible in R1(z) and the divisibility relationship in R[z] is preserved in R1(z).

14



(3) When we compute the SF, we can factorize its elements and remove

all the factors without unit roots (which are invertible in R), since only unit

roots are relevant. This way, we find the precise form of SF that appears in

proposition 2.

(4) When we estimate the SF via the approximate algorithm of the previous

subsection, we get a diagonal matrix D̂Φ(z) whose entries’ roots are neither ex-

actly unitary, nor exactly the same as those of the determinant of the estimated

VAR matrix Φ̂(z). Since we are assuming that all unit roots belong to {ωk}k,

we can orthogonally project the unit roots of detΦ̂(z) onto {ωk}k and put them

in the right row and column according to D̂Φ(z). More specifically, for each

root ω̂ of detΦ(z), we get its projection ω ∈ {ωk}k and assign it to the place

where it is the closest root of the diagonal entries of D̂Φ(z). Once all the roots

are assigned, we get a new diagonal matrix D̃Φ(z) similar to D̂Φ(z), but where

all the roots are exactly unitary.

(5) The algorithms used to calculate the SF guarantee at each step that

the elements of the main diagonal of D̂Φ(z) divide each other. This entails

much more matrix operations and thus a greater estimation error. Hence, we

found that the algorith is more precise if we proceed in the following way: (i)

apply the approximate algorithm wihout forcing the divisibility; (ii) apply the

procedure described just above to make the roots exactly unitary and (iii) apply

the full algorithm to get the SF with the diagonal elements dividing one each

other. Step (iii) is equivalent to make operations with integers, so is absolutely

precise, whereas step (i) is simpler this way and thus, more accurate.

Considering all this, the algorithm of our package GVEC consists of the

following steps:

(a) Fit a VAR(p), Φ̂(z) to the data y1, . . . , yT . Order p is provided by the

user or determined by BIC, AIC or HQ.

(b) Obtain the preliminary SF estimate D̂(Φ,0) of Φ̂(z) using the ǫT−approximate

algorithm without divisibility.

(c) Separate the unit roots of the elements in the main diagonal of D̂(Φ,0). For

15



this, we use the criterion |u| < 1 + ǫT . We obtain for each j = 1, . . . , n,

the approximately unit roots ujℓ.

(d) Get the orthogonal projections vi of the roots of detΦ̂(B) onto {exp(2πik/s)}sk=1.

(e) Each vi is assigned to the position j∗ of the diagonal where j∗ = argminj |vi−

ujℓ|. Each time one root is assigned, both vi and uj∗ℓ are removed. Once

all roots are assigned, the elements of the diagonal matrix D̂(Φ,1) are cal-

culated as the product of the degree-one factors corresponding to the unit

roots assigned.

(f) Obtain the SF estimate D̂(Φ,2) of Φ̂(z) using the exact algorithm on D̂(Φ,1).

(g) Calculate δ1, . . . , δh as the distinct polynomials among the diagonal ele-

ments of D̂(Φ,2).

(h) Build the GVEC corresponding to δ1, . . . , δh. The order of the GVEC and

the presence of deterministic trend and intercept is determined by BIC or

AIC.

The parameter ǫT can be chosen by the user of the package. By default, we

set ǫT = log logT ·T−1/2. By the assumptions of theorem 1, ǫT should decrease

more slowly than T−1/2, so log logT · T−1/2 is very near the boundary.

Since the asymptotic efficiency of AIC is proved for the nonstationary case

in Ing et al. (2007) one may think that AIC would be the right choice, but there

are reasons to support the use of a more parsimonious criterion, such as BIC.

One is that in fact, it is not necessary that the estimated VAR is consistent, as

long as it captures consistently the unstable part of the model. This argument

is developed in proposition 7. This is strengthened by the fact that the unstable

part of the model is superconsistent. Hence, in the example of section 5 we use

BIC.

Even when the model Φ(B)yt = εt is an infinite VAR, it can be approximated

by a VAR(p). We would like to prove that it is possible to estimate consistently

the SF of the infinite model using finite approximations. Unfortunately, while
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for the case of stable infinite VAR we know that under some assumptions the

finite VAR approximation is consistent, to our knowledge there is no such result

for the unstable case.

However, we can show that for the rational case, i. e., when Φ = M−1A, the

approximation by a finite VAR works asymptotically well for our purposes even

if the order of the VAR does not diverge to infinity.

Let S̃(Φ̂, ǫT ;R[z]) be the result of factorizing S(Φ̂, ǫT ;R[z]) and removing

the factors with non-unitary roots. Then, S̃(Φ̂, ǫT ;R[z]) may be a consistent

estimate of S(Φ, 0;R1(z)) even if Φ̂ is not a consistent estimate of Φ. This

happens when the true model is an unstable VARMA.

Proposition 7. If A(B)yt = M(B)εt, where A may have unit roots and Φ̂(B)

is the least squares estimator of Φ(B)yt = εt with order greater than that of A,

then, S̃(Φ̂, ǫT ;R[z])
p
→ S(A, 0;R1(z)).

On the other hand, Φ may be approximated by a VARMA model. We lack a

precise analysis of the properties of the estimators of unstable VARMA models,

but probably the properties of the univariate case (Ling and Li, 1998) still hold.

This is a possible line of investigation for the future3.

4 Monte Carlo

Since the automatic identification method described in subsection 3.2 is not

an absolutely straightforward application of the algorithm of subsection 3.1,

but has instead some small heuristic modifications, it is convenient to have an

empiric confirmation that the method actually works. We want to compare the

performance of the method to more traditional tools. Thus, our exercise will

have two parts. First, we will compare our method to one based in the Johansen

cointegration test in cases in which the latter can be applied. In second place,

we will turn to a variety of cases and show the performance of our method alone,

since there is no one to compare in such a general framework.

3Mejorar la redacción de toda esta parte
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For this purpose, we will consider n× 1 (with n = 2, 3) processes yt with the

form:

d(B)yt = Q ·DΨ(B)εt, (10)

where Q is a random matrix with [0, 1]−uniform entries, DΨ(B) is a certain

Smith matrix whose choice is described below and εt is n × 1 Gaussian white

noise. For each model (10), we will simulate M = 500 time series of length

T = 25, 50, . . . , 500. For the simulations, we have translated the identificacion

programs into MATLAB code that runs faster than our R package.

4.1 Comparison with Johansen test in the I(1) case

Our first exercise with simulated series is to compare our method to the Johansen

test. The way in which we will use the test is as follows:

(i) For each r = 0, . . . , n−1 we perform the Johansen test for the null that the

cointegration rank is less or equal that r, with signifcance level α = 0.05.

(ii) We estimate the cointegration rank as r∗ + 1, where r∗ the greatest value

of r for which the test rejects.

This procedure is only valid for I(1) processes. Therefore, we limit the range

of the polynomial d(z) and matrices DΨ in (10) to d(z) = 1− z and

DΨ(z) =





Ir 0

0 (1 − z)In−r



 . (11)

Within this boundary, determining the SF is equivalent to determining the

cointegration rank, so we can actually compare the probability of correctly iden-

tifying the cointegration rank with the Johansen test and with our procedure.

We estimate both probabilities counting for each series length T how many

times both methods get it right. In figure 1, we represent the length-dependent

curves for dimension 2.

Both in dimension 2 and 3, our method seems to do very well in the nontrivial

cases when 0 < r < n, clearly outperforming the Johansen test, particularly in
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Figure 1: Probability of correct identification as a function of series length.

Thick line: our method; continuous thin line: Johansen test with α = 0.01;

dotted line: Johansen test with α = 0.05. Dimension n = 2 and series simulated

according to (11) with (from top to bottom and from left to right) r = 2 (the

series are actually stationary), r = 1 (cointegrated) and r = 0 (no cointegration).
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Figure 2: Probability of correct identification as a function of series length.

Thick line: our method; continuous thin line: Johansen test with α = 0.01;

dotted line: Johansen test with α = 0.05. Dimension n = 3 and series simulated

according to (11) with (from top to bottom and from left to right) r = 3

(the series are actually stationary), r = 2 (cointegrated with rank 2), r = 1

(cointegrated with rank 1) and r = 0 (no cointegration).
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n = 3. In the case r = n there are no very large differences, since all methods

detect quite easily that the series are not actually integrated. The only case

in which the Johansen test works better is when r = 0, for series of short to

moderate lengths, although for d = 2 this only happens for α = 0.01. Also,

even in the cases when the probability of correct identification with our method

grows at a slower pace, it always start at pretty decent levels for very short

series, unlike the Johansen test, which yields very small probabilities in some

cases.

We would like to point out that at least in this limited framework our method

performs at least as well as the Johansen test even though ours is not restricted

to the I(1) case, unlike the Johansen test which limits itself to any of the n+1

possible values for the cointegration rank. In the next subsection, we show what

happens when the true model is not among those that can be identify using the

Johansen test.

4.2 Results in the I(2) case

Now, we consider cases with

d(z) = (1 − z)2; DΨ(z) =











Ir0 0 0

0 (1 − z)Ir1 0

0 0 (1− z)2In−r0−r1











. (12)

Additionally, we also try a case with negative unit roots that can be interpreted

as biannual seasonality, that is,

d(z) = 1− z2; DΨ(z) =





Ir 0

0 (1− z2)In−r



 . (13)

In figure 1, we see that the convergence is somewhat slower in some cases, in

particular when r0 = r1 = 1, but we got fairly good probabilities for long series,

above 150 observations length. In n = 3 we have some cases that are really

tough. Since the convergence is slower, we represent the curves with the length

parameter going up to 500 observations. In particular, the convergence of the
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Figure 3: Probability of correct identification as a function of series length.

Dimension n = 2 and series simulated according to (from top to bottom and

from left to right) model (12): r0 = 1, r1 = 0; r0, r1 = 1; r0 = 2, r1 = 0 and

model (13), r = 1.

case r0 = 2, r1 = 0, seems to be very slow. It is not surprising that for n = 3 is

more difficult to identify correctly the case, since there are much more possible

cases to distinguish. In fact, considering only roots equal to unity, the number

of combinations for n−dimensional I(d) series grows as (d + 1)n−1. However,

we see that the seasonal case works pretty well even for relatively short series.

5 Real data example

To illustrate the use of the method and the package GVEC, we will identify

a model for a data set similar to the one used in Hylleberg et al. (1990). In

particular, y1t will be the logarithm of the net disposable income of the UK

and y2t will be the logarithm of the expenditure in final consumption of the

22



0 100 200 300 400 500

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300 400 500
0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

1

Figure 4: Probability of correct identification as a function of series length.

Dimension n = 3 and series simulated according to (from top to bottom and

from left to right) model (12): r0 = 1, r1 = 0; r0, r1 = 1; r0 = 1, r1 = 2;

r0 = 2, r1 = 0; r0 = 2, r1 = 1; r0 = 3, r1 = 0; and model (13), r = 2.
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households, with t ranging from 1955:Q1 to 2012:Q1. Both series are depicted

in figure 5.

1960 1970 1980 1990 2000 2010

8
9

10
11

12

logINC
logCONS

Figure 5: Logarithm of Income and Consumption of the UK.

The AIC-selected order for the var is 5. The estimated VAR is

Φ̂ =





Φ11 Φ12

Φ21 Φ22





with

Φ̂11 = 1− 0.400B − 0.105B2 − 0.107B3 − 0.462B4 + 0.129B5

Φ̂12 = −0.588B + 0.073B2 + 0.112B3 − 0.254B4 + 0.603B5

Φ̂21 = −0.021B + 0.014B2 − 0.108B3 + 0.091B4 − 0.056B5

Φ̂22 = 1− 0.908B − 0.000B2 + 0.0646B3 − 0.973B4 + 0.899B5.
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We apply the automatic method with ǫT = T−1/3 and get the matrix

diag(d1, d2) with d1 = 1−B and d2 = (1−B)(1 −B4), or





∇ 0

0 ∇ · ∇s



 ,

where ∇ = 1−B and ∇s = 1−Bs.

Then, the GVEC is

Γ(B)∇s · ∇yt = Π
(1)
0,1∇syt−1 +

(

Π
(1,−)
0,1 +Π

(1,+)
0,1 B

)

(1− B2)∇yt−1 +

Π
(1)
2,1(1−B −B2 +B3)∇yt−1 + εt.

where Γ(B) has order p = 4 and the intercept µ equals to (−0.00369,−0.00343)′

and

Π
(1)
0,1 =





−0.185 0.139

−0.717 0.667



 Π
(1,−)
1,1 =





−0.046 0.023

−0.090 0.104





Π
(1,+)
1,1 =





−0.020 0.038

0.190 −0.069



 Π
(1)
2,1 =





0.032 0.001

0.070 −0.019



 .

this means that according to our method both series are I(2) with respect to fre-

quency zero and I(1) with respect to the seasonal frequencies. In this respect,

this is consistent with the univariate results obtained with TRAMO/SEATS.

The model identified is equivalent to a seasonal VEC model as the one ana-

lyzed in HEGY for the first differences. Therefore, the interpretation of the

coefficients in the HEGY model applies here. For example, by extracting the

eigenvector corresponding to the greatest eigenvalue of Π
(1)
0,1, we get that there is

cointegration in the with respect to frequency zero and the cointegrating vector

is quite close to (1,−1).

A Mathematical Appendix

Proof of proposition 2. First, the ranks rk,j are uniquely determined because

rk,j = dimCn〈a(ωk) : a(B)′yt ∼ I(dk − j)〉.
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By the uniqueness of the ranks, it suffices to prove that for every process yt, Ψ

can be represented as in (a’) and then, there are exactly n−
∑

ℓ≥j sk,ℓ cointe-

gration vectors whose values at ωk are linearly independent.

The first step is a consequence of theorem from Hungerford (1980) that is

reproduce here as proposition 5, applied to the ring R = {f/g : ∀k, g(ωk) 6= 0}.

We have then a representation Ψ(z) = U(z)DΨ(z)V (z), where the elements of

the diagonal of DΨ(z) divide one each other di,i(z)|di+1,i+1(z). This allows to

represent yt as

d(B)yt = U(B)DΨ(B)V (B)εt (14)

It is clear that we can factorize DΨ(z) as DΨ(z) = D0(z) · . . . ·Dg(z). If we

focus on a certain k, all the other unit roots can be moved to the left or the

right so we can write Ψ(z) = Uk(z)Dk(z)Vk(z). where detU(ωk), detV (ωk) 6= 0.

If we choose G(z) as the last rk,j rows of Uk(z)
−1, then we get

G(B)yt = [01×n−rk,j
: . . .]d(B)−1Dk(B)Vk(B))εt.

Since the last rk,j elements of the diagonal of DΨ(z) are divided by (1−ω−1
k z)j ,

we get that G(B)yt ∼ Ik(dk − j). On the other hand, G(ωk) is full rank

for otherwise Uk(z) would have a root at ωk, which is contradictory with the

conditions of the SF.

Thus, there are at least r′k,j := n−
∑

ℓ≥j sk,ℓ cointegrating vectors a(z) ∈ A

such that {a(ωk)}a∈A are linearly independent. Hence rk,j ≥ r′k,j . To see that

this is actually an identity, let us assume that rk,j > r′k,j . Then, we arrange

the cointegration relationships in a rk,j × n matrix A1(z). Then A1(B)yt =

Ũ1(B)D̃1(B)Ṽ1(B)ε̃1t. Now, let A2 be a (n− rk,j)×n constant matrix A2 such

that [A1(ωk)
′ : A′

2] is invertible and let A2yt = Ũ2(B)D̃2(B)Ṽ2(B)ε̃2t. Now, we

can represent yt as

yt = Ũ(B)





D̃1(B) 0

0 D̃2(B)



 Ṽ (B)





ε̃1t

ε2t




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where

Ũ(B) =





A1(B)

A2





−1



Ũ1(B) 0

0 Ũ2(B)



 Ṽ (B) =





Ṽ1(B) 0

0 Ṽ2(B)





To see (b), ifDΨ(z)|d(z) we just need to multiply (14) by adjV (B)DΨ(B)−1adjU(B),

so we get.

adjV (B)d(B)DΨ(B)−1adjU(B)yt = detU(B)detV (B)εt,

where detU(B)detV (B) has no unit roots. If DΨ ∤ d, then some roots of DΨ(z)

have to remain in the RHS of the representation, so m has unit roots.

Lemma 1. The ring of polynomials C[z] and R = {f/g : f, g ∈ C[z], ∀k, g(ωk) 6=

0} are PIDs.

Proof. Every Euclidean ring is a PID (see Hungerford, 1980, theorem 3.9). The

fact that C[z] is an Euclidean ring is elementary. We will prove that for R. We

can write any f/g ∈ R as f = hk/g, where h has roots only among {ωℓ}
s−1
ℓ=0 and

k has none there. Then, if we denote by ∂p the degree of polynomial p, we can

define ϕ(f) = ∂h. To divide f1 = h1k1/g1 by f2 = h2k2/g2, we first divide h1 by

h2, so h1 = qh2+r. Then f1 = (qh2+r)k1 = qh2k1/g1+rk1/g1 = q̃f2+rk1/g1,

where q̃ = (g2k1g
−1
1 k−1

2 )q and ϕ(rk1/g1) = ∂r < ∂h2 = ϕ(f2).

Lemma 2. Let f(z) be a holomorphic function in Ω ⊂ C such that f̄(z) =

f(z̄) and p(z) a polynomial with real coefficients and nonzero roots. Let us

assume that the roots of p that have nonnegative imaginary part are {θk}k with

multiplicities mk. Then, f(z) = h(z)p(z) + r(z) where h(z) is a holomorphic

function in Ω and

r(z) =
∑

Imθk=0

mk
∑

ℓ=1

ck,ℓ
p(z)

(z − θk)ℓ
+
∑

Imθk>0

mk
∑

ℓ=1

(

ck,ℓ,0+ck,ℓ,1z
) p(z)

(z2 − 2Reθkz + |θk|2)ℓ
,

with ck,ℓ, ck,ℓ,0, ck,ℓ,1 ∈ R.

Proof. Let qk,ℓ(z) = p(z)/(z−θk)
ℓ. Is is easy to see that there are ck,ℓ ∈ C such

that at each θk,
∑

k

∑mk

ℓ=1 ck,ℓqk,ℓ(z) and its derivatives up to mk − 1 coincide

27



with f(z). It suffices to write down the identities and see that they form a

triangular linear system.

Let now qk,ℓ,0(z) = p(z)/(z2− 2Reθk + |θk|
2)ℓ and qk,ℓ,1(z) = qk,ℓ,0(z)z. We

will see that B = {qk,ℓ : Imθk = 0} ∪ {qk,ℓ,0, qk,ℓ,1 : Imθk > 0} are linearly

independent in V , the space of the polynomials of degree up to ∂p− 1. Let us

assume that there is a linear combination of the elements of B that equals zero.

Then,

∑

Imθk=0

mk
∑

ℓ=1

ck,ℓ
1

z(z − θk)ℓ
+

∑

Imθk>0

mk
∑

ℓ=1

ck,ℓ,0
1

z(z2 − 2Reθkz + |θk|2)ℓ
+

∑

Imθk>0

mk
∑

ℓ=1

ck,ℓ,1
1

(z2 − 2Reθkz + |θk|2)ℓ
= 0. (15)

Now, we can integrate the last identity along a closed path encircling only θk.

By the Residue Theorem (Rudin, 1987), for real θk we obtain that 2πick,ℓ/θk =

0, whereas for a pair of conjugate roots, we get 2πck,ℓ,0/(θk2Imθk)+2πck,ℓ,1/(2Imθk) =

0 and −2πck,ℓ,0/(θ̄k2Imθk) − 2πck,ℓ,1/(2Imθk) = 0. Consequently, ck,ℓ,0 =

ck,ℓ,1 = 0. Since the number of elements in B equals the dimension of V ,

they form a basis.

To see that the coefficients are real, notice that the left hand side of (15)

equals r(z)/(zp(z)) = f(z)/(zp(z)) − h(z)/z. Then, we can apply again the

Residue Theorem with the same paths. Since f(z)/p(z) = f(z̄)/p(z̄) and h(z)

is holomorphic, then Res(f(z)/(zp(z))− h(z)/z, θk) ∈ iR. This entails that by

solving the equations, we can see that ck,ℓ, ck,ℓ,0, ck,ℓ,1 ∈ R.

Proof of proposition 3. From the identity Φ(z) = UΦ(z)DΦ(z)V Φ(z), we get

Φ(z) =
∑n

i=1 ui(z)vi(z)
′di(z), where the vectors ui(z) and vi(z)

′ are respectively

the columns of UΦ(z) and the rows of V Φ(z), and di(z) is the ith element in

the main diagonal of D(z). We can group terms with common di, so

Φ(z) =

r
∑

j=1

A
(1)
j (z)δj(z). (16)

On the other hand, let us write δj+1 = cjδj . We can divide c1 between z.

We have then, c1 = zg1 + k, with k ∈ R and k 6= 0. Hence, δ1 = k−1δ2 − zg1δ1.
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If we replace δ1 in (16), we get

Φ(z) = A(1)
r (z)δh(z) + . . .+

(

A
(1)
2 (z) + k−1A

(1)
1 (z)

)

δ2(z)−A
(1)
1 (z)g1(z)zδ1(z) =

h
∑

j>1

A
(2)
j (z)δj(z) +A

(2)
j (z)δj(z)z

We can repeat this device to obtain the form

A(h−1)
r (z)δh(z) +

h−1
∑

j=1

A
(r−1)
j (z)δj(z)z = B

(1)
h (z)δh(z) +

h−1
∑

j=1

B
(1)
j (z)δj(z)z. (17)

The last step consists of rewriting the terms of the last sum in (17). We divide

the elements ofB
(1)
1 (z) by c1(z) using lemma 2, so we getB

(1)
1 (z) = c1(z)Q1(z)+

R1(z), where R1(z) is a polynomial matrix whose elements have the form given

by lemma 2. Then, if c1 has roots θk with multiplicities mk, then

Φ(z) =
∑

Imθk=0

mk
∑

ℓ=1

Π
(1)
kℓ ∆1kℓ(z) +

∑

Imθk>0

mk
∑

ℓ=1

(

Π
(1,+)
kℓ +Π

(1,−)
kℓ z

)

∆1kℓ(z) +

B
(2)
1 δ1(z)z +

h−1
∑

j=2

B
(2)
j (z)δj(z)z +B(2)

r (z)δh(z),

where B
(2)
1 = R1. We proceed dividing in turn each B

(j)
j by fj . Finally Πj =

A
(r−1)
j .

Proof of proposition 4. The VAR representation of the process, Φ(B)yt = εt,

can be written as U(B)D(B)V (B)yt = εt, where for ease of notation we omit

the superscript ·Φ. We can write the elements of the main diagonal of D(z) as

di(z) = d̃i(z)gi(z), where d̃i(z) has all the unit roots of di(z). Then, we can move

the non-unit roots to the right and get the representation U(B)D̃(B)Ṽ (B)yt =

εt. We will prove first the case when all unit roots are equal to 1. Then, exists

r, s such that δ1 = (1 − z)s and δh = (1 − z)r. We will write ∆i(z) = (1 − z)i.

Let us define ∆i(B)yt = y
(i)
t .

We will write down the form of the least squares estimator. Then by

defining Y =
[

y
(r)
T , y

(r)
T−1, . . .

]

and ε =
[

εT , εT−1, . . .
]

, the parameter matrix
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β = [Γ1, . . . ,Γp : Π], Π = [Π(1), . . . ,Π(r)] and X = [X(1)′ : X(2)′]′, where

X(1) =

















y
(r)
T−1 y

(r)
T−2 . . .

y
(r)
T−2 y

(r)
T−3 . . .

. . . . . . . . . . . .

y
(r)
T−p y

(r)
T−p−1 . . .

















X(2) =

















y
(r−1)
T y

(r−1)
T−1 . . .

y
(r−2)
T y

(r−2)
T−1 . . .

. . . . . . . . . . . .

y
(s)
T y

(s)
T−1 . . .

















.

Now, we can write the model as Y = βX + ε and the least squares estimator

is β̂ = Y X ′(XX ′)−1 so that β̂ = β + εX ′(XX ′)−1. We need to analyze the

asymptotic behavior of εX ′ and XX ′.

The process Yt = (y
(s)
t

′
, . . . , y

(r−1)
t

′
)′ satisfies Yt = DYt−1 +At with

D =























In In 0 . . . 0

0 In In . . . 0

0 0 In . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . In























andAt = (0, . . . , 0, C(B)εt)
′, C = Ṽ −1δrD

−1U∗ = Ṽ (B)−1diag(δr/δs, . . . , 1)U
∗.

By means of the Beveridge-Nelson decomposition we can represent Yt in a sim-

ilar way as in section 2 of TT. In particular, we write Yt = Zt+Mt, where Zt =

DZt−1 + Bt and Bt = (0, . . . , 0, C(1)εt)
′ and Mℓ,t = Op(t

r−ℓ−1). We can also

write the components of Zt as Zr−1,t = C(1)
∑t

j=1 εj and Zℓ,t = Zℓ,t−1+Zℓ+1,t.

Let us simplify the notation by setting ξt = C(1)εt, Zr−1,t =
∑t

τ=1 ξτ and

Zℓ,t =
∑t

τ=1 Zℓ+1,τ . Now, for u ∈ [0, 1], we define Wℓ,t(u) = tℓ−r+1/2Zℓ,[tu] for

ℓ < r. Then

Wr−1,t(u) = t−1/2

[tu]
∑

τ=1

ξτ

Wℓ,t(u) = tℓ−r+1/2

[tu]
∑

τ=1

Zℓ+1,τ = t−1

[tu]
∑

τ=1

Wℓ+1,τ (u)

Using theorem 3.1 from TT, we get Wℓ,t(u)
w
→ Γℓ(u), where Γr−1(u) = Bξ(u),

Γℓ(u) =
∫ u

0 Γℓ+1(v)dv and B(u) is a Brownian motion with covariance matrix
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C(1)C(1)′. It also holds

T i+j−2r
T
∑

t

Zi,tZ
′
j,t = T−1

T
∑

t

Wi,T

( t

T

)

Wj,T

( t

T

)

→

∫ 1

0

Γi(u)Γj(u)
′du

and

T ℓ−r
T
∑

t

Zi,tξ
′
t = T−1/2

T
∑

t

Wi,T

( t

T

)

ξt →

∫ 1

0

Γi(u)dBξ(u)
′du

T ℓ−r
T
∑

t

Zi,tε
′
t = T−1/2

T
∑

t

Wi,T

( t

T

)

εt →

∫ 1

0

Γi(u)dBε(u)
′du.

Since, Mℓ,t = Op(t
r−ℓ−1), we get for i, j < r,

T i+j−2r
T
∑

t

y
(i)
t y

(j)
t

′
→

∫ 1

0

Γi(u)Γj(u)
′du

T i−r
T
∑

t

y
(i)
t ξ′t →

∫ 1

0

Γi(u)dBξ(u)
′du

T i−r
T
∑

t

y
(i)
t ε′t →

∫ 1

0

Γi(u)dBε(u)
′du

Now, we can put εX ′(XX ′)−1 = UA−1 as

[

T
∑

t

εty
(r)
t−1, . . . ,

T
∑

t

εty
(r)
t−p :

T
∑

t

εty
(r−1)
t−1 , . . . ,

T
∑

t

εty
(s)
t−1

]

×

×





(
∑T

t y
(r)
t−iy

(r)
t−i

′
)i,j (

∑T
t y

(r)
t−iy

(r−j)
t−1

′
)i,j

(
∑T

t y
(r−i)
t−1 y

(r)
t−j

′
)i,j (

∑T
t y

(r−i)
t−1 y

(r−j)
t−1

′
)i,j





−1

Now, let L∗
T = diag(T−1/2Ipn, LT ). Then, (β̂ − β)L∗

T = U∗A∗−1 equals

[

T−1/2
T
∑

t

εty
(r)
t−1, . . . , T

−1/2
T
∑

t

εty
(r)
t−p : T−1

T
∑

t

εty
(r−1)
t−1 , . . . , T−r+s

T
∑

t

εty
(s)
t−1

]

×

×





(T−1
∑T

t y
(r)
t−iy

(r)
t−i

′
)i,j (T−1/2+j−r

∑T
t y

(r)
t−iy

(r−j)
t−1

′
)i,j

(T−1/2+i−r
∑T

t y
(r−i)
t−1 y

(r)
t−j

′
)i,j (T 2r−i−j

∑T
t y

(r−i)
t−1 y

(r−j)
t−1

′
)i,j





−1

Now, for U∗ = (U∗
1 , U

∗
2 ), U1

d
→ N(Ξ,Ω),

U∗
1

d
→

(

[

∫ 1

0

Γr−1(u)dBε(u)
′
]′

, . . . ,
[

∫ 1

0

Γs(u)dBε(u)
′
]′
)
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and

A∗ d
→





Γ
(r)
p 0

0 Ω





where Γ
(r)
p is the covariance matrix of (y

(r)
t−1, . . . , y

(r)
t−p)

′ and

Ω =
(

∫ 1

0

Γi(u)Γj(u)
′du
)

i,j
.

We will sketch now the proof for the general case. In order to make the

notation less cumbersome, we denote the multi-index (j, k, ℓ) as α. We consider

its values ordered with the lexicographical order. Then, y
(α)
t = ∆α(B)yt. Now,

(β̂ − β) = UA−1 equals

[

T
∑

t

εty
(h)
t−1

′
, . . . ,

T
∑

t

εty
(h)
t−p

′
:
(

T
∑

t

εty
(α)
t−1

)′

α

]

×





(
∑T

t y
(h)
t−µy

(h)
t−ν

′)

µ,ν
(
∑T

t y
(h)
t−µy

(α)
t−1

′
)µ,α

(
∑T

t y
(α)
t−1y

(h)
t−ν

′
)α,ν (

∑T
t y

(α)
t−1y

(β)
t−1

′
)α,β





−1

.

Now, B1 = {∆(h)}∪{∆(α)}α is a basis of the space of polynomials of degree

up to q = ∂∆(h). On the other hand, let us define Lν,τ (z) = ∆(h)(z)(1−θ−1
τ z)−ν ,

where τ = 0, . . . , s − 1 and ν = 1, . . . ,mτ , where mτ is the multiplicity of θτ

in ∆(h). It is easy to prove that B2 = {∆(h)} ∪ {Lν,τ}ν,τ is also a basis by the

Residue Theorem as in lemma 2. Then, there exists an invertible matrix Q such

that Q ·
(

∆(α)
)

(α)
=
(

L(0)′, . . . , L(s− 1)′
)′

and L(τ) = (L1,τ (z), . . . , Lmτ ,τ (z))
′

contains the elements of B2 associated to the τth root. Then, UA−1Q′−1 =

UQ
(

QAQ′)−1 = V B−1.

Let us denote zν,τ,t = Lν,τ (B)yt = (1 − θ−1
τ z)−νC(B)εt. When 0 < τ < b,

zν,τ,t and zν,s−τ,t are conjugate. We can also make a transformation similar to

that in section 3 of TT to transform the conjugate pairs into pairs of real and

imaginary parts w(uν,τ,t = ν, τ, t, vν,τ,t)
′. Then, there is an invertible matrix

P such that V B−1 = WC−1P , W = V P and C = PBP ′. Consequently,

UA−1Q′−1P ′−1 has the form

[

W−1 : W0, . . . ,Wb

]

×
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















C−1,−1 C−1,0 . . . C−1,b

C0,−1 C0,0 . . . C0,b

. . . . . . . . . . . .

Cb,−1 Cb,0 . . . Cb,b

















−1

,

whereW−1 = [
∑

t εty
(h)
t

′
, . . . ,

∑

t εty
(h)
t−p

′
],Wτ =

(
∑

t εtz
′
1,τ,t−1, . . . ,

∑

t εtz
′
mτ ,τ,t−1

)′

for τ = 0, . . . , b, and

C−1,−1 =
(

T
∑

t

y
(h)
t−uy

(h)
t−v

′)

u,v
C−1,τ =

(

∑T
t y

(h)
t−uzν,τ,t−1

′
)

u,ν

Cσ,−1 = C′
−1,σ Cσ,τ =

(

∑T
t zµ,σ,t−1zν,τ,t−1

′
)

µ,ν
.

We can deal now with the W ’s and C’s in a similar fashion as the unity case,

along the lines of section 4 of TT.

Proof of proposition 6. It suffices to see that the algorithm described in annex

?? (i) can be described as (5)-(6) with ǫ = 0, (ii) it stops and (iii) when it stops,

the state variable D is the Smith form of A.

The first assertion can be proved as follows: let the state variable ek com-

prise all the flags, an additional flag indicating whether r = 0 and the current

line number. Then, all the actions in the algorithm are either (a) control flow

sentences and changes of r, that are (5) or (b) admissible operations, that are

(6). Thus, we can write a meta-algorithm that runs over the algorithm of the

annex as follows:

1: k, nline← 1

2: loop

3: if sentence(nline) is type (a) then

4: perform ek = f0(ek−1, A
(k−1))

5: else

6: perform A(k) = g(ek−1, A
(k−1)) and nline← nline+ 1

7: end if

8: k ← k + 1

9: end loop
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In order to see that the algorithm always stops and that when it stops, we get

the Smith form, we can easily adapt the proof in Hungerford (1980), page 340,

replacing the arguments based on the finiteness of the divisors of an element in

the ring, by the fact that the degree function takes values in N and thus it can

decrease only a finite number of times.

Proof of Theorem 1. To simplify the proof, we assume that the algorithm does

not involve the condition r = 0, but just conditions of the form aij = 0. The

proof can be easily adapted then by considering an augmented matrix Ã = [A :

R], where R = (rij)ij and rij is the remainder of the Euclidean division of aii

and aij .

We will denote by (ek, A
(k)) the pair we obtain as the result of iterating (5)-

(6) starting from A, whereas (êk, Â
(k)) is got by iterating the ǫ−approximate

version of (5)-(6) starting from Â. We will see that ∀k,

P [êℓ = eℓ, ∀ℓ ≤ k]→ 1 (18)

Â(k) −A(k) = wk
T , (19)

where ∀δ > 0, ∃M > 0, T0 such that ∀T ≥ T0, P [ξ−1
T ‖w

k
T ‖ > M |êℓ = eℓ, ∀ℓ ≤

k] < δ. For any random variable that satisfies this property of wk
T , we write

Ocp(ξT ), that is, conditional order ξT in probability. It is easy to see that

this property behaves in a similar fashion to the usual order in probability, in

particular, the product of two Ocp(ξT ) and Ocp(ηT ) sequences is Ocp(ξT ηT ).

We will prove (18) and (19) by induction in k. For k = 0 it is trivial. Now,

let us assume that it holds for k − 1 and we will prove it for k.

First, we will see that P [êℓ = eℓ, ∀ℓ ≤ k] → 1. Let i and j be indexes such

that given êk−1 = ek−1, fǫT takes a certain value α if |â
(k−1)
ij | < ǫ and a value

β if |â
(k−1)
ij | ≥ ǫ. We will use that

P
[

êℓ = eℓ, ∀ℓ ≤ k
]

= P
[

êk = ek|êℓ = eℓ, ∀ℓ ≤ k−1
]

P
[

êℓ = eℓ, ∀ℓ ≤ k−1
]

. (20)

There are two cases, either a
(k−1)
ij = 0 or a

(k−1)
ij 6= 0. If a

(k−1)
ij = 0, then

P
[

êℓ = eℓ, ∀ℓ ≤ k
]

= P
[

|â
(k−1)
ij | ≤ ǫT |êℓ = eℓ, ∀ℓ ≤ k− 1

]

P
[

êℓ = ev, ∀ℓ ≤ k − 1
]
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From (18) and ξ−1
T ǫT −→∞, it follows,

P
[

|â
(k−1)
ij | ≤ ǫT |êℓ = eℓ, ∀ℓ ≤ k − 1

]

= (21)

P
[

ξ−1
T |â

(k−1)
ij − a

(k−1)
ij | ≤ ξ−1

T ǫT |êℓ = eℓ, ∀ℓ ≤ k − 1
]

→ 1.

Let us now consider the case that a
(k−1)
ij 6= 0. Then,

P
[

|â
(k−1)
ij | ≤ ǫT |êℓ = eℓ, ∀ℓ ≤ k − 1

]

= (22)

P
[

|â
(k−1)
ij − a

(k−1)
ij | ≤ ǫT |êℓ = eℓ, ∀ℓ ≤ k − 1

]

→ 1,

because |â
(k−1)
ij − a

(k−1)
ij | → |a

(k−1)
ij | > 0 in probability and ǫT → 0.

Consequently, (18) is proved. Let us see (19). We denote by Ŝ(k−1) and

S(k−1) the matrices of the admissible operation (d) performed on Â(k−1) and

A(k−1) respectively. Then,

Â(k) −A(k) = Â(k−1)Ŝ(k−1) −A(k−1)S(k−1) = (23)

=
[

Â(k−1) −A(k−1)
]

Ŝ(k−1) +A(k−1)
[

Ŝ(k−1) − S(k−1)
]

. (24)

For row operations, we find a similar identity. Thus, we just need to prove that

Ŝ(k−1) − S(k−1) = Ocp(ξT ) and use that in turn, this implies Ŝ(k−1) = Ocp(1).

The matrix Ŝ(k−1)−S(k−1) only has a nonzero element, that is the difference

between the quotient ĉ of the Euclidean division of â
(k−1)
ij between â

(k−1)
ii in

Ŝ(k−1) and its counterpart c from A(k−1). The degrees of the â
(k)
ij are bounded

conditionally to êℓ = eℓ, ∀ℓ ≤ k, so we can use assumption 4 and

â
(k−1)
ii − a

(k−1)
ii = Ocp(ξT ) (25)

â
(k−1)
ij − a

(k−1)
ij = Ocp(ξT ), (26)

and get that ĉ− c = Ocp(ξT ) and thus Ŝ(k−1) − S(k−1) = Ocp(ξT ).

The case of the admissible operations (c) and (e) are similar, while (a) and

(b) are isometries and thus they satisfy trivially the condition.

Lemma 3. The Euclidean division and the mapping u are continuous in R =

R[z].
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Proof. If δ < 1, then |q − q′| < δ entails ϕ(q′) = ϕ(q). Thus, the degrees

of the polynomials, and consequently the number of operations involved in the

division are bounded. Since the algorithm only requires addition, multiplication

and division by the lead coefficient of the divisor, the continuity is granted.

The mapping u in this case boils down to calculate the inverse of the leading

coefficient of the argument and by definition, the leading coefficient is always

nonzero.

Before proving proposition 7, we need some preliminary results. In TT, it

is proved that for purely nonstationary processes, that is, processes that satisfy

a A(B)yt = M(B)εt such that det Φ(z) has only unit roots, the autoregressive

least squares estimates are consistent. For processes that are nonstationary, but

not purely nonstationary, that is, when detA(z) has roots on and outside the

unit circle, the purely nonstationary part of the estimates (in some sense that

is specified in the proof of proposition 7) is consistent.

We will prove that S̃(A, 0;R[z]) does not depend on the stationary part and

that Φ̂→ A∗ such that the S̃(A∗, 0;R[z]) = S̃(A, 0;R[z]) and thus S̃(Φ̂, ǫt;R[z])
p
→

S̃(A, 0;R[z]).

Now, we see that if we can decompose the autoregressive polynomial into

stable and purely unstable components, only the purely unstable component

determines S̃(A, 0;R1(z)).

Lemma 4. Let Φs(z) be stable (i.e., without unit roots). Then, for any Φn(z),

possibly with unit roots, S((Φ−1
n +Φ−1

s )−1, 0;R1(z)) = S(Φn, 0;R1(z)).

Proof. For ease of notation, we drop the superscript ·Φ. Let Φn = UDV and

(Φ−1
n + Φ−1

s )−1 = Θ−1Φ, where Φ and Θ are left-coprime. Then Θ−1Φ =
[

DV adjΦs detU+adjU detΦs

]−1

·
[

DV detΦs detU
]

. By theorem 2.1.1 in Han-

nan and Deistler (1988), we know that there exists some unimodular matrix C

such that Φ = CDV detΦs detU . Therefore (Φ−1
n +Φ−1

s )−1 = Θ−1CDV det Φs detU

and thus, its SF is D.

Proof of proposition 7. We will use the representation Yt = FYt−1 + at, where
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Yt = (y′t, . . . , y
′
t−p+1)

′, at = LΘ(B)εt, F is the companion matrix of Φ and L

comprises the first n columns of Inp. Let J = PFP−1 be the Jordan form of F .

We can decompose it in the stable and non-stable parts as J = diag(Js, Jn).

If we call Ut = PYt, then Ut = (Ust, Unt)
′, where Ust and Unt are the stable

and unstable components. In TT it is proved that Ĵs → J∗
s and Ĵn → Jn,

where J∗
s 6= Js when Θ 6= 0, but we can see that J∗

s is stable, that is, it has

all its eigenvalues inside the unit disk. Since Ust is stable, Ust =
∑

k≥0 Ψkǫt−k,

with
∑

k ‖Ψk‖
2 < +∞. Then, J∗

s = Γ(0)−1Γ(1), where Γ(0) =
∑

k≥0 ΨkΨ
′
k and

Γ(1) =
∑

k≥0 Ψk+1Ψ
′
k.

Let us see that all eigenvalues of J∗
s have modulus less than one. Let u

be an eigenvector and λ its eigenvalue, so Γ(1)u = λΓ(0)u and then u′Γ(1)u =

λu′Γ(0)u. Let us consider the infinite sequences x = (x0, x1, . . .), where xj ∈ Rn

endowed with the scalar product 〈x, y〉 =
∑

k x
′
kyk. Then, by defining a =

(Ψ′
0u,Ψ

′
1u, . . .) and b = (Ψ′

1u,Ψ
′
2u . . .), then u′Γ(0)u = 〈a, a〉 and u′Γ(1)u =

〈a, b〉. Since ‖b‖ ≤ ‖a‖, we conclude that |λ| < 1 unless a and b are linearly

dependent, but his implies that Ψ′
ku = αkw. Then, α = λ and necessarily

|α| < 1 because Ψk is square-summable.

We can recover the infinite MA representation of yt as yt = L′P−1(1 −

JB)−1PLεt. Since J = diag(Js, Jn), then

Φ̂(z)−1 → L′P−1





(1− J∗
sB)−1 0

0 0



PL+L′P−1





0 0

0 (1− JnB)−1



PL

Since the first part is stable and the second unstable, we conclude by applying

lemma 4.
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